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Abstract

The canonical problem of solving a system of linear equations arises in numerous contexts in
information theory, communication theory, and related fields. In this contribution, we develop
a solution based upon Gaussian belief propagation (GaBP) that does not involve direct matrix
inversion. The iterative nature of our approach allows for a distributed message-passing imple-
mentation of the solution algorithm. In the first part of this thesis, we address the properties of
the GaBP solver. We characterize the rate of convergence, enhance its message-passing efficiency
by introducing a broadcast version, discuss its relation to classical solution methods including nu-
merical examples. We present a new method for forcing the GaBP algorithm to converge to the
correct solution for arbitrary column dependent matrices.

In the second part we give five applications to illustrate the applicability of the GaBP algorithm
to very large computer networks: Peer-to-Peer rating, linear detection, distributed computation
of support vector regression, efficient computation of Kalman filter and distributed linear pro-
gramming. Using extensive simulations on up to 1,024 CPUs in parallel using IBM Bluegene
supercomputer we demonstrate the attractiveness and applicability of the GaBP algorithm, using
real network topologies with up to millions of nodes and hundreds of millions of communication
links. We further relate to several other algorithms and explore their connection to the GaBP
algorithm.
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Chapter 1

Introduction

Solving a linear system of equations Ax = b is one of the most fundamental problems in algebra,
with countless applications in the mathematical sciences and engineering. In this thesis, we
propose an efficient distributed iterative algorithm for solving systems of linear equations.

The problem of solving a linear system of equations is described as follows. Given an ob-
servation vector b ∈ Rm and the data matrix A ∈ Rm×n (m ≥ n ∈ Z), a unique solution,
x = x∗ ∈ Rn, exists if and only if the data matrix A has full column rank. Assuming a nonsin-
gular matrix A, the system of equations can be solved either directly or in an iterative manner.
Direct matrix inversion methods, such as Gaussian elimination (LU factorization, [1]-Ch. 3) or
band Cholesky factorization ( [1]-Ch. 4), find the solution with a finite number of operations,
typically, for a dense n × n matrix, of the order of n3. The former is particularly effective for
systems with unstructured dense data matrices, while the latter is typically used for structured
dense systems.

Iterative methods [2] are inherently simpler, requiring only additions and multiplications, and
have the further advantage that they can exploit the sparsity of the matrix A to reduce the
computational complexity as well as the algorithmic storage requirements [3]. By comparison, for
large, sparse and amorphous data matrices, the direct methods are impractical due to the need
for excessive matrix reordering operations.

The main drawback of the iterative approaches is that, under certain conditions, they converge
only asymptotically to the exact solution x∗ [2]. Thus, there is the risk that they may converge
slowly, or not at all. In practice, however, it has been found that they often converge to the exact
solution or a good approximation after a relatively small number of iterations.

A powerful and efficient iterative algorithm, belief propagation (BP, [4]), also known as the
sum-product algorithm, has been very successfully used to solve, either exactly or approximately,
inference problems in probabilistic graphical models [5].

In this thesis, we reformulate the general problem of solving a linear system of algebraic
equations as a probabilistic inference problem on a suitably-defined graph1. Furthermore, for

1Recently, we have found out the work of Moallemi and Van Roy [6] which discusses the connection between
the Min-Sum message passing algorithm and solving quadratic programs. Both works [7, 6] were published in
parallel, and the algorithms where derived independently, using different techniques. In Section 11.4 we discuss
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CHAPTER 1. INTRODUCTION

the first time, a full step-by-step derivation of the GaBP algorithm from the belief propagation
algorithm is provided.

As an important consequence, we demonstrate that Gaussian BP (GaBP) provides an effi-
cient, distributed approach to solving a linear system that circumvents the potentially complex
operation of direct matrix inversion. Using the seminal work of Weiss and Freeman [8] and some
recent related developments [9, 10, 6], we address the convergence and exactness properties of
the proposed GaBP solver.

This thesis is structured as follows Chapter 2 introduces the GaBP by providing a clean step-
by-step derivation of the GaBP algorithm by substituting gaussian probability into Pearl’s belief
propagation update rules.

Starting from Chapter 3, we present our novel contributions in this domain. Chapter 3 presents
our novel broadcast version of GaBP that reduces the number of unique messages on a dense graph
from O(n2) to O(n). This version allows for efficient implementation on communication networks
that supports broadcast such as wireless and Ethernet. (Example of an efficient implementation
of the broadcast version on top of 1,024 CPUs is reported in Chapter 8). We investigate the use
of acceleration methods from linear algebra to be applied for GaBP. We compare methodically
GaBP algorithm to other linear iterative methods. Chapter 3 further provides theoretical analysis
of GaBP convergence rate assuming diagonally dominant inverse covariance matrix. This is the
first time convergence rate of GaBP is characterized.

In Chapter 4 we give numerical examples for illustrating the convergence properties of the
GaBP algorithm.

The GaBP algorithm, like the linear iterative methods, has sufficient conditions for conver-
gence. When those sufficient conditions do not hold, the algorithm may diverge. To address
this problem, Chapter 5 presents our novel construction for forcing convergence of the GaBP
algorithm to the correct solution, for positive definite matrices, as well as for column dependent
non-square matrices. We believe that this result is one of the main novelties of this work, since
it applies not only to the GaBP algorithm but to other linear iterative methods as well.

The second part of this work is mainly concentrated with applications for the GaBP algorithm.
The first application we investigate (Chapter 6) is the rating of nodes in a Peer-to-Peer network.
We propose a unifying family of quadratic cost functions to be used in Peer-to-Peer ratings. We
show that our approach is general, since it captures many of the existing algorithms in the fields of
visual layout, collaborative filtering and Peer-to-Peer rating, among them Koren’s spectral layout
algorithm, Katz’s method, Spatial ranking, Personalized PageRank and Information Centrality.
Beside of the theoretical interest in finding common basis of algorithms that were not linked
before, we allow a single efficient implementation for computing those various rating methods,
using the GaBP solver. We provide simulation results on top of real life topologies including the
MSN Messenger social network.

In Chapter 7 we consider the problem of linear detection using a decorrelator in a code-
division multiple-access (CDMA) system. Through the use of the iterative message-passing
formulation, we implement the decorrelator detector in a distributed manner. This example
allows us to quantitatively compare the new GaBP solver with the classical iterative solution

the connection between the two algorithms, and show they are equivalent.

2



CHAPTER 1. INTRODUCTION 1.1. MATERIAL COVERED IN THIS THESIS

methods that have been previously investigated in the context of a linear implementation of CDMA
demodulation [11, 12, 13]. We show that the GaBP-based decorrelator yields faster convergence
than these conventional methods. We further extend the applicability of the GaBP solver to
non-square column dependent matrices.

Third application from the field of machine learning is support vector regression, described
in Chapter 8. We show how to compute kernel ridge regression using our GaBP solver. For
demonstrating the applicability of our approach we used a cluster of IBM BlueGene computers
with up to 1,024 CPUs in parallel on very large data sets consisting of millions of data points.
Up to date, this is the largest implementation of belief propagation ever performed.

Fourth application is the efficient distributed calculation of Kalman filter, presented in Chapter
9. We further provide some theoretical results that link the Kalman filter algorithm to the Gaussian
information bottleneck algorithm and the Affine-scaling interior point method.

Fifth application is the efficient distributed solution of linear programming problems using
GaBP, presented in Chapter 10. As a case study, we discuss the network utility maximization
problem and show that our construction has a better accuracy than previous methods, despite the
fact it is distributed. We provide a large scale simulation using networks of hundreds of thousands
of nodes.

Chapter 11 identifies a family of previously proposed algorithms, showing they are instances of
GaBP. This provides the ability to apply the vast knowledge about GaBP to those special cases,
for example applying sufficient conditions for convergence as well as applying the convergence fix
presented in Chapter 5.

1.1 Material Covered in this Thesis

This thesis is divided into two parts. The first part discusses the theory of Gaussian belief
propagation algorithm and covers the following papers: [7, 14, 15, 16, 17, 18]. The second part
discusses several applications that were covered in the following papers: [19,20,21,22,23,24,25].

Below we briefly outline some other related papers that did not fit into the main theme of
this thesis. We have looked at belief propagation at the using discrete distribution as a basis for
various distributed algorithms: clustering [26], data placement [27, 28] Peer-to-Peer streaming
media [29] and wireless settings [30]. The other major topic we worked on is Peer-to-Peer
networks, especially content distribution networks (CDNs). The Julia content distribution network
is described on [31, 32]. A modified version of Julia using network coding [33]. Tulip is a Peer-
to-Peer overlay that enables fast routing and searching [34]. The eMule protocol specification is
found on [35]. An implementation of a distributed testbed on eight European clusters is found
on [36].

1.2 Preliminaries: Notations and Definitions

We shall use the following linear-algebraic notations and definitions. The operator {·}T stands
for a vector or matrix transpose, the matrix In is an n×n identity matrix, while the symbols {·}i

3



1.2. PRELIMINARIES: NOTATIONS AND DEFINITIONS CHAPTER 1. INTRODUCTION

and {·}ij denote entries of a vector and matrix, respectively. Let M ∈ Rn×n be a real symmetric
square matrix and A ∈ Rm×n be a real (possibly rectangular) matrix. Let 1 denotes the all ones
vector.

Definition 1 (Pseudoinverse). The Moore-Penrose pseudoinverse matrix of the matrix A, de-
noted by A†, is defined as

A† , (ATA)
−1

AT . (1.1)

Definition 2 (Spectral radius). The spectral radius of the matrix M, denoted by ρ(M), is defined
to be the maximum of the absolute values of the eigenvalues of M, i.e. ,

ρ(M) , max
1≤i≤s

(|λi|) , (1.2)

where λ1, . . . λs are the eigenvalues of the matrix M.

