
Locality and Efficiency in Distributed
Computing

Thesis for the degree of

DOCTOR of PHILOSOPHY

by

Ittai Abraham

submitted to the senate of
The Hebrew University of Jerusalem

April 2009

This work was carried out under the supervision of

Prof. Danny Dolev and Prof. Dahlia Malkhi

ii

Acknowledgements

I have been blessed by having two amazing advisors, Danny Dolev and Dahlia Malkhi. I
am forever grateful for the tremendous amount of time, energy and support that both have
spent during my six years as a phd student. I cannot even begin to explain how much I have
learned from them as a researcher and as a person. In many crossroads of my research it
was Danny’s wise advice or Dahlia’s insightful views that allowed me to overcome difficulties
and continue.

Cyril Gavoille introduced me to the world of compact routing. Cyril has been a great
source of knowledge and a wonderful co-author. I would also like to thank Baruch Awer-
buch, Yossi Azar, Yair Bartal, Elan Pavlov, Noam Nisan, Mikkel Thorup, Oren Dobzinski,
Ankur Badola, Danny Bickson, Sharad Maloo, Saar Ron, David Peleg and Nati Linial who
either co-authored a compact routing paper with me or who have significantly impacted my
understanding of the topic.

This thesis is centered around results that were developed mostly during the first three
years of my phd. In the remaining years I continued to work with Dahlia on Compact
Routing Schemes, with Danny Dolev and Joe Halpern on Game Theory and Distributed
Computing, and with Yair Bartal and Ofer Neiman on Metric Space Embedding. I would
like to thank all my co-authors. I have learnt tremendously from each one of them.

Finally I would like to thank my father, Uri for teaching me that math is simple when
viewed in the right way and my wife, Mor for reminding me that there are more important
things in life.

iii

Abstract

A prominent challenge is improving the efficiency of distributed computation: reducing the
cost, load, and resource requirements while still maintaining the same quality of service. Due
to the shear amount of information and the size of the network, executing global system-wide
operations becomes very expensive. When possible, we wish to minimize the work done by
the system and avoid the heavy cost incurred by global operations.

One of the main tools to achieve efficient distributed computation is to exploit the issue
of locality. Specifically, some tasks require the participation of a small region of the network.
In such a case one would want the computation to span only the minimal required region.

Routing is a prominent example of a task that can dramatically benefit from exploiting
locality. If the source and destination nodes are close by, routing should involve only the
small region that contains the source and destination.

One of the fundamental trade-offs in compact routing schemes is between the space used
to store the routing table on each node and the stretch factor of the routing scheme – the
maximum ratio over all pairs between the cost of the route induced by the scheme and the
cost of a minimum cost path between the same pair.

A name-independent routing scheme is a distributed algorithm that allows any source
node to route messages to any destination node, given the destination’s network identifier.

This thesis suggests new ways in which distributed routing schemes can exploit locality
in an efficient manner by proposing new and improved space-stretch tradeoffs for compact
name-independent routing schemes.

iv

Contents

1 Introduction 1

1.1 Compact Name-Independent Routing with Minimum Stretch 3

1.2 Name-Independent Routing with Improved Communication-Space Trade-Off 3

1.3 Name-Independent Routing for Growth Bounded Network 3

1.4 Scale-Free Name-Independent Routing . 4

1.5 LLS : Name-Independent Routing for Mobile Ad Hoc Networks 4

2 Compact Name-Independent Routing with Minimum Stretch 5

2.1 Introduction . 5

2.1.1 Our results . 7

2.2 Preliminaries . 7

2.3 The Stretch 3 Scheme . 8

2.3.1 Vicinity balls . 8

2.3.2 Coloring . 9

2.3.3 Hashing names to colors . 9

2.3.4 Stretch 3 for complete graphs . 9

2.3.5 Routing on trees . 10

2.3.6 Landmarks . 10

2.3.7 Partial shortest path trees . 10

2.3.8 The stretch 3 scheme . 11

2.3.9 Analysis . 11

2.4 On Polynomial Time Coloring . 13

2.5 On Hashing in Constant Time . 14

2.6 Combining the Ingredients . 15

2.7 Conclusion . 16

3 Name-Independent Routing with Improved Communication-Space Trade-
Off 17

v

CONTENTS CONTENTS

3.1 Introduction . 17

3.2 Preliminaries . 19

3.3 Linear Communication-Space Trade-Off . 19

3.3.1 Tree cover based on Sparse Partitions 19

3.3.2 Bounded cost name-independent tree-routing 20

3.3.3 The name-independent routing scheme 20

3.3.4 Bounded-cost name-independent tree-routing 21

3.3.5 Analysis . 25

4 Name-Independent Routing for Growth Bounded Networks 27

4.1 Introduction . 27

4.1.1 Problem definition . 28

4.1.2 Our results . 28

4.1.3 Related work . 29

4.2 Overview . 30

4.3 Preliminaries . 31

4.4 The Scheme . 33

4.4.1 Identifiers and the zero-sets. 33

4.4.2 Zero-Assisted Routing . 33

4.4.3 Prefix routing . 34

4.4.4 The Directory . 35

4.4.5 The Routing Algorithm . 36

4.4.6 Correctness . 37

4.5 Stretch Analysis . 37

4.6 Space Analysis . 38

5 Scale-Free Name-Independent Routing 40

5.1 Introduction . 40

5.1.1 Our contribution . 41

5.1.2 Techniques . 41

5.1.3 Related work . 42

5.2 Sparse and Dense Neighborhood Decomposition 43

5.2.1 Preliminaries . 43

5.2.2 Dense Levels . 44

5.2.3 Sparse Levels . 45

5.3 A Scale-Free Routing Scheme . 47

vi

CONTENTS CONTENTS

5.3.1 Sparse neighborhood routing strategy 47

5.3.2 Storage for sparse neighborhood strategy 49

5.3.3 Routing algorithm for sparse neighborhood strategy 50

5.3.4 Dense neighborhood routing strategy 50

5.3.5 Storage for dense neighborhood strategy 51

5.3.6 Routing algorithm for dense neighborhood strategy 51

5.3.7 Analysis . 51

5.4 Conclusion . 53

6 LLS : Name-Independent Routing for Mobile Ad Hoc Networks 54

6.1 Introduction . 54

6.1.1 Our Results . 55

6.1.2 Related work . 55

6.1.3 Technical approach . 58

6.2 Model and Notations . 59

6.2.1 Virtual Coordinates . 59

6.3 Problem Definition . 60

6.4 LLS Architecture . 61

6.4.1 Mapping to Hierarchical Lattices . 61

6.5 The Spiral Algorithm . 62

6.5.1 Analysis . 63

6.6 The Spiral-Flood Algorithm . 64

6.6.1 Analysis . 65

6.7 The LLS Algorithm . 66

6.7.1 Analysis . 68

6.8 Fault Tolerance . 69

6.9 Improving Locality Awareness . 69

6.10 Simulations . 71

6.11 Conclusions . 73

vii

Chapter 1

Introduction

In the past 30 years, there has been tremendous growth in the use of computer systems
and computer networks. As the demands from computers become more complex and wide
reaching, there is an inherent need to distribute the system over many processors. Today,
most large scale systems are to some extent distributed. The Internet as a whole can be
viewed as a distributed system.

The traditional Client-Server paradigm is well suited to today’s Internet. As the com-
putational power and bandwidth of computers increases, I envision tomorrow’s Internet as
a meeting place in which computational entities can interact. Unlike the passive browsers
of today, tomorrow’s computational entities will have an active network presence. These
entities will act both as client and server, and will perform complex proactive tasks. In the
last ten years there has been enormous interest by the research community in symmetric
distributed systems that allow participants to actively share information among the partici-
pating peers. This interest was partly due to the phenomenal popularity of Peer-to-Peer file
sharing applications like Napster and BitTorrent.

I have a strong belief that in the future, distributed and non-centralized systems will have
an ever increasing role in all aspects of mankind. As these distributed systems evolve, the
complexity and the amount of information stored in them will grow exponentially. Managing
the tremendous amount of information stored on these systems raises many fundamental
challenges.

A prominent challenge is improving the efficiency of distributed computation: reducing
the cost, load, and resource requirements while still maintaining the same quality of service.
Due to the shear amount of information and the size of the network, executing global system-
wide operations becomes very expensive. When possible, we wish to minimize the work done
by the system and avoid the heavy cost incurred by global operations.

One of the main tools to achieve efficient distributed computation is to exploit the issue
of locality. Specifically, some tasks require the participation of a small region of the network.
In such a case one would want the computation to span only the minimal required region.

Routing is a prominent example of a task that can dramatically benefit from exploiting

1

CHAPTER 1. INTRODUCTION

locality. If the source and destination nodes are close by, routing should involve only the
small region that contains the source and destination.

The locality of a routing scheme can be captured by its stretch - the multiplicative
overhead relative to the optimal route, and the efficiently of a routing scheme can be captured
by its memory - the number of bits stored for the routing scheme on each node. This thesis
suggests new ways in which distributed routing schemes can exploit locality in an efficient
manner by proposing new and improved space-stretch tradeoffs.

Consider an n-node weighted undirected graph G = (V,E, ω). Each node in V is given an
arbitrary unique name with O(log n) bits. In addition, for each node u ∈ V , each out-going
edge is given an arbitrary unique port name in {1, . . . , deg(u)}.

A routing scheme is a distributed algorithm that, given a destination node’s name, allows
any node to route messages that will eventually arrive at the destination node. Specifically, a
routing scheme can be viewed as a function on each node that maps from a given header and
incoming port number to an outgoing port number and new message header. For example,
the trivial solution to routing on minimum cost paths is for each node to store for each of
the possible (n−1) destinations, a port number leading to the next node on a minimum cost
path to the destination. This solution requires each node to store Ω(n log n) bits of routing
information and thus does not scale well as the number of nodes in the system increases.

In order to reduce memory overhead and incur routing costs that are proportional to the
actual distances between interacting parties, there are two parameters that routing schemes
aim to minimize:

• Stretch: the maximum ratio over all source-destination pairs between the cost of the
path taken by the routing scheme and the cost of a minimum cost path for the same
source-destination pair.

• Memory : the maximum over all nodes of the number of bits stored for the routing
scheme.

Routing schemes which require nodes to store a linear number of bits are not scalable.
The challenge is to construct in polynomial time a compact routing scheme that minimizes
the stretch bound for any weighted graph while requiring only o(n) bits of routing information
per node. We refer the reader to Peleg’s book [Pel00] and to the surveys of Gavoille and
Peleg [Gav01, GP03] for comprehensive background on compact routing schemes.

The problem of devising compact routing schemes has two basic variants: labeled routing
and name-independent routing. Awerbuch et al. [ABNLP89] were the first to distinguish
between solutions that allow/disallow the designer to choose destination labels for nodes
as part of the solution. The variant that allows the designer to name nodes with arbitrary
destination labels is called labeled routing. A packet carries the chosen label of the destination
in its header, and we can use the label to code topological information useful for routing.
The power to choose destination labels of polylogarithmic size tends to make the routing
much easier.

2

CHAPTER 1. INTRODUCTION 1.1. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH

The variant that does not allow labeling of nodes in this way is called name-independent
routing. In this variant node destination names are given as part of the input, e.g., these
could be standard IP addresses. Generally this makes routing harder: Intuitively, the routing
algorithm must first discover information about the location of the target, and only then
route to it.

This thesis is composed of five papers that all deal with compact routing space-stretch
tradeoffs for name-independent routing schemes.

1.1 Compact Name-Independent Routing with Mini-

mum Stretch

This is a joint work with Cyril Gavoille, Dahlia Malkhi, Noam Nisan and Mikkel Thorup
[AGM+04b] that appeared in SPAA 04 [AGM+04b] and TALG 08 [AGM+08]. Given a
weighted undirected network with arbitrary node names, we present a compact routing
scheme, using a Õ(

√
n) space routing table at each node, and routing along paths of stretch

3, that is, at most thrice as long as the shortest paths. This is optimal in a very strong
sense. It is known that no compact routing using o(n) space per node can route with stretch
below 3. Also, it is known that any stretch below 5 requires Ω(

√
n) space per node.

1.2 Name-Independent Routing with Improved

Communication-Space Trade-Off

This is joint work with Cyril Gavoille and Dahlia Malkhi [AGM04a] that appeared in
DISC 04. Given a weighted undirected network with arbitrary node names, we present
a family of routing schemes characterized by an integral parameter κ ≥ 1. The scheme uses
Õ(n1/κ logD) space routing table at each node, and routes along paths of linear stretch O(κ),
where D is the normalized diameter of the network. When D is polynomial in n, the scheme
has asymptotically optimal stretch factor. With the same memory bound, the best previous
results obtained stretch O(κ2).

1.3 Name-Independent Routing for Growth Bounded

Network

This is joint work with Dahlia Malkhi [AM05] that appeared in SPAA 05. A weighted
undirected network is ∆ growth-bounded if the number of nodes at distance 2r around
any given node is at most ∆ times the number of nodes at distance r around the node.
Given a weighted undirected network with arbitrary node names and ε > 0, we present a

3

1.4. SCALE-FREE NAME-INDEPENDENT ROUTING CHAPTER 1. INTRODUCTION

routing scheme that routes along paths of stretch 1 + ε and uses with high probability only

O(1
ε

O(log ∆)
log5 n) bit routing tables per node.

1.4 Scale-Free Name-Independent Routing

This is joint work with Cyril Gavoille and Dahlia Malkhi [AGM06] that appeared in SPAA 06.
All previous routing schemes required storage that is dependent on the diameter of the
network (its aspect ratio). We present a new scale-free routing scheme, whose storage and
header sizes are independent of the aspect ratio of the network. Our scheme is based on
a decomposition into sparse and dense neighborhoods. Given an undirected network with
arbitrary weights and n arbitrary node names, for any integer k ≥ 1 we present the first
scale-free routing scheme with asymptotically optimal space-stretch trade-off that does not
require edge weights to be polynomially bounded. The scheme uses Õ(n1/k) space routing
table at each node, and routes along paths of asymptotically optimal linear stretch O(k).

1.5 LLS : Name-Independent Routing for Mobile Ad

Hoc Networks

This is joint work with Danny Dolev and Dahlia Malkhi [ADM04] that appeared in DIALM-
POMC 04. Coping with mobility and dynamism is one of the biggest challenges in ad
hoc networks. An essential requirement for such networks is a service that can establish
communication sessions between mobile nodes whose location is unknown. A location service
for ad hoc networks is a distributed algorithm that allows any source node s to know the
location of any destination node t, simply by knowing t’s network identifier.

A location service has a locality aware lookup algorithm if the cost of locating destination
t from source s is proportional to the cost of the minimal cost path between s and t. A
location service has a locality aware publish algorithm if the cost of updating the location
service due to a node moving from x to y is proportional to the distance between x and y.

We present LLS, the first location service for the Unit Disk Graph model whose lookup
and publish algorithms have worst case locality guarantees and average case locality aware-
ness efficiency for any source destination pair.

4

Chapter 2

Compact Name-Independent Routing
with Minimum Stretch

2.1 Introduction

Consider an n-node weighted undirected graph G = (V,E, ω). Each node in V is given an
arbitrary unique name with O(log n) bits. In addition, for each node u ∈ V , each out going
edge is given an arbitrary unique port name in {1, . . . , deg(u)}.

A routing scheme is a distributed algorithm that, given a destination node’s name, allows
any node to route messages that will eventually arrive at the destination node. Specifically, a
routing scheme can be viewed as a function on each node that maps from a given header and
incoming port number to an outgoing port number and new message header. For example,
the trivial solution to routing on minimum cost paths is for each node to store for each of
the possible (n − 1) destinations, a port number leading the next node on a minimum cost
path to the destination. This solution requires each node to store Ω(n log n) bits of routing
information and thus does not scale well as the number of nodes in the system increases.

In order to reduce memory overhead and incur routing costs that are proportional to the
actual distances between interacting parties, there are two parameters that routing schemes
aim to minimize:

• Stretch: the maximum ratio over all source-destination pairs between the cost of the
path taken by the routing scheme and the cost of a minimum cost path for the same
source-destination pair.

• Memory : the maximum over all nodes of the number of bits stored for the routing
scheme.

Routing schemes which require nodes to store a linear number of bits are not scalable.
The challenge is to construct in polynomial time a compact routing scheme that minimizes
the stretch bound for any weighted graph while requiring only o(n) bits of routing information

5

2.1. INTRODUCTION CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH

per node. We refer the reader to Peleg’s book [Pel00] and to the surveys of Gavoille and
Peleg [Gav01, GP03] for comprehensive background on compact routing schemes.

Gavoille and Gengler [GG01] show that compact routing schemes must have stretch of
at least 3. Specifically they prove that there exist n node networks in which any scheme
with stretch less than 3 requires a total of Ω(n2) bits of routing information. Thorup and
Zwick [TZ05] show that any scheme with stretch less than 5 must have networks which
require Ω(n3/2) bits of routing information. These lower bounds imply that compact routing
schemes must have at least stretch 3 and that stretch 3 routing schemes require at least
Ω(
√
n) bits per node.

The problem of devising compact routing schemes has two basic variants: labeled routing
and name-independent routing. Awerbuch et al. [ABNLP89] were the first to distinguish
between solutions that allow/disallow the designer to choose destination labels for nodes
as part of the solution. The variant that allows the designer to name nodes with arbitrary
destination labels is called labeled routing. A packet carries the chosen label of the destination
in its header, and we can use the label to code topological information useful for routing.
The power to choose destination labels of polylogarithmic size tends to make the routing
much easier.

The variant that does not allow labeling of nodes in this way is called name-independent
routing. In this variant node destination names are given as part of the input, e.g., these
could be standard IP addresses. Generally this makes routing harder: Intuitively, the routing
algorithm must first discover information about the location of the target, and only then
route to it.

Indeed, optimal stretch compact routing schemes for labeled routing are already known.
Eilam et al. [EGP03] present a stretch 5 labeled scheme with Õ(n1/2) memory1, whereas

Cowen [Cow99, Cow01] presents a stretch 3 labeled scheme with Õ(n2/3) memory. Later,

Thorup and Zwick [TZ01b] achieve the optimal stretch of 3 using only Õ(n1/2) bits. They
also give a generalization of their scheme and using techniques from their distance oracles
[TZ01a, TZ05], obtaining labeled schemes with stretch 4k−5 (and 2k−1 with handshaking)

using Õ(n1/k)-bit routing tables. Additionally, there exist various labeled routing schemes
suitable only for certain restricted forms of graphs. For example, routing in a tree is explored,
e.g., in [FG01, TZ01b], achieving optimal routing. This routing requires O(log2 n/ log log n)
bits for local tables and for headers, and this is tight [FG02].

As for name-independent routing, the situation is quite different. Initial results
in [ABNLP90] provide stretch 3 non-compact name-independent routing with Õ(n3/2) total
memory. However this scheme is unbalanced, Ω(

√
n) nodes must store Ω(n) bits of rout-

ing information. Awerbuch and Peleg [AP90] were the first to show that constant-stretch
is possible to achieve with o(n) memory per node, albeit with a large constant. Arias et

al. [ACL+03] significantly reduce the stretch to 5 with Õ(
√
n) memory per node. This

chapter closes the gap between these results and the known lower bound of stretch 3.

1We use the notation Õ(f(n)) = f(n)(logn)O(1) to hide poly-logarithmic factors.

6

CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH 2.2. PRELIMINARIES

2.1.1 Our results

We present the first optimal compact name-independent routing scheme for arbitrary undi-
rected graphs. The scheme has stretch 3, and requires O(log2 / log log n)-bit headers and

Õ(
√
n) bits of routing information per node. When routing along our stretch 3 paths, each

routing decision is performed in constant time. Given the graph and the node names, we
can construct the routing information in Õ(n|E|) time.

Besides improving the stretch of Arias et al. [ACL+03] from 5 to 3, our results answer
affirmatively the challenge of optimal name-independent routing that was open since the
initial statement of the problem in 1989 [ABNLP90]. Surprisingly, our results show that

with Õ(
√
n) bits of routing information per node, allowing the designer to label the nodes

does not improve the stretch factor compared to the task when node labels are predetermined
by an adversary.

We note that our solution does not contain any strikingly new technique. Rather our
new scheme is a non-trivial combination of simple standard techniques.

2.2 Preliminaries

Consider a set V of n nodes wishing to participate in a distributed routing scheme. We
assume the nodes are labeled with an arbitrary unique identifier that can be represented by
O(log n) bits.

We assume a graph G = (V,E, ω) with positive edge cost ω. For u, v ∈ V , let d(u, v)
denote the cost of a minimum cost path from u to v in G, where the cost of a path is the
sum of the weights along its edges.

Each node has, for each outgoing edge, a unique port name from the set of integers
{1, . . . , n}. We assume the fixed-port model [FG01]. In this model the name of each outgoing
edge is fixed by the adversary. Thus the name of the outgoing edge may have no connection
to the label of the node on the other side of the edge.

We assume that initially the sender only knows the name of the destination node. This
destination is written in the header of the message. We require writable packet headers,
namely, we allow the routing algorithm to write a reasonable amount of information into the
headers of messages as they are routed. In our case, we use O(log2 n/ log log n)-bit headers.

We note that our use of headers aims at useful tradeoffs between current techniques
used in the real world: source-directed routing, where the source puts the whole path to
the destination in the header, and routing with a fixed header, where each router knows
how to forward packets to any destination. For source-directed routing, the header may be
very large, and for routing with a fixed header, the routing tables may become huge. In
either case, we have problems with scaling. Our point here is that writing a small amount
of information in the header can dramatically reduce the amount of information needed at
the routers.

7

2.3. THE STRETCH 3 SCHEME CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH

It is no coincidence that our scheme and indeed all previous name-independent schemes
use writable packet headers. A scheme that does not rewrite packet headers must be loop
free and thus must have stretch 1 on any tree. Clearly in a tree that is a star the center
would have to code a permutation using Ω(n log n) bits on the average.

Lemma 2.2.1. There do not exist loop-free name-independent routing schemes with o(n)
bits for each node on every graph.

As for lower bounds for compact routing, note that for the related problem of labeled
routing, the work of [GG01] shows that any stretch < 3 scheme must use a total of Ω(n2)
bits. Thus it cannot be the case that all nodes use o(n) bits. Clearly this bound holds also
for the name-independent model.

Actually, a slightly stronger memory bound of Ω(n2 log n) bits for stretch < 3 can be
proven for the name-independent model. This is derived by examining the complete bipartite
graph Kn/2,n/2 with uniform weights (likewise, the metric space it induces). For stretch
< 3, each node must route optimally to its distance one neighbors. By counting all the
permutations on names it is clear that each node must use Ω(n log n) bits.

Lemma 2.2.2. Any name-independent routing scheme with o(n log n) bits per node must
have stretch at least 3.

2.3 The Stretch 3 Scheme

In Sections 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.3.6, we will first present some simple ingredients
for our optimal stretch 3 scheme. Then, in Section 2.3.8, we will combine them in our optimal
solution. Finally, in Section 2.3.9, we prove that the scheme has the optimal stretch of 3.

2.3.1 Vicinity balls

For every integer κ ≥ 1, and for a node u ∈ V , let the vicinity of u, denoted by Bκ(u), be
the set consisting of u and the κ closest nodes to u, breaking ties by lexicographical order
of node names. Vicinities satisfy the following Monotonicity Property:

Property 2.3.1. [ABNLP90] If v ∈ Bκ(u) and w is on a minimum cost path from u to v,
then v ∈ Bκ(w).

Proof. Seeking a contradiction, suppose v 6∈ Bκ(w). For any z ∈ Bκ(w) we have d(w, z) <
d(w, v) (or d(w, z) = d(w, v) and z < v). So d(u, z) < d(u,w) + d(w, v) (or d(u, z) =
d(u,w)+d(w, v) and z < v). Since w is on a minimum cost path from u to v, d(u, z) < d(u, v)
(or d(u, z) = d(u, v) and z < v), hence Bκ(w) ⊆ Bκ(u). But since v ∈ Bκ(u) \ Bκ(w) we
have |Bκ(w)| < |Bκ(u)| a contradiction.

8

CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH 2.3. THE STRETCH 3 SCHEME

Hereafter, the size of the vicinities is set to κ = d4
√
n log ne and denote simply by

B(u) = Bκ(u). Let b(u) denote the radius of B(u), b(u) = maxw∈B(u) d(u,w).

As in previous compact routing schemes (see, e.g., [ABNLP89, Cow01]), each node u will
know its vicinity B(u). We assume that u has a standard dictionary over the names in B(u)
so that in constant time it can check membership and look up associated information.

2.3.2 Coloring

Our construction uses a partition of nodes into sets C1, . . . , C√n, called color-sets, with the
following two properties:

Property 2.3.2.

1. Every color-set has at most 2
√
n nodes.

2. Every node has in its vicinity at least one node from every color-set.

From here on, if node u ∈ Ci we say that it has “color i”, and denote c(u) = i. By
standard Chernoff bounds and a union bound Property 2.3.2 clearly holds with high proba-
bility if every node independently chooses a random color. Constructing a polynomial-time
coloring satisfying Property 2.3.2 is discussed in Section 2.4.

2.3.3 Hashing names to colors

We shall assume a mapping h from node names to colors which is balanced in the sense
that at most O(

√
n) names map to the same color. Each node u should be able to compute

h(w) for any destination w. If the names were a permutation of {1, . . . , n}, we could just
extract 1

2
log n bits from the name, but we want to deal with arbitrary names such as IP

addresses. Arias et al. [ACL+03] use a (log n)-universal hash function for a similar purpose.
In Section 2.5 we will present a function h that can be computed in constant time.

2.3.4 Stretch 3 for complete graphs

To illustrate the use of these first three ingredients, we here observe a very simple stretch 3
scheme with Õ(

√
n) bits per node given a complete graph whose edge weights satisfy the

triangle inequality.

Every node u stores the following:

1. The names of all the nodes in the vicinity B(u) and what port number to use to reach
them.

2. The names of all the nodes v such that c(u) = h(v) and what port number to use to
reach them.

9

2.3. THE STRETCH 3 SCHEME CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH

Routing from u to v is done in the following manner:

1. If v ∈ B(u) or c(u) = h(v) then u routes directly to v with stretch 1.

2. Otherwise, u forwards the packet to w ∈ B(u) such that c(w) = h(v). Then from
w the packet goes directly to v. The stretch is at most 3 since d(u,w) + d(w, v) ≤
d(u, v) + 2d(u, v).

Note that in a general graph the main difficulty is in implementing the path from w to
v.

2.3.5 Routing on trees

We make use of the following labeled routing scheme for trees:

Lemma 2.3.3. [FG01, TZ01b] For every weighted tree T with n nodes, in the fixed-port
model, there exists a labeled routing scheme that, given any destination label, routes optimally
on T from any source to the destination. The storage per node in T , the label size, and the
header size are O(log2 n/ log log n) bits. Given the stored information of a node and the label
of the destination, routing decisions take constant time.

For a tree T containing a node v, let µ(T, v) denote the routing information stored at
node v and λ(T, v) denote the destination label of v in T as defined by the labeled routing
scheme of Lemma 3.3.4.

We shall apply the scheme Lemma 3.3.4 to several trees in the graph. Each node will
participate in Õ(

√
n) trees, so its total tree routing information will be of size Õ(

√
n).

2.3.6 Landmarks

Designate one color to be special and call it the landmark color. Let L denote the set of
nodes with the chosen color. By Property 2.3.2 we have |L| ≤ 2

√
n and for every v ∈ V ,

B(v) ∩ L 6= ∅. For a node v ∈ V , let `v denote the closest landmark node in B(v) (breaking
ties by lexicographical order of node names).

2.3.7 Partial shortest path trees

For any node u let T (u) denote a single-source minimum-cost-path tree rooted at u. In a
partial shortest path tree, every node v maintains µ(T (u), v) if and only if u ∈ B(v). Notice
that the set of nodes that maintain µ(T (u), ·) is a subtree of T (u) that contains u.

Lemma 2.3.4. If x ∈ B(y) then given the label λ(T (x), y), node x can route to node y along
a minimum cost path.

Proof. By Property 2.3.1 for any node w on the minimum cost path of T (x) between x and
y we have x ∈ B(w). Thus every node w on this path maintains µ(T (x), w).

10

CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH 2.3. THE STRETCH 3 SCHEME

2.3.8 The stretch 3 scheme

Every node u stores the following:

1. For every w ∈ B(u), the name w and the port name u→ y, where (u→ y) is the port
number to use to get to node y which is the next hop on a minimum cost path from x
to w.

2. For every landmark node ` ∈ L, routing information µ(T (`), u) and label λ(T (`), `) of
the tree T (`).

3. For every node x ∈ B(u), routing information µ(T (x), u) of the tree T (x).

4. For every node v such that c(u) = h(v), store one of the following two options that
produces the minimum cost path out of the two:

(a) Store the labels 〈λ(T (`v), `v), λ(T (`v), v) 〉. The routing path in this case would
be from u to `v ∈ B(v) using λ(T (`v), `v) on the tree T (`v), and from `v to v using
λ(T (`v), v) on the same tree T (`v).

(b) Let P (u,w, v) be a path from u to v composed of a minimum cost path from
u to w, and of a minimum cost path from w to v with the following prop-
erties: u ∈ B(w), and there exists an edge (x, y) along the minimum cost
path from w to v such that x ∈ B(w) and y ∈ B(v). If such paths exists,
choose the lowest cost path P (u,w, v) among all these paths and store the labels
〈λ(T (u), w), x, (x→ y), λ(T (y), v) 〉.
The routing path in this case would be from u to w on T (u) using λ(T (u), w).
This part is possible by Lemma 2.3.4 on u ∈ B(w). Then from w to y since
x ∈ B(w) and the port number (x → y) is stored. Finally from y to v on T (y)
using λ(T (y), v). This part is possible by Lemma 2.3.4 on y ∈ B(v).

Routing from u to v is done in the following manner:

1. If v ∈ B(u) or v ∈ L (v is a landmark node) or c(u) = h(v) then u routes to v using
its own information.

2. Otherwise, u forwards the packet to w ∈ B(u) such that c(w) = h(v). Then from w
the packet goes to v using w’s routing information.

2.3.9 Analysis

Theorem 2.3.5. Let s, t ∈ V be any two nodes. The route of the above scheme from s to t
has stretch at most 3.

Proof. There are three cases to consider (see Figure 2.1):

11

2.3. THE STRETCH 3 SCHEME CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH

s

t

t

z

t

s
z

x
y

s

t

(1) (2) (3)

Figure 2.1: The three cases in the proof of Theorem 2.3.5: (1) target is inside the source
vicinity, (2) source and target vicinities are far apart, (3) source and target vicinities are
close.

1. If t ∈ B(s) or t ∈ L then s routes on a minimum cost path directly to t.

Otherwise, denote d = d(s, t), let z be a node such that z ∈ B(s) and c(z) = h(t). For
the case c(s) = h(t), we set z = s. Let p(z, t) be the cost of the path chosen by z as the
lowest cost path from z to t among options 4a and 4b of Section 2.3.8.

2. On every minimum cost path from s to t there is a node y such that y 6∈ B(s) and
y 6∈ B(t). In this case b(s) + b(t) ≤ d(s, t) (recall that b(u) = maxw∈B(u) d(u,w)).

By examining option 4a the cost d(s, z) + p(z, t) of the path taken by our routing
scheme is bounded by the cost of the path s z `t t, where u v denotes a
minimum cost path from u to v. Thus d(s, z) + p(z, t) ≤ d(s, z) + d(z, `t) + d(`t, t) ≤
b(s) + [b(s) + d+ b(t)] + b(t) ≤ 3d.

3. There exists a minimum cost path, in which every node is in B(s) ∪ B(t). Let (x, y)
be an edge of this path such that x ∈ B(s) and y ∈ B(t).

By examining the best choice in option 4b the cost d(s, z) + p(z, t) of the path taken
by our routing scheme is bounded by the cost of the path s z s x → y t.
Thus d(s, z) + p(z, t) ≤ d(s, z) + d(z, s) + d(s, t) ≤ b(s) + b(s) + d ≤ 3d.

12

CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH 2.4. ON POLYNOMIAL TIME COLORING

2.4 On Polynomial Time Coloring

In this section, we discuss how to “derandomize” the coloring discussed in Section 2.3.2. This
is done via the method of conditional probabilities using pessimistic estimators [Rag88]. Let
C = {1, . . . ,

√
n}. We begin with a simple analysis of the randomized algorithm.

• For every v ∈ V and c ∈ C let bv,c be a {0, 1} random variable that equals 0 if and
only if there exists u ∈ B(v) with c(u) = c. Note that for any bv,c, E[bv,c] = Pr[bv,c >
0] ≤ (1− 1/

√
n)4
√
n logn ≤ n−4.

• For every c ∈ C let ec be a {0, 1} random variable that equals 0 if and only if
| {u | c(u) = c} | ≤ 2

√
n.

• For every c ∈ C and v ∈ V let fc,v be a {0, 1} random variable that equals 1 if and
only if c(v) = c.

Using Chernoff bounds and its analysis (see [MR95], chapter 4, theorem 4.1 and equation
(4.3)) we have

Pr[ec > 0] ≤ Pr

[∑
v∈V

fc,v > 2
√
n

]
< αE

[
et

∑
v∈V fc,v

]
(2.1)

for t = ln 2 and α = e−2t
√
n. If follows that αE[et

∑
v∈V fc,v] is a pessimistic estimator for

ec. Let A =
∑

v∈V,c∈C bv,c + α
∑

c∈C e
t
∑
v∈V fc,v . We now show that the four requirements for

the method of conditional probabilities with pessimistic estimators are fulfilled. When no
node is colored yet, using union and Chernoff bounds, E[A] < 1. For any partial coloring,
the expression E[A] can be computed in polynomial time. Since E[A] is an expectation of
a random variable then any partial coloring can be extended by one more node with a color
that does not increase E[A]. Finally, since Eqn. 2.1 is true for any partial coloring then for
the full coloring

∑
bv,c +

∑
ec < E[A] < 1 as required.

Computing this derandomization can be done in Õ(n2) time. There are n stages in the
process. At each stage we are given a partial coloring that induces some value A and an
uncolored node u. For each color c ∈ C we need to compute A[u, c] (the value of A induced
by the partial coloring extended by coloring u with c) and choose the color with the minimum
A[u, c].

For a given node u, the cost of checking if bv,c needs to change requires scanning |{v | u ∈
B(v)}| balls for each color. So the total is

√
n
∑

u∈V |{v | u ∈ B(v)}| =
√
n
∑

v∈V |B(v)| =

Õ(n2).

Computing the changes in fc,v from one color c′ to another c′′ can be done in Õ(
√
n)

time since for each color c ∈ C only two terms in et
∑
v∈V f(c,v) change. So the total cost of

computing the changes in fc,v is Õ(n2) as required.

13

2.5. ON HASHING IN CONSTANT TIME CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH

2.5 On Hashing in Constant Time

In this section, we will implement a constant time hashing function h from n arbitrary
names to

√
n colors, as assumed in Section 2.3.3. The constant time assumes that we

can perform standard arithmetic operations on names in constant time, hence that each
name is stored in a constant number of words. For example, these names could be IP
addresses. The representation of our hash function will take O(

√
n) space. We can store

such a representation with each node without violating our space bounds.

Previous work of Arias et al. [ACL+03] used a (log n)-universal hash function, but with
current implementations via degree-(log n) polynomials, the evaluation of this function takes
more than constant time. With the constant time hash function we propose, each routing
decision is made in constant time.

We will now give a randomized construction of the hash function which works with
high probability. For simplicity we assume

√
n is a power of two so that (log n)/2 is an

integer. First we use a standard universal hash function h0 mapping names into {1, . . . , n2.5}
in constant time. With high probability this mapping is collision free (see, e.g., [MR95,
§8.4.1]).

Set q = (log n)/2. We are now dealing with n distinct reduced names of 5q bits, and we
want to get down to colors of q bits. We will use an idea of Tarjan and Yao [TY79]. For
i = 1, . . . , 4, let Ti be a random table mapping q bits into iq bits. Note that each table has
2q =

√
n entries. We then hash a (5q)-bit reduced name x as follows.

Let x4 = x, for i = 4, . . . , 1, let yi be the q least significant bits of xi, let zi be the
remaining iq bits of xi. Set xi−1 = Ti[yi]⊕ zi (where ⊕ is the bit-wise xor operator). At the
end, x0 has only q = (log n)/2 bits which we return as the color.

The above computation of colors from reduced names takes constant time. We will now
bound the number of reduced names mapping to each color.

Lemma 2.5.1. W.h.p., there are O(
√
n) reduced names mapping to each of the

√
n colors.

Proof. We start with n unique 5q-bit reduced names. In each of 4 iterations, the names
get further reduced by q bits. In this process, some names collide. We will use Chernoff
and union bounds four times iteratively to show that no more than 3

√
n original names are

reduced to each of the
√
n colors.

For each i = 4, 3, 2, 1 and each iq-bit name x let ai,x be the number of original names
reduced to x at the i-th iteration. Let α5 = 1, α4 = e, α3 = 2e2, α2 = log n, α1 = 3

√
n. Let

B(i) = {0, 1}iq be the set of all iq-bit names. Let Mi be the event that at most αi original
names are mapped to each iq-bit name, Mi = {maxx∈B(i) ai,x ≤ αi}. Given non-negative
values {ai+1,x}x∈B(i+1) such that

∑
x∈B(i+1) ai+1,x = n then for any v ∈ B(i) we have

E[ai,v] =
∑

y∈B(1),z∈B(i)

Pr[v = Ti(y)⊕ z]ai+1,yz = 2−iq
∑

x∈B(i+1)

ai+1,x = n2−iq.

14

CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH 2.6. COMBINING THE INGREDIENTS

In addition, givenMi+1 then ai,v is a sum of independent variables, where each such random
variable is dominated by αi+1Yv,x where Yv,x is an independent {0, 1} Bernoulli random
variable with px = ai+1,x2

−iq/αi+1. Observe that E[
∑

x∈B(i) Yv,x | Mi+1] = n1−i/2/αi+1

Using standard Chernoff bounds (see, e.g., [MR95, eq. (4.10)]), it follows that for each
v ∈ B(i),

Pr[ai,v > αi | Mi+1] ≤ Pr

 ∑
x∈B(i)

Yv,x >
αi
αi+1

n1−i/2/αi+1

n1−i/2/αi+1

| Mi+1

 ≤ (e

αini/2−1

)αi/αi+1

Using a union bound it can be checked that for each i = 4, 3, 2, 1, we have

Pr[Mi | Mi+1] ≥ 1−
∑
v∈B(v)

Pr[ai,v > αi | Mi+1] ≥ 1− ni/2
(

e

αini/2−1

)αi/αi+1

≥ 1− n2−e.

So we conclude that M1 occurs w.h.p.

Thus it follows that we expect a maximum of O(
√
n) reduced names to map to the same

color. Moreover the mapping took constant time, and its representation took O(
√
n) space.

This completes our randomized construction of the desired hash function. The construc-
tion uses the same ingredients as are used for the deterministic dictionaries of Hagerup et
al. [HMP01]. Using the techniques from [HMP01], we can derandomize our construction to
run in O(n log n) time.

2.6 Combining the Ingredients

Theorem 2.6.1. Given a network with n nodes and m edges, in which nodes have arbitrary
unique names and arbitrary port name permutations, there exists an algorithm that runs in
Õ(mn) time and produces a routing scheme which requires O(

√
n log3 n/ log log n)-bit routing

tables per node and O(log2 n/ log log n) headers that performs routing decisions in constant
time and routes along paths of stretch at most 3.

Proof. We combine the results of the previous sections:

Running time: Since the graph is undirected and weights are positive, performing APSP
takesO(mn) time. ComputingB(u) for all u ∈ V takes Õ(n3/2) time using results of [RTZ05].

Finding the coloring via derandomization takes Õ(n2) time as shown in Section 2.4. Then

building the tree routing scheme requires Õ(n) time for each of the n trees. Computing the

routing scheme information requires Õ(n2) time. For each node, computing items 1, 2, 3 of

Section 2.3.8 takes Õ(n) time. In addition, for item 4, each node v is queried by each node

u ∈ B(v) at most
√
n times. Hence the number of queries is at most

√
n
∑

v∈V |B(v)| = Õ(n2)

and the time is Õ(n2).

15

2.7. CONCLUSION CHAPTER 2. COMPACT NAME-INDEPENDENT ROUTING WITH MINIMUM STRETCH

Storage: From Section 2.3.8, each node u stores: (1) O(
√
n log n)O(log n) bits for the

names of all the nodes in the vicinity B(u) and what link to use to reach them, (2)
O(
√
n)O(log2 n/ log log n) bits for storing µ(T (`), u) of the tree T (`) for every landmark node

` ∈ L, (3) O(
√
n log n)O(log2 n/ log log n) bits for storing µ(T (x), u) of the tree T (x) for every

node x ∈ B(u), (4) O(
√
n)O(log2 n/ log log n) for storing either 〈λ(T (`v), `v), λ(T (`v), v) 〉

or 〈λ(T (u), w), x, (x→ y), λ(T (y), v) 〉 for every node v such that c(u) = h(v).

Headers: Observe that messages headers always contain a constant number of port num-
bers, node names, and tree labels. Hence by Lemma 3.3.4 headers require O(log2 n/ log log n)
bits. Decision time: Follows from Section 2.5. Stretch: Follows from Theorem 2.3.5.

2.7 Conclusion

For any integer k ≥ 2, consider schemes with Õ(n1/k)-bit routing tables. For labeled routing
the best known schemes obtain stretch 4k− 5, while for name-independent routing the best
known schemes obtain stretch C · k where C is a large constant. In this chapter we give
optimal bounds on the stretch for k = 2. A natural open question is to obtain tighter bounds
on stretch for k > 2. We explore this question in the chapter.

16

Chapter 3

Name-Independent Routing with
Improved Communication-Space
Trade-Off

3.1 Introduction

The ability to route messages to specific destinations is one of the basic building blocks of
any networked distributed system. Consider a weighted undirected network G = (V,E, ω)
with n nodes having arbitrary unique network identifiers in {1, . . . , n}. A name-independent
routing scheme is a distributed algorithm that allows any source node to route messages to
any destination node, given the destination’s network identifier.

Several measures characterize the efficiency and feasibility of a routing scheme.

Memory: The amount of memory bits stored by each node for purposes of routing.

Headers: The size of message headers that are written by nodes along the route.

Stretch: The maximum ratio, over all pairs, of the length of the routing path produced by
the routing scheme by routing from s to t and the shortest path distance from s to t
in G.

Our aim is to devise compact routing schemes with poly-logarithmic headers that have
improved tradeoffs between the memory consumption and the stretch factor.

Our contributions. We first present in Section 3.3 a family of routing schemes param-
eterized by an integer κ > 0, that has the complexity measures below. The Õ() notation
denotes complexity similar to O() up to poly-logarithmic factors. Concrete constants are
provided in the body of the chapter.

17

3.1. INTRODUCTION CHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF

Each node keeps Õ(n1/κ logD) bits of storage, where D is the normalized diameter of the

graph. Message headers are of size Õ(1), and each route has stretch O(κ)

When D is polynomial in n, the scheme has asymptotically optimal stretch factor, as
proven by [PU89]. With the same memory bound, the best previous results obtained stretch
O(κ2) [AP90, ACL+03].

Previous results. There is a subtle distinction between a designer port model and a fixed
port model. In the fixed port model (also known as the adversarial port model) the names of
outgoing links, or ports, from each node may be arbitrarily chosen by an adversary from the
set {1, . . . , n}. In the designer port model they may be determined by the designer of the
routing scheme. In particular, Gavoille and Gengler [GG01] indicate at least stretch-3 when
each node has memory o(n). For stretch-k routing scheme Peleg and Upfal [PU89] prove that
a total of Ω(n1+1/(2k+4)) routing information bits is required. Thorup and Zwick refine this
bound and show in [TZ01b] that the stretch is at least 2k + 1 when each node has memory
o(n1/k), proved for k = 1, 2, 3, 5 and conjectured for other values of k. For comprehensive
surveys on compact routing and compact network data structures, see [Gav01, GP03].

Initial results in [ABNLP90] provide name-independent routing with Õ(n3/2) total mem-

ory. Awerbuch and Peleg [AP90] presented a scheme that for any k, requires Õ(k2n1/k logD)
bits per node and routes on paths of stretch O(k2). Arias et al. [ACL+03] present a slight
improvement that uses the same memory bounds but improves the constant in the O(k2)
stretch by a factor of 4.

All known name-independent schemes that are “combinatorial” and do not rely on the
normalized diameter, D, in their storage bound have exponential stretch factor. Awerbuch
et al. [ABNLP89] achieve with Õ(n1/k) memory stretch O(9k), and [ACL+03] improved to

stretch O(2k) with the same memory bound. For Õ(
√
n) memory Arias et al. provide stretch

5. Recently, Abraham et al. [AGM+04b], achieve optimal stretch 3 with Õ(
√
n).

A weaker variant of the routing problem, labeled routing, was initiated in [ABNLP89].
In this problem model, the algorithm’s designer can choose the network addresses of nodes
(and of course, use node names to store information about their location in the graph). This
paradigm does not provide for a realistic network design, however, the tools devised for its
solution have proven useful as building blocks of full routing schemes (in fact, we make use
here of certain building blocks devised in the context of labeled routing schemes).

Indeed, optimal compact schemes for labeled routing are known. The first non trivial
stretch-3 scheme was given by Cowen [Cow01] with Õ(n2/3) memory. Later, Thorup and

Zwick [TZ01a, TZ01b] improved the memory bound to only Õ(
√
n) bits. They also gave an

elegant generalization of their scheme, achieving stretch 4k− 5 (and even 2k− 1 with hand-

shaking) using only Õ(n1/k) bits. Additionally, there exist various labeled routing schemes
suitable only for certain restricted forms of graphs. For example, routing in a tree is explored,
e.g., in [FG01, TZ01b], achieving optimal routing. It requires Õ(1) bits for local tables and

Õ(1) bits for headers.

18

CHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF 3.2. PRELIMINARIES

3.2 Preliminaries

We denote an undirected weighted graph by G = (V,E, ω), where V is the set of nodes,
E the set of links, and ω : E → R+ a link-cost function. For any two nodes u, v ∈ V let
dG(u, v) be the cost of a minimum cost path from u to v, where a cost of a path is the

sum of weights of its edges. Define the normalized diameter of G, D = maxu,v dG(u,v)

minu6=v dG(u,v)
. Define

B(v, r) = {u ∈ V | dG(v, u) ≤ r} as the set of nodes whose distance is at most r from v.

We denote a rooted weighted tree by T = (V, r, E, ω), and define for every node u ∈
V its parent p(u) and for the root p(r) = r. The children of a node u are defined as
child(u) = {v | p(v) = u}. The weight of a node u denoted w(u) is the number of nodes in
u’s subtree not including u itself. Define the radius of T as maximum distance from the
root, rad(T) = maxu {dT (r, u)}.

Define the maximum edge weight of a weighted tree T = (V,E, ω) as maxE(T) =
maxe∈E {ω(e)}.

For u ∈ V , let N(u) = {v | (u, v) ∈ E} denote u’s neighbors. For every node u, let
port(u, v) for every v ∈ N(u) be a unique port name in {1, . . . , n}. If node u wants to forward
a message to node v ∈ N(u) it does so by sending the message on port port(u, v). In the fixed
port model (also known as the adversarial port model) the values {port(u, v) | v ∈ N(u)} ⊆
{1, . . . , n} are arbitrarily chosen.

3.3 Linear Communication-Space Trade-Off

Let G = (V,E, ω) be a graph, where |V | = n. In this section, we provide a family of
name-independent routing schemes for G parameterized by κ, in which each node keeps
Õ(n1/κ logD) storage, where D is the normalized diameter of the graph, and each route has
stretch O(κ). When D is polynomial in n, the scheme has asymptotically optimal stretch
factor, as proven by [PU89].

The construction makes use of two building blocks. The first one is a new tree cover
based on Sparse Partitions, the second is a novel tree-routing scheme we devise. Below, we
first state these building blocks, then make a black-box use of them for our full solution, and
finally go back to provide the details of our novel tree-routing scheme.

3.3.1 Tree cover based on Sparse Partitions

Lemma 3.3.1. [AP90, AP92, Pel00] For every weighted graph G = (V,E, ω), |V | = n
and integers κ, ρ ≥ 1, there exists a polynomial algorithm that constructs a collection of
rooted trees TCκ,ρ such that:

1. (Cover) For all v ∈ V , there exists T ∈ TCκ,ρ such that B(v, ρ) ⊆ T .
2. (Sparse) For all v ∈ V , | {T ∈ TCκ,ρ | v ∈ T} | ≤ 2κn1/κ.

19

3.3. LINEAR COMMUNICATION-SPACE TRADE-OFFCHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF

3. (Small radius) For all T ∈ TCκ,ρ, rad(T) ≤ (2κ− 1)ρ.
4. (Small edges) For all T ∈ TCκ,ρ, maxE(T) ≤ 2ρ.

Note that property (4) is a novel property that does to appear in the tree covers of
[AP90, AP92, Pel00]. However, it is crucial for our construction and its proof is a simple
consequence of the manner in which the cover algorithm works: in each iteration, any cluster
S added to a cover Y has rad(S) ≤ ρ. The end result is a set of covers R that has properties
(1),(2), and (3). For every cover Y ∈ R define r(Y) as the initial node that started that
cover, and G[Y] as the subgraph containing Y and all the edges connecting nodes in Y whose
cost is at most 2ρ. G[Y] spans Y because Y is formed by a connected union of clusters whose
radius is at most ρ. The set TCκ,ρ is defined by taking every Y ∈ R and setting TY ∈ TCκ,ρ
to be a minimum cost path tree spanning G[Y] whose root is r(Y).