Definition 3 (Diagonal dominance). The matrix M is

1. weakly diagonally dominant if

|Mii| ≥
∑

j 6=i

|Mij|,∀i , (1.3)

2. strictly diagonally dominant if

|Mii| >
∑

j 6=i

|Mij|, ∀i, (1.4)

3. irreducibly diagonally dominant if M is irreducible2, and

|Mii| ≥
∑

j 6=i

|Mij|,∀i , (1.5)

with strict inequality for at least one i.

Definition 4 (PSD). The matrix M is positive semi-definite (PSD) if and only if for all non-zero
real vectors z ∈ Rn,

zTMz ≥ 0. (1.6)

Definition 5 (Residual). For a real vector x ∈ Rn, the residual, r = r(x) ∈ Rm, of a linear
system is r = Ax− b.

The standard norm of the residual, ||r||p(p = 1, 2, . . . ,∞), is a good measure of the accuracy
of a vector x as a solution to the linear system. In our experimental study, the Frobenius norm
(i.e. , p = 2) per equation is used, 1

m
||r||F = 1

m

√∑m
i=1 r2

i .

2 A matrix is said to be reducible if there is a permutation matrix P such that PMPT is block upper triangular.
Otherwise, it is irreducible.

4



CHAPTER 1. INTRODUCTION 1.3. PROBLEM FORMULATION

Definition 6 (Operator Norm). Given a matrix M the operator norm ||M ||p is defined as

||M ||p , sup
x6=0

||Mx||p
||x||p .

Definition 7. The condition number, κ, of the matrix M is defined as

κp , ||M||p||M−1||p. (1.7)

For M being a normal matrix (i.e. , MTM = MMT ), the condition number is given by

κ = κ2 =
∣∣∣λmax

λmin

∣∣∣, (1.8)

where λmax and λmin are the maximal and minimal eigenvalues of M, respectively.

Even though a system is nonsingular it could be ill-conditioned. Ill-conditioning means that a
small perturbation in the data matrix A, or the observation vector b, causes large perturbations
in the solution, x∗. This determines the difficulty of solving the problem. The condition number
is a good measure of the ill-conditioning of the matrix. The better the conditioning of a matrix
the smaller the condition number. The condition number of a non-invertible (singular) matrix is
set arbitrarily to infinity.

Definition 8 (Graph Laplacian3 [37]). Given a matrix a weighted matrix A describing a graph
with n nodes, the graph Laplacian L is a symmetric matrix defined as follows:

Li,j =

{
i = j deg(i)

else −wi,j

where deg(i) =
∑

j∈N(i) wji is the degree of node i.

It can be further shown [37] that given the Laplacian L, it holds that xT Lx =
∑

i<j wij(xi−
xj)

2.

1.3 Problem Formulation

Let A ∈ Rm×n (m,n ∈ N∗) be a full column rank, m× n real-valued matrix, with m ≥ n, and
let b ∈ Rm be a real-valued vector. Our objective is to efficiently find a solution x∗ to the linear
system of equations Ax = b given by

x∗ = A†b. (1.9)

Assumption 9. The matrix A is square (i.e. , m = n) and symmetric.

3Note this definition is an extension of the Laplacian in the unweighed case, where all edges have weight 1.

5



1.3. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

For the case of square invertible matrices the pseudoinverse matrix is nothing but the data
matrix inverse, i.e. , A† = A−1. For any linear system of equations with a unique solution, As-
sumption 9 conceptually entails no loss of generality, as can be seen by considering the invertible
system defined by the new symmetric (and PSD) matrix AT

n×mAm×n 7→ An×n and vector
AT

n×mbm×1 7→ bn×1. However, this transformation involves an excessive computational com-
plexity of O(n2m) and O(nm) operations, respectively. Furthermore, a sparse data matrix may
become dense due to the transformation, an undesired property as far as complexity is concerned.
Thus, we first limit the discussion to the solution of the popular case of square matrices. In
Section 7.1.1 the proposed GaBP solver is extended to the more general case of linear systems
with rectangular m× n full rank matrices.

6
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Chapter 2

The GaBP-Based Solver Algorithm

In this section, we show how to derive the iterative, Gaussian BP-based algorithm that we propose
for solving the linear system

An×nxn×1 = bn×1.

2.1 From Linear Algebra to Probabilistic Inference

We begin our derivation by defining an undirected graphical model (i.e. , a Markov random
field), G, corresponding to the linear system of equations. Specifically, let G = (X , E), where
X is a set of nodes that are in one-to-one correspondence with the linear system’s variables
x = {x1, . . . , xn}T , and where E is a set of undirected edges determined by the non-zero entries
of the (symmetric) matrix A.

We will make use of the following terminology and notation in the discussion of the GaBP
algorithm. Given the data matrix A and the observation vector b, one can write explicitly
the Gaussian density function p(x) ∼ exp(−1

2
xTAx + bTx), and its corresponding graph G

consisting of edge potentials (’compatibility functions’) ψij and self potentials (‘evidence’) φi.
These graph potentials are determined according to the following pairwise factorization of the
Gaussian function (2.2)

p(x) ∝
n∏

i=1

φi(xi)
∏

{i,j}
ψij(xi, xj) , (2.1)

resulting in ψij(xi, xj) , exp(−1
2
xiAijxj) and φi(xi) , exp

(− 1
2
Aiix

2
i + bixi

)
. The edges set

{i, j} includes all non-zero entries of A for which i > j. The set of graph nodes N(i) denotes
the set of all the nodes neighboring the ith node (excluding node i). The set N(i)\j excludes
the node j from N(i).

Using this graph, we can translate the problem of solving the linear system from the algebraic
domain to the domain of probabilistic inference, as stated in the following theorem.

8



CHAPTER 2. THE GABP ALGORITHM 2.1. LINEAR ALGEBRA TO INFERENCE

Ax = b

m
Ax− b = 0

m
min
x

( 1
2x

T Ax− bT x)

m
max

x
(− 1

2x
T Ax + bT x)

m
max

x
exp(− 1

2x
T Ax + bT x)

Figure 2.1: Schematic outline of the of the proof to Proposition 10.

Proposition 10. The computation of the solution vector x∗ = A−1b is identical to the inference
of the vector of marginal means µ , {µ1, . . . , µn} over the graph G with the associated joint
Gaussian probability density function p(x) ∼ N (µ,A−1).

Proof. Another way of solving the set of linear equations Ax − b = 0 is to represent it by
using a quadratic form q(x) , xTAx/2− bTx. As the matrix A is symmetric, the derivative of
the quadratic form w.r.t. the vector x is given by the vector ∂q/∂x = Ax − b. Thus equating
∂q/∂x = 0 gives the global minimum x∗ of this convex function, which is nothing but the desired
solution to Ax = b.

Next, one can define the following joint Gaussian probability density function

p(x) , Z−1 exp
(− q(x)

)
= Z−1 exp (−xTAx/2 + bTx), (2.2)

where Z is a distribution normalization factor. Denoting the vector µ , A−1b, the Gaussian
density function can be rewritten as

p(x) = Z−1 exp (µTAµ/2)

× exp (−xTAx/2 + µTAx− µTAµ/2)

= ζ−1 exp
(− (x− µ)TA(x− µ)/2

)

= N (µ,A−1), (2.3)

where the new normalization factor ζ , Z exp (−µTAµ/2). It follows that the target solu-
tion x∗ = A−1b is equal to µ , A−1b, the mean vector of the distribution p(x), as defined
above (2.2).

Hence, in order to solve the system of linear equations we need to infer the marginal densities,
which must also be Gaussian, p(xi) ∼ N (µi = {A−1b}i, P

−1
i = {A−1}ii), where µi and Pi are

the marginal mean and inverse variance (sometimes called the precision), respectively.

9
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According to Proposition 10, solving a deterministic vector-matrix linear equation translates
to solving an inference problem in the corresponding graph. The move to the probabilistic domain
calls for the utilization of BP as an efficient inference engine.

Remark 11. Defining a jointly Gaussian probability density function, immediately yields an im-
plicit assumption on the positive semi-definiteness of the precision matrix A, in addition to the
symmetry assumption. However, we would like to stress out that this assumption emerges only
for exposition purposes, so we can use the notion of ‘Gaussian probability’, but the derivation
of the GaBP solver itself does not use this assumption. See the numerical example of the exact
GaBP-based solution of a system with a symmetric, but not positive semi-definite, data matrix
A in Section 4.2.

2.2 Belief Propagation

Belief propagation (BP) is equivalent to applying Pearl’s local message-passing algorithm [4],
originally derived for exact inference in trees, to a general graph even if it contains cycles (loops).
BP has been found to have outstanding empirical success in many applications, e.g. , in decoding
Turbo codes and low-density parity-check (LDPC) codes. The excellent performance of BP in
these applications may be attributed to the sparsity of the graphs, which ensures that cycles in
the graph are long, and inference may be performed as if it were a tree.

The BP algorithm functions by passing real-valued messages across edges in the graph and
consists of two computational rules, namely the ‘sum-product rule’ and the ‘product rule’. In
contrast to typical applications of BP in coding theory [38], our graphical representation resembles
to a pairwise Markov random field [5] with a single type of propagating messages, rather than
a factor graph [39] with two different types of messages, originated from either the variable
node or the factor node. Furthermore, in most graphical model representations used in the
information theory literature the graph nodes are assigned with discrete values, while in this
contribution we deal with nodes corresponding to continuous variables. Thus, for a graph G
composed of potentials ψij and φi as previously defined, the conventional sum-product rule
becomes an integral-product rule [8] and the message mij(xj), sent from node i to node j over
their shared edge on the graph, is given by

mij(xj) ∝
∫

xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)\j
mki(xi)dxi. (2.4)

The marginals are computed (as usual) according to the product rule

p(xi) = αφi(xi)
∏

k∈N(i)

mki(xi), (2.5)

where the scalar α is a normalization constant. Note that the propagating messages (and the
graph potentials) do not have to describe valid (i.e. , normalized) density probability functions,
as long as the inferred marginals do.