W.l.o.g. assume that the minimum cost edge is 1. We define an index set I =
{1, . . . , dlogDe}. For all i ∈ I, we build a tree cover TCκ,2i according to Lemma 3.3.1
above. For all v ∈ V and i ∈ I, let Treev[i] be a tree T ∈ T Cκ,2i such that B(v, 2i) ⊆ T .

3.3.2 Bounded cost name-independent tree-routing

Having built a hierarchy of tree covers, any source v would like to perform name-independent
routing on Treev[i], for i ∈ I in increasing order, until the target is found. Our second
building block addresses this need using a novel and efficient construction. This construction
provides a name-independent error-reporting routing scheme in which the cost of routing to
a destination in the tree or learning that the name does not exist is bounded by a function
of the tree’s radius, the maximum edge cost, and a parameter κ.

Theorem 3.3.2. For every tree T = (U,E, ω), |U | = m, U ⊂ V , |V | = n, and integer
κ there exists a name-independent routing scheme on T with error-reporting that routes on
paths of length bounded by 4rad(T)+2κmaxE(T), each node requires O(κn1/κ log2 n) memory,
and headers are of length O(log2 n). (And routing for a non-existent name in T also incurs
a path of length 4rad(T) + 2κmaxE(T) until a negative result is reported back to the source.)

The proof of Theorem 3.3.2 is deferred until Section 3.3.4.

For a tree T containing a node v, we let φ(T, v) denote the routing information of node
v as required from Theorem 3.3.2.

3.3.3 The name-independent routing scheme

We now combine Theorem 3.3.2 with Lemma 3.3.1 in a manner similar to the hierarchical
routing scheme of Awerbuch and Peleg [AP92].

Storage. For all v ∈ V , i ∈ I, and T ∈ T Cκ,2i such that v ∈ T node v stores φ(T, v).
According to Lemma 3.3.1 and Theorem 3.3.2 above, the total storage of each node is
O(κ2n2/κ logD log2 n).

20

CHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF3.3. LINEAR COMMUNICATION-SPACE TRADE-OFF

Routing. The sender s looks for destination t in the tree Trees[i] successively for i =
1, 2, . . . , dlogDe using the construction in Theorem 3.3.2.

Stretch analysis. From Lemma 3.3.1 for T ∈ T Cκ,ρ we have that the cost 4rad(T) +
2κmaxE(T) is bounded by 4(2κ− 1)ρ+ 2κ2ρ ≤ 12κρ. Hence, for any source s, integer i ∈ I,
the cost of searching for any target t in Trees[i] is at most 12κ2i.

For the index j ∈ I such that 2j−1 < d(s, t) ≤ 2j we have t ∈ B(v, 2j) ⊆ Treev[j] and
therefore t will be found in the jth phase. The total cost will be∑

1≤i≤j

12κ2i ≤ 12κ2j+1 < 48κd(s, t).

Hence, using κ̂ = 2κ instead of κ in the above construction, we proved the following.

Theorem 3.3.3. For every weighted graph G = (V,E, ω) whose normalized diameter is D
and integer κ ≥ 1, there is a polynomial time constructible name-independent routing scheme
with stretch O(κ) and memory O(κ2n1/κ logD log2 n).

In the remainder of this section, we provide the construction that proves Theorem 3.3.2
above.

3.3.4 Bounded-cost name-independent tree-routing

Consider a set V of n nodes in which every node u ∈ V has a unique name n(u) ∈ {1, . . . , n}.
Let T = (U, r, E, ω) be a rooted tree with r ∈ U ⊆ V and |U | = m.

Sorting the nodes in U by their unique name n(), we denote U [i] as the ith largest node
in U , U [1] = maxv∈U{n(v)} and for 1 < i ≤ m define U [i] = maxv∈U{n(v) | n(v) < U [i−1]}.

In addition to their given name n(v), we give each node v ∈ T three more names.

First, we give v its name in the labeled tree-routing of Thorup & Zwick [TZ01b] and
Fraigniaud & Gavoille [FG01]:

Lemma 3.3.4. [FG01, TZ01b] For every weighted tree T with n nodes there exists a
labeled routing scheme that, given any destination label, routes optimally on T from any
source to the destination. The storage per node in T , the label size, and the header size are
O(log2 n/ log log n) bits. Given the information of a node and the label of the destination,
routing decisions take constant time.

For a tree T containing a node v, we let µ(T, v) denote the routing information of node
v and λ(T, v) denote the destination label of v in T as required from Lemma 3.3.4. Thus,
the first name we assign with v is `(v) = λ(T, v).

Secondly, d(v) denotes the depth-first-search (DFS) preorder enumeration of the rooted
tree, note that {d(u)|u ∈ U} = {1, . . . ,m}. Finally every node has a name s(v) which will

21

3.3. LINEAR COMMUNICATION-SPACE TRADE-OFFCHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF

be defined as a function of its own subtree size relative to its siblings’ subtree sizes. In some
sense this reflects its rank among its siblings. The formal value of s(v) will be defined later.

In our construction a node whose DFS enumeration is i is responsible to the ith largest
node in U . Formally, for any x ∈ T we define its responsibility as

o(x) = U [d(x)].

Given a target u the idea is first to route to the node y such that o(y) = n(u) and then use
labeled tree-routing to reach u.

We begin by presenting a simple name-independent scheme in which the storage require-
ments on any node v is Õ(|child(v)|+1) and the total cost of routing will be at most 4rad(T).

Storage. Every node x ∈ T stores the following:

1. Let y ∈ T be such that o(x) = n(y). Node x stores the tuple (y, n(y), `(y)).
2. Node x stores A(x) = {o(y) | y ∈ child(x)} together with a map from any o(y) ∈ A(x)

to the corresponding port name port(x, y) to reach the child y.
3. x stores µ(T, x), its tree-routing label as required from Lemma 3.3.4.

Routing. Given a target u ∈ U , first route to the root r.

1. On a node x

(a) If o(x) = n(u) then use `(u) to reach u.
(b) If there is no child y ∈ child(x) such that o(y) ≤ n(u) then report back that

u /∈ T .
(c) Route to the child y ∈ child(x) with the maximum o(y) such that o(y) ≤ n(u).

Set x := y and goto 1.

This procedure is similar to the interval routing of [SK85, vLT86]. If the label `(u) is
found, routing proceeds using the labeled tree-routing scheme of Lemma 3.3.4. In the simple
scheme presented above, the cost of reaching root is at most rad(T), cost of reaching the
node storing the required label is bounded by rad(T) and reaching the target (or reporting
an error to the source) requires at most another 2rad(T). In the fixed port model the storage

per node is Õ(|child(v)|+ 1) = Õ(n).

Bounding storage. We proceed to show how, at the cost of adding at most κ length-2
cycles to the routing path, we can reduce the storage of each node to only Õ(n1/κ) bits
even in the fixed port model. The idea is to spread the information about v’s children in a
directory among v and its children child(v) in a load balanced manner that will ensure that
at most κ probes to directories are performed in the whole routing path until the target is
found.

22

CHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF3.3. LINEAR COMMUNICATION-SPACE TRADE-OFF

First, for determining d(v) we use a DFS enumeration that always prefers heavy children
first (when faced with a choice, it explores a child with the maximum weight among the
unexplored children).

Second, for every node u, we now define its child name s(u). For any node v, we enu-
merate its children child(v) in their weighted order from large to small using words of the
alphabet Σ = {0, 1, 2, . . . n1/κ − 1}. Specifically, for any node, given a list of its children
sorted by their weight (from large to small), we name each of the first n1/κ nodes in non-
increasing order of their weights by a child name which consists of one digit in Σ in increasing
order (0), (1), . . . , (n1/κ − 1). Then we name each of the next n2/κ nodes in order of their
weights by a child name in Σ2 in increasing lexicographic order, (0, 0), (0, 1), . . . , (0, n1/κ −
1), (1, 0), (1, 1), . . . , (1, n1/κ − 1), . . . , (n1/κ − 1, 0), . . . , (n1/κ − 1, n1/κ − 1). We continue this
naming process until all nodes in child(v) are exhausted, up to at most a κ-digit child name
in Σκ.

The central property of our naming is as follows. Let u be a child of v with a child name
s(u) consisting of j > 1 digits. Then w(u) ≤ w(v)/n(j−1)/κ. The reason this property holds
is that v must have n(j−1)/κ children that are at least as heavy as u. Since each one weights
at least w(u) their total weight would be larger than w(v), a contradiction.

Storage. For every x ∈ T , we define S(x) as follows:

S(x) =



(0) (1) . . . (n1/κ − 1)
(0, 0) (1, 0) . . . (n1/κ − 1, 0)

...
...

(0, 0, . . . , 0︸ ︷︷ ︸
κ−1

) (1, 0, . . . , 0︸ ︷︷ ︸
κ−1

) . . . (n1/κ − 1, 0, . . . , 0︸ ︷︷ ︸
κ−1

)


For each child y of x such that s(y) ∈ S(x), node x stores o(y) and a map from o(y) to

the corresponding port name port(x, y) to reach child y.

We now define the storage held by x’s children to assist in lookup. Let y be in
child(x) and assume y has a length-j child name, s(y), with with j − i trailing zeros,
s(y) = (a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸

j−i

) for some i ≤ j. We define a subset S ′(y) of the enumerated

set of v’s children as follows:

S ′(y) =



(a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−1

, 0) . . . (a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−1

, n1/κ − 1)

(a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−2

, 0, 0) . . . (a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−2

, n1/κ − 1, 0)

...
...

(a1, . . . , ai, 0, 0, . . . , 0︸ ︷︷ ︸
j−i−1

) . . . (a1, . . . , ai, n
1/κ − 1, 0, . . . , 0︸ ︷︷ ︸

j−i−1

)


23

3.3. LINEAR COMMUNICATION-SPACE TRADE-OFFCHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF

The child node y of x stores the following information. For each z ∈ child(x) such that
s(z) ∈ S ′(y), y stores o(z) and a map from o(z) to the corresponding port name port(x, z)
to reach child z from parent x.

Intuitively, here is how this directory scheme works. Suppose the current node is x
and the target node is u. The child-name enumeration of x’s children is consistent with
their responsibility enumeration order. That is, let v be the child of x whose sub-tree has
responsibility for the value n(u). Denote the child name of v by s(v) = (a1, . . . , aj). Then
because of our DFS ordering, given any child y ∈ child(x):

• If s(y) has more than j digits then o(v) ≤ n(u) < o(y);
• If s(y) has less than j digits then o(y) < o(v) ≤ n(u);
• If s(y) has j digits, and according to lexicographical order s(y) < s(v), then o(y) <
o(v) ≤ n(u);
• If s(y) has j digits, and according to lexicographical order s(v) < s(y), then o(v) ≤
n(u) < o(y);

Given a target u, node x would like to find the appropriate child v such that o(v) is the
maximum value out of all {o(y) ≤ n(u) | y ∈ child(x)}. Since x does not maintain o(y) of
all of its children y ∈ child(x), the highest o() value it maintains that is no greater than the
target n(u) belongs to the node y1 with child name s(y1) = (a1, 0, . . . , 0︸ ︷︷ ︸

j−1

). Continuing from

y1, it too maintains only partial information about x’s children. Here, the highest o() value
it maintains that is no greater than the target n(u) belongs to the node y2 with child name
s(y2) = (a1, 0, . . . , 0︸ ︷︷ ︸

i

, ai+2, 0, . . . , 0︸ ︷︷ ︸
j−i−2

) where i ≥ 0 is the number of consecutive zeros that s(v)

has starting from its second digit a2. And so on. With each such step, we reach a child of x
whose child name matches the target’s child name s(v) in one more digit at least (and zero’s
in v’s child name are matched without further steps). After at most j such steps, we reach
v, and continue to search for u within the sub-tree it roots.

More precisely, the routing algorithm is as follows.

Routing algorithm. Given a target u ∈ U , first route to the root r. Then, on any node
x there are three cases:

1. if o(x) = n(u) then use `(u) to reach u.
2. if x is a leaf or if n(u) < o(y) for all y such that s(y) ∈ S(x), then report back that
u /∈ T .

3. Otherwise, we would like to route to the child y ∈ child(x) with the maximum o(y)
value out of all y such that o(y) ≤ n(u). Since x does not store o(y) for all y ∈ child(x)
performing this case is done using the following directory algorithm.

Directory algorithm.

24

CHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF3.3. LINEAR COMMUNICATION-SPACE TRADE-OFF

1. Route to the child y with maximum o(y) value out of all y such that o(y) ≤ n(u) and
s(y) ∈ S(x).

2. On node y,

(a) If n(u) < o(z) for all z such that s(z) ∈ S ′(y) then the directory algorithm has
reached the required child and the routing algorithm can proceed from node y.

(b) Otherwise, route to the sibling z such that o(z) has maximum value out of all z
such that o(z) ≤ n(u) and s(z) ∈ S ′(y).
Set y := z and goto 2.

3.3.5 Analysis

Lemma 3.3.5. Given a parameter κ, the name-independent error-reporting tree-routing
scheme requires O(κn1/κ log2 n) bits of storage per node in the tree.

Proof. Each node v stores Õ(1) information for each child u ∈ child(v) such that s(u) ∈ S(v).

By definition of S(v), it contains at most κn1/κ members, hence the storage is Õ(κn1/κ). In

addition node v maintains information to assist its parent node p(v). This includes Õ(1)

storage per each member in S ′(v), which, by definition, also requires Õ(κn1/κ) bits. Finally,

each node v stores the routing information µ(T, v) according to Lemma 3.3.4, requiring Õ(1)

storage. Thus, the total storage of this scheme is Õ(κn1/κ) items per node, each of O(log2 n)
bits at most.

Lemma 3.3.6. Given a parameter κ, the name-independent error-reporting tree-routing
scheme routs on paths whose cost is at most

4rad(T) + 2κmaxE(T)

until either the destination is reached or the source receives notification that the destination
does not exists in the tree

Proof. We now bound the total cost of searching for a target u on a tree T . Reaching the
root takes at most rad(T), reaching the node v such that o(v) = n(u) (or getting a negative
result) takes rad(T) + 2jmaxE(T) where j is the number of times the directory service had
to probe other children along the path to node u. Once node u is reached, routing to t or
reporting a negative result back to the source takes at most 2rad(T).

Therefore, we are left to show that j ≤ κ. The directory structure above guarantees that
if appropriate next hop child has a length-i child name then it will reached in at most i− 1
intermediate queries. Specifically, let s(y) denote a length-i child name of x’s child, whose
sub-tree stores information on a target n(u). Given a target name n(u), node v finds o(u1),
the maximum name stored by v that is at most n(u). Then v routes to u1, a child with
length-i child-name whose first digit is the same as the child covering n(u). Node u1 is either
the actual child y, or it finds o(u2), the maximum name stored in u1 that is at most n(u).

25

3.3. LINEAR COMMUNICATION-SPACE TRADE-OFFCHAPTER 3. NAME-INDEPENDENT ROUTING WITH IMPROVED COMMUNICATION-SPACE TRADE-OFF

Then u1 routes up to v and down to u2, which has a length-i child name that matches s(y)
in at least the first two digits. This process continues until the correct child y is reached
after at most i− 1 intermediate steps from v to a child and back.

A crucial property maintained by the storage hierarchy is that if v has weight w(v), then
a child with a length-i child name with i > 1 has weight at most w(v)/n(i−1)/κ. This is due
to the weighted sorting: Otherwise the n(i−1)/κ children with length i− 1 child names would
each have at least w(v)/n(i−1)/κ children, and their total weight would be larger than w(v)
which is a contradiction.

Following a path from the root r to the node containing the label takes at most distance
rad(T). Along the path, every node with child name of length i > 1 may cost additional i−1
double-steps from its parent to a child and back to the parent. Since every node with a length-
i id reduces the weight of the tree by a factor of at least n(i−1)/κ, there are at most j ≤ κ
such extra double-steps along the whole path. Each double-step costs at most 2maxE(T).
Therefore, the total distance of the path is bounded by 4rad(T) + 2κmaxE(T).

26

Chapter 4

Name-Independent Routing for
Growth Bounded Networks

4.1 Introduction

Given a network of processes in which each process has a unique name, a routing scheme is
a distributed algorithm in which, given a destination’s name, any node can route messages
that will eventually reach the destination.

Modeling the network as an undirected weighted graph G there is a well known trade-off
between two conflicting parameters of a routing scheme RS. The first is the space complexity,
the maximum over all nodes of the number of bits of information required by RS, we denote
this as space(RS,G). The second is the stretch factor denoted by stretch(RS,G) which is
the maximum ratio over all pairs between the cost of the shortest path between the pair
denoted d(s, t) and the cost of the path induced by the routing scheme denoted dRS(s, t) for
the same source destination pair.

The most studied problem in this context is the universal trade-off between space and
stretch. Specifically, let G(n) denote the set of all connected weighted graphs on n nodes, then
for any routing scheme RS, let space(RS, n) = maxG∈G(n) space(RS,G) and stretch(RS, n) =
maxG∈G(n) stretch(RS,G). The universal trade-off problem for a parameter k ≥ 1 is to find a
polynomial scheme RS that as a function of n, minimizes stretch(RS, n) given the restriction
that space(RS, n) = O(n1/k).

The lower bounds [PU89, GG01, TZ01b] for universal compact routing schemes come
from graphs with many edges and high girth. These bounds show that there exist high girth
n-node graphs in which any scheme that wants to achieve stretch less than 2k+1 must require
some node to store Ω(n1/k) bits of routing information. These high girth graphs seem very
far from a typical real life connected system. To the contrary, most Internet networks tend to
have multiple relatively short paths from any source destination pair. Looking at asymptotic
behavior on the size of the network, worst case analysis over all the input space is one of the
most studied questions in theoretical computer science. However it may be that for a given

27

4.1. INTRODUCTION CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS

network or for a large family of networks there are polynomial time constructible schemes
that have much better trade-offs than that of a universal scheme on the same network.

There are two variants on the assumptions of node names: labeled and name-independent.
In the labeled model [Cow99, TZ01b, TZ01a, EGP03] the designer of the routing scheme is
allowed to give each node a poly-logarithmic label. This name is then used in order to route to
the destination. In the name-independent model, the names of nodes are independent of the
routing scheme. For brevity’s sake, assume names are unique indexes from {1, . . . , n}. Name-
independent schemes [ABNLP89, ABNLP90, AP90, AP92, ACL+03, AGM+04b, AGM04a]
are inherently harder than labeled schemes. Informally, before routing on a low stretch path
one needs some low stretch directory service to learn where the destination is located.

The name-independent model is suitable when node names are required to have some
specific value that is not related to the routing scheme. For example if nodes participate
in a forming a Distributed Hash Table (DHT), their names should be arbitrary points in
a unit segment; and in a mobile setting nodes may need persistent names in order to be
consistently identified independently of their current location. Generally, name-independent
schemes allow the network designer to label nodes with names that do not necessarily need
to change every time the topology changes.

4.1.1 Problem definition

In this chapter we study the space-stretch trade-off for name-independent routing schemes
on growth-bounded graphs.

Let G = (V,E, ω) be an undirected weighted graph. For any u, v ∈ V let d(u, v) denote
the cost of a minimum cost path between u and v, where the cost of a path is the sum of
the weight of its edges. For any v ∈ V , r ∈ R+ define N(v, r) = {u | d(u, v) ≤ r}.

Definition 4.1.1. For a real number ∆ > 0, an undirected weighted graph G is ∆ growth-
bounded if for all v ∈ V and r ∈ R+, if |N(v, r)| > 1 then |N(v, 2r)| ≤ ∆|N(v, r)|.

This definition captures the growth dimensionality of a network. Define that G has
growth dimension s iff G is 2s growth-bounded.

In this chapter we study the problem of achieving the minimum stretch over all growth-
bounded networks. Let G(n,∆) be the set of all n-node undirected weighted graphs
G that are ∆ growth-bounded. The goal is to find a routing scheme RS that mini-
mizes stretch(RS, n,∆) = maxG∈G(n,∆) stretch(RS,G) given a bound on space(RS, n,∆) =
maxG∈G(n,∆) space(RS,G).

4.1.2 Our results

In this chapter we present a polynomial time constructible name-independent routing scheme
with stretch 1 + ε that requires with high probability only a poly-logarithmic number of bits

28

CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS 4.1. INTRODUCTION

of routing information per node, for any n-node ∆ growth-bounded network. This result is
in sharp contrast to the universal space stretch lower bounds [PU89, GG01, TZ01b].

Theorem 4.1.2 (Main). For any ε > 0, n, and ∆ there exists a polynomial time constructible
name-independent routing scheme with stretch(RS, n,∆) ≤ 1 + ε and space(RS, n,∆) =

O(1
ε

O(log ∆)
log5 n) with high probability.

4.1.3 Related work

A less restrictive model is one in which a metric space is given and the designer is required
to construct both a low degree overlay network and an accompanying routing scheme. Com-
pared to routing schemes on graphs, the advantage is that the overlay can connect between
any nodes that the designer desires. Plaxton, Rajaraman and Richa [PRR97] give an ob-
ject location scheme1 for metric spaces that are growth-bounded and shrink-bounded (exists

constants δ,∆ such that δ ≤ N(u,2r)
N(u,r)

≤ ∆). For such metrics they give a randomized solution
in which the expected stretch is constant and the overlay degree is logarithmic and hence
the memory requirement is poly-logarithmic per node. This scheme was later adapted to
dynamic settings by Hildrum et al. [HKRZ02, HKMR04]. Using a distributed node emu-
lation technique, Abraham et al. [AMD04] show how to reduce the stretch to 1 + ε while
achieving expected logarithmic degree and requiring only a growth-bound on the metric
space. A method that does object location for more realistic networks was given by Hil-
drum et al. [HKK04]. Indeed our construction has roots in the PRR object location overlay
[PRR97, AMD04], while extending the treatment from metric spaces to graphs.

On graphs, the universal space-stretch trade-off has been extensively studied under var-
ious models and extensions. We refer the reader to Peleg’s book [Pel00] and to the surveys
of Gavoille and Peleg [Gav01, GP03] for background.

Trees are another family of graphs that is well studied. Labeled routing on a trees is
explored in [FG01, TZ01b], achieving stretch 1 with O(log2 n/ log log n) bits for local tables
and for headers, and this is tight [FG02]. Laing [Lai03] presents a routing scheme on trees

with arbitrary names that obtains stretch 2k − 1 with Õ(n1/k) bit routing tables. With the
same bit complexity the author gives a single-source routing scheme with stretch 2k − 1.

Iwama and Okita study compact routing schemes on flat and almost-flat networks [IO03].
We note that flat networks are growth-bounded so our result is applicable to their model.

Recently there have been several efforts to devise labeled routing schemes and distance
labels for graphs whose induced metric space has constant doubling dimension. A metric
space is said to have doubling dimension δ if any ball with radius 2r can be covered by at
most 2δ balls of radius r. Informally the doubling dimension indicates how far the metric
is from having a uniform sub-metric. It is well known (see [GKL03]) that any metric with
constant growth-bound has constant doubling dimension and that the opposite need not

1Object location schemes are stronger than name-independent routing schemes. They alow targets to be
replicated and grantee stretch relative to the closest copy from the source.

29

4.2. OVERVIEW CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS

be true. Hence a constant growth-bound is a strictly more restrictive requirement than a
constant doubling dimension. However for doubling metrics only labeled routing schemes
are known.

Given an n-node network with diameter D whose induced metric space has a con-

stant doubling dimension δ, for any constant ε > 0 let K = 1
ε

O(δ)
. The following results

were obtained for stretch 1 + ε distance labels: Gupta et al. [GKL03] O(K log n logD),
Talwar [Tal04a] O(K log2D), Chan et al. [CGMZ05] O(K log n logD), Slivkins [Sli05a]
O(K log2 n(log n + log logD)), Har-Peled, Mendel [HPM05] O(K log n(log n + log logD)),
Slivkins [Sli05b] O(K log n log logD). Papers [Tal04a, CGMZ05, Sli05a, Sli05b] also give
labeled routing schemes based on their distance oracles.

The line of works above focuses on labeled schemes and obtains stretch 1 + ε for any
fixed ε > 0. Recently, Abraham et al. [AGM05] prove that any name-independent routing
scheme on networks with doubling dimension δ must have stretch at least 3− ε if less than
Ω(δn) bits are used. This lower bound implies that the stretch 1 + ε schemes mentioned
above cannot be extended with the same stretch factor to name-independent schemes on
networks with constant doubling dimension. This leaves open the question of achieving
stretch 1 + ε name-independent routing on other constrained families of graphs, which our
works addresses.

4.2 Overview

In this section, we give an informal overview of the scheme.

Nodes are assigned virtual B-ary identifiers uniformly at random. The base B = d∆2e
is determined by the growth-bound. For each level ` ∈ {1, ..., logB n}, each node is assigned
O(log n) identifiers of length `. Each node defines a self-centric partition of the set of nodes,
with gradually increasing vicinities around itself, each one containing B times as many
nodes as the former. We denote the vicinity of node v containing Bi nodes by A(v, i), and
its diameter by a(v, i).

Given a B-ary identifier x of length `, A(v, `) is expected to contain Θ(log n) nodes whose
level ` identifiers equal x.

First, we construct a stretch 1 + ε labeled routing scheme using zero assisted routing.
Call a node whose identifier is 0` a level-` zero node. For each node, its label contains the
names of the Θ(log n) zero nodes closest to it, one from each level. Each node stores labeled
tree-routing routing information on trees rooted at zero nodes in its vicinity. Specifically, it
stores routing tables for all level-i zero nodes within A(v, i + α + 2), where α = O(log 1/ε).

The expected amount of storage is Õ(2α).

Consider two nodes u and v whose distance is d ≈ a(v, i) ∗ 2α. Because A(v, i) contains
with high probability a level-i zero node, then v has a level-i zero node zi “close-by”, namely
within distance εd. The main property we obtain from the growth-bound, is the following.
Blowing up the radius of A(v, i) by a factor of 2α results in a vicinity that contains u on

30

CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS 4.3. PRELIMINARIES

the one hand, and on the other hand, contains at most a factor ∆α nodes over A(v, i).
Consequently, we prove in Lemma 4.3.2 below that A(u, i + α + 2) contains A(v, i), and
hence, contains zi. Therefore, all nodes from zi towards u, including u, store the tree routing
information of zi’s tree. Hence, given u’s label, v can route to u over zi’s tree, paying εd
extra distance.

Second, when v routes to u, we need to store u’s label so that v can find it within ≈ εd
distance. This is done by storing u’s label at all nodes with matching level-i identifiers to
the length i prefix of u within A(u, i + α + 2). Once again, the storage inflicted by this on

any node is bound by Õ(2α).

The strategy for finding u’s label is to perform iterative routing by fixing one-bit at a
time; this is called prefix routing. Within A(v, i), v can find a node xi that “fixes” i bits in
u’s name. As above, due to the growth-bound, xi is within A(u, i + α + 2), hence it stores
u’s label, and we are done.

4.3 Preliminaries

Virtual Identifiers and Vicinities. Our construction makes heavy use of virtual node
identifiers, which are drawn at random from certain alphabets. We now introduce the rele-
vant definitions concerning alphabets, identifiers and vicinities.

Given a ∆ growth-bounded network we set B, the size of the alphabet, to B = d∆2e.
Denote the alphabet Σ = {0, 1, . . . , B − 1}. Given a letter b ∈ Σ denote bi as the word
b, . . . , b ∈ Σi and given a word w = w1, . . . , wi ∈ Σi and letter b ∈ Σ denote w||b as the word
w1, . . . , wi, b ∈ Σi+1.

In our scheme, identifers will be chosen in various lengths. Denote by M the maximal
length, such that M = dlogB ne. Denote the lengths set by L = {1, 2, . . . ,M}. We frequently
refer to a length ` as level `.

Definition 4.3.1 (`th vicinity around v). For all v ∈ V, ` ∈ L denote A(v, `) as the B`

closest nodes to v with ties broken by the node identifiers. Let a(v, `) be the radius of the ball
A(v, `) = N(v, a(v, `)).

The important properties of vicinities, derived from the growth-bound assumption, are
stated in the following lemma. Parts (i)-(iii) of this lemma borrow from [AMD04], though
the definitions of vicinities there are slightly different.

Lemma 4.3.2. Let x and y be any two nodes, for any i such that y ∈ A(x, i):
(i) A(x, i) ⊆ A(y, i+ 1).
(ii) A(y, i) ⊆ A(x, i+ 1).
(iii) a(x, i+ 1) ≥ 4a(x, i).
(iv) a(y, i) ≤ 2a(x, i),

Proof. Let r = a(x, i) denote the radius of A(x, i). Since y ∈ A(x, i) then (see Figure 4.1)

31

4.3. PRELIMINARIES CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS

N(x, r) ⊆ N(y, 2r) ⊆ N(x, 3r) .

From the growth-bounded assumption we can bound the number of nodes in N(x, 3r) using
|N(x, r)| as follows: |N(x, 3r)| ≤ ∆2|N(x, r)| = ∆2|A(x, i)| = ∆2Bi ≤ Bi+1 .

For (i), N(x, 3r) ⊆ A(x, i+ 1), and so by node count, A(y, i+ 1), the ball around y with
Bi+1 nodes, must contain N(y, 2r) and so must contain A(x, i). For (ii), A(y, i) ⊆ N(y, 2r) ⊆
N(x, 3r) ⊆ A(x, i+ 1).

For (iii), |N(x, 4r)| ≤ ∆2|N(x, r)| ≤ Bi+1, so A(x, i+ 1) ⊇ N(x, 4r).

Finally, for (iv), N(y, 2r) ⊇ A(x, i), so A(y, i) 6⊃ N(y, 2r). Hence, a(y, i) ≤ 2r.

X
 r

3r
 Y

2r

Figure 4.1: The circles N(x, r), N(y, 2r), and N(x, 3r)

We will select virtual identifiers with certain redundancy. To this end, set ρ > 2 as a
confidence parameter, and let R denote a replication factor R = dρ lnne. Let K denote the
replication set K = {0, 1, . . . , R}

Finally, let α = α(ε) be a constant parameter of the construction which will be determined
below (See Eqn. 4.1 in Section 4.5).

32

CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS 4.4. THE SCHEME

4.4 The Scheme

4.4.1 Identifiers and the zero-sets.

Every node chooses R ·M = O(log2 n) identifiers in the following manner. For every level `
in L a node chooses R length ` random words.

Definition 4.4.1 (The identifiers). ∀v ∈ V, ` ∈ L, k ∈ K let I(v, `, k) denote a random
variable chosen independently and uniformly out of Σ`.

For an identifier w let C(w) denote the nodes that have chosen w.

Definition 4.4.2 (The prefix set). ∀` ∈ L,w ∈ Σ` denote C(w) = {u | (∃k ∈ K)I(u, `, k) =
w}.

Specifically, nodes that have an all zero identifer will be part of the zero set. Every node
records the closest zero nodes as its zero link.

Definition 4.4.3 (The zeros). For all ` ∈ L define Z(`) = C({0}`).

Definition 4.4.4 (The zero link). For all v ∈ V, ` ∈ L define z(v, `) as the node closest to
v in the set Z(`).

There are two key properties relating the random virtual identifier selection and vicinities.
One bounds the density of an identifier within a vicinity from below; the other from above.
Both are stated in the following lemma.

Lemma 4.4.5. Let w ∈ Σ` be any specific identifier. Then for all v ∈ V and j ≥ ` we have
|C(w) ∩ A(v, j)| ∈ (1

2
RB(j−`), 2RB(j−`)) w.h.p.

Proof. The expected value of |C(w)∩A(v, j)| is RBj B−` = RBj−`. Using standard Chernoff
bounds we get

Pr[|C(w) ∩ A(v, j)| ∈ (
1

2
RBj−`, 2RBj−`)] ≥

1− 2e
1
8
RBj−` ≥ 1− 2

n(ρ/8)

and the lemma follows by choosing a large enough ρ.

4.4.2 Zero-Assisted Routing

Routing on the graph is done via the assistance of the zero nodes. This is done by utilizing
labeled-tree routing on partial trees. More specifically, we repeatedly make use of the single
source labeled routing scheme stated in the following lemma.

33

4.4. THE SCHEME CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS

Lemma 4.4.6. [FG01, TZ01b] For every weighted tree T with n nodes there exists a
labeled routing scheme that, given any destination label, routes optimally on T from any
source to the destination. The storage per node in T , the label size, and the header size are
O(log2 n/ log log n) bits. Given the information of a node and the label of the destination,
routing decisions take constant time.

For a tree T containing a node v, we let µ(T, v) denote the routing information of node
v and λ(T, v) denote the destination label of v in T as required from Lemma 3.3.4.

Denote all the zeroes as Z =
⋃
`∈L Z(`). For any z ∈ Z let T (z) denote a minimum cost

path tree rooted at z.

The key element we use in forming graph routing is the following. Let us have a node v
and another node u such that u is in the (i+α+ 2)’th vicinity of v, i.e., u ∈ A(v, i+α+ 2).
We want to make use of a zero-node zi in order to route from u to v. In order to provide
this, every node x on the path from zi to v needs to maintain µ(T (zi), x); and every node x
on the path from u to zi must also maintain µ(T (zi), x), and thus, given λ(T (zi), v), we can
route from u to v. The following lemma states that these provisions are satisfied if every
node maintains tree routing information on zeroes in its A(∗, i+ α + 4) vicinity:

Storage 4.4.7. For every i ∈ M , let each node v ∈ V maintain µ(T (zi), v) for every
zi ∈ Z(i) ∩ A(v, i+ α + 4).

We have obtained the following.

Lemma 4.4.8. Let v ∈ V be a node and u ∈ A(v, i + α + 2). Then for every zero node
z ∈ A(u, i + α + 2), where z ∈ Z(`) for any i ≤ ` ≤ M , given the label λ(T (z), v), node u
can route to v with route length at most d(v, u) + 2a(u, `) w.h.p.

Proof. For every node w on a shortest path from u to z, we have z ∈ A(w, i + α + 2) ⊆
A(w, `+ α + 2) because z ∈ A(u, i+ α + 2). Therefore, w maintains µ(T (z), w).

Now, by Lemma 4.3.2(ii), we have that z ∈ A(u, i+ α+ 2) ⊆ A(v, i+ α+ 3). Therefore,
every node w on any shortest path from v to z also has w ∈ A(v, i + α + 3). Applying
Lemma 4.3.2(i), we obtain z ∈ A(v, i + α + 3) ⊆ A(w, i + α + 4). Therefore, w maintains
µ(T (z), w).

Together, we have that all nodes w on the path from v to u over T (z) maintain µ(T (z), w).
We obtain that given the label λ(T (z), v), node u can route to v over T (z).

By Lemma 4.4.5, z ∈ A(u, `) w.h.p. Hence, the length of the routing path is at most
d(u, z) + d(z, v) ≤ d(u, z) + d(u, z) + d(v, u) ≤ d(v, u) + 2a(u, `), as required.

4.4.3 Prefix routing

In order to perform prefix routing every node with identifier w stores the closest node that
contains an identifier that extends w by one bit.

34

CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS 4.4. THE SCHEME

Definition 4.4.9 (The neighbor link). For all v ∈ V, ` ∈ L, k ∈ K, b ∈ Σ define n(v, `, k, b)
as the node closest to v in the set C(I(v, `, k)||b).

By Lemma 4.4.5 above, we have that neighbor links that fix the `th bit are in A(v, `).

Lemma 4.4.10. For all v ∈ V, ` ∈ L, k ∈ K, b ∈ Σ, w.h.p. n(v, `, k, b) ∈ A(v, `).

Proof. This follows immediately from Lemma 4.4.5.

Every node stores an appropriate tree-label for every neighbor:

Storage 4.4.11. For all ` ∈ L, k ∈ K, b ∈ Σ, let u = n(v, `, k, b) be the appropriate neighbor.
Node v stores z(v, `), λ(T (z(v, `)), u) (for prefix routing to the neighbor link).

Together with the zero-assisted routing construction above, we get that a node v can
route to its level-i neighbor via a route of distance proportional to a(v, i):

Lemma 4.4.12. Let v ∈ V be a node, u = n(v, i, k, b) a level-i neighbor. Then v can route
to u with route length at most 3a(v, i) w.h.p.

Proof. By Lemma 4.4.10, w.h.p. u ∈ A(v, i). Using Lemma 4.3.2(i), we have v ∈ A(v, i) ⊆
A(u, i + 1). Applying Lemma 4.4.8, we obtain that v can route to u with route length at
most d(v, u) + 2a(v, i) ≤ 3a(v, i).

4.4.4 The Directory

The final component of our construction is a directory of node labels, that guarantees routing
with (1 + ε) bounded stretch.

In order to disperse directory entries such that they can be found, we use a hash function
h : V → ΣM that is e2RBα+3-wise independent. Carter and Wegman [CW79] show how
to build such a function and represent it with O(e2RBα+3 log n) = O(log2 n) bits. Now
for all v ∈ V denote h(v) = h(v)1, . . . , h(v)M . For all ` ∈ L denote the subsequence
h(v, `) = h(v)1, . . . , h(v)`. The following defines the set of nodes that implement the directory
for a node v; these are vicinity nodes that have an identifier that coincides with h(v, i).

Definition 4.4.13 (The directory set). Let v be a node. For every i ∈ L, the level-i directory
set D(v, i) is defined as D(v, i) = A(v, i+ α + 2) ∩ C(h(v, i)).

Storage 4.4.14. For any node v, and every level i ∈ L, we store a reference of the form
v −→ 〈z(v, i), λ(T (z(v, i)), v)〉 at all the nodes in the directory set D(v, i).

Lemma 4.4.15. With high probability, the directory storage requires at most
e2MR2Bα+3 log2 n bits of storage per node.

35

4.4. THE SCHEME CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS

Proof. Fix a node u ∈ V . We want to count the nodes v for which u stores a reference, i.e.,
for which there exists i ∈ L, u ∈ D(v, i).

For every ` ∈ L, k ∈ K defineX(u, `, k) = {v | I(u, `, k) = h(v, `) and v ∈ A(u, `+α+3)}.
Define X(u) =

⋃
`∈L,k∈K X(u, `, k). The relationship of X to directory storage is as follows.

If u ∈ D(v, i) for some i ∈ L, then there exists k ∈ K for which I(u, i, k) = h(v, i), and
furthermore, u ∈ A(v, i+α+2). By Lemma 4.3.2(ii), v ∈ A(u, i+α+3). Hence, if u ∈ D(v, i)
then v ∈ X(u) (though note that the converse need not be true). Our strategy is to bound
the size of X(u), and thereby bound u’s storage requirements from the above.

The probability that |X(u, `, k)| ≥ e2RBα+3 is less than the probability that there exists
a set of e2RBα+3 identifiers in A(u, `+ α+ 3) such that all these identifiers equal I(u, `, k).

Pr
[
|X(u, `, k)| ≥ e2RBα+3

]
≤
(
RB`+α+3

e2RBα+3

)
(B−`)e

2RBα+3

≤ (RB`+α+3)e
2RBα+3 1

(e2RBα+3)!
(B−`)e

2RBα+3

≤ (RBα+3)e
2RBα+3

(e

e2RBα+3

)e2RBα+3

≤ (1/e)RB
α+3

≤ n−ρ

Note that this argument only requires a e2RBα+3 = O(log2 n)-wise independent hash
function. Hence by union bound Pr [|X(u)| ≤ e2MR2Bα+3] ≥ 1 − RMn−ρ ≥ 1 −
n1−ρ. Finally, each element in the directory storage requires O(log2 n) space, totalling
O(e2MR2Bα+3 log2 n) storage bits.

When routing toward v, we use h(v) as a target for bit-fixing. Let the sequence of
nodes visited by fixing the bits of h(v) be s = x0, x1, x2, . . . When the distance from xi
to v is at most a(v, i + α + 2), a directory reference is guaranteed to be found. And since
xi ∈ A(v, i + α + 2), by Lemma 4.4.8 we get that xi can route to v given λ(T (z(v, i)), v).
This is stated in the following lemma.

Lemma 4.4.16. Let v ∈ V be a node. Then for any node u, such that u ∈ A(v, i + α + 2)
and ∃k : I(u, i, k) = h(v, i), u can route to v with route length at most d(v, u) + 2a(u, i).

Proof. By construction, we have that u is a level-i directory node for v, i.e., u ∈ D(v, i).
Therefore, u maintains a directory reference on v. The fact that u can route to v with the
specified route length then follows directly from Lemma 4.4.8, since u ∈ A(v, i+ α+ 2).

4.4.5 The Routing Algorithm

Assume the source is s ∈ V and the target is t ∈ V . Set i = 0 and x0 = s. Routing has two
stages.

36

CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS 4.5. STRETCH ANALYSIS

Phase 1: (Prefix routing) If xi does not contain a pointer t→ u then let k, b be such that
I(xi, i, k)||b = h(t, i + 1). Let the neighbor information corresponding to n(xi, i, k, b)
at xi be zi, λi, route on T (zi) to λi. Set xi+1 = n(xi, i, k, b), i = i+ 1 and repeat Phase
1.

Phase 2: (Directory routing) Once xi contains a pointer t → 〈z, λ〉 then on tree T (z)
use label λ to route to t.

4.4.6 Correctness

Lemma 4.4.17. From any starting node s ∈ V , given any node t ∈ V , the routing algorithm
finds t within a finite number of steps.

Proof. During the first phase, every bit-fixing step succeeds according to Lemma 4.4.12. Let
` ∈ L be a level such that B(`+α+2) ≥ n. At the latest, when the first phase has made
` steps, it must find a reference to t. This holds since it reaches a node x` that satisfies
x` ∈ A(t, ` + α + 2) ∩ C(h(t, `)) =⇒ x` ∈ D(t, `). Once a reference to the target t is found,
Phase 2 succeeds by Lemma 4.4.16.

4.5 Stretch Analysis

Throughout the analysis below, we denote the source node by s, the target node by t. The
series of neighbor-steps during Phase 1 are denoted s = x0, x1, x2, ..., xi. Phase 2 starts at xi
and ends at t.

Lemma 4.5.1. For all s ∈ V, 1 ≤ i ∈ L, during Phase 1 of routing, xi ⊆ A(s, i+ 1).

Proof. By induction on i. For i = 1 we have s = x0, and by Lemma 4.4.10, the neighbor
satisfies x1 = n(s, 1, k, b) ∈ A(s, 1). Also, clearly A(s, 1) ⊆ A(s, 2).

Assume by induction that xi−1 ∈ A(s, i). By Lemma 4.3.2(ii), A(s, i + 1) ⊇ A(xi−1, i).
By Lemma 4.4.10, xi ∈ A(xi−1, i), and hence, xi ∈ A(s, i+ 1).

Lemma 4.5.2. The total distance of the path from s = x0 to xi is at most 2a(s, i+ 1) .

Proof. By Lemma 4.5.1 for every 1 ≤ j ≤ i, xj ∈ A(s, j + 1). Applying Lemma 4.3.2(iv),
a(xj, j+1) ≤ 2a(s, j+1). By Lemma 4.4.12, the neighbor-routing from xj to xj+1 has length
at most 3a(xj, j + 1). Putting the above together, the route from xj to xj+1 is bounded by
6a(s, j + 1).

By Lemma 4.3.2(iii), a(s, j+ 1) ≤ 4−(i−j)a(s, i+ 1). Hence, the total distance of the path
from x0 through xi is at most

i−1∑
j=0

6a(s, j + 1) ≤ 6a(s, i+ 1)
i−1∑
j=0

4−(i−j) ≤ 6

4− 1
a(s, i+ 1) .

37

4.6. SPACE ANALYSIS CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS

Lemma 4.5.3. Let j be the first index such that s ∈ A(t, j + α + 2) then i ≤ j.

Proof. From Lemma 4.5.1, xj ∈ A(s, j+ 1). Applying Lemma 4.3.2(ii) on s ∈ A(t, j+α+ 1)
gives A(s, j+α+1) ⊆ A(t, j+α+2). Combining the above xj ∈ A(s, j+α+1) ⊆ A(t, j+α+2).
Also, by the routing algorithm, xj ∈ C(h(t, j)). Therefore, xj ∈ D(t, j), and xj must contain
a reference to t.

Theorem 4.5.4. The stretch of the path from s to t is 1 + ε.

Proof. First, if s ∈ A(t, α + 1), then by definition, j ∈ D(t, 0) and hence stores a directory
reference to t. In this case, Phase 1 is degenerate, and we move directly to Phase 2. Since
z(t, 0) = t, the reference at s on t is of the form t −→ t, λ(T (t), t), and routing is along the
shortest path from s to t.

Otherwise, as in Lemma 4.5.3 above, let j be the first index such that s ∈ A(t, j+α+ 2).
The first phase of the route is the path from s = x0 to xj. We now make use of the
assumption that s 6∈ A(t, j + α + 1), so d(s, t) ≥ a(t, j + α + 1). By node count, since
A(t, j+α+1) 6⊂ A(s, j+α+1), we obtain a(s, j+α+1) ≤ d(s, t)+a(t, j+α+1) ≤ 2d(s, t).
This, we note by Lemma 4.3.2(iii) implies a(s, j + 1) ≤ 2 · 4−αd(s, t).

With Lemma 4.5.3, we obtain that the route length from s to xj is bounded by

2a(s, j + 1) ≤ 4 · 4−αd(s, t) .

The second phase is the traversal from xj to t. With Lemma 4.4.16, its length is bounded
by d(xj, t) + 2a(xj, j). Here, we use from Lemma 4.5.1 the fact that xj ∈ A(s, j + 1). With
the triangle inequality, we have d(xj, t) ≤ d(xj, s)+d(s, t) ≤ a(s, j+1)+d(s, t). For a(xj, j),
we use Lemma 4.3.2(iv) to obtain a(xj, j) ≤ 2a(s, j + 1). Putting all of the above together,
the length of the route from xj to t is bounded by

d(xj, t) + 2a(xj, j)

≤ a(s, j + 1) + d(s, t) + 4a(s, j + 1)

≤ d(s, t) + 10 · 4−αd(s, t)

The resulting total stretch is 1 + 14 · 4−α, and the theorem is proven by choosing

α = log4

14

ε
= O(log(

1

ε
)) . (4.1)

4.6 Space Analysis

For all v ∈ V node v stores the following:

38

CHAPTER 4. NAME-INDEPENDENT ROUTING FOR GROWTH BOUNDED NETWORKS 4.6. SPACE ANALYSIS

1. For all i ∈ L, z ∈ Z(i) ∩ A(v, i+ α + 4) store µ(T (z), v) (for zero-assisted routing).

2. For all i ∈ L, k ∈ K, b ∈ Σ, and for u = n(v, i, k, b), store z(v, i), λ(T (z(v, i)), u) (for
prefix routing to the neighbor link).

3. For all i ∈ I store v −→ 〈z(u, i), λ(T (z(u, i)), v)〉 at all the nodes u in the directory set
D(v, i) (for finding v).

Theorem 4.6.1. With high probability, the network storage requires at most

O(1
ε

O(log ∆)
log5 n) bits of storage per node.

Proof. The storage consists of the following.

For the first storage item above, v stores routing information of size O(log2 n) of at most
2RBα+4 zero nodes for each i ∈ L, and the total is O(MRBα+4 log2 n).

Using Bα = Blog4
14
ε = 14

ε

log4B ≤ ∆4 1
ε

log ∆
we get that the total is O(1

ε

log ∆
∆12 log4 n).

For the second item, v stores label information of size O(log2 n) of B neighbors for each
i ∈ L, and k ∈ K, totalling O(BMR log2 n) = O(∆2 log4 n).

The storage of the third item is bounded by Lemma 4.4.15 to be O(e2MR2Bα+3 log2 n) =

O(1
ε

log ∆
∆12 log5 n).

Summing it all up, we have O(1
ε

O(log ∆)
log5 n) bits of storage per node.

39

Chapter 5

Scale-Free Name-Independent
Routing

5.1 Introduction

One of the most basic functionalities of any distributed network is the ability to route
messages between pairs of nodes. Given that each node has an arbitrary network identifier,
a routing scheme allows any source node to route messages to any destination node, given
the destination’s network identifier. It is natural to consider a weighted network in which
the cost of routing a message is proportional to the cost of the path taken from source to
destination. In such a model it is desirable to minimize routing costs by routing on short
paths. In this sense the efficiency of a routing scheme is measured by its stretch factor, the
maximum ratio over all source destination pairs, between the cost of routing from the source
to the destination and the cost of a minimum cost path. The trivial solution to routing on
shortest paths with stretch factor 1 is for each node to store a routing table with (n − 1)
entries that contains the next hop of an all pairs shortest path algorithm. This solution is
very expensive as it requires each node to store Ω(n log n) bits. Thus, network designers are
faced with two conflicting goals: reduce both the stretch factor and the size of the routing
tables.

For a weak variant of this problem, called labeled routing, both lower bounds and asymp-
totically optimal upper bounds are known (see [TZ01b]). In this version of the problem, the
designer of a solution may pick node names that contain (bounded size) information about
their location in the network. This variant is useful in many aspects of network theory,
but less so in practice: Knowledge of the labels needs to be disseminated to all potential
senders, as these labels are not the addresses by which nodes of an existing network, e.g., an
IP network, are known. Furthermore, if the network may admit new joining nodes, all the
labels may need to be re-computed and distributed to any potential sender. Finally, various
recent applications pose constraints on nodes addresses that cannot be satisfied by existing
labeled-routing schemes. E.g., Distributed Hash Tables (DHTs) require nodes names in the

40

CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING 5.1. INTRODUCTION

range [1..n], or ones that form a binary prefix.

In this chapter we assume a network with arbitrary node names and arbitrary edge
weights. This model is called the name-independent model because the designer of the
routing scheme has no control over node names. This routing problem may appear daunting:
In order to route to a node, we must first somehow gain knowledge about its location in the
network, but we must do so without exceeding the distance to the target.