10
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2.3 The Gaussian BP Algorithm

Gaussian BP is a special case of continuous BP, where the underlying distribution is Gaussian.
The GaBP algorithm was originally introduced by Weiss et al. [8]. Weiss work do not detail the
derivation of the GaBP algorithm. We believe that this derivation is important for the complete
understanding of the GaBP algorithm. To this end, we derive the Gaussian BP update rules by
substituting Gaussian distributions into the continuous BP update equations.

Given the data matrix A and the observation vector b, one can write explicitly the Gaussian
density function, p(x) ∼ exp(−1

2
xTAx+bTx), and its corresponding graph G. Using the graph

definition and a certain (arbitrary) pairwise factorization of the Gaussian function (2.3), the edge
potentials (’compatibility functions’) and self potentials (‘evidence’) φi are determined to be

ψij(xi, xj) , exp(−1
2
xiAijxj), (2.6)

φi(xi) , exp
(− 1

2
Aiix

2
i + bixi

)
, (2.7)

respectively. Note that by completing the square, one can observe that

φi(xi) ∝ N (µii = bi/Aii, P
−1
ii = A−1

ii ). (2.8)

The graph topology is specified by the structure of the matrix A, i.e. the edges set {i, j} includes
all non-zero entries of A for which i > j.

Before describing the inference algorithm performed over the graphical model, we make the
elementary but very useful observation that the product of Gaussian densities over a common
variable is, up to a constant factor, also a Gaussian density.

Lemma 12. Let f1(x) and f2(x) be the probability density functions of a Gaussian random vari-
able with two possible densities N (µ1, P

−1
1 ) and N (µ2, P

−1
2 ), respectively. Then their product,

f(x) = f1(x)f2(x) is, up to a constant factor, the probability density function of a Gaussian
random variable with distribution N (µ, P−1), where

µ = P−1(P1µ1 + P2µ2), (2.9)

P−1 = (P1 + P2)
−1. (2.10)

Proof. Taking the product of the two Gaussian probability density functions

f1(x)f2(x) =

√
P1P2

2π
exp

(
− (

P1(x− µ1)
2 + P2(x− µ2)

2
)
/2

)
(2.11)

and completing the square, one gets

f1(x)f2(x) =
C
√

P

2π
exp

(− P (x− µ)2/2
)
, (2.12)

with

P , P1 + P2, (2.13)

µ , P−1(µ1P1 + µ2P2) (2.14)

11
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and the scalar constant determined by

C ,
√

P

P1P2

exp
(

1
2

(
P1µ

2
1(P

−1P1 − 1) + P2µ
2
2(P

−1P2 − 1) + 2P−1P1P2µ1µ2

))
. (2.15)

Hence, the product of the two Gaussian densities is C · N (µ, P−1).

Figure 2.2: Belief propagation message flow

Fig. 2.2 plots a portion of a certain graph, describing the neighborhood of node i. Each
node (empty circle) is associated with a variable and self potential φ, which is a function of this
variable, while edges go with the pairwise (symmetric) potentials Ψ. Messages are propagating
along the edges on both directions (only the messages relevant for the computation of mij are
drawn in Fig. 2.2). Looking at the right hand side of the integral-product rule (2.4), node i needs
to first calculate the product of all incoming messages, except for the message coming from node
j. Recall that since p(x) is jointly Gaussian, the factorized self potentials φi(xi) ∝ N (µii, P

−1
ii )

(2.8) and similarly all messages mki(xi) ∝ N (µki, P
−1
ki ) are of Gaussian form as well.

As the terms in the product of the incoming messages and the self potential in the integral-
product rule (2.4) are all a function of the same variable, xi (associated with the node i), then,
according to the multivariate extension of Lemma 12,

N (µi\j, P
−1
i\j ) ∝ φi(xi)

∏

k∈N(i)\j
mki(xi) . (2.16)

Applying the multivariate version of the product precision expression in (2.10), the update rule
for the inverse variance is given by (over-braces denote the origin of each of the terms)

Pi\j =

φi(xi)︷︸︸︷
Pii +

∑

k∈N(i)\j

mki(xi)︷︸︸︷
Pki , (2.17)

12
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where Pii , Aii is the inverse variance a-priori associated with node i, via the precision of
φi(xi), and Pki are the inverse variances of the messages mki(xi). Similarly using (2.9) for the
multivariate case, we can calculate the mean

µi\j = P−1
i\j

( φi(xi)︷ ︸︸ ︷
Piiµii +

∑

k∈N(i)\j

mki(xi)︷ ︸︸ ︷
Pkiµki

)
, (2.18)

where µii , bi/Aii is the mean of the self potential and µki are the means of the incoming
messages.

Next, we calculate the remaining terms of the message mij(xj), including the integration
over xi.

mij(xj) ∝
∫

xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)\j
mki(xi)dxi (2.19)

∝
∫

xi

ψij(xi,xj)︷ ︸︸ ︷
exp (−xiAijxj)

φi(xi)
∏

k∈N(i)\j mki(xi)︷ ︸︸ ︷
exp (−Pi\j(x

2
i /2− µi\jxi)) dxi (2.20)

=

∫

xi

exp ((−Pi\jx
2
i /2) + (Pi\jµi\j − Aijxj)xi)dxi (2.21)

∝ exp ((Pi\jµi\j − Aijxj)
2/(2Pi\j)) (2.22)

∝ N (µij = −P−1
ij Aijµi\j, P

−1
ij = −A−2

ij P−1
i\j ), (2.23)

where the exponent (2.22) is obtained by using the Gaussian integral (2.24):

∫ ∞

−∞
exp (−ax2 + bx)dx =

√
π/a exp (b2/4a), (2.24)

we find that the messages mij(xj) are proportional to normal distribution with precision and
mean

Pij = −A2
ijP

−1
i\j , (2.25)

µij = −P−1
ij Aijµi\j . (2.26)

These two scalars represent the messages propagated in the Gaussian BP-based algorithm.
Finally, computing the product rule (2.5) is similar to the calculation of the previous prod-

uct (2.16) and the resulting mean (2.18) and precision (2.17), but including all incoming mes-
sages. The marginals are inferred by normalizing the result of this product. Thus, the marginals
are found to be Gaussian probability density functions N (µi, P

−1
i ) with precision and mean

Pi =

φi(xi)︷︸︸︷
Pii +

∑

k∈N(i)

mki(xi)︷︸︸︷
Pki , (2.27)

µi = P−1
i\j

( φi(xi)︷ ︸︸ ︷
Piiµii +

∑

k∈N(i)

mki(xi)︷ ︸︸ ︷
Pkiµki

)
, (2.28)
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respectively. The derivation of the GaBP-based solver algorithm is concluded by simply substi-
tuting the explicit derived expressions of Pi\j (2.17) into Pij (2.25), µi\j (2.18) and Pij (2.25)
into µij (2.26) and Pi\j (2.17) into µi (2.28).

The message passing in the GaBP solver can be performed subject to any scheduling. We
refer to two conventional messages updating rules: parallel (flooding or synchronous) and serial
(sequential, asynchronous) scheduling. In the parallel scheme, messages are stored in two data
structures: messages from the previous iteration round, and messages from the current round.
Thus, incoming messages do not affect the result of the computation in the current round, since
it is done on messages that were received in the previous iteration round. Unlike this, in the serial
scheme, there is only one data structure, so incoming messages in this round, change the result of
the computation. In a sense it is exactly like the difference between the Jacobi and Gauss-Seidel
algorithms, to be discussed in the following. Some in-depth discussions about parallel vs. serial
scheduling in the BP context (the discrete case) can be found in the work of Elidan et al. [40].

Algorithm 1.

1. Initialize: X Set the neighborhood N(i) to include

∀k 6= i∃Aki 6= 0.
X Set the scalar fixes

Pii = Aii and µii = bi/Aii, ∀i.
X Set the initial N(i) 3 k → i scalar messages

Pki = 0 and µki = 0.
X Set a convergence threshold ε.

2. Iterate: X Propagate the N(i) 3 k → i messages

Pki and µki, ∀i (under certain scheduling).
X Compute the N(j) 3 i → j scalar messages

Pij = −A2
ij/

(
Pii +

∑
k∈N(i)\j Pki

)
,

µij =
(
Piiµii +

∑
k∈N(i)\j Pkiµki

)
/Aij.

3. Check: X If the messages Pij and µij did not

converge (w.r.t. ε), return to Step 2.

X Else, continue to Step 4.

4. Infer: X Compute the marginal means

µi =
(
Piiµii +

∑
k∈N(i) Pkiµki

)
/
(
Pii +

∑
k∈N(i) Pki

)
, ∀i.

(X Optionally compute the marginal precisions

Pi = Pii +
∑

k∈N(i) Pki )

5. Solve: X Find the solution

x∗i = µi, ∀i.
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2.4 Max-Product Rule

A well-known alternative version to the sum-product BP is the max-product (a.k.a. min-sum)
algorithm [41]. In this variant of BP, maximization operation is performed rather than marginal-
ization, i.e. , variables are eliminated by taking maxima instead of sums. For Trellis trees (e.g. ,
graphically representing convolutional codes or ISI channels), the conventional sum-product BP
algorithm boils down to performing the BCJR algorithm [42], resulting in the most probable sym-
bol, while its max-product counterpart is equivalent to the Viterbi algorithm [43], thus inferring
the most probable sequence of symbols [39].