A fundamental difficulty in all previous schemes is their heavy dependence on the scale of
the network. Let the aspect ratio ∆ = max d(u, v)/minu6=v d(u, v) be the ratio between the
largest distance and the smallest distance, then many schemes require memory that tends to
infinity as ∆ increases. This suggests that there might exist a lower bound associated with the
aspect ratio. However, the best known lower bound for name-independent routing [TZ01b]
does not contain such dependence. Hence one would hope to remove the dependence on
∆ altogether. We will say that a routing scheme is scale-free if its memory requirement is
independent of the aspect ratio. Obtaining scale-free schemes is a challenging goal: Until
now, the only scale-free schemes for general graphs have exponential stretch [ABNLP89,

ABNLP90, ACL+03]. Specifically, when each node stores Õ(n1/k) bit routing information
the best stretch bound achieved is O(2k). Obtaining such scale free solutions was raised
as an open question in [ACL+03, LR05]. In this chapter we fully answer this problem and
provide an exponential improvement from O(2k) to asymptotically optimal O(k) stretch.

5.1.1 Our contribution

We construct for any k ≥ 1 a routing scheme with linear stretch factor of O(k) and with

Õ(n1/k)-bit routing tables per node and Õ(1)-bit headers1. .1.0

Theorem 5.1.1. For each weighted n-node graph, and integer k ≥ 1, there is a polyno-
mial time constructible name-independent routing scheme with stretch factor O(k) that uses
O(k2n1/k log3 n)-bit routing tables per node.

5.1.2 Techniques

Broadly speaking, there are two main techniques used to construct routing schemes. The first
technique is random sampling, in which landmark nodes are selected randomly. This tech-
nique has been successful in labeled routing, providing asymptotically optimal space-stretch
trade-offs [TZ01b]. For name-independent schemes, random sampling based schemes were

used for optimal trade-offs for stretch 3 schemes with Õ(
√
n) space [AGM+04b]. However,

all general schemes with Õ(n1/k) space, based on random sampling, obtained exponential
stretch O(2k) (see [ABNLP89, ABNLP90, ACL+03]).

The second technique is sparse covers, in which the graph is covered by clusters of
bounded diameter such that each node belongs to a small number of clusters. This technique

1The notation Õ(·) indicates complexity similar to O(·) up to poly-logarithmic factors.

41

5.1. INTRODUCTION CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING

was used for several name-independent schemes [PU89, AP90, AP92, ACL+03, AGM04a].
In all the schemes above that use sparse covers, a cover with clusters of diameter < 2i is
constructed for each i ∈ {1, . . . , dlog ∆e}, hence these schemes are inherently not scale-free.

Our scheme is based on a new decomposition into dense and sparse neighborhoods. It
uses a subtle combination of random sampling and sparse cover routing techniques depending
on the density or sparsity of each neighborhood. This decomposition allows us to remove any
dependence on the aspect ratio. Informally, a sparse neighborhood is one where the number
of nodes does not increase to much if the radius is increased by a constant factor. For sparse
neighborhoods, we use random sampling techniques that turns out to be efficient in this case.
Specifically, nodes maintain a tree-routing scheme for all the nearby landmarks. For dense
neighborhoods, we use sparse cover based routing techniques. Since dense neighborhoods
imply that the number of nodes is multiplied when the diameter is increased by a constant,
the number of dense neighborhood scales a node belongs to is O(log n). This fact allows to
use sparse cover techniques in a scale-free manner. While our decomposition was developed
independently of [KLMN04], it bears some similarities to the “measured decent” approach of
Krauthgamer et al. [KLMN04]. However, using the “measured decent” approach for routing
fails since it chooses scales for each density change. Hence searching on a ball with Ω(log n)
density changes may incur O(log n)� k stretch which is unacceptable. Our decomposition
circumvents this by decomposing both by density change and by diameter change.

Our sparse/dense decomposition technique has interest in its own, as a general approach
to remove the aspect ratio parameter in many other constructions. For example for la-
beled and name-independent routing schemes for networks with low doubling dimension
[AGGM05].

5.1.3 Related work

The space-stretch trade-off has been extensively studied under various models and extensions.
We refer the reader to Peleg’s book [Pel00] and to the surveys of Gavoille and Peleg [Gav01,
GP03] for comprehensive background.

Peleg and Upfal [PU89] were the first to study this trade-off in a parameterized manner.
For unit cost networks they achieve O(k) stretch with a total of O(k3n1+1/k log n) bits for
all routing tables. For weighted networks, Awerbuch et al. [ABNLP89, ABNLP90] present a

scale-free routing scheme with exponential stretch of O(k29k) that requires Õ(n1/k) bits per
node. Arias et al. [ACL+03] improve the stretch to O(k22k) with the same memory bound.

More recently, constant stretch routing schemes have been designed for networks whose
induced metric space has a low doubling dimension [AGGM05, KRX06], and for unweighted
graphs excluding a fixed minor [AGM05] (including trees and planar graphs). These schemes
require a polylogarithmic space, hidding a multiplicative constant depending on the doubling
dimension, or on the minor excluded.

Awerbuch and Peleg use sparse covers [AP90] in order to build a hierarchal routing
scheme [AP92]. Their scheme is based on tree covers with geometrically increasing radii.

42

CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING 5.2. SPARSE AND DENSE NEIGHBORHOOD DECOMPOSITION

Therefore there is an inherent geometric factor in their memory requirement. They achieve
stretch O(k2) with Õ(n1/k log ∆)-bit routing tables, and O(log ∆) headers, where ∆ is the
maximum weighted distance between any two nodes divided by the minimum weighted dis-
tance between any two unique nodes. Abraham, Gavoille, and Malkhi [AGM04a] improve
the stretch factor to O(k) with the same memory requirement. This solution is adequate if
the network weights are polynomial in the number of nodes. However for arbitrary networks
the diameter may be arbitrarily large, for instance ∆ = Ω(2n), and solutions based on the
aspect ratio of the network may become unusable.

A weaker variant of compact routing is based on the labeled routing model. Instead of
assuming nodes have arbitrary names, in this model, the network designer is allowed to name
the nodes in a topology dependent manner. This paradigm does not provide for a realistic
network design, however, the tools devised for its solution have proven useful as building
blocks of full routing schemes.

Eilam et al. [EGP03] present a stretch 5 labeled scheme with Õ(n1/2) memory, whereas

Cowen [Cow01] presents a stretch 3 labeled scheme with Õ(n2/3) memory. Later, Thorup and

Zwick [TZ01b] improve to stretch 3 using Õ(n1/2) bits. These three schemes uses O(log n)-bit
node names. Thorup and Zwick also give in [TZ01b] a generalization of their scheme and
using techniques from their distance oracles [TZ05], achieve labeled schemes with stretch

4k− 5 (and even 2k− 1 with handshaking) using Õ(n1/k)-bit routing tables and o(k log2 n)-
bit node names. Labeled routing on a trees is explored in [FG01, TZ01b], achieving stretch
1 with O(log2 n/ log log n) bits for local tables and for headers, and this is tight [FG02].

Thorup [Tho04] showed that planar graphs support stretch 1+ε labeled routing schemes
with polylogarithmic space. This has been generalized by Abraham and Gavoille [AG06]
to graphs excluding a fixed minor with same stretch and space bounds. For low doubling
dimension networks, strech 1 + ε labeled schemes exist [Tal04b, CGMZ05, Sli05a], but all of
them have a dependency in the aspec ratio ∆ in the memory bounds.

A variation of our sparse-dense decomposition was recently used to provide some scale-
free labeled and name-independent routing schemes for networks with low doubling dimen-
sion [AGGM05], this solved a question raised by Slivkins [Sli05a]. While the decomposition
in that paper is superficially similar, the techniques used in this chapter are significantly
different. Specifically, the sparse level case uses a landmark property of Lemma 5.2.6 to-
gether with a new error-reporting tree routing scheme of Lemma 5.3.6. The dense level case
is based on applying spares covers of [AP90] with the routing extensions of [AGM04a].

5.2 Sparse and Dense Neighborhood Decomposition

5.2.1 Preliminaries

Given is a weighted graph G = (V,E, ω) of size n = |V | with a non-negative weight function
ω : E → R+. Let the cost of a path be the sum of the weights of its edges. For any two nodes

43

5.2. SPARSE AND DENSE NEIGHBORHOOD DECOMPOSITION CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING

u, v ∈ V let d(u, v) denote the cost of a minimum cost path between u and v. Let ∆ denote
the aspect ratio (normalized diameter) of G, ∆ = maxu6=v d(u, v)/minu6=v d(u, v). In order
to avoid dragging a normalization constant, from here on assume that minu6=v d(u, v) = 1.
Define the radius r ball around node u, B(u, r), as the set of nodes whose distance is at
most r from u, B(u, r) = {v | d(u, v) ≤ r}. For any node u, let T (u) denote a minimum
cost path spanning tree rooted at u. Given a lexicographic order on the nodes, for any node
u ∈ V , set Z ⊆ V , and integer m > 0 define N(u,m,Z) as the m closest nodes from Z to
node u, i.e., as the set N(u,m,Z) = N such that N ⊆ Z, |N | = m and for all x ∈ N and
y ∈ Z \N either d(u, x) < d(u, y) or d(u, x) = d(u, y) and x is lexicographically smaller than
y. Let I denote the set I = {0, 1, . . . , dlog ∆e}. Given a parameter k, let K denote the level
set K = {0, 1, 2, . . . , k}. Each node has an arbitrary unique network identifier consisting of
polylog(n) bits. Using standard hashing techniques it is possible to generalize the model and
assume nodes have arbitrarily long unique labels.

Our solution is based on using a new decomposition into a series of balls around each
node that have a combined combinatorial and geometric restriction. Each ball has at least
n1/k more nodes than the previous and its radius is at least twice the radius of the previous.

Definition 5.2.1. For all u ∈ V and i ∈ K define the range a(u, i) as follows. Let a(u, 0) =
0. Then recursively let a(u, i+ 1) be the smallest positive integer j > 0 such that

|B(u, 2j)| ≥ n1/k|B(u, 2a(u,i))|

(or let a(u, i+ 1) = log ∆ if there does not exist such an integer).

For all u ∈ V and i ∈ K denote the neighborhood ball A(u, i) as the ball who’s radius is
2a(u,i) around u. Formally, A(u, i) = {u} for i = 0 and A(u, i) = B(u, 2a(u,i)) for i > 0.

Intuitively, if the gap between a(u, i) and a(u, i + 1) is small, then the neighborhood
A(u, i+ 1) is “dense” relative to the neighborhood A(u, i), otherwise A(u, i+ 1) is “sparse”
relative to A(u, i). A central definition capturing this intuitive notion is the following.

Definition 5.2.2 (Dense level). For u ∈ V and i ∈ K, define that i is a dense level for
node u if

a(u, i) < a(u, i+ 1) ≤ a(u, i) + 3

Define that i is a sparse level for node u if it is not a dense level. In words, in a dense
level, we find at least n1/k times as many nodes as the current level by looking at a ball
whose radius is at most 23 times the current level.

5.2.2 Dense Levels

For every u ∈ V define the range set of node u, denoted L(u), as L(u) = {a(u, i) | i ∈ K}
and define the extended range set R(u) as,

R(u) = {i ∈ I | ∃a ∈ L(u),−1 ≤ a− i ≤ 4} .

44

CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING 5.2. SPARSE AND DENSE NEIGHBORHOOD DECOMPOSITION

Define F (u, i) = B(u, 2a(u,i)−1). The main property of dense levels is captured in the
following lemma.

Lemma 5.2.3 (Dense neighborhoods).
If i is a dense level for u and v ∈ F (u, i), then a(u, i) ∈ R(v).

Proof. Recall that F (u, i) = B(u, 2a(u,i)−1). Let v ∈ F (u, i), then B(v, 2a(u,i)−1) ⊆ A(u, i)
(see Figure 5.1), and hence

|B(v, 2a(u,i)−1)| ≤ |A(u, i)| .

Since a(u, i+ 1) ≤ a(u, i) + 3, then B(v, 2a(u,i)+4) ⊇ A(u, i+ 1), and hence

|B(v, 2a(u,i)+4)| ≥ |A(u, i+ 1)| ≥ |A(u, i)| · n1/k .

A(u,i)

F(u,i)=B(u,2a(u,i)-1)

A(u,i+1)

B(v,2a(u,i)+4)

u
v

B(v,2a(u,i)-1)

Figure 5.1: Example of a level i dense neighborhood for node u and a node v ∈ F (u, i).

Together, these imply |B(v, 2a(u,i)+4)| ≥ n1/k · |B(v, 2a(u,i)−1)|. Therefore, there exists
some index a(v, j) such that a(u, i)− 1 ≤ a(v, j) ≤ a(u, i) + 4.

5.2.3 Sparse Levels

We use a low discrepancy cover of ‘landmark’ nodes. We use k + 1 sets V = C0 ⊇ C1 ⊇
· · · ⊇ Ck = ∅ of landmarks defined as follows. Let C0 = V . For i = 1 to k − 1 iteratively
set Ci to contain each element of Ci−1 independently, with probability (n/ lnn)−1/k. The
randomized procedure can be de-randomized using the method of conditional probabilities
and pessimistic estimators. Let B = {B(u, 2i) | u ∈ V, i ∈ I}, note that |B| ≤ |V |2. We will
use two simple properties.

Claim 5.2.4. With high probability, for any B ∈ B, if 4(lnn)(k−j)/knj/k ≤ |B| for j ∈ K
then B ∩ Cj 6= ∅.

45

5.2. SPARSE AND DENSE NEIGHBORHOOD DECOMPOSITION CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING

Proof. Union bound and Pr[B ∩ Cj = ∅] ≤ (1− (n/ lnn)−j/k)4(lnn)(k−j)/knj/k ≤ e4 lnn.

Claim 5.2.5. With high probability, for any B ∈ B, if |B| < 4(lnn)(k−(j+1)/k)n(j+2)/k for
j ∈ K then |B ∩ Cj| ≤ 16n2/k lnn.

Proof. Union bound, Chernoff bound and E[|B ∩ Cj|] ≤
4(lnn)(k−(j+1)/k)n(j+2)/k(n/ lnn)−j/k ≤ 4n2/k(lnn)(k−1)/k.

If x ∈ Cj, and x 6∈ Cj+1, define that node x has rank j. For every u ∈ V and i ∈ K
define the nearby landmarks S(u, i) to be the n2/k log n closest nodes in Ci.

S(u, i) = N(u, 16n2/k log n,Ci)

and define S(u) =
⋃
i∈K S(u, i). Define m(u, i) as the highest rank of any node in A(u, i).

Formally,

m(u, i) = max {` ∈ K | A(u, i) ∩ C` 6= ∅} .

Define the center c(u, i) as the closest node to u from Cm(u,i). Let E(u, i) =
B(u, 2a(u,i+1)/6). The main property of sparse levels is captured in the following lemma.

Lemma 5.2.6 (Sparse neighborhoods).
Let i be a sparse level for u, i.e., a(u, i+ 1) > a(u, i) + 3. If v ∈ E(u, i), then c(u, i) ∈ S(v).

Proof. Recall that E(u, i) = B(u, 2a(u,i+1)/6) and m(u, i) is the highest rank of any node in
A(u, i). Formally,

m(u, i) = max {` ∈ K | A(u, i) ∩ C` 6= ∅} .

Let j ∈ K be the index such that 4(lnn)(k−j/k)nj/k ≤ |A(u, i)| < 4(lnn)(k−(j+1)/k)n(j+1)/k

then from Claim 5.2.4 it follows that m(u, i) ≥ j. For any v ∈ E(u, i), we have (see
Figure 5.2)

c(u, i) ∈ A(u, i) ⊆ E(u, i) ⊆ B(v, 2a(u,i+1)/3) ⊆ B(u, 2a(u,i+1)/2) .

Since level i is sparse for u, by definition there are strictly fewer than n1/k|A(u, i)| nodes in
B(u, 2a(u,i+1)/2). Therefore

|B(v, 2a(u,i+1)/3)| < n1/k|A(u, i)| ≤ 4(lnn)(k−(j+1)/k)n(j+2)/k .

From Claim 5.2.5 and since m(u, i) ≥ j it follows that there are less than 16n2/k log n
nodes of rank m(u, i) in B(v, 2a(v,i+1)/3). Since c(u, i) ∈ B(v, 2a(v,i+1)/3) then c(u, i) ∈ S(v)
as required.

46

CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING 5.3. A SCALE-FREE ROUTING SCHEME

A(u,i)

E(u,i)=B(u,2a(u,i+1)/6)

B(u,2a(u,i+1)/2)

A(u,i+1)=B(u,2a(u,i+1))

u
v

B(v,2a(u,i+1)/3)

Figure 5.2: Example of a level i sparse neighborhood for node u and a node v ∈ E(u, i).

5.3 A Scale-Free Routing Scheme

The goal of this section is to present the construction for the following upper bound:

.3.0

Theorem 5.3.6. For each weighted n-node graph, and integer k ≥ 1, there is a polyno-
mial time constructible name-independent routing scheme with stretch factor O(k) that uses
O(k2n1/k log3 n)-bit routing tables per node.

The high level view of the routing scheme is a simple iterative protocol. For phases i = 1
to k, search for v as follows: If A(u, i) is sparse, use the sparse neighborhood routing strategy.
If A(u, i) is dense, use the dense neighborhood routing strategy. We begin by describing the
two routing strategies.

5.3.1 Sparse neighborhood routing strategy

For every center c(u, i) define T (c(u, i)) as a minimum cost path tree rooted at c(u, i) that
spans all nodes v such that c(u, i) ∈ S(v). Routing on these trees is done using the fol-
lowing name-independent tree-routing scheme, which is an enhancement of Laing’s algo-
rithm [Lai04].

.3.5

Lemma 5.3.6. For any k ≥ 1, and for any weighted tree T = (V,E, ω) and for any desig-
nated root r ∈ V , there exists a name-independent error-reporting tree-routing scheme with
the following properties:

1. Each node stores O(kn1/k log2 n) bits of routing information.

47

5.3. A SCALE-FREE ROUTING SCHEME CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING

2. For any j ∈ K, the root can perform a j-bounded search for destination v.

A j-bounded search for v has the following properties:

(a) If v ∈ N(r, nj/k, V) then it reaches v with stretch 2j − 1;

(b) Otherwise it returns a negative response to the root incurring a cost of at most
(2j − 2) max

{
d(r, v) | v ∈ N(r, n(j−1)/k, V)

}
.

Proof. Given a tree T = (V,E) with m ≤ n nodes and a root t ∈ T . We give each
node v ∈ V three names. Let a0, . . . , am−1 denote the nodes of T sorted by increasing
distance from the root. Formally, for any two indexes, if i < j then dT (r, ai) < dT (r, aj) or
dT (r, ai) = dT (r, aj) and ai is lexicographically smaller than aj. The first name we give nodes,
called their primary name, makes use of words of the alphabet Σ =

{
0, 1, 2, . . . n1/k − 1

}
.

Specifically, name a0 = r as the empty word (ε). Then name a1, . . . , an1/k respectively
with one digit in Σ in increasing order (0), (1), . . . , (n1/k − 1) respectively. Then name each
of the next n2/k nodes a1+n1/k , . . . , a1+n1/k+n2/k by a name in Σ2 in increasing lexicographic
order, (0, 0), (0, 1), . . . , (0, n1/k−1), (1, 0), (1, 1), . . . , (1, n1/k−1), . . . , (n1/k−1, 0), . . . , (n1/k−
1, n1/k − 1) respectively. Let ji =

∑i
j=0 n

j/k. Continue this naming process, naming nodes

aji−1+1, . . . , aji respectively by a name in Σi until all nodes in T are exhausted, up to at most
a k-digit node name in Σk. For 0 ≤ j ≤ k let Vj denote the set of nodes whose name contains
at most j digits. Next, we give v its name based on the labeled tree routing of Thorup and
Zwick [TZ01b] and Fraigniaud and Gavoille [FG01]:

Lemma 5.3.7. [FG01, TZ01b] For every integer k > 1 and every weighted tree T with m
nodes there exists a labeled routing scheme that, given any destination label, routes optimally
on T from any source to the destination. The storage per node is O(m1/k logm) bits, the
label size, and the header size are O(k logm) bits.

For a tree T containing a node v, let µ(T, v) denote the routing information of node
v and λ(T, v) denote the destination label of v in T as required from Lemma 3.3.4. We
require from each node v to store µ(T, v). The second name we assign v is λ(T, v). The third
node-name makes use of a hash function h : T → Σk. We require that, for all 0 ≤ j ≤ k,
maxu∈Σj−1 | {v ∈ Vj | u is a prefix of h(v)} | ≤ |Σ| log n = n1/k log n. This requirement can be
fulfilled with high probability using a Θ(log n)-wise independent hash function that requires
Θ(log2 n) bits of storage [CW79, MR95]. A node u ∈ V with name (x1, . . . , xj) stores:

1. Information for labeled tree routing µ(T, u). This requires O(n1/k log n) bits.
2. The labels λ(T, v) of all the nodes v whose name is (x1, . . . , xj, y) for all y ∈ σ. This

requires O(kn1/k log n) bits.
3. The map v → λ(T, v) of the n1/k log n closest nodes v (from the root) whose first j in-

dexes of their hash h(v) equal x1, . . . , xj. Formally, define Z = {z | h(z)[1 . . . j] =
x1, . . . , xj} and store v → λ(T, v) for all v ∈ N(r, n1/k log n, Z). This requires
O(kn1/k log2 n) bits.

48

CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING 5.3. A SCALE-FREE ROUTING SCHEME

To search from the root r for a node t whose hash is y1, . . . , yk on a j-bounded search, do
the following:

1. current := r; round := 1;
2. if round = j and current does not know of t then return to root r with negative

response.
3. Otherwise if current knows of t’s label then route to t.
4. Otherwise route to the node whose name is (y1, . . . , yround), set round := round + 1,

and update current to be the current node.
5. goto 2;

Suppose the destination is a node t whose hash is y1, . . . , yk and whose name has length i
(t ∈ Vi and t /∈ Vi+1). The destination will be found after at most i iterations of the algorithm.
This is true since if i = 1, then the root knows about the destination. Otherwise, at the
i− 1th iteration we reach the node x whose name is (y1, . . . , yi−1) and due to the properties
of the hash function we know that |{v ∈ Vi | (y1, . . . , yi−1) is a prefix of h(v)}| ≤ |Σ| log n
and hence x stores the label of t.

Since all the nodes that are visited have smaller names than i, it is easy to see that the
stretch is bounded by 2i− 1 ≤ 2k − 1.

If a j-bounded search is performed and j < i then t may not be found. At the (j − 1)th
iteration, a node whose name is (y1, . . . , yj−1) will report the error to the root. Since all
nodes visited have names with at most j − 1 digits then the total cost is bounded by (2j −
2) maxv∈Vj−1

{d(r, v)}.
The storage per node v is O(log2 n) + O(|Σ| log n) + O(k|Σ| log n) + O(k|Σ| log2 n) =

O(kn1/k log2 n), for the hash function h, routing information µ(T, v), the primary name
entries, and the hash name entries respectively.

For all u ∈ V and i ∈ K recall that E(u, i) = B(u, 2a(u,i+1)/6). Given a sparse level i the
algorithm routes to the root c(u, i). We prove that E(u, i) ⊆ T (c(u, i)) and hence searching
from c(u, i) for v ∈ E(u, i) on the tree T (c(u, i)) will succeed with stretch of at most 2k− 1.
In order to bound the cost incurred if v 6∈ E(u, i) every node u ∈ V stores for every i ∈ K
the index b(u, i). Where b(u, i) is the minimal integer j such that a j-bounded search on
T (c(u, i)) of any node in E(u, i) succeeds. Since b(u, i) is defined as the minimal index to
find in T (c(u, i)) all nodes of E(u, i) then we prove that a negative result from this search
has cost proportional at most to the diameter of E(u, i). More precisely, we now define the
information stored by every node, and the routing algorithm for sparse neighborhoods.

5.3.2 Storage for sparse neighborhood strategy

For any tree T and node u ∈ T , let τ(T, u) denote the information stored on u that is induced
by the name-independent tree-routing scheme of Lemma 5.3.6. Every node u ∈ V stores
τ(T (v), u) for all v ∈ S(u). In addition, for every i ∈ K, u records c(u, i) and b(u, i).

49

5.3. A SCALE-FREE ROUTING SCHEME CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING

5.3.3 Routing algorithm for sparse neighborhood strategy

1. route to the root c(u, i).
2. Perform a b(u, i)-bounded search on T (c(u, i)) for destination v.
3. If destination is not found, continue to iteration i+ 1.

5.3.4 Dense neighborhood routing strategy

If i is a dense level, the routing strategy uses tree covers that have a bounded radius. A
source of difficulty in arbitrarily weighted graphs is that the logarithm of the diameter may be
arbitrarily large (� n, for example ∆ = 2n). Hence, tree covers of geometrically increasing
radii, e.g., as used in [AP90, AGM04a], require each node to participate in too many partition
levels any may require Ω(n) bits per node. Our solution for general graphs is to let each
node maintain routing information only for a limited number of radii that surround its range
set. However, special care must be taken to make sure that the destination and all the nodes
along the way store information for the same radius that the source is using. Recall that the
range set is defined as L(u) = {a(u, i) | i ∈ K}, and the extended range set R(u) is defined
as, R(u) = {i ∈ I | ∃a ∈ L(u),−1 ≤ a− i ≤ 4}. For every i ∈ I define Gi = (Vi, Ei) as the
subgraph induced by the nodes Vi = {u | i ∈ R(u)}. We prove that in a dense level i for u, if
v is in B(u, 2a(u,i)−1) then i ∈ R(v) and moreover both source and destination are connected
in Gi. Hence a tree cover in Gi may be used for routing. The tree cover is built using the
construction of [AP90] with the improvements of [AGM04a].

Lemma 5.3.8. [AP90, AGM04a] For every weighted graph G = (V,E, ω), |V | = n and
integers k, ρ ≥ 1, there exists a polynomial algorithm that constructs a collection of rooted
trees TCκ,ρ(G) such that:

1. (Cover) For all v ∈ V , there exists T ∈ TCκ,ρ(G) such that B(v, ρ) ⊆ T .
2. (Sparse) For all v ∈ V , | {T ∈ TCκ,ρ(G) | v ∈ T} | ≤ 2kn1/k.
3. (Small radius) For all T ∈ TCκ,ρ(G), rad(T) ≤ (2k − 1)ρ, where rad(T) =

maxu {dT (r, u)}.
4. (Small edges) For all T ∈ TCκ,ρ(G), maxE(T) ≤ 2ρ, where maxE(T) =

maxe∈E(T) {ω(e)}.

For every i ∈ I we build a tree cover TCk,2i(Gi) only on the graph Gi (note that Gi may
have several connected components, so a tree cover is built for each connected component
separately). Since |R(u)| = O(k) then every node u participates only in O(k) such tree
covers. For all u ∈ V and i ∈ K, denoting j = a(u, i), define W (u, i) ∈ TCk,2j(Gj) to be the
tree such that B(u, 2j) ⊆ W (u, i). On a dense level i, routing towards a destination begins
by routing to the root of the tree W (u, i) and then using a name-independent tree-routing
scheme. For all i ∈ I and T ∈ TCκ,ρ(Gi) we use the name-independent error-reporting
tree-routing scheme of [AGM04a] with an improved analysis.

50

CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING 5.3. A SCALE-FREE ROUTING SCHEME

Lemma 5.3.9. For every tree T = (U,E, ω), |U | = m, U ⊂ V , |V | = n, and integer k there
exists a name-independent tree-routing scheme on T with error-reporting that routes on paths
of length bounded by 4rad(T) + 2kmaxE(T), each node requires O(kn1/k log n) memory bits,
and headers are of length O(log2 n). Moreover, routing for a non-existent name in T also
incurs a (closed) path of length 4rad(T) + 2kmaxE(T) until a negative result is reported back
to the source.

sketch. We use the same construction of [AGM04a], the only change is to use Lemma 3.3.4
that requires O(k log n) bit labels instead of O(log2 n/ log log n) bit labels used in [AGM04a].
Since each node stores only one such label, the space requirement is only O(kn1/k log n) bits
(all other labels used require only O(log n) bits).

We prove that if i is a dense level for u then ∀v ∈ F (u, i) we have i ∈ R(v)
(Lemma 5.2.3) and hence the tree routing scheme on W (u, i) will reach any node in F (u, i)
or report a negative response at a cost proportional to k times the radius of F (u, i) (recall
F (u, i) = B(u, 2a(u,i)−1)). We now define the information stored by every node, and the
routing algorithm for dense neighborhoods.

5.3.5 Storage for dense neighborhood strategy

For any tree T and node u ∈ T , let φ(T, u) denote the information stored on u that is
induced by the name-independent error-reporting tree-routing scheme of Lemma 5.3.9. For
every u ∈ V and i ∈ R(u) node u stores φ(T, u) for all T ∈ TCk,2i(Gi) such that u ∈ T . In
addition, every node u ∈ V records w(u, i) the root of the tree W (u, i).

5.3.6 Routing algorithm for dense neighborhood strategy

1. Route to the root w(u, i).
2. Route on the tree W (u, i) to either find destination v or get a negative response.
3. If destination is not found, continue with iteration i+ 1.

5.3.7 Analysis

Throughout the description below, the source node is denoted u and the destination node
is denoted v. Routing from u to v is done by iteratively expanding the search through the
neighborhoods of u, A(u, 1), A(u, 2), . . . , A(u, k) until the destination is found. The routing
strategy in each neighborhood A(u, i) depends on whether level i is sparse or dense for node
u. If A(u, i) is sparse, we use the sparse neighborhood strategy. If A(u, i) is dense we use
the dense neighborhood routing strategy.

The following technical lemmata are used to prove Theorem 5.1.1.

51

5.3. A SCALE-FREE ROUTING SCHEME CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING

Lemma 5.3.10. Let i be a dense level for u, and let v ∈ F (u, i). Then a dense neighborhood
routing strategy from u will reach v.

Proof. Recall that R(u) = {i | ∃` ∈ L(u),−1 ≤ ` − i ≤ 4}. Denote a(u, i) = j, by the
properties of dense neighborhood stated in Lemma 5.2.3, for every x ∈ F (u, i) node x has
a(u, i) ∈ R(x) and hence x ∈ Gj. Recall that the tree W (u, i) ∈ TCk,2j(Gj) is defined to be
the tree such that BGj(v, 2

j) ⊆ W (u, i). Therefore, F (u, a) ⊆ W (u, i) and it is possible to
reach v by routing on W (u, i).

Lemma 5.3.11. Let i ∈ K be a dense level for u ∈ V . Then the dense neighborhood routing
strategy requires O(k3n2/k log n) memory bits and incurs a cost of O(k ·2a(u,i)) either to reach
v if v ∈ B(u, 2a(u,i)−1) or otherwise to return a negative response to the source u.

Proof. Storage: For the dense level routing strategy every node maintains O(k) ranges. For
each range, every node participates in O(kn1/k) trees, each tree requires O(kn1/k log n) bits.
For a total of O(k3n2/k log n) bits.

Routing cost : By combining Lemma 5.3.8 and Lemma 5.3.9 the cost of searching for v
on Ga(u,i) is at most O(k ·2a(u,i)). From Lemma 5.3.10, the destination will actually be found
on Ga(u,i) if v ∈ F (u, i) = B(u, 2a(u,i)−1).

Lemma 5.3.12. Let i be a sparse level for u, and let v ∈ E(u, i). Then the sparse neigh-
borhood routing strategy from u will reach v.

Proof. Denote c = c(u, i), and recall that c is the closest landmark of highest rank in A(u, i).
By the properties of sparse neighborhoods stated in Lemma 5.2.6, every node v ∈ E(u, i)
has c ∈ S(v). Hence, all nodes in E(u, i) store τ(T (c)), including all nodes on the shortest
path of T (c) from u to c. Since b(u, i) is defined so that a b(u, i)-bounded search on T (c)
will find all nodes in E(u, i) then v ∈ E(u, i) will be found.

Lemma 5.3.13. Let i ∈ K be a sparse level for u ∈ V . Then the sparse neighborhood routing
strategy requires O(k2n3/k log3 n) memory bits and incurs a cost of O(k · (d(u, v) + 2a(u,i)))
to reach v if v ∈ B(u, 2a(u,i+1)/6) or otherwise returns a negative response to the source at a
cost O(k · 2a(u,i+1)).

Proof. Storage: For the sparse level routing strategy every node maintains k closest landmark
sets S(u, 1), . . . , S(u, k). For each set, a node participates in 16n2/k log n trees, each tree
requires O(kn1/k log2 n) bits. For a total of O(k2n3/k log3 n) bits.

Routing cost : If v ∈ E(u, i) = B(u, 2a(u,i+1)/6), then by Lemma 5.3.12 the routing
strategy will route from u to c(u, i) and then to v. By definition c(u, i) ∈ A(u, i) so
the path to c(u, i) incurs a cost of at most d(u, c(u, i)) ≤ 2a(u,i). Then by Lemma 5.3.6
the b(u, i)-bounded search will find v at cost at most (2k − 1)d(c(u, i), v) ≤ (2k −
1)(d(u, v) + d(u, c(u, i))) ≤ (2k − 1)(d(u, v) + 2a(u,i)). So the total cost is bounded by
2a(u,i) + (2k − 1)(d(u, v) + 2a(u,i)) = O(k(d(u, v) + a(u, i))) as required. Otherwise if
v 6∈ E(u, i) = B(u, 2a(u,i+1)/6) then the round-trip cost of reaching c(u, i) and returning

52

CHAPTER 5. SCALE-FREE NAME-INDEPENDENT ROUTING 5.4. CONCLUSION

is at most 2a(u,i)+1. Then by Lemma 5.3.6 the cost of a b(u, i)-bounded search is bounded
by (2k − 2)2a(u,i+1)/6. This is true since b(u, i) is defined so that all the nb(u,i)/k closest
nodes in T (c(u, i)) all belong to E(u, i). Hence the total cost for a negative answer is
2a(u,i)+1 + (2k − 2)2a(u,i+1) = O(k · 2a(u,i+1)).

We now prove the main theorem.

of Theorem 5.1.1. For storage, by combining Lemma 5.3.13 and Lemma 5.3.11 it follows
that every node stores O(k2n3/k log3 n)-bit routing tables. For stretch analysis, let i ∈ K be
the first iteration index in which v is found. There are two cases to consider.

1. If level i − 1 is sparse for u, then given that v is not found in iteration i − 1, by
Lemma 5.3.13, v is not inside E(u, i− 1), and hence, d(u, v) ≥ 2a(u,i)/6.

2. Otherwise, level i − 1 is dense for u, and again, v is not found in iteration i − 1. In
this case, by Lemma 5.3.11, v is not inside F (u, i− 1) = B(u, 2a(u,i−1)/2). By density,
a(u, i) ≤ a(u, i−1)+3. Putting these two facts together, we have d(u, v) ≥ 2a(u,i−1)/2 ≥
2a(u,i)−3/2.

In either case, 2a(u,i) = O(d(u, v)). From Lemma 5.3.13 and Lemma 5.3.11, reaching v on
level i will cost O(k · 2a(u,i)) if i is dense or O(k(d(u, v) + 2a(u,i))) if i is sparse. Hence in both
cases, level i searches are bounded by O(k · d(u, v)). For the cost of the negative responses,
note that the highest level that fails is i−1. From Lemma 5.3.13 and Lemma 5.3.11 the cost
of a negative response for level j is either O(k · 2a(u,j)) for a dense level, or O(k · 2a(u,j+1)) for
a sparse level. Hence, the total cost of negative response is at most

∑i−1
j=0O(k · 2a(u,j+1)) =

O(k · 2a(u,i)) = O(k · d(u, v)).

5.4 Conclusion

Our routing scheme can be adopted to work on strongly connected directed graphs, this
extension will appear in the full paper. Our upper bounds have asymptotically optimal
stretch with poly-logarithmic storage overhead. There are two natural open questions. First,
what is the exact lowest stretch obtainable with a Õ(n1/k) memory? Even for the labeled
case, the bound is not known to be tight. Second, what is memory requirement for schemes
with Θ(log n) stretch? Our upper bounds requires O(log5 n) bits in such cases. We believe
at least one logarithm can be removed by improving the hash function used by Lemma 3.3.4.

53

Chapter 6

LLS : Name-Independent Routing for
Mobile Ad Hoc Networks

6.1 Introduction

In the widely used geometric ad hoc Unit Disk Graph model each node knows its location on
the Euclidean plane and it can communicate with all other nodes whose distance is at most
one unit. Consider the following natural question for mobile networks; A source node s wants
to initiate a communication session with a destination node t. The main problem is that
node s has no a priori knowledge of t’s current location. Thus, the first step in establishing
a connection is to locate t’s whereabouts. Once the location of the destination is discovered
the source can route messages and establish communication using well known geometric
routing algorithms. A location service for ad hoc networks is a fundamental building block
that allows any source s to know the location of any destination t.

More generally, a geometric location service is useful in any Euclidean metric space: one
needs to find the coordinates of targets in order to route toward them. Using geometric
coordinates in general networks is made relevant not only by the ubiquity of GPS devices,
but also by several recent techniques that embed internet nodes in a coordinate space. One
of the pioneering mechanisms to predict network latency is based on the work of Ng and
Zhang [NZ02]. They embed the Internet latencies into a virtual geometric space (e.g., 3-
D Euclidean) and characterize the position of any node with coordinates. The computed
distances are used to predict the actual network distances. Following [NZ02] other schemes
have been developed to improve the embedding of internet hosts into virtual geometric
spaces, e.g., [GSG02], [WSPC03], [CDK+03], and [ST03]. Although the principles of LLS are
applicable for general Euclidean spaces, the remainder of this chapter focuses on describing
LLS for ad hoc mobile networks.

In order to formally assess the utility of a geometric location service, we define formal
measures of efficiency. Let the cost of a path be the sum of the costs of its edges. An impor-
tant measure of a location service is its lookup cost : Given a source node s and destination

54

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.1. INTRODUCTION

node t, the cost of locating t from s is the cost of the path induced by the location ser-
vice until the location of t known. A locality aware lookup algorithm is an algorithm whose
lookup cost is proportional to the cost of routing between s and t when the location of the
destination is known.

For mobile networks, whenever a node changes its location it must update the location
service. Therefore, another important measure of a location service is its publish cost : Given
that a node moves from location x to a new location y, the publish cost is the total cost of
the paths induced by the publish algorithm. A locality aware publish algorithm is one whose
cost is proportional to the distance between the old location x and the new location y.

6.1.1 Our Results

We present a Locality aware Location Service named LLS. Our location service is the first
location service which has both worst case guarantees and average case efficiency. For worst
case networks our lookup incurs a lookup cost of O(d2) for a source and a destination whose
minimal cost path has length d.

For networks in which the expected ad hoc routing costs ∆ times the distance from source
to destination, LLS achieves in addition an average case linear cost over the distance, O(d).
Thus, in average case networks of nodes randomly positioned in the plane, where the routing
cost is proportional to the distance from source to destination, lookup in LLS costs only a
constant factor more than the distance between the source and the destination.

Our scheme is also the first to provide guaranteed average case efficient publishing. That
is, our service ensures that the expected cost of updating the data structures due to a node’s
movement is bounded as a function of the distance of the movement. Specifically, when a
node moves distance d, the average cost of publishing its new location is O(d log d).

The inherent locality of our scheme makes it fault tolerant both to node failure and
to network partitions. When the network partitions, nodes within a connected component
can locate each other because the location service is also collocated with them within the
component. As for node failures, when some node containing location information fails, there
is sufficient redundancy at incrementally increasing distances in the network to transparently
make up for it.

6.1.2 Related work

Geometric ad hoc routing. The first step in our approach, is a routing algorithm for known
geometric locations. The first routing algorithm to guarantee delivery is [KSU99] (Kranakis
et al.). Their face routing algorithm has no bound on the ratio between the cost of route and
the cost of the minimal cost path. Both Bose et al. [BMSU01] (CGF) and Karp and Kung
[KK00] (GPSR) propose an algorithm that combines greedy routing with face routing. These
algorithms guarantee delivery and any source destination pair have expected cost O(d), for
average case networks, where d is the distance between the source and the destination. The

55

6.1. INTRODUCTION CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

first algorithm that gives worst case guarantees is by Kuhn et al. [KWZ02]. They present
a scheme in which, if the minimal cost path has cost d, then delivery with cost O(d2) is
guaranteed, which is asymptotically optimal. In a follow up paper [KWZ03], they combine
their bounded face routing with greedy routing to achieve a scheme that is both worst case
asymptotically optimal and average case efficient. In our construction, we make use of an
underlying geometric routing protocol, and assume both linear average case behavior and
quadratic worst case.

Location algorithms. Location algorithms are measured by their lookup and publish
costs. The basic location services studied by Camp et al. [CBW02] either have an unbounded
publish cost that may require to flood the whole network with updated location information
(DLS, SLS) or have an unbounded lookup cost that may require to flood the whole network
to find the destination (RLS). A standard technique for name services in wireless cellular
networks (e.g., ISA-4 [ISA], GSM MAP [MP92]) employs a home location register (HLR) for
each mobile host. A publish algorithm stores the whereabouts of a node at its home location.
The lookup first routes to the home location, and from there to the current destination of
the node. However, even this simple approach is challenging in a mobile ad hoc network,
since there is no fixed infrastructure and the location servers themselves are dynamic.

One of the first approaches to address that in ad hoc networks, by Hubaux et
al. [HLBTG01], is to define the home of a node as a geometric area, and have all nodes
in that area store location information. A similar solution for finding the home location
is suggested in the context of sensor networks in the Geographic Hash Table (GHT) of
[RKL+02]. In their approach, a home location is defined as a virtual coordinate. They
enhance the underlying routing to reach the closest node to the virtual point. A similar
concept is employed in the GeoQuorums of [DGL+], where geometric coordinates determine
the location of home servers. In GeoQuorums, these focal point coordinates define geographic
areas that must be inhibited by at least one server at any time. The drawback of all of the
home-based approach is that the cost of the lookup and of the publish may be arbitrarily
high compared to the optimal path between source and destination.

In order to provide for better scalability and alleviate the problem of reaching specific lo-
cation servers, several works suggest to replicate home location servers using quorum systems
for availability and load balancing. Among these, the works of [PS97, KMP99, HLV03, HL99]
have no locality awareness. Other quorum based location services addressed locality in a
partial way.

One of the early locality-aware location services that employs a hierarchy of partitions is
provided for the general problem of object location in graphs by Awerbuch and Peleg [AP95].
Their solution does not make use of the geometric structure of ad hoc mobile networks, nor
address their high dynamism. Consequently, their solution is not easily adaptable to dynamic
mobile settings. In addition, their locality factors are somewhat large (polylogarithmic).

The approach taken by several works, e.g., in [Sto99, NN02, AS02, TV04], for quorum
construction makes use of the planar structure of ad hoc networks. It defines a write quorum
for updating location information of a node as a column of some choice trajectory, and

56

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.1. INTRODUCTION

potential some choice thickness. Similarly, a read quorum for querying location information
is a row (of a choice trajectory and thickness). Trajectories are determined such that in
average density networks, read and write quorums are likely to intersect. This method has
good average case locality for lookup, but its publish cost is always the full diameter of the
network, thus not proportional to the size of the movement. In addition, there are extreme
cases in which read and write quorums might not intersect.

The position based multi-zone routing method of Amouris et al. [APL99] stores location
information about each node in geometrically increasing discs, each disc referencing the
smaller disc that contains the node. When a node moves a distance 2i, it broadcasts an
update about the change to an area of radius 2i+1. Thus, both lookup and publish have
locality awareness. The drawback of the scheme is that within a 2i zone, location update
is flooded to all nodes. This implies that each node in the network needs to maintain
information (albeit not accurate) about every other node.

One of the pioneering works on efficient and scalable location services is by Li et al.
in [LJD+00]. Similarly to the multi-zone method of [APL99], GLS utilizes a hierarchy of
exponentially decreasing sets of regions (GLS uses squares rather than discs) that cover the
plane. Every node belongs to only logM squares (were M is the diameter of the network).
Using ingenious techniques drawn from the consistent hashing approach [KLL+97], every
node has a designated hashed location server within each square, thus distributing the load
of location services across the network. The path taken by a GLS lookup operation is
bounded inside the minimal square that contains both the source and the destination.

Yet GLS does not achieve either of our goals, and supports neither worst case locality
aware lookup, nor locality aware publish. There are several reasons for that, none of which
is trivial to fix. First, their scheme makes little effort to proactively handle updates and
out of date information. This problem arises when, for instance, a node crosses a grid
boundary line. This causes a change in the role the node plays as a location server for
others, performing this change of roles may cause the publish cost to be arbitrarily high
compared to the distance taken. The authors state that indeed a remaining open question is
improving the handling of node mobility. Second, there may be a source s and destination t
that are arbitrarily close to each other, but the smallest square that contains both of them
is arbitrarily large. As a consequence, even in average case networks, the cost of lookup does
not have worst case bounds. Third, within each square GLS routes to a location server in
order to find the target. In extreme network conditions when the network is sparse, routing
to the location server, even if close by, could require worst case cost, while routing directly to
the destination could be efficient. Thus, the worst case lookup cost could be arbitrarily high
and have no worst case locality guarantees. This degraded performance in sparse networks
was also observed by Guba and Camp [GC02].

A totally different approach focusing on worst case analysis is discussed in the Conclu-
sion section of [KWZ02]. The authors describe an algorithm that we name the Iterative
Bounded Flooding (IBF) algorithm. This algorithm runs in phases beginning with phase 1
and incrementing the phase by one until the destination is found. At phase i, the algorithm

57

6.1. INTRODUCTION CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

floods the network to all nodes whose minimal cost path from the source is at most 2i. IBF is
asymptotically worst case optimal. Specifically, if the minimal cost of the path from source
to destination is d then IBF guarantees to reach the destination in cost O(d2). The main
drawback of this approach is that its average cost is also Ω(d2).

Recently, in the context of sensor networks and a slightly different model, Demirbas et
al. [DANL04], achieve O(d log d) move time and O(d) find time.

6.1.3 Technical approach

For each destination node t, we define a virtual hierarchical cover of the M × M plane
consisting of exponentially decreasing squares, whose origin depends on the node’s id. Our
solution is built incrementally in three steps, Spiral, Spiral-Flood, and LLS. In our basic
Spiral algorithm, we publish t’s location on a spiral that spans increasingly large squares in
the hierarchy, and likewise, search for t in increasing spirals on the same virtual hierarchy.
The lookup and publishing paths are guaranteed to cross at the first hierarchy level in
which the squares containing the source and the destination intersect. This cover bears
resemblance to the hierarchical grid of GLS [LJD+00]. However, we address mobility with
techniques borrowed from GHT [RKL+02] by using virtual coordinates within the squares
for storing information on t rather than search for certain pre-designated nodes. This allows
us to search in four grid squares around each point, and circumvent grid-boundary problems.
Unlike GLS, our hierarchical cover forms a subsuming partition of the plane that is similar
in spirit to the work on sparse partitions of Awerbuch and Peleg [AP90].

For most networks, this scheme suffices to have a lookup that is within an expected
constant factor over the most optimal route. In order to further address worst case scenario,
in our Spiral-Flood scheme we carefully interweave depth-bounded flooding stages with spiral
lookup stages. This only increases the total cost by a constant factor, yet provides worst
case quadratic location guarantee.

Finally, the full LLS scheme addresses publishing in the following way. First, we modify
Spiral (or Spiral-Flood) so that within each lattice in the hierarchy, we publish a node’s
location not only in the square containing it, but also in the eight squares surrounding
it. When a node moves within the nine square boundary, nothing happens. The stale
information may eventually lead to a square that does not contain the node, but then one
of the surrounding squares does. Location information in a lattice is updated only when
the node leaves the nine-square boundary, at which time the distance traversed by the node
(possibly over multiple steps) already exceeds the diameter of one square. As a consequence,
we prove that the amortized cost of information updating due to a cumulative movement of
distance d is O(d log d).

In summary, our LLS scheme provides the first scheme which has both locality aware
lookup and locality aware publish. Lookup is linear in average case networks, and is quadratic
in the worst case, and publish is sub-quadratic.

58

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.2. MODEL AND NOTATIONS

6.2 Model and Notations

Consider a set of n nodes, V , that exists in the Euclidean plane R2. Each node v has a
unique name denoted v.id. Denote by |uv| the L2 distance between the location of the nodes
u and v. The underlying network is formed by a Unit Disk Graph UDG= 〈V,E〉 in which
u, v ∈ V have an edge (u, v) ∈ E iff |uv| ≤ 1.

We assume a nondecreasing cost function c, mapping edge lengths to real numbers. For-
mally, c : [0, 1] 7→ R+, and for all 0 ≤ x ≤ y ≤ 1 we have c(x) ≤ c(y). This cost function
abstraction generalizes the three common cost measures: hop count c(x) = 1, Euclidean
distance c(x) = x, and energy c(x) = xα for α ≥ 2. Given a path p = u1, u2, . . . , uk such that
(ui, ui+1) ∈ E define the cost of the path to be c(p) =

∑k−1
i=1 c(|uiui+1|). Given two nodes

u, v let d(u, v) denote the cost of the minimal cost path in UDG from u to v.

In order to be able to obtain worst case bounds on the cost of geometric routing we
assume Ω(1) density. In this model there exists a minimum length d0 such that for any
network minu,v |uv| ≥ d0. Following the results in [KWZZ03] it is also possible to remove the
Ω(1) density assumption if the cost function, c, is linearly bounded. Formally c is linearly
bounded if there exists a constant m such that ∀x ∈ [0, 1] : c(x) ≥ mx. For linearly
bounded cost functions it is possible to construct a connected dominating set backbone.
Routing can be done on this backbone, which, by its nature, has bounded density. We note
however that maintaining this backbone in a dynamic network incurs additional costs.