In order to derive the max-product version of the proposed GaBP solver, the integral (sum)-
product rule (2.4) is replaced by a new rule

mij(xj) ∝ arg max
xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)\j
mki(xi)dxi. (2.29)

Computing mij(xj) according to this max-product rule, one gets

mij(xj) ∝ arg max
xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)\j
mki(xi) (2.30)

∝ arg max
xi

ψij(xi,xj)︷ ︸︸ ︷
exp (−xiAijxj)

φi(xi)
∏

k∈N(i)\j mki(xi)︷ ︸︸ ︷
exp (−Pi\j(x

2
i /2− µi\jxi)) (2.31)

= arg max
xi

exp ((−Pi\jx
2
i /2) + (Pi\jµi\j − Aijxj)xi). (2.32)

Hence, xmax
i , the value of xi maximizing the product ψij(xi, xj)φi(xi)

∏
k∈N(i)\j mki(xi) is given

by equating its derivative w.r.t. xi to zero, yielding

xmax
i =

Pi\jµi\j − Aijxj

Pi\j
. (2.33)

Substituting xmax
i back into the product, we get

mij(xj) ∝ exp ((Pi\jµi\j − Aijxj)
2/(2Pi\j)) (2.34)

∝ N (µij = −P−1
ij Aijµi\j, P

−1
ij = −A−2

ij Pi\j), (2.35)

which is identical to the result obtained when eliminating xi via integration (2.23).

mij(xj) ∝ N (µij = −P−1
ij Aijµi\j, P

−1
ij = −A−2

ij Pi\j), (2.36)

which is identical to the messages derived for the sum-product case (2.25)-(2.26). Thus interest-
ingly, as opposed to ordinary (discrete) BP, the following property of the GaBP solver emerges.

Corollary 13. The max-product (2.29) and sum-product (2.4) versions of the GaBP solver are
identical.
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2.5 Convergence and Exactness

In ordinary BP, convergence does not entail exactness of the inferred probabilities, unless the
graph has no cycles. Luckily, this is not the case for the GaBP solver. Its underlying Gaussian
nature yields a direct connection between convergence and exact inference. Moreover, in contrast
to BP the convergence of GaBP is not limited for tree or sparse graphs and can occur even for
dense (fully-connected) graphs, adhering to certain rules discussed in the following.

We can use results from the literature on probabilistic inference in graphical models [8,9,10]
to determine the convergence and exactness properties of the GaBP-based solver. The following
two theorems establish sufficient conditions under which GaBP is guaranteed to converge to the
exact marginal means.

Theorem 14. [8, Claim 4] If the matrix A is strictly diagonally dominant, then GaBP converges
and the marginal means converge to the true means.

This sufficient condition was recently relaxed to include a wider group of matrices.

Theorem 15. [9, Proposition 2] If the spectral radius of the matrix A satisfies

ρ(|In −A|) < 1, (2.37)

then GaBP converges and the marginal means converge to the true means. (The assumption here
is that the matrix A is first normalized by multiplying with D−1/2AD−1/2, where D = diag(A).)

A third and weaker sufficient convergence condition (relative to Theorem 15) which charac-
terizes the convergence of the variances is given in [6, Theorem 2]: For each row in the matrix A,
if A2

ii > Σj 6=iA
2
ij then the variances converge. Regarding the means, additional condition related

to Theorem 15 is given.

There are many examples of linear systems that violate these conditions, for which GaBP
converges to the exact means. In particular, if the graph corresponding to the system is acyclic
(i.e. , a tree), GaBP yields the exact marginal means (and variances [8]), regardless of the value
of the spectral radius of the matrix [8]. In contrast to conventional iterative methods derived
from linear algebra, understanding the conditions for exact convergence remain intriguing open
problems.
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Chapter 3

GaBP Algorithm Properties

Starting this chapter, we present our novel contributions in this GaBP domain. We provide a
theoretical analysis of GaBP convergence rate assuming diagonally dominant inverse covariance
matrix. This is the first time convergence rate of GaBP is characterized. Chapter 3 further
presents our novel broadcast version of GaBP, which reduces the number of unique messages
on a dense graph from O(n2) to O(n). This version allows for efficient implementation on
communication networks that supports broadcast such as wireless and Ethernet. (Example of an
efficient implementation of the broadcast version on top of 1,024 CPUs is reported in Chapter
8). We investigate the use of acceleration methods from linear algebra to be applied for GaBP
and compare methodically GaBP algorithm to other linear iterative methods.

3.1 Upper Bound on Convergence Rate

In this section we give an upper bound on convergence rate of the GaBP algorithm. As far as we
know this is the first theoretical result bounding the convergence speed of the GaBP algorithm.

Our upper bound is based on the work of Weiss et al. [44, Claim 4], which proves the
correctness of the mean computation. Weiss uses the pairwise potentials form1, where

p(x) ∝ Πi,jψij(xi, xj)Πiψi(xi) ,

ψi,j(xi, xj) , exp(−1
2
[xi xj]

TVij[xi xj]) .

ψi,i(xi) , exp(−1
2
xT

i Viixi) .

We further assume scalar variables. Denote the entries of the inverse pairwise covariance matrix
Vij and the inverse covariance matrix Vii as:

Vij ≡
(

ãij b̃ij

b̃ji c̃ij

)
, Vii = (ãii) .

1Weiss assumes variables with zero means. The mean value does not affect convergence speed.
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Assuming the optimal solution is x∗, for a desired accuracy ε||b||∞ where ||b||∞ ≡ maxi |bi|,
and b is the shift vector, [44, Claim 4] proves that the GaBP algorithm converges to an accuracy
of |x∗ − xt| < ε||b||∞ after at most t = dlog(ε)/log(β)e rounds, where β = maxij |b̃ij/c̃ij|.

The problem with applying Weiss’ result directly to our model is that we are working with
different parameterizations. We use the information form p(x) ∝ exp(−1

2
xTAx + bTx). The

decomposition of the matrix A into pairwise potentials is not unique. In order to use Weiss’
result, we propose such a decomposition. Any decomposition from the information form to the
pairwise potentials form should be subject to the following constraints [44]

Pairwise form︷︸︸︷
b̃ij =

Information form︷︸︸︷
aij ,

which means that the inverse covariance in the pairwise model should be equivalent to inverse
covariance in the information form.

Pairwise form︷ ︸︸ ︷
ãii +

∑

j∈N(i)

c̃ij =
Information form︷︸︸︷

aii .

The second constraints says that the sum of node i’s inverse variance (in both the self potentials
and edge potentials) should be identical to the inverse variance in the information form.

We propose to initialize the pairwise potentials as following. Assuming the matrix A is
diagonally dominant, we define εi to be the non negative gap

εi , |aii| −
∑

j∈N(i)

|aij| > 0 ,

and the following decomposition

b̃ij = aij, ãij = cij + εi/|N(i)| ,

where |N(i)| is the number of graph neighbors of node i. Following Weiss, we define γ to be

γ = max
i,j

|b̃ij|
|c̃ij| = max

i,j

|aij|
|aij|+ εi/|N(i)| = max

i,j

1

1 + (εi)/(|aij||N(i)|) < 1 .

In total, we get that for a desired accuracy of ε||b||∞ we need to iterate for t = dlog(ε)/log(γ)e
rounds. Note that this is an upper bound and in practice we indeed have observed a much faster
convergence rate.

The computation of the parameter γ can be easily done in a distributed manner: Each node
locally computes εi, and γi = maxj 1/(1 + |aij|εi/N(i)). Finally, one maximum operation is
performed globally, γ = maxi γi.
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3.2 Convergence Acceleration

Further speed-up of GaBP can be achieved by adapting known acceleration techniques from linear
algebra, such Aitken’s method and Steffensen’s iterations [45]. Consider a sequence {xn} where
n is the iteration number, and x is the marginal probability computed by GaBP. Further assume
that {xn} linearly converge to the limit x̂, and xn 6= x̂ for n ≥ 0. According to Aitken’s method,
if there exists a real number a such that |a| < 1 and limn→∞(xn − x̂)/(xn−1 − x̂) = a, then the
sequence {yn} defined by

yn = xn − (xn+1 − xn)2

xn+2 − 2xn+1 + xn

converges to x̂ faster than {xn} in the sense that limn→∞ |(x̂− yn)/(x̂− xn)| = 0. Aitken’s
method can be viewed as a generalization of over-relaxation, since one uses values from three,
rather than two, consecutive iteration rounds. This method can be easily implemented in GaBP
as every node computes values based only on its own history.

Steffensen’s iterations incorporate Aitken’s method. Starting with xn, two iterations are run
to get xn+1 and xn+2. Next, Aitken’s method is used to compute yn, this value replaces the
original xn, and GaBP is executed again to get a new value of xn+1. This process is repeated
iteratively until convergence. We remark that, although the convergence rate is improved with
these enhanced algorithms, the region of convergence of the accelerated GaBP solver remains
unchanged. Chapter 4 gives numerical examples to illustrate the proposed acceleration method
performance.

3.3 GaBP Broadcast Variant

For a dense matrix A each node out of the n nodes sends a unique message to every other node
on the fully-connected graph. This recipe results in a total of n2 messages per iteration round.

The computational complexity of the GaBP solver as described in Algorithm 1 for a dense
linear system, in terms of operations (multiplications and additions) per iteration round. is shown
in Table 3.1. In this case, the total number of required operations per iteration is O(n3). This
number is obtained by evaluating the number of operations required to generate a message
multiplied by the number of messages. Based on the summation expressions for the propagating
messages Pij and µij, it is easily seen that it takes O(n) operations to compute such a message.
In the dense case, the graph is fully-connected resulting in O(n2) propagating messages.