We assume all nodes are located inside a bounded square of size M × M . Without
loss of generality we normalize the coordinates so that all nodes, V, are inside the square
whose diagonal corners are (0, 0), (M,M). We further assume that each node knows its own
location in the plane and its neighbors’ locations.

6.2.1 Virtual Coordinates

A recurring issue in our scheme is the use of virtual coordinates that map to real nodes. The
points are called virtual, since there is no guarantee that there is a node exactly at these
points.

The natural way to map between nodes and virtual points is to partition the plane using
a Voronoi diagram (see [OBSC00] for a survey on Voronoi diagrams and their applications).
This partition maps each point p in the square M×M to the node closest to p. For a node x
let A(x) be the Voronoi polygon of x (the area of all the points to which x is the closest node).
For any point p ∈ R2 let `(p) be the closest node to p, thus, p ∈ A(x) ⇔ `(p) = x .

Traditional geometric routing algorithms that combine greedy with perimeter rout-
ing [KK00, KWZ03] guarantee that given the location of a node, the algorithm can route to
it. These algorithms can be augmented as in GHT [RKL+02] so that given a virtual point
p, the routing algorithm can reach the node `(p) that is responsible for that virtual point.
Their technique also adapts to node mobility. That is, when a node moves, the lines between
its Voronoi polygon and its neighbors’ Voronoi polygons changes. The nodes communicate

59

6.3. PROBLEM DEFINITION CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

and swap information about all the virtual points that cross boundaries due to these line
changes.

In summary, there is a mapping between virtual points in the plane and the nodes respon-
sible for them; and we can employ routing to virtual points that reaches the corresponding
nodes. Hence, by a slight abuse of terminology, given a point p, we refer from here on to the
node `(p) simply as the node at p, or even the node p. And to the contrary, given a node s
we refer to the location of s as the point s.

6.3 Problem Definition

We consider algorithms for the geometric location problem. In this problem there are two
basic operations: Publish and Lookup. The Publish(t.id;x, y) operation is called every time
a node t changes its location from x to a new location y. It is also used in the first time
a node joins the system, by executing Publish(t.id;⊥, y). The Lookup(t.id, s) operation is
called by a source node s in order to find location information on a destination node t whose
location is unknown.

We now define the complexity measure associated with locality aware location services.
The first time a node joins, we would like to minimize the cost of its publish operation. For
subsequent publish operations we would like the cost of publishing to be proportional to the
distance taken. This is formally captured in the following definition.

Definition 6.3.1. For a function f , a publish algorithm is f -locality aware if for any node
t with location x that moves to a new location y the expected cost of Publish(t.id;x, y) is at
most f(|xy|).

If the destination node does not exist we would like to minimize the cost of lookup until
a failure result is returned to the source. Otherwise, we would like to have a locality aware
lookup whose cost is proportional to the minimal cost path as defined below.

Definition 6.3.2. For a function g, a lookup algorithm is g-locality aware if for any source s,
and destination t, such that the minimal cost path costs d = d(s, t), the cost of Lookup(t.id, s)
from source s to destination t is at most g(d).

Note that Definition 6.3.2 is a worst case bound that compares the lookup cost to the
minimal cost path. Although it may not be possible for all networks, we would also like to
get an average case bound on the cost of the lookup as a function of the distance between
source and destination. The following definition captures this notion.

Definition 6.3.3. For a function g, a lookup algorithm is g-average case efficient if for any
source s, and destination t, the expected cost of Lookup(t.id, s) from source s to destination
t is at most g(|st|).

60

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.4. LLS ARCHITECTURE

Certainly, building a lookup service with minimal cost can be done simply by storing
complete location information at each node about all other nodes. The cost of an update,
such as a node joining or moving, would be very high in this case. The goal is therefore
to build a location service that simultaneously has the following properties: (1) a locality
aware publish algorithm; (2) a locality aware lookup algorithm; (3) an average case efficient
lookup on a large class of networks.

It is known from the lower bounds of [KWZ02] that even if t’s location is known, routing
on UDGs may cost Ω(d2), where d is the cost of the minimal cost path. Simulations in
[KWZ03] show that the cost of routing from source s to destination t is expected to be
O(d(s, t)), which is also O(|st|) for average case networks.

Our goal is to match these bounds for location services. Worst case lookup should cost
O(d2), but for average case networks we aim to preform lookup with average cost that
is only a constant factor more than the distance between the source and the destination,
O(d) = O(|st|). In case a node moves from location x to destination y we strive that the
expected cost of the publish algorithm be a function of |xy|.

6.4 LLS Architecture

We present our location service in a modular way. We decompose the scheme into three
algorithms, each algorithm builds upon its predecessor’s techniques and enhances it:

1. Spiral algorithm. This location service obtains a locality aware lookup algorithm for
average case networks.

2. Spiral-Flood algorithm. This location service enhances the Spiral algorithm by ob-
taining locality awareness both for average case lookup, and for lookup in worst case
networks.

3. LLS. This algorithm enhances the Spiral-Flood service with a locality aware publish
algorithm.

6.4.1 Mapping to Hierarchical Lattices

In our construction, for each node identifier, we build a hierarchy of lattices associated with
the node’s identifier. The node’s location is published on each lattice to the points closest to
its location, and is looked up on lattice points closest to the location of the searching node.

Given a node t, we use a double index hash function H(t.id) = 〈h1(t.id), h2(t.id)〉 that
maps node identifiers to coordinates inside M ×M . We denote H(t.id) the primary virtual
home of node t. Formally, H : V 7→ [0,M]× [0,M].

For a node t, and a parameter k ∈ {0, 1, . . . logM} we define Lk(t.id) to be the lattice
consisting of all lattice points (h1(t.id) + 2ki, h2(t.id) + 2kj) ∈ M × M , for all i, j ∈ Z.
Alternatively, Lk(t.id) can be thought of as the set of corner points of the tiling with squares
of size 2k × 2k having H(t.id) as its origin.

61

6.5. THE SPIRAL ALGORITHM CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

H(t)

x

w1 w2

w3w4

2k

Figure 6.1: Example of the lattice Lk(t.id) and of Wk(t.id, x) = {w1, w2, w3, w4}

For any point x and tiling of size 2k originating at the virtual home of t, H(t.id), we
define the level-k location points of t from x, Wk(t.id, x), to be the set of the 4 corner points
of the tile that covers x. Formally, for k ≥ 1 we define Wk(t.id, x) = {w1, w2, w3, w4} for
every point x and lattice Lk(t.id), to be the set of the 4 lattice points that are closest to x
in the L∞ norm (with ties broken lexicographically), see Figure 6.1 for an example. When
clear from the context, we will abuse notation and use Wk(t.id, x) to denote the nodes that
are responsible for the virtual points.

x

6.5 The Spiral Algorithm

We begin by presenting the basic spiral algorithm. It achieves a locality aware lookup
algorithm that performs as well as the underlying geometric routing algorithm. Intuitively,
a node publishes its location information in a set of virtual points that form a virtual spiral
that exponentially increases in distance. When a node initiates a lookup operation, it too
performs a spiral like search path. The lookup finds the destination’s location when the
two spirals intersect. These two spirals intersect because the points in both spirals are
computed relative to the same hierarchical grid whose origin is the primary virtual home of
the destination.

The first time a node t joins the network at location y, it invokes Publish(t.id;⊥, y)
to register its location. Whenever it moves from x to y in updates its location using
Publish(t.id;x, y). When a node s wants to establish communication with node t, it issues
Lookup(t.id, s).

Publish: A node t that moves from location x to y performs Publish(t.id;x, y). This op-
eration deletes the old location information (if there was any) and registers the new location
y of the node by inserting location information in O(logM) different virtual points.

Registering location information is done by storing location pointers in the auxiliary
memory of the nodes in Wi(t.id, y). Each location pointer contains two fields: the identifier
of the destination and its location, in the form 〈t, y〉. Figure 6.2 depicts an example of the
set of points to which information is published.

62

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.5. THE SPIRAL ALGORITHM

Figure 6.2: The corners of all the tiles that cover the node are the set of virtual points to
which location pointers are published. The spiral depicts a path that the Publish algorithm
executes in order to reach the virtual points.

Deleting the information of the old location x is done by visiting the respective nodes
responsible for the old virtual points and deleting the information in them.

Lookup: A node s that executes Lookup(t.id, s) reaches the destination node t by query-
ing location information at the points associated with destination t, with increasingly larger
distances from s. This process is very similar to the Publish operation. Once a location
pointer is found, the information in the pointer is used to reach the destination.

6.5.1 Analysis

The lookup operation of the Spiral Algorithm is only as efficient as the underlying geometric
routing that is used for routing to the nodes that are responsible for the virtual points. In this
subsection we show that given a network with an efficient routing layer, the lookup operation
costs only a constant factor more than the distance from the source to the destination.

In order to analyze the cost of the lookup operation in the Spiral Algorithm we first
define the locality awareness of geometric ad hoc routing schemes in which the location of
the destination is known.

Definition 6.5.1. A routing protocol is ∆-locality aware if given a source s and point y ∈
R2, the expected cost of routing from s to the node at y (more precisely, recall that this
should actually reach `(y), which is the node closest to y) is at most ∆|sy|. Formally, let
r(s, y) be the cost of routing from s to y given that s knows the approximate location y then,

Es∈V,y∈R2

[
r(s,y)
|sy|

]
≤ ∆.

In Section 6.10 we present simulation results showing that Greedy Face Routing is 2-
locality aware for average case networks where nodes are uniformly distributed.

The following lemma shows that there is a location pointer at a distance that is propor-
tional to the distance between source and target.

Lemma 6.5.2. Let k̂ be the minimal index such that |st| = d ≤ 2k̂ then at least one of the
nodes in Wk̂(t.id, s) contains a location pointer to node t.

63

6.6. THE SPIRAL-FLOOD ALGORITHM CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

Proof. Denote t’s location by y. Since destination node t performed Publish(t.id; y) then the

nodes in Wk̂(t.id, y) contain location pointers towards t. Let Q1 be the square of size 2k̂× 2k̂

that covers t whose corners are Wk̂(t.id, y). Let Q2, . . . , Q9 be the set of 8 adjacent squares
of same size that have a joint edge or joint corner with Q1.

Recall that we chose k̂ such that |st| = d ≤ 2k̂ therefore s must be inside one of the
squares Q1, . . . , Q9. Thus when source s performs the k̂th phase of its lookup algorithm it
will find a location pointer towards t.

Note that a similar argument holds for the degenerate case in which t lies exactly on a
lattice line or intersection.

Hence for networks that have efficient routing, the cost of lookup is a linear function of
the distance between source and destination.

Theorem 6.5.3. For networks in which routing is ∆-locality aware, for any source s and
destination t the expected cost of locating t is O(|st|)

Proof. Due to Lemma 6.5.2, the lookup algorithm will find a location pointer at phase
k̂, where k̂ is the minimal index such that |st| = d ≤ 2k̂. The expected cost of routing
to all the points W1(t.id, s), . . . ,Wk̂(t.id, s) can be bounded by the following expression:∑

i≤k̂ 2 · 4 · 2i ·∆ = O(2k̂) = O(|st|) where the factor 2 is due to going to each of the virtual

points and returning to s, 4 is due to the fact that there are 4 virtual points, 2i is due to the
maximal distance of the virtual points from s, and ∆ is the overhead due to the underlying
routing layer. Once a location pointer of level k̂ is found, the expected cost of following the
location pointers until t is found can be similarly bounded by O(|st|).

6.6 The Spiral-Flood Algorithm

The main drawback of the basic spiral algorithm is that it relies solely on the underlying
routing algorithm for performance. In particular, there may exist extreme situations in which
there is a low cost path from source to destination, but the cost of the minimal cost path
from the source to the first virtual point is arbitrarily high.

The Spiral-Flood algorithm overcomes such cases. The algorithm combines the iterated
bounded flooding (IBF) ideas from [KWZ02] for worst case bounding, with the average case
efficiency of the Spiral algorithm.

In order to describe Spiral-Flood, we need to enumerate in a sequence the nodes visited
in the Spiral algorithm. For a destination t and a source s, the Spiral lookup operation
Lookup(t.id, s), coupled with the underlying geometric routing mechanism determine the
sequence of nodes that are visited. We denote this sequence by Spiral(t.id, s). Define
Spiralj(t.id, s) to be the prefix path of Spiral(t.id, s) containing the first j nodes.

The Spiral-Flood lookup consists of phases, i = 1 . . . logM. When the accumulated cost
of the Spiral lookup reaches 4i, we switch to flooding of depth 2i. This ensures that the

64

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.6. THE SPIRAL-FLOOD ALGORITHM

Lookup(t.id, s)
Initialize phase := 0
Until a location pointer for t is found:

1. Spiral stage: Route on the path
Spiral(t.id, s) for j hops, as long
as the cumulative cost c(Spiralj) is
less than 4phase.

2. Return back to the source node s.
3. Flooding stage: Flood a search mes-

sage to all nodes r whose minimal
cost path d(s, r) is at most 2phase.

4. Converge the search results back to
source node s.

5. Set phase := phase + 1.

Figure 6.3: The Spiral-Flood Lookup Algorithm. Node s wants to establish a communication
session with node t.

cost of the combined algorithm is not more than a constant factor over the basic Spiral
algorithm, and at the same time the cost does not exceed the worse case cost of the flooding
algorithm. The pseudo code for the Spiral-Flood algorithm appears in Figure 6.3. The
Publish algorithm is the same as the in basic Spiral algorithm.

6.6.1 Analysis

In this subsection we prove that the Spiral Flood algorithm worst case quadratic cost.

Lemma 6.6.1. Spiral-Flood locates any destination t from any source s with cost O(d(s, t)2).

Proof. Denote d = d(s, t), let j be the minimal index such that d ≤ 2j. Clearly before the
end of phase j of the Spiral-Flood algorithm the destination will be found. This is true since
the jth flooding phase would reach all nodes whose cost is a most 2j.

Given the Ω(1) assumption of a minimal distance between nodes (or any other bounded
density assumption due to a CDS backbone), the sphere of nodes whose cost is at most 2j

has O(22j) nodes and hence also O(22j) edges. Each such edge is traversed at most 4 times.
Therefore, the cost of a flooding during phase j is O(22j).

By construction, the cost of the bounded phase-j walk on Spiral(t.id, s) is O(4i). There-
fore, the total cost until the end of phase j is

∑
0≤i≤j O(4i) + (22i) = O(4j) = O(d2).

Compared with the basic Spiral Algorithm, the Spiral Flood Algorithm incurs a constant
factor overhead.

65

6.7. THE LLS ALGORITHM CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

H(t)

x

w1

2k

w2 w3 w4

w5 w6 w7 w8

w9 w11 w12

w16w15
w10
w14w13

Figure 6.4: Example of the lattice Lk(t.id) and of Zk(t.id, x) = {w1, . . . , w16}

Lemma 6.6.2. The cost of reaching the points W1(t.id, s) through Wi(t.id, s) in the Spiral
Flood Algorithm is at most a constant factor more than the cost of the basic Spiral Algorithm
to reach the same set of points.

The proof follows by noting that in each stage of the algorithm, the cost of the flooding
stage is at most a constat factor more than the cost of the spiral search stage for that phase.

6.7 The LLS Algorithm

In this section we describe our full scheme, LLS, in which proactive updating of location
information due to node movements is proportional to the distance of the move. Formally
we present a publish algorithm that is average case efficient. Achieving this aim is somewhat
more involved than simply writing to all the virtual points in Spiral(t.id, y) and deleting the
points in Spiral(t.id, x).

First, instead of publishing to only 4 virtual points at each level, our publish algorithm
publishes to 16 virtual points. For any point x and tiling of size 2k originating at the virtual
home of t, H(t.id), we define Zk(t.id, x) to be the set of corner points of the 9 tiles of size
2k × 2k that form a square 3 · 2k × 3 · 2k whose center tile covers x. Formally we define
Zk(t.id, x) = {w1, . . . , w16} for every point x and lattice Lk(t.id), to be the set of the 16
lattice points that are closest to x in the L∞ norm (with ties broken lexicographically). See
Figure 6.4 for an example.

Secondly, in order to reduce costs, a node does not update its level k location pointers as
long as it does not move a total of a certain distance proportional to 2k−1. This lazy update
process is carefully done in a manner that still allows the lookup algorithm to be efficient and
locality aware. Accordingly, we modify the location information stored at the publish nodes
Zk(t.id, y) as follows. At the location nodes of Zi(t.id, y), we store information on a set of
virtual points that defines the next hop towards the destination, in the form 〈t,Wi−1(t.id, y)〉.
At Z0(t.id, y), we store the location y itself.

Publish: A node t that moves from location x to y performs Publish(t.id;x, y).

1. If W0(t.id, x) = W0(t.id, y) then no update is required.

66

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.7. THE LLS ALGORITHM

Publish(t.id; x, y)

1. If all nodes W0(t.id, y) contain a lo-
cation pointer for t then RETURN.
Otherwise initialize i := 1

2. STEP A: Read all nodes in
Wi(t.id, y)

3. If all nodes Wi(t.id, y) contain a lo-
cation pointer for t goto STEP B.

4. Write in all 16 nodes of Zi(t.id, y) a
location pointer 〈t, Wi−1(t.id, y)〉.

5. Set i := i + 1 and goto STEP A.
6. STEP B: Update the content of the

16 existing level i location pointers
to point to 〈t, Wi−1(t.id, y)〉.

7. For j = i to 0 do

Read all level j nodes. Using the lo-
cation pointers in the level j nodes,
route to all the level j−1 nodes and
delete their location pointers.

Figure 6.5: The LLS Publish Algorithm. Node t updates location pointers once it arrived to a
new location y.

2. Otherwise, do a spiral search, find the minimal index i such that all four points of
Wi(t.id, y), have location information regarding t.

(a) If i = 0 then no update is required. Otherwise, when i > 0:

i. Using the location information stored in Wi(t.id, x) (which contains
Zi−1(t.id, x)), recursively erase all the location information in the 16 points
of each level i− 1, . . . , 0.

ii. For j = 1, . . . , i− 1, store in Zj(t.id, y) the location pointer 〈t,Wj−1(t.id, y)〉.
iii. Set the location pointers of level i to point to the new location
〈t,Wi−1(t.id, y)〉.

Note that the minimality of the index i implies that if i > 0 then the node should have
moved out of the 9 tiles of level i − 1. Thus, the node has moved a distance of at least
2i−1 since the last time the related nodes were updated. See Figure 6.5 for the LLS Publish
algorithm.

Lookup: Node s executing Lookup(t.id, s) starts the lookup algorithm as before (Spiral
or Spiral Flood). However, the search ends when a recursive location pointer is found of the
form 〈t,W (t.id, y)〉, where y is the location of t.

Once such a node is found, repetitively use location pointers in order to route from a
point in Wj(t.id, y) to a point in Wj−1(t.id, y) and eventually for j = 1, to destination t.

67

6.7. THE LLS ALGORITHM CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

At the lowest level, if the destination is not found at the square of the lowest level (of
size 1× 1), then a search is conducted in the 8 unit squares surrounding that square.

6.7.1 Analysis

To address the complexity of the LLS publish algorithm we carefully study the movement
of the node. Assume that the node performed h publish operations, the location history of
the node is the sequence x0, x1, . . . , xh of locations. In order to bound the total cost of its h
publish operations we will keep track of the relative location of the intermediate nodes. We
prove the bound on the cost in an amortized sense. The reason is that the node does not
need to update its location pointers as long as it does not cross its 16-point boundary, which
happens only if it moves a total of a certain distance. Once the node publishes its location,
the cost of publishing is offset by the total distance it has covered since its last update.

Our analysis focuses on average case networks, and in particular, assumes that the net-
work has ∆-locality aware routing, Let d(Xj) denote the total distance moved by the node
in its first j ≤ h hops, thus d(Xj) =

∑j−1
i=1 |xixi+1|. For any level k, let ck(xj, xj+1) denote

the cost associated with writing and deleting location pointers on level k virtual points as
a result of Publish(t.id;xj, xj+1). Denote the cost of updating the level k virtual points due
to the first j location changes as ck(Xj) =

∑j−1
i=1 ck(xi, xi+1). Our goal is to bound the total

cost c(Xj) =
∑logM

i=1 ci(Xj) as a function of total distance d(Xj).

Lemma 6.7.1. If Publish(t.id;xj, xj+1) changes level k location pointers then the expected
cost of this change is bounded by E [ck(xj, xj+1)] ≤ ∆ · 2k+6.

Proof. When the Publish(t.id;xj, xj+1) changes level k location pointers, it deletes old level
k pointers and writes to its new ones. The expected cost of each of these two operations can
be bounded by ∆ · 2 · 16 · 2k .

Where the factor 2 · 16 · 2k is due to the total distance of a spiral path visiting all 16
points and returning and ∆ is the overhead due to the underlying routing layer.

When level k location pointers are not changed despite the move, there is a potential
gain towards future updates. This is formally stated in the following Theorem.

Theorem 6.7.2. The total expected cost of publishing of location history x1, . . . , xh, is
bounded by E[c(Xh)] ≤ O(d log d) where d = d(Xh).

Proof. While moving, the node occasionally updates its location pointers. Consider a specific
level k. A node moving from xj−1 to xj updates its level k pointers when the location of its
level k− 1 pointers at xj−1 differ from its new location’s (xj) level k− 1 pointers. Formally,
let i1 < i2 < · · · < im be the sequence of all indices such the level k location pointers were
updated when the node reached xi` for 1 ≤ ` ≤ m. Due to our publish algorithm, the
distance the node moves between any two updates of level k pointers is at least 2k−1. That
is, for any such index i` we have

∑
i`−1<j≤i` |xj−1xj| = d(Xi`) − d(Xi`−1

) ≥ 2k−1. Thus the

68

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.8. FAULT TOLERANCE

number of updates m is bounded by d(Xh)/2
k−1. From Lemma 6.7.1, the expected cost of

the update of level k pointers is ∆ · 2k+6. Therefore, by summing on the whole sequence,
E[ck(Xh)] ≤ ∆ · 2k+6m ≤ ∆ · 27 · d(Xh). The expected total cost of publishing the updates
during the location history x1, . . . , xh, is the sum of the costs over all levels that were updated
during the total move. Thus, the cost is E[c(Xh)] ≤ ∆27 · d(Xh) log d(Xh). If d(Xh) ≥ M
then the expected cost may be bounded by ∆27 · d(Xh) logM .

6.8 Fault Tolerance

Our location service is inherently fault tolerant both to network partitions and to node
failures.

In case of a network partition, nodes within the vicinity of a detached node remain able
to locate it and communicate with it. More precisely, let a set of nodes S detach from V \S.
For a node t ∈ S, let k be the maximal index such that Wk(t.id, t) ⊆ S. Then all of the
nodes within distance 2k can locate t and communicate with it. In fact, even in extreme cases
where a partition forms weird shapes, for any ` > k such that we have W`(t.id, t) ∩ S 6= ∅,
far nodes in S that have lookup spirals intersecting these location points are also able to
locate t.

As for node failures, our scheme provides immediate fallback due to the multiplicity
of location points that store information about any node. In particular, when a node s
searching for t.id encounters a faulty location point, it simply skips it and moves on to the
next higher level. This guarantees location at the first non-faulty level that is greater than
the distance from the source and the target. That this works follows from the following fact.
If the minimal index at which intersection occurs between Wk(t.id, t) and Wk(t.id, s) is k,
then higher level location points intersect as well.

As a final frontier for fault tolerance, the flooding stage will always locate the target (if
it is connected) at a quadratic cost.

Additional fault tolerance is provided by employing the perimeter replication techniques
of [RKL+02], by storing all of the information belonging to virtual point x also on all the
nodes surrounding its perimeter.

6.9 Improving Locality Awareness

Assume a network in which routing is ∆-locality aware. A natural question to ask is whether
on top of the locality-aware routing mechanism, our Spiral paradigm can provide location
services with costs arbitrarily close to minimal. In addition to its theoretical value, this
question has real-life motivation: For nodes that incur frequent lookups, we would like to
drive the lookup cost down as much as possible.

In this section, we focus on optimizing the cost of the lookup operation. We obtain a

69

6.9. IMPROVING LOCALITY AWARENESS CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

lookup scheme whose cost is (1 + ε)∆ on top of the actual distance to target. The decreased
lookup cost is obtained at the cost of increasing the publish cost by a constant factor. We
could do the reverse in a similar manner, if the frequency of updates is expected to exceed
that of lookups.

In order to reduce the cost of lookup, denote by B(u, r) the ball around node u with
radius r. Let us define Wk,`(t.id, x) to be Lk(t.id)∩B(x, 2`); that is, the set of lattice points
in Lk(t.id) within distance 2` from x. The trick will be to slightly increase the range of
publishing into Wk,k+ρ, for a parameter ρ of the construction determined below; and to
query only one node in Wk,k. More precisely, we now define publish and lookup as follows:

Publish: For any i ∈ {0, 1, 2, . . . , logM}, location pointers on t.id located at y are stored
in the auxiliary memory of the nodes in Wi,i+ρ(t.id, y), where the parameter ρ is determined
below. A node t that moves from location x to y performs Publish(t.id;x, y) by deleting old
information and storing new information in the nodes described above.

Lookup: A node s executes Lookup(t.id, s) by performing the following loop. Until t
is found, for i = 0, 1, 2, . . . , logM , read from the closest node in Wi,i(t.id, s) until a node
is found that has a location pointer 〈t,W (t.id, y)〉, where y is the location of t. Once such
a node is found, repetitively use the location pointers in order to route from a point in
Wj(t.id, y) to a point in Wj−1(t.id, y) and eventually for j = 1, to destination t.

Locality awareness stems from the following lemma:

Lemma 6.9.1. Denote |st| = d. Let k̂ be the minimal index such that 2k̂ + d ≤ 2k̂+ρ. Then
the k̂’th lookup step from s finds a location pointer to node t.

Proof. The lemma follows from the fact that B(s, 2k̂) ⊆ B(t, 2k̂+ρ). Hence, every node in
Wk̂,k̂(t.id, s) is contained in Wk̂,k̂+ρ(t.id, t). Therefore, every node in Wk̂,k̂(t.id, s) holds a
location pointer to node t.

As a consequence of this lemma, the cost of lookup from s to t is bounded by
∑

i≤k̂ 2i∆ ≤
2 · 2k̂∆. Bearing in mind that k̂ was the first index for which 2k̂ + d ≤ 2k̂+ρ, we now simply
need to set ρ = ρ(ε) to be ρ ≥ log(1 + 8∆

ε
) = O(log(ε−1)), in order to obtain that the total

lookup length is at most (1 + ε)∆d.

We now get to the increased cost of publishing. We only sketch the difference here due
to space limitations. In our original Spiral method, publishing a node’s new location was
done in the 4 corner points of the tile covering the node. We now change that to include
all the lattice-k points within distance 2k+ρ from the node. Their count is at most 22ρ, and
the total cost of reaching them is proportional to 2k+ρ/2k. Therefore, the increased cost is a
constant factor over our original scheme, where the constant depends on ρ = ρ(ε).

We also briefly comment on how to complete our scheme for locality-aware updates.
This requires maintaining an invariant that all lattice-k points within a ball of radius 2k+ρ

surrounding a node have up-to-date information about the interior ball containing it. In
order to prevent frequent updates, we initially publish within a ball with double this radius,

70

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.10. SIMULATIONS

i.e., a ball of radius 2k+1+ρ, and update only when the invariant is broken. This again incurs
only a constant-factor increase over the original LLS publish costs.

In summary, at the cost of a constant factor increase in update costs, we obtain a location
service whose cost is almost as low as the cost of the underlying routing infrastructure.

6.10 Simulations

In this section we present simulation results for the LLS scheme. Following the observations
of [KWZ03] about the importance of the network density on routing performance, we tested
our scheme in randomly generated graphs with varying densities. The density of a graph is
defined relative to a unit disk as follows, a random graph on a T × T square with density δ
has δT 2/π nodes.

We tested the underlying Greedy Face Routing algorithm to virtual points, and the
LLS Lookup algorithm. Our measurements were performed on Unit Disk Graphs that were
generated by randomly placing nodes on a square with 15 units side length.

Routing. For the underlying greedy face routing algorithm, for each density δ, we
generated 1200 random graphs for δ ≤ 8 and 200 random graphs for δ > 8, for each graph,
we randomly chose 50 sources nodes, for each source s we chose a random point p on the
square and found the closest node `(p) to the virtual point p. We measured the following
parameters for each density:

1. Connectivity: The percentage of node pairs s, `(p) that were connected on the Unit
Disk Graph.

2. Cost/Distance: The average ratio between the cost of routing from a source s to a
destination `(p) and the Euclidean distance between s and p.

2 4 6 8 10 12 14 16 18 20
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

V
al

u
e

Density

Cost/Distance

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

t

Connectivity

Figure 6.6: Connectivity percentage and Cost/Distance values for greedy face routing from
a random source to the node closest to a random point.

Our results in Figure 6.6 show that the average cost of routing on a random graph to the
node closest to a virtual point is only a small constant factor times the Euclidean distance

71

6.10. SIMULATIONS CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS

between the node and the virtual point.

Lookup. For each density value δ, we generated 500 random graphs for δ ≤ 10 and 100
random graphs for δ > 10, for each graph, we randomly chose 10 sources nodes, for each
source we randomly chose a destination node. We measured the following 4 parameters for
each density:

1. Cost/Distance: The average ratio between lookup cost and Euclidean distance between
source s and target t.

2. Cost/Shortest path: The average ratio between lookup cost and the minimum cost
path from s to t on the UDG.

3. Connectivity: The percentage of s, t pairs that were connected.
4. Flood: the percentage of cases in which the lookup algorithm had to use flooding in

order to find the destination.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Density

V
al

u
e

Cost/Distance
Cost/Shortest

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

t

Connectivity
Flood

Figure 6.7: Measurements for Lookup algorithm: Cost/Distance and Cost/Shotest path
values, Connectivity and Flood percentages.

Our results in Figure 6.7 show that lookup is locality aware, the average cost of locating
a mobile node is only a constant factor from the optimum. For low densities, the low stretch
factor may be attributed to the fact that the connected components are relatively small.
Both Cost/Distance, Cost/Shortest, and Flood ratio peak around density 5. In this critical
density, the graph is mostly connected but finding short paths to route on is still hard.

Publish. We measured the cost updating the location pointers due to a random hop.
The distance moved in each hop was a varied by a parameter `. For each hop length `, we
generated 100 graphs, for each graph we chose 20 sources and for each source we performed
a random hop, with a randomly chosen angle and a randomly chosen length in [`, ` + 1/2).
For every value of `, we measured the average cost of updating location pointers due to the
random hop over all sources and graphs.

Our results in Figure 6.8 show that the cumulative cost of updating location pointers due
to a random walk is proportional to the length of the average hop. This result agrees with
our theoretical bounds of O(d log d).

72

CHAPTER 6. LLS : NAME-INDEPENDENT ROUTING FOR MOBILE AD HOC NETWORKS 6.11. CONCLUSIONS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

25

50

100

150

200

250

300

350

Average distance of single hop

A
ve

ra
g

e
co

st
 o

f
p

u
b

lis
h

density 15
density 20

Figure 6.8: Average cost of publish relative to the average length of the hop for graphs with
densities 15 and 20.

6.11 Conclusions

This chapter presents LLS, the first location service for mobile ad hoc networks to guarantee
both worst case bounds and average case efficiency. Our scheme has inherent fault tolerance
both for node failures and for network partitions. The generalization of our construction
results in a geometric location service that is locality aware in any Euclidean metric space.

For any network the worst case cost of our lookup is quadratic O(d2). For average case
networks LLS achieves linear O(d) expected lookup cost. Mobility of nodes is handled in an
efficient proactive manner. LLS ensures that the expected cost of publish is O(d log d). We
provide simulation results for the LLS scheme that conform our theoretical bounds.

Our simulations show that routing in random ad hoc networks is 2-locality aware for
various densities. It would be interesting to give a formal proof backing this result.

A potential area of improvement is reducing the asymptotic cost of the publish algorithm.
The worst case cost of the publish algorithm can be easily bounded using similar techniques
as in our lookup algorithm. An open question is whether an expected O(d) is achievable for
both publish and lookup.

Acknowledgments

The authors would like to thank Marina Shudler for simulations. Fabian Khun and the
anonymous referees provided helpful comments.

73

Bibliography

[ABNLP89] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Compact distributed data
structures for adaptive routing. In 21st Annual ACM Symposium on Theory of Computing
(STOC), pages 479–489. ACM Press, May 1989.

[ABNLP90] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved routing strate-
gies with succinct tables. Journal of Algorithms, 11(3):307–341, 1990.

[ACL+03] Marta Arias, Lenore J. Cowen, Kofi Ambrose Laing, Rajmohan Rajaraman, and Orjeta Taka.
Compact routing with name independence. In 15th Annual ACM Symposium on Parallel Al-
gorithms and Architectures (SPAA), pages 184–192. ACM Press, June 2003.

[ADM04] Ittai Abraham, Danny Dolev, and Dahlia Malkhi. Lls: a locality aware location service for
mobile ad hoc networks. In DIALM-POMC ’04: Proceedings of the 2004 joint workshop on
Foundations of mobile computing, pages 75–84, New York, NY, USA, 2004. ACM.

[AG06] Ittai Abraham and Cyril Gavoille. Object location using path separators. In 25rd Annual ACM
Symposium on Principles of Distributed Computing (PODC). ACM Press, July 2006.

[AGGM05] Ittai Abraham, Cyril Gavoille, A.V. Goldberg, and Dahlia Malkhi. Routing in networks with
low doubling dimension. Technical Report MSR-TR-2005-175, Miscrosoft Research, December
2005. To appear in The 26th International Conference on Distributed Computing Systems
(ICDCS 06).

[AGM04a] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Routing with improved communication-
space trade-off. In 18th International Symposium on Distributed Computing (DISC), volume
3274 of Lecture Notes in Computer Science, pages 305–319. Springer, October 2004.

[AGM+04b] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam Nisan, and Mikkel Thorup. Compact
name-independent routing with minimum stretch. In 16th Annual ACM Symposium on Parallel
Algorithms and Architecture (SPAA), pages 20–24. ACM Press, July 2004.

[AGM05] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Compact routing for graphs excluding a
fixed minor. In 19th International Symposium on Distributed Computing (DISC), volume 3724
of Lecture Notes in Computer Science, pages 442–456. Springer, September 2005.

[AGM06] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: upper bounds.
In SPAA ’06: Proceedings of the eighteenth annual ACM symposium on Parallelism in algo-
rithms and architectures, pages 217–224, New York, NY, USA, 2006. ACM.

[AGM+08] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam Nisan, and Mikkel Thorup. Compact
name-independent routing with minimum stretch. ACM Trans. Algorithms, 4(3):1–12, 2008.

[AM05] Ittai Abraham and Dahlia Malkhi. Name independent routing for growth bounded networks. In
SPAA ’05: Proceedings of the seventeenth annual ACM symposium on Parallelism in algorithms
and architectures, pages 49–55, New York, NY, USA, 2005. ACM.

74

BIBLIOGRAPHY BIBLIOGRAPHY

[AMD04] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: stretch (1 + ε) locality-aware
networks for DHTs. In 15th Symposium on Discrete Algorithms (SODA), pages 550–559. ACM-
SIAM, 2004.

[AP90] Baruch Awerbuch and David Peleg. Sparse partitions. In 31th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 503–513. IEEE Computer Society Press,
October 1990.

[AP92] Baruch Awerbuch and David Peleg. Routing with polynomial communication-space trade-off.
SIAM Journal on Discrete Mathematics, 5(2):151–162, May 1992.

[AP95] B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the ACM, 42(5):1021–
1058, 1995.

[APL99] K.N. Amouris, S. Papavassiliou, and M. Li. A position-based multi-zone routing protocol for
wide area mobile ad-hoc networks. In Proceedings of the IEEE Vehicular Technology Conference
(VTC), pages 1365–1369, 1999.

[AS02] I. Aydin and C. C. Shen. Facilitating match-making service in ad hoc and sensor networks using
pseudo quorum. In Proceedings of 11th International Conference on Computer Communications
and Networks (ICCCN 2002), 2002.

[BMSU01] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad hoc
wireless networks. Wireless Networks, 7(6):609–616, 2001.

[CBW02] T. Camp, J. Boleng, and L. Wilcox. Location information services in mobile ad hoc networks.
In Proceedings of the IEEE International Conference on Communications (ICC ’02), 2002.

[CDK+03] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris. Practical, distributed network coordi-
nates. In HotNets Workshop, 2003.

[CGMZ05] T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hierarchical
routing in doubling metrics. In 16th Symposium on Discrete Algorithms (SODA), pages 762–
771. ACM-SIAM, January 2005.

[Cow99] Lenore J. Cowen. Compact routing with minimum stretch. In SODA ’99: Proceedings of the
tenth annual ACM-SIAM symposium on Discrete algorithms, pages 255–260, Philadelphia, PA,
USA, 1999. Society for Industrial and Applied Mathematics.

[Cow01] Lenore J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38:170–183,
2001.

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal hash functions. Journal of Computer and
System Sciences, 18(2):143–154, 1979.

[DANL04] M. Demirbas, A. Arora, T. Nolte, and N. Lynch. Brief announcement: Stalk: a self-stabilizing
hierarchical tracking service for sensor networks. In Proceedings of the twenty-third annual
ACM symposium on Principles of distributed computing, pages 378–378. ACM Press, 2004.

[DGL+] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geoquorums: Implementing
atomic memory in mobile ad hoc networks. In Proceedings of the 17th International Symposium
on Distributed Computing (DISC 2003).

[EGP03] Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low stretch
factor. Journal of Algorithms, 46:97–114, 2003.

[FG01] Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In 28th International Colloquium on
Automata, Languages and Programming (ICALP), volume 2076 of Lecture Notes in Computer
Science, pages 757–772. Springer, July 2001.

75

BIBLIOGRAPHY BIBLIOGRAPHY

[FG02] Pierre Fraigniaud and Cyril Gavoille. A space lower bound for routing in trees. In 19th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), volume 2285 of Lecture
Notes in Computer Science, pages 65–75. Springer, March 2002.

[Gav01] Cyril Gavoille. Routing in distributed networks: Overview and open problems. ACM SIGACT
News - Distributed Computing Column, 32(1):36–52, March 2001.

[GC02] N. Guba and T. Camp. Recent work on gls: a location service for an ad hoc network. In
Proceedings of the Grace Hopper Celebration (GHC ’02), 2002.

[GG01] Cyril Gavoille and Marc Gengler. Space-efficiency of routing schemes of stretch factor three.
Journal of Parallel and Distributed Computing, 61:679–687, 2001.

[GKL03] Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and
low-distortion embeddings. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, page 534, Washington, DC, USA, 2003. IEEE Computer
Society.

[GP03] Cyril Gavoille and David Peleg. Compact and localized distributed data structures. Journal of
Distributed Computing, 16:111–120, May 2003. PODC 20-Year Special Issue.

[GSG02] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between arbitrary
internet end hosts. In Proceedings of the SIGCOMM Internet Measurement Workshop (IMW
2002), 2002.

[HKK04] Kirsten Hildrum, Robert Krauthgamer, and John Kubiatowicz. Object location in realistic
networks. In SPAA ’04: Proceedings of the sixteenth annual ACM symposium on Parallelism
in algorithms and architectures, pages 25–35. ACM Press, 2004.

[HKMR04] Kirsten Hildrum, John Kubiatowicz, Sean Ma, and Satish Rao. A note on the nearest neighbor
in growth-restricted metrics. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 560–561. Society for Industrial and Applied Mathe-
matics, 2004.

[HKRZ02] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distributed object
location in a dynamic network. In SPAA ’02: Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectures, pages 41–52. ACM Press, 2002.

[HL99] Z. J. Haas and B. Liang. Ad hoc mobility management with uniform quorum systems. IEEE/
ACM Transactions on Networking, 7(2):228–240, 1999.

[HLBTG01] J. P. Hubaux, J. Y. Le Boudec, and M. Vetterli Th. Gross. Towards self-organizing mobile
ad-hoc networks: the terminodes project. IEEE Comm Mag, 39(1):118 –124, January 2001.

[HLV03] J. L. Welch H. Lee and N. H. Vaidya. Location tracking with quorums in mobile ad hoc
networks. Ad Hoc Networks, 1(4):371–381, 2003.

[HMP01] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictionaries. J. Algo-
rithms, 41(1):69–85, 2001.

[HPM05] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional metrics,
and their applications. In SCG ’05: Proceedings of the twenty first annual symposium on
Computational geometry, New York, NY, USA, 2005. ACM Press.

[IO03] Kazuo Iwama and Masaki Okita. Compact routing for flat networks. In 17th International
Symposium on Distributed Computing (DISC), pages 196–210. Springer, 2003.

[ISA] Cellular radio telecommunication intersystem operations. Technical Report Technical Report
TIA/EIA-41-D, Telecommunications Industry Association, Washington, DC.

76

BIBLIOGRAPHY BIBLIOGRAPHY

[KK00] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless networks. In
Proceedings of the 6th annual international conference on Mobile computing and networking,
pages 243–254. ACM Press, 2000.

[KLL+97] D. Karger, E. Lehman, F. T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consis-
tent hashing and random trees: Distributed caching protocols for relieving hot spots on the
world wide web. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing
(STOC), pages 654–663, 1997.

[KLMN04] Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured descent: A
new embedding method for finite metrics. In 45th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 434–443. IEEE Computer Society Press, October 2004.

[KMP99] G. Karumanchi, S. Muralidharan, and R. Prakash. Information dissemination in partitionable
mobile ad hoc networks. In Symposium on Reliable Distributed Systems, pages 4–13, 1999.

[KRX06] Goran Konjevod, Andréa Werneck Richa, and Donglin Xia. On optimal stretch name-
independent compact routing in doubling metrics. In 25rd Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC). ACM Press, July 2006.

[KSU99] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In Proc. 11
th Canadian Conference on Computational Geometry, pages 51–54, Vancouver, August 1999.

[KWZ02] F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric mobile ad-hoc
routing. In Proc. of the 6th international workshop on Discrete algorithms and methods for
mobile computing and communications (Dial-M), pages 24–33. ACM Press, 2002.

[KWZ03] F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-Case Optimal and Average-Case Efficient
Geometric Ad-Hoc Routing. In Proc. 4 th ACM Int. Symposium on Mobile Ad-Hoc Networking
and Computing (MobiHoc), 2003.

[KWZZ03] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric Ad-Hoc Routing: Of Theory
and Practice. In Proc. 22 nd ACM Int. Symposium on the Principles of Distributed Computing
(PODC), 2003.

[Lai03] K. A. Laing. Name-independent compact routing in trees. Technical Report 2003-02, Tufts
University Department of Computer Science, November 2003.

[Lai04] Kofi Ambrose Laing. Brief announcement: name-independent compact routing in trees. In
23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 382–
382. ACM Press, July 2004.

[LJD+00] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location service for
geographic ad-hoc routing. In Proceedings of the 6th ACM International Conference on Mobile
Computing and Networking (MobiCom ’00), pages 120–130, August 2000.

[LR05] Kofi Ambrose Laing and Rajmohan Rajaraman. Brief announcement: A space lower bound
for name-independent compact routing in trees. In 17th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), page 216. ACM Press, July 2005.

[MP92] M. Mouly and M. Pautet. The GSM System for Mobile Communications. 1992.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[NN02] B. Nath and D. Niculescu. Routing on a curve. In HotNets-I, Princeton, NJ, 2002.

[NZ02] E. Ng and H. Zhang. Predicting internet network distance with coordiantes-based approaches.
In Proceedings of IEEE Conference on Computer Communications (INFOCOM ’02), 2002.

77

BIBLIOGRAPHY BIBLIOGRAPHY

[OBSC00] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: Concepts and appli-
cations of Voronoi diagrams. Probability and Statistics. Wiley, NYC, 2nd edition, 2000. 671
pages.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on
Discrete Mathematics and Applications, 2000.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby copies of
replicated objects in a distributed environment. In 9th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 311–320. ACM Press, 1997.

[PS97] R. Prakash and M. Singhal. Dynamic hashing + quorum = efficient location management for
mobile computing systems. In Proceedings of ACM Symposium on Principles of Distributed
Computing, 1997.

[PU89] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. Journal
of the ACM, 36(3):510–530, July 1989.

[Rag88] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: approximating
packing integer programs. J. Comput. Syst. Sci., 37(2):130–143, 1988.

[RKL+02] S. Ratnasamy, B. Karp, Y. Li, F. Yu, R. Govindan, S. Shenker, and D. Estrin. GHT: A
geographic hash table for data-centric storage. In The First ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA 2002), October 2002.

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In ICALP, volume 3580 of Lecture Notes in Computer Science,
pages 261–272. Springer, 2005.

[SK85] N. Santoro and R. Khatib. Labelling and implicit routing in networks. The Computer Journal,
28(1):5–8, February 1985.

[Sli05a] Aleksandrs Slivkins. Distance estimation and object location via rings of neighbors. In 24th

Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 41–50. ACM
Press, July 2005.

[Sli05b] Aleksandrs Slivkins. Distance estimation and object location via rings of neighbors. In 24th

Annual ACM Symposium on Principles of Distributed Computing (PODC), 2005.

[ST03] Y. Shavitt and T. Tankel. Big-bang simulation for embedding network distances in euclidean
space. In Proceedings of IEEE Conference on Computer Communications (INFOCOM ’03),
San Francisco, CA, 2003.

[Sto99] I. Stojmenovic. A scalable quorum based location update scheme for routing in ad hoc wireless
networks. Technical Report TR-99-09, SITE, University of Ottawa, 1999.

[Tal04a] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of computing, pages 281–290. ACM
Press, 2004.

[Tal04b] Kunal Talwar. Bypassing the embedding: Algorithms for low dimensional metrics. In 36th

Annual ACM Symposium on Theory of Computing (STOC), pages 281–290. ACM Press, June
2004.

[Tho04] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM, 51(6):993–1024, November 2004.

[TV04] J. Tchakarov and N. Vaidya. Efficient content location in wireless ad hoc networks. In IEEE
International Conference on Mobile Data Management (MDM), 2004.

78

BIBLIOGRAPHY BIBLIOGRAPHY

[TY79] Robert Endre Tarjan and Andrew Chi-Chih Yao. Storing a sparse table. Commun. ACM,
22(11):606–611, 1979.

[TZ01a] Mikkel Thorup and Uri Zwick. Approximate distance oracles. In 33rd Annual ACM Symposium
on Theory of Computing (STOC), pages 183–192. ACM Press, July 2001.

[TZ01b] Mikkel Thorup and Uri Zwick. Compact routing schemes. In 13th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 1–10. ACM Press, July 2001.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,
January 2005.

[vLT86] J. van Leeuwen and R. B. Tan. Computer networks with compact routing tables. In G. Rozem-
berg and A. Salomaa, editors, The Book of L, pages 259–273. Springer-Verlag, 1986.

[WSPC03] S. Wilbur, T. H. Saleem, B. M. Pias, and J. Crowcroft. Lighthouses for scalable distributed
location. In The 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

79

	Introduction
	Compact Name-Independent Routing with Minimum Stretch
	Name-Independent Routing with Improved Communication-Space Trade-Off
	Name-Independent Routing for Growth Bounded Network
	Scale-Free Name-Independent Routing
	LLS : Name-Independent Routing for Mobile Ad Hoc Networks

	Compact Name-Independent Routing with Minimum Stretch
	Introduction
	Our results

	Preliminaries
	The Stretch 3 Scheme
	Vicinity balls
	Coloring
	Hashing names to colors
	Stretch 3 for complete graphs
	Routing on trees
	Landmarks
	Partial shortest path trees
	The stretch 3 scheme
	Analysis

	On Polynomial Time Coloring
	On Hashing in Constant Time
	Combining the Ingredients
	Conclusion

	Name-Independent Routing with Improved Communication-Space Trade-Off
	Introduction
	Preliminaries
	Linear Communication-Space Trade-Off
	Tree cover based on Sparse Partitions
	Bounded cost name-independent tree-routing
	The name-independent routing scheme
	Bounded-cost name-independent tree-routing
	Analysis

	Name-Independent Routing for Growth Bounded Networks
	Introduction
	Problem definition
	Our results
	Related work

	Overview
	Preliminaries
	The Scheme
	Identifiers and the zero-sets.
	Zero-Assisted Routing
	Prefix routing
	The Directory
	The Routing Algorithm
	Correctness

	Stretch Analysis
	Space Analysis

	Scale-Free Name-Independent Routing
	Introduction
	Our contribution
	Techniques
	Related work

	Sparse and Dense Neighborhood Decomposition
	Preliminaries
	Dense Levels
	Sparse Levels

	A Scale-Free Routing Scheme
	Sparse neighborhood routing strategy
	Storage for sparse neighborhood strategy
	Routing algorithm for sparse neighborhood strategy
	Dense neighborhood routing strategy
	Storage for dense neighborhood strategy
	Routing algorithm for dense neighborhood strategy
	Analysis

	Conclusion

	LLS : Name-Independent Routing for Mobile Ad Hoc Networks
	Introduction
	Our Results
	Related work
	Technical approach

	Model and Notations
	Virtual Coordinates

	Problem Definition
	LLS Architecture
	Mapping to Hierarchical Lattices

	The Spiral Algorithm
	Analysis

	The Spiral-Flood Algorithm
	Analysis

	The LLS Algorithm
	Analysis

	Fault Tolerance
	Improving Locality Awareness
	Simulations
	Conclusions