In order to estimate the total number of operations required for the GaBP algorithm to solve
the linear system, we have to evaluate the number of iterations required for convergence. It is
known [46] that the number of iterations required for an iterative solution method is O(f(κ)),
where f(κ) is a function of the condition number of the data matrix A. Hence the total complexity
of the GaBP solver can be expressed by O(n3) × O(f(κ)). The analytical evaluation of the
convergence rate function f(κ) is a challenging open problem. However, it can be upper bounded
by f(κ) < κ. Furthermore, based on our experimental study, described in Section 4, we can
conclude that f(κ) ≤ √

κ. This is because typically the GaBP algorithm converges faster than
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Algorithm Operations per msg msgs Total operations per iteration

Naive GaBP (Algorithm 1) O(n) O(n2) O(n3)

Broadcast GaBP (Algorithm 2) O(n) O(n) O(n2)

Table 3.1: Computational complexity of the GaBP solver for dense n× n matrix A.

the SOR algorithm. An upper bound on the number of iterations of the SOR algorithm is√
κ. Thus, the total complexity of the GaBP solver in this case is O(n3) × O(

√
κ). For well-

conditioned (as opposed to ill-conditioned) data matrices the condition number is O(1). Thus,
for well-conditioned linear systems the total complexity is O(n3), i.e. , the complexity is cubic,
the same order of magnitude as for direct solution methods, like Gaussian elimination.

At first sight, this result may be considered disappointing, with no complexity gain w.r.t.
direct matrix inversion. Luckily, the GaBP implementation as described in Algorithm 1 is a naive
one, thus termed naive GaBP. In this implementation we did not take into account the correlation
between the different messages transmitted from a certain node i. These messages, computed
by summation, are distinct from one another in only two summation terms.

Instead of sending a message composed of the pair of µij and Pij, a node can broadcast the
aggregated sums

P̃i = Pii +
∑

k∈N(i)

Pki, (3.1)

µ̃i = P̃−1
i (Piiµii +

∑

k∈N(i)

Pkiµki). (3.2)

Consequently, each node can retrieve locally the Pi\j (2.17) and µi\j (2.18) from the sums by
means of a subtraction

Pi\j = P̃i − Pji , (3.3)

µi\j = µ̃i − P−1
i\j Pjiµji . (3.4)

The rest of the algorithm remains the same. On dense graphs, the broadcast version sends O(n)
messages per round, instead of O(n2) messages in the GaBP algorithm. This construction is
typically useful when implementing the GaBP algorithm in communication networks that support
broadcast (for example Ethernet and wireless networks), where the messages are sent in broadcast
anyway. See for example [47, 48]. Chapter 8 brings an example of large scale implementation of
our broadcast variant using 1,024 CPUs.
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CHAPTER 3. GABP ALGORITHM PROPERTIES
3.4. THE GABP-BASED SOLVER AND CLASSICAL SOLUTION

METHODS

Algorithm 2.

1. Initialize: X Set the neighborhood N(i) to include

∀k 6= i∃Aki 6= 0.
X Set the scalar fixes

Pii = Aii and µii = bi/Aii, ∀i.
X Set the initial i → N(i) broadcast messages

P̃i = 0 and µ̃i = 0.
X Set the initial N(i) 3 k → i internal scalars

Pki = 0 and µki = 0.
X Set a convergence threshold ε.

2. Iterate: X Broadcast the aggregated sum messages

P̃i = Pii +
∑

k∈N(i) Pki,

µ̃i = P̃i
−1

(Piiµii +
∑

k∈N(i) Pkiµki), ∀i
(under certain scheduling).

X Compute the N(j) 3 i → j internal scalars

Pij = −A2
ij/(P̃i − Pji),

µij = (P̃iµ̃i − Pjiµji)/Aij.
3. Check: X If the internal scalars Pij and µij did not

converge (w.r.t. ε), return to Step 2.

X Else, continue to Step 4.

4. Infer: X Compute the marginal means

µi =
(
Piiµii +

∑
k∈N(i) Pkiµki

)
/
(
Pii +

∑
k∈N(i) Pki

)
= µ̃i, ∀i.

(X Optionally compute the marginal precisions

Pi = Pii +
∑

k∈N(i) Pki = P̃i )

5. Solve: X Find the solution

x∗i = µi, ∀i.

3.4 The GaBP-Based Solver and Classical Solution
Methods

3.4.1 Gaussian Elimination

Proposition 16. The GaBP-based solver (Algorithm 1) for a system of linear equations repre-
sented by a tree graph is identical to the renowned Gaussian elimination algorithm (a.k.a. LU
factorization, [46]).

Proof. Consider a set of n linear equations with n unknown variables, a unique solution and a
tree graph representation. We aim at computing the unknown variable associated with the root
node. Without loss of generality as the tree can be drawn with any of the other nodes being its
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root. Let us enumerate the nodes in an ascending order from the root to the leaves (see, e.g.,
Fig. 3.1).

1

2 3

4 5

A12 A13

A24 A25

Figure 3.1: Example topology of a tree with 5 nodes

As in a tree, each child node (i.e. , all nodes but the root) has only one parent node and
based on the top-down ordering, it can be easily observed that the tree graph’s corresponding
data matrix A must have one and only one non-zero entry in the upper triangular portion of its
columns. Moreover, for a leaf node this upper triangular entry is the only non-zero off-diagonal
entry in the whole column. See, for example, the data matrix associated with the tree graph
depicted in Fig 3.1 



A11 A12 A13 0 0
A12 A22 0 A24 A25

A13 0 A33 0 0
0 A24 0 A44 0
0 A25 0 0 A55




, (3.5)

where the non-zero upper triangular entries are in bold and among these the entries corresponding
to leaves are underlined.

Now, according to GE we would like to lower triangulate the matrix A. This is done by
eliminating these entries from the leaves to the root. Let l be a leaf node, i be its parent and j
be its parent (l’th node grandparent). Then, the l’th row is multiplied by −Ali/All and added to
the i’th row. in this way the Ali entry is being eliminated. However, this elimination, transforms
the i’th diagonal entry to be Aii → Aii − A2

li/All, or for multiple leaves connected to the same
parent Aii → Aii −

∑
l∈N(i) A

2
li/All. In our example,




A11 A12 0 0 0
A12 A22 − A2

13/A33 − A2
24/A44 − A2

25/A55 0 0 0
A13 0 A33 0 0
0 A24 0 A44 0
0 A25 0 0 A55




. (3.6)

Thus, in a similar manner, eliminating the parent i yields the multiplication of the j’th diagonal
term by −A2

ij/(Aii −
∑

l∈N(i) A
2
li/All). Recalling that Pii = Aii, we see that the last expression
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is identical to the update rule of Pij in GaBP. Again, in our example



B 0 0 0 0
0 C 0 0 0

A13 0 A33 0 0
0 A24 0 A44 0
0 A25 0 0 A55




, (3.7)

where B = A11−A2
12/(A22−A2

13/A33−A2
24/A44−A2

25/A55), C = A22−A2
13/A33−A2

24/A44−
A2

25/A55. Now the matrix is fully lower triangulated. To put differently in terms of GaBP, the Pij

messages are subtracted from the diagonal Pii terms to triangulate the data matrix of the tree.
Performing the same row operations on the right hand side column vector b, it can be easily seen
that we equivalently get that the outcome of the row operations is identical to the GaBP solver’s
µij update rule. These updadtes/row operations can be repeated, in the general case, until the
matrix is lower triangulated.

Now, in order to compute the value of the unknown variable associated with the root node, all
we have to do is divide the first diagonal term by the transformed value of b1, which is identical
to the infer stage in the GaBP solver (note that by definition all the nodes connected to the root
are its children, as it does not have parent node). In the example

x∗1 =
A11 − A2

12/(A22 − A2
13/A33 − A2

24/A44 − A2
25/A55)

b11 − A12/(b22 − A13/A33 − A24/A44 − A25/A55)
. (3.8)

Note that the rows corresponding to leaves remain unchanged.
To conclude, in the tree graph case, the ‘iterative’ stage (stage 2 on algorithm 1) of the

GaBP solver actually performs lower triangulation of the matrix, while the ‘infer’ stage (stage 4)
reducers to what is known as forward substitution. Evidently, using an opposite ordering, one can
get the complementary upper triangulation and back substitution, respectively.

It is important to note, that based on this proposition, the GaBP solver can be viewed as
GE run over an unwrapped version (i.e. , a computation tree as defined in [8]) of a general loopy
graph.

3.4.2 Iterative Methods

Iterative methods that can be expressed in the simple form

x(t) = Bx(t−1) + c, (3.9)

where neither the iteration matrix B nor the vector c depend upon the iteration number t, are
called stationary iterative methods. In the following, we discuss three main stationary iterative
methods: the Jacobi method, the Gauss-Seidel (GS) method and the successive overrelaxation
(SOR) method. The GaBP-based solver, in the general case, can not be written in this form,
thus can not be categorized as a stationary iterative method.

Proposition 17. [46] Assuming I − B is invertible, then the iteration 3.9 converges (for any
initial guess, x(0)).
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3.4.3 Jacobi Method

The Jacobi method (Gauss, 1823, and Jacobi 1845, [2]), a.k.a. the simultaneous iteration method,
is the oldest iterative method for solving a square linear system of equations Ax = b. The method
assumes that ∀i Aii 6= 0. It’s complexity is O(n2) per iteration. There are two know sufficient
convergence conditions for the Jacobi method. The first condition holds when the matrix A is
strictly or irreducibly diagonally dominant. The second condition holds when ρ(D−1(L+U )) < 1.
Where D = diag(A), L,U are upper and lower triangular matrices of A.

Proposition 18. The GaBP-based solver (Algorithm 1)

1. with inverse variance messages set to zero, i.e. , Pij = 0, i ∈ N(j), ∀j;
2. incorporating the message received from node j when computing the message to be sent

from node i to node j, i.e. replacing k ∈ N(i)\j with k ∈ N(i),

is identical to the Jacobi iterative method.

Proof. Setting the precisions to zero, we get in correspondence to the above derivation,

Pi\j = Pii = Aii, (3.10)

Pijµij = −Aijµi\j, (3.11)

µi = A−1
ii (bi −

∑

k∈N(i)

Akiµk\i). (3.12)

Note that the inverse relation between Pij and Pi\j (2.25) is no longer valid in this case.
Now, we rewrite the mean µi\j (2.18) without excluding the information from node j,

µi\j = A−1
ii (bi −

∑

k∈N(i)

Akiµk\i). (3.13)

Note that µi\j = µi, hence the inferred marginal mean µi (3.12) can be rewritten as

µi = A−1
ii (bi −

∑

k 6=i

Akiµk), (3.14)

where the expression for all neighbors of node i is replaced by the redundant, yet identical,
expression k 6= i. This fixed-point iteration is identical to the renowned Jacobi method, concluding
the proof.

The fact that Jacobi iterations can be obtained as a special case of the GaBP solver further
indicates the richness of the proposed algorithm.
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Chapter 4

Numerical Examples

In this chapter we report experimental study of three numerical examples: toy linear system, 2D
Poisson equation and symmetric non-PSD matrix. In all examples, but the Poisson’s equation 4.8,
b is assumed to be an m-length all-ones observation vector. For fairness in comparison, the initial
guess in all experiments, for the various solution methods under investigation, is taken to be the
same and is arbitrarily set to be equal to the value of the vector b. The stopping criterion in all
experiments determines that for all propagating messages (in the context the GaBP solver) or
all n tentative solutions (in the context of the compared iterative methods) the absolute value
of the difference should be less than ε ≤ 10−6. As for terminology, in the following performing
GaBP with parallel (flooding or synchronous) message scheduling is termed ‘parallel GaBP’, while
GaBP with serial (sequential or asynchronous) message scheduling is termed ‘serial GaBP’.

4.1 Numerical Example: Toy Linear System: 3 × 3 Equa-
tions

Consider the following 3× 3 linear system




Axx = 1 Axy = −2 Axz = 3
Ayx = −2 Ayy = 1 Ayz = 0
Azx = 3 Azy = 0 Azz = 1




︸ ︷︷ ︸
A




x
y
z




︸ ︷︷ ︸
x

=



−6

0
2




︸ ︷︷ ︸
b

. (4.1)

We would like to find the solution to this system, x∗ = {x∗, y∗, z∗}T . Inverting the data matrix
A, we directly solve




x∗

y∗

z∗




︸ ︷︷ ︸
x∗

=



−1/12 −1/6 1/4
−1/6 2/3 1/2

1/4 1/2 1/4




︸ ︷︷ ︸
A−1



−6

0
2




︸ ︷︷ ︸
b

=




1
2

−1


 . (4.2)
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Alternatively, we can now run the GaBP solver. Fig. 4.1 displays the graph, corresponding to
the data matrix A, and the message-passing flow. As Ayz = Azy = 0, this graph is a cycle-free
tree, thus GaBP is guaranteed to converge in a finite number of rounds. As demonstrated in the
following, in this example GaBP converges only in two rounds, which equals the tree’s diameter.
Each propagating message, mij, is described by two scalars µij and Pij, standing for the mean
and precision of this distribution. The evolution of the propagating means and precisions, until
convergence, is described in Table 4.1, where the notation t = 0, 1, 2, 3 denotes the iteration
rounds. Converged values are written in bold.

Message Computation t=0 t=1 t=2 t=3

Pxy −A2
xy/(Pxx + Pzx) 0 −4 1/2 1/2

Pyx −A2
yx/(Pyy) 0 −4 −4 −4

Pxz −A2
xz/(Pzz) 0 −9 3 3

Pzx −A2
zx/(Pxx + Pyx) 0 −9 −9 −9

µxy (Pxxµxx + Pzxµzx)/Axy 0 3 6 6
µyx Pyyµyy/Ayx 0 0 0 0
µxz (Pxxµxx + Pyxµyx)/Axz 0 −2 −2 −2
µzx Pzzµzz/Azx 0 2/3 2/3 2/3

Table 4.1: Evolution of means and precisions on a tree with three nodes

Next, following the GaBP solver algorithm, we infer the marginal means. For exposition
purposes we also present in Table 4.2 the tentative solutions at each iteration round.

Solution Computation t=0 t=1 t=2 t=3

µx

(
Pxxµxx + Pzxµzx + Pyxµyx

)
/
(
Pxx + Pzx + Pyx

) −6 1 1 1
µy

(
Pyyµyy + Pxyµxy

)
/
(
Pyy + Pxy

)
0 4 2 2

µz

(
Pzzµzz + Pxzµxz

)
/
(
Pzz + Pxz

)
2 −5/2 −1 −1

.

Table 4.2: Tentative means computed on each iteration until convergence

Thus, as expected, the GaBP solution x∗ = {x∗ = 1, y∗ = 2, z∗ = −1}T is identical to what
is found using the direct approach. Note that as the linear system is described by a tree graph,
then for this particular case, the inferred precision is also exact

Px = Pxx + Pyx + Pzx = −12, (4.3)

Py = Pyy + Pxy = 3/2, (4.4)

Pz = Pzz + Pxz = 4. (4.5)

(4.6)

and gives {P−1
x = {A−1}xx = −1/12, P−1

y = {A−1}yy = 2/3, P−1
z = {A−1}zz = 1/4}T , i.e. the

true diagonal values of the data matrix’s inverse, A−1.
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Figure 4.1: A tree topology with three nodes

4.2 Numerical Example: Symmetric Non-PSD Data Ma-
trix

Consider the case of a linear system with a symmetric, but non-PSD data matrix




1 2 3
2 2 1
3 1 1


 . (4.7)

Table 4.3 displays the number of iterations required for convergence for the iterative methods
under consideration. The classical methods diverge, even when aided with acceleration techniques.
This behavior (at least without the acceleration) is not surprising in light of Theorem 15. Again
we observe that serial scheduling of the GaBP solver is superior parallel scheduling and that
applying Steffensen iterations reduces the number of iterations in 45% in both cases. Note that
SOR cannot be defined when the matrix is not PSD. By definition CG works only for symmetric
PSD matrices. Because the solution is a saddle point and not a minimum or maximum.

4.3 Application Example: 2-D Poisson’s Equation

One of the most common partial differential equations (PDEs) encountered in various areas
of exact sciences and engineering (e.g. , heat flow, electrostatics, gravity, fluid flow, quantum
mechanics, elasticity) is Poisson’s equation. In two dimensions, the equation is

∆u(x, y) = f(x, y), (4.8)

for {x, y} ∈ Ω, where

∆(·) =
∂2(·)
∂x2

+
∂2(·)
∂y2

. (4.9)

27



4.3. 2D POISSON’S CHAPTER 4. NUMERICAL EXAMPLES

Algorithm Iterations t

Jacobi,GS,SR,Jacobi+Aitkens,Jacobi+Steffensen −

Parallel GaBP 38

Serial GaBP 25

Parallel GaBP+Steffensen 21

Serial GaBP+Steffensen 14

Table 4.3: Symmetric non-PSD 3 × 3 data matrix. Total number of iterations required for
convergence (threshold ε = 10−6) for GaBP-based solvers vs. standard methods.
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ω=real{ ω
opt

}=0.152

GS
Jacobi
"Optimal" SR
Parallel GaBP
Serial GaBP

Figure 4.2: Convergence rate for a 3× 3 symmetric non-PSD data matrix. The Frobenius norm
of the residual per equation, ||Axt− b||F /n, as a function of the iteration t for GS (triangles and
solid line), Jacobi (squares and solid line), SR (stars and solid line), parallel GaBP (circles and
solid line) and serial GaBP (circles and dashed line) solvers.

is the Laplacian operator and Ω is a bounded domain in R2. The solution is well defined only under
boundary conditions, i.e. , the value of u(x, y) on the boundary of Ω is specified. We consider the
simple (Dirichlet) case of u(x, y) = 0 for {x,y} on the boundary of Ω. This equation describes,
for instance, the steady-state temperature of a uniform square plate with the boundaries held at
temperature u = 0, and f(x, y) equaling the external heat supplied at point {x, y}.

The poisson’s PDE can be discretized by using finite differences. An p+1×p+1 square grid
on Ω with size (arbitrarily) set to unity is used, where h , 1/(p + 1) is the grid spacing. We let
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Figure 4.3: The left graph depicts accelerated convergence rate for a 3× 3 symmetric non-PSD
data matrix. The Frobenius norm of the residual per equation, ||Axt − b||F /n, as a function of
the iteration t for Aitkens (squares and solid line) and Steffensen-accelerated (triangles and solid
line) Jacobi method, parallel GaBP (circles and solid line) and serial GaBP (circles and dashed
line) solvers accelerated by Steffensen iterations. The right graph shows a visualization of parallel
GaBP on the same problem, drawn in R3.
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Figure 4.4: Image of the corresponding sparse data matrix for the 2-D discrete Poisson’s PDE
with p = 10. Empty (full) squares denote non-zero (zero) entries.

U(i, j), {i, j = 0, . . . , p + 1}, be the approximate solution to the PDE at x = ih and y = jh.
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Approximating the Laplacian by

∆U(x, y) =
∂2(U(x, y))

∂x2
+

∂2(U(x, y))

∂y2

≈ U(i + 1, j)− 2U(i, j) + U(i− 1, j)

h2
+

U(i, j + 1)− 2U(i, j) + U(i, j − 1)

h2
,

one gets the system of n = p2 linear equations with n unknowns

4U(i, j)−U(i− 1, j)−U(i + 1, j)−U(i, j − 1)−U(i, j + 1) = b(i, j)∀i, j = 1, . . . , p, (4.10)

where b(i, j) , −f(ih, jh)h2, the scaled value of the function f(x, y) at the corresponding grid
point {i, j}. Evidently, the accuracy of this approximation to the PDE increases with n.

Choosing a certain ordering of the unknowns U(i, j), the linear system can be written in
a matrix-vector form. For example, the natural row ordering (i.e. , enumerating the grid points
left→right, bottom→up) leads to a linear system with p2×p2 sparse data matrix A. For example,
a Poisson PDE with p = 3 generates the following 9× 9 linear system




4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4




︸ ︷︷ ︸
A




U(1, 1)
U(2, 1)
U(3, 1)
U(1, 2)
U(2, 2)
U(3, 2)
U(1, 3)
U(2, 3)
U(3, 3)




︸ ︷︷ ︸
x

=




b(1, 1)
b(2, 1)
b(3, 1)
b(1, 2)
b(2, 2)
b(3, 2)
b(1, 3)
b(2, 3)
b(3, 3)




︸ ︷︷ ︸
b

, (4.11)

where blank data matrix A entries denote zeros.
Hence, now we can solve the discretized 2-D Poisson’s PDE by utilizing the GaBP algorithm.

Note that, in contrast to the other examples, in this case the GaBP solver is applied for solving
a sparse, rather than dense, system of linear equations.

In order to evaluate the performance of the GaBP solver, we choose to solve the 2-D Poisson’s
equation with discretization of p = 10. The structure of the corresponding 100×100 sparse data
matrix is illustrated in Fig. 4.4.
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Algorithm Iterations t

Jacobi 354

GS 136

Optimal SOR 37

Parallel GaBP 134

Serial GaBP 73

Parallel GaBP+Aitkens 25

Parallel GaBP+Steffensen 56

Serial GaBP+Steffensen 32

Table 4.4: 2-D discrete Poisson’s PDE with p = 3 and f(x, y) = −1. Total number of iterations
required for convergence (threshold ε = 10−6) for GaBP-based solvers vs. standard methods.
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Figure 4.5: Accelerated convergence rate for the 2-D discrete Poisson’s PDE with p = 10 and
f(x, y) = −1. The Frobenius norm of the residual. per equation, ||Axt − b||F /n, as a function
of the iteration t for parallel GaBP solver accelrated by Aitkens method (×-marks and solid line)
and serial GaBP solver accelerated by Steffensen iterations (left triangles and dashed line).
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Algorithm Iterations t

Jacobi,GS,SR,Jacobi+Aitkens,Jacobi+Steffensen −

Parallel GaBP 84

Serial GaBP 30

Parallel GaBP+Steffensen 43

Serial GaBP+Steffensen 17

Table 4.5: Asymmetric 3 × 3 data matrix. total number of iterations required for convergence
(threshold ε = 10−6) for GaBP-based solvers vs. standard methods.
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Figure 4.6: Convergence of an asymmetric 3× 3 matrix.
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Figure 4.7: Convergence of a 3× 3 asymmetric matrix, using 3D plot.
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Chapter 5

Fixing convergence of GaBP

In this chapter, we present a novel construction that fixes the convergence of the GaBP algorithm,
for any Gaussian model with positive-definite information matrix (inverse covariance matrix),
even when the currently known sufficient convergence conditions do not hold. We prove that our
construction converges to the correct solution. Furthermore, we consider how this method may
be used to solve for the least-squares solution of general linear systems. We defer experimental
results evaluating the efficiency of the convergence fix to Chapter 7.2 in the context of linear
detection. By using our convergence fix construction we are able to show convergence in practical
CDMA settings, where the original GaBP algorithm did not converge, supporting a significantly
higher number of users on each cell.

5.1 Problem Setting

We wish to compute the maximum a posteriori (MAP) estimate of a random vector x with
Gaussian distribution (after conditioning on measurements):

p(x) ∝ exp{−1
2
xT Jx + hT x} , (5.1)

where J Â 0 is a symmetric positive definite matrix (the information matrix) and h is the potential
vector. This problem is equivalent to solving Jx = h for x given (h, J) or to solve the convex
quadratic optimization problem:

minimize f(x) , 1
2
xT Jx− hT x. (5.2)

We may assume without loss of generality (by rescaling variables) that J is normalized to have
unit-diagonal, that is, J , I−R with R having zeros along its diagonal. The off-diagonal entries
of R then correspond to partial correlation coefficients [49]. Thus, the fill pattern of R (and J)
reflects the Markov structure of the Gaussian distribution. That is, p(x) is Markov with respect
to the graph with edges G = {(i, j)|ri,j 6= 0} .

If the model J = I−R is walk-summable [9,10], such that the spectral radius of |R| = (|rij|)
is less than one (ρ(|R|) < 1), then the method of GaBP may be used to solve this problem.
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We note that the walk-summable condition implies I − R is positive definite. An equivalent
characterization of the walk-summable condition is that I − |R| is positive definite.

This chapter presents a method to solve non-walksummable models, where J = I − R is
positive definite but ρ(|R|) ≥ 1, using GaBP. There are two key ideas: (1) using diagonal loading
to create a perturbed model J ′ = J + Γ which is walk-summable (such that the GaBP may be
used to solve J ′x = h for any h) and (2) using this perturbed model J ′ and convergent GaBP
algorithm as a preconditioner in a simple iterative method to solve the original non-walksummable
model.

5.2 Diagonal Loading

We may always obtain a walk-summable model by diagonal loading. This is useful as we can then
solve a related system of equations efficiently using Gaussian belief propagation. For example,
given a non-walk-summable model J = I − R we obtain a related walk-summable model Jγ =
J + γI that is walk-summable for large enough values of γ:

Lemma 1. Let J = I −R and J ′ , J + γI = (1 + γ)I −R. Let γ > γ∗ where

γ∗ = ρ(|R|)− 1 . (5.3)

Then, J ′ is walk-summable and GaBP based on J ′ converges.

Proof. We normalize J ′ = (1 + γ)I −R to obtain J ′norm = I −R′ with R′ = (1 + γ)−1R, which
is walk-summable if and only if ρ(|R′|) < 1. Using ρ(|R′|) = (1 + γ)−1ρ(|R|) we obtain the
condition (1 + γ)−1ρ(|R|) < 1, which is equivalent to γ > ρ(|R|)− 1.

It is also possible to achieve the same effect by adding a general diagonal matrix Γ to obtain
a walk-summable model. For example, for all Γ > Γ∗, where γ∗ii = Jii −

∑
j 6=i |Jij|, it holds that

J +Γ is diagonally-dominant and hence walk-summable (see [10]). More generally, we could allow
Γ to be any symmetric positive-definite matrix satisfying the condition I + Γ Â |R|. However,
only the case of diagonal matrices is explored in this chapter.

5.3 Iterative Correction Method

Now we may use the diagonally-loaded model J ′ = J +Γ to solve Jx = h for any value of Γ ≥ 0.
The basic idea here is to use the diagonally-loaded matrix J ′ = J + Γ as a preconditioner for
solving the Jx = h using the iterative method:

x̂(t+1) = (J + Γ)−1(h + Γx̂(t)) . (5.4)

Note that the effect of adding positive Γ is to reduce the size of the scaling factor (J + Γ)−1

but we compensate for this damping effect by adding a feedback term Γx̂ to the input h. Each
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step of this iterative method may also be interpreted as solving the following convex quadratic
optimization problem based on the objective f(x) from (5.2):

x̂(t+1) = arg min
x

{
f(x) + 1

2
(x− x(t))T Γ(x− x(t))

}
. (5.5)

This is basically a regularized version of Newton’s method to minimize f(x), where we regularize
the step-size at each iteration. Typically, this regularization is used to ensure positive-definiteness
of the Hessian matrix when Newton’s method is used to optimize a non-convex function. In
contrast, we use it to ensure that J + Γ is walk-summable, so that the update step can be
computed via Gaussian belief propagation. Intuitively, this will always move us closer to the
correct solution, but slowly if Γ is large. It is simple to demonstrate the following:

Lemma 2. Let J Â 0 and Γ º 0. Then, x̂(t) defined by (5.4) converges to x∗ = J−1h for all
initializations x̂(0).

Comment. The proof is given for a general (non-diagonal) Γ º 0. For diagonal matrices, this
is equivalent to requiring Γii ≥ 0 for i = 1, . . . , n.

Proof. First, we note that there is only one possible fixed-point of the algorithm and this is
x∗ = J−1h. Suppose x̄ is a fixed point: x̄ = (J + Γ)−1(h + Γx̄). Hence, (J + Γ)x̄ = h + Γx̄
and Jx̄ = h. For non-singular J , we must then have x̄ = J−1h. Next, we show that the method
converges. Let e(t) = x̂(t)−x∗ denote the error of the k-th estimate. The error dynamics are then
e(t+1) = (J + Γ)−1Γe(t). Thus, e(t) = ((J + Γ)−1Γ)ke(0) and the error converges to zero if and
only if ρ((J +Γ)−1Γ) < 1, or equivalently ρ(H) < 1, where H = (J +Γ)−1/2Γ(J +Γ)−1/2 º 0 is
a symmetric positive semi-definite matrix. Thus, the eigenvalues of H are non-negative and we
must show that they are less than one. It is simple to check that if λ is an eigenvalue of H then

λ
1−λ

is an eigenvalue of Γ1/2J−1Γ1/2 º 0. This is seen as follows: Hx = λx, (J + Γ)−1Γy = λy

(y = (J+Γ)−1/2x), Γy = λ(J+Γ)y, (1−λ)Γy = λJy, J−1Γy = λ
1−λ

y and Γ1/2J−1Γ1/2z = λ
1−λ

z

(z = Γ1/2y) [note that λ 6= 1, otherwise Jy = 0 contradicting J Â 0]. Therefore λ
1−λ

≥ 0 and

0 ≤ λ < 1. Then ρ(H) < 1, e(t) → 0 and x̂(t) → x∗ completing the proof.

Now, provided we also require that J ′ = J + Γ is walk-summable, we may compute x(t+1) =
(J + Γ)−1h(t+1), where h(t+1) = h + Γx̂(t), by performing Gaussian belief propagation to solve
J ′x(t+1) = h(t+1). Thus, we obtain a double-loop method to solve Jx = h. The inner-loop
performs GaBP and the outer-loop computes the next h(t). The overall procedure converges
provided the number of iterations of GaBP in the inner-loop is made large enough to ensure a good
solution to J ′x(t+1) = h(t+1). Alternatively, we may compress this double-loop procedure into a
single-loop procedure by preforming just one iteration of GaBP message-passing per iteration of
the outer loop. Then it may become necessary to use the following damped update of h(t) with
step size parameter s ∈ (0, 1):

h(t+1) = (1− s)h(t) + s(h + Γx̂(t))

= h + Γ((1− s)x̂(t−1) + sx̂(t)) , (5.6)
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This single-loop method converges for sufficiently small values of s. In practice, we have found
good convergence with s = 1

2
. This single-loop method can be more efficient than the double-loop

method.

5.4 Extension to General Linear Systems

In this section, we efficiently extend the applicability of the proposed double-loop construction for
a general linear system of equations (possibly over-constrained.) Given a full column rank matrix
J̃ ∈ Rn×k, n ≥ k, and a shift vector h̃, we are interested in solving the least squares problem
minx ||J̃x − h̃||22. The naive approach for using GaBP would be to take the information matrix
J̄ , (J̃T J̃), and the shift vector h̄ , J̃T h̃. Note that J̄ is positive definite and we can use GaBP
to solve it. The MAP solution is

x = J̄−1h̄ = (J̃T J̃)−1J̃T h , (5.7)

which is the pseudo-inverse solution.
Note, that the above construction has two drawbacks: first, we need to explicitly compute J̄

and h̄, and second, J̄ may not be sparse in case the original matrix J̃ is sparse. To overcome
this problem, following [19], we construct a new symmetric data matrix ¯̄J based on the arbitrary
rectangular matrix J̃ ∈ Rn×k

¯̄J ,
(

Ik×k J̃T

J̃ 0n×n

)
∈ R(k+n)×(k+n) .

Additionally, we define a new hidden variable vector x̃ , {xT , zT}T ∈ R(k+n), where x ∈ Rk

is the solution vector and z ∈ Rn is an auxiliary hidden vector, and a new shift vector ¯̄h ,
{0T

k×1,h
T}T ∈ R(k+n).

Lemma 3. Solving ¯̄x = ¯̄J−1¯̄h and taking the first k entries is identical to solving Eq. 10.17.

Proof. Is given in [19].

For applying our double-loop construction on the new system (¯̄h, ¯̄J) to obtain the solution to
Eq. (10.17), we need to confirm that the matrix ¯̄J is positive definite. (See lemma 2). To this
end, we add a diagonal weighting −γI to the lower right block:

Ĵ ,
(

Ik×k J̃T

J̃ −γI

)
∈ R(k+n)×(k+n) .

Then we rescale Ĵ to make it unit diagonal (to deal with the negative sign of the lower right
block we use a complex Gaussian notation as done in [50]). It is clear that for a large enough
γ we are left with a walk-summable model, where the rescaled Ĵ is a hermitian positive definite
matrix and ρ(|Ĵ − I|) < 1. Now it is possible to use the double-loop technique to compute Eq.
10.17. Note that adding −γI to the lower right block of Ĵ is equivalent to adding γI into Eq.
7:

x = (J̃T J̃ + γI)−1J̃T h (5.8)

where γ can be interpreted as a regularization parameter.

37



Part 2: Applications

38



Chapter 6

Rating Users and Data Items in Social
Networks

We propose to utilize the distributed GaBP solver presented in Chapter 2 to efficiently and
distributively compute a solution to a family of quadratic cost functions described below. By
implementing our algorithm once, and choosing the computed cost function dynamically on the
run we allow a high flexibility in the selection of the rating method deployed in the Peer-to-Peer
network.

We propose a unifying family of quadratic cost functions to be used in Peer-to-Peer ratings.
We show that our approach is general since it captures many of the existing algorithms in the fields
of visual layout, collaborative filtering and Peer-to-Peer rating, among them Koren spectral layout
algorithm, Katz method, Spatial ranking, Personalized PageRank and Information Centrality.
Beside of the theoretical interest in finding common basis of algorithms that were not linked
before, we allow a single efficient implementation for computing those various rating methods.

Using simulations over real social network topologies obtained from various sources, including
the MSN Messenger social network, we demonstrate the applicability of our approach. We report
simulation results using networks of millions of nodes.

Whether you are browsing for a hotel, searching the web, or looking for a recommendation
on a local doctor, what your friends like will bear great significance for you. This vision of
virtual social communities underlies the stellar success of a growing body of recent web ser-
vices, e.g., http://www.flickr.com, http://del.icio.us, http://www.myspace.com, and
others. However, while all of these services are centralized, the full flexibility of social information-
sharing can often be better realized through direct sharing between peers.

This chapter presents a mechanism for sharing user ratings (e.g., on movies, doctors, and
vendors) in a social network. It introduces distributed mechanisms for computing by the network
itself individual ratings that incorporate rating-information from the network. Our approach
utilizes message-passing algorithms from the domain of Gaussian graphical models. In our system,
information remains in the network, and is never “shipped” to a centralized server for any global
computation. Our algorithms provide each user in the network with an individualized rating
per object (e.g., per vendor). The end-result is a local rating per user which minimizes her cost
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function from her own rating (if exists) and, at the same time, benefits from incorporating ratings
from her network vicinity. Our rating converges quickly to an approximate optimal value even in
sizable networks.

Sharing views over a social network has many advantages. By taking a peer-to-peer approach
the user information is shared and stored only within its community. Thus, there is no need for
trusted centralized authority, which could be biased by economic and/or political forces. Likewise,
a user can constrain information pulling from its trusted social circle. This prevents spammers
from penetrating the system with false recommendations.

6.1 Our General Framework

The social network is represented by a directed, weighted communication graph G = (V, E).
Nodes V = {1, 2, ..., n} are users. Edges express social ties, where a non-negative edge weight
wij indicates a measure of the mutual trust between the endpoint nodes i and j. Our goal is
to compute an output rating x ∈ Rn to each data item (or node) where xi is the output rating
computed locally in node i. The vector x is a solution that minimizes some cost function. Next,
we propose such a cost function, and show that many of the existing rating algorithms conform
to our proposed cost function.

We consider a single instance of the rating problem that concerns an individual item (e.g.,
a movie or a user). In practice, the system maintains ratings of many objects concurrently, but
presently, we do not discuss any correlations across items. A straight forward generalization to
our method for collaborative filtering, to rank m (possibly correlated) items, as done in [51].

In this chapter, we methodically derive the following quadratic cost function, that quantifies
the Peer-to-Peer rating problem:

min E(x) ,
∑

i

wii(xi − yi)
2 + β

∑
i,j∈E

wij(xi − xj)
2, (6.1)

where xi is a desired rating computed locally by node i, y is an optional prior rating, where yi is
a local input to node i (in case there is no prior information, y is a vector of zeros).

We demonstrate the generality of the above cost function by proving that many of the existing
algorithms for visual layouts, collaborative filtering and ranking of nodes in Peer-to-Peer networks
are special cases of our general framework:

1. Eigen-Projection method. Setting yi = 1, wii = 1, wij = 1 we get the Eigen-Projection
method [52] in a single dimension, an algorithm for ranking network nodes for creating a
intuitive visual layout.

2. Koren’s spectral layout method. Recently, Dell’Amico proposed to use Koren’s visual
layout algorithm for ranking nodes in a social network [53]. We will show that this ranking
method is a special case of our cost function, setting: wii = deg(i).
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3. Average computation. By setting the prior inputs yi to be the input of node i and taking
β → ∞ we get xi = 1/n

∑
i yi, the average value of y. This construction, Consensus

Propagation, was proposed by Moallemi and Van-Roy in [54].

4. Peer-to-Peer Rating. By generalizing the Consensus Propagation algorithm above and
supporting weighted graph edges, and finite β values we derive a new algorithm for Peer-
to-Peer rating [20].

5. Spatial Ranking. We propose a generalization of the Katz method [55], for computing a
personalized ranking of peers in a social network. By setting yi = 1, wii = 1 and regarding
the weights wij as the probability of following a link of an absorbing Markov-chain, we
formulate the spatial ranking method [20] based on the work of [56].

6. Personalized PageRank. We show how the PageRank and personalized PageRank algo-
rithms fits within our framework [57,58].

7. Information Centrality. In the information centrality node ranking method [59], the non-
negative weighted graph G = (V, E) is considered as an electrical network, where edge
weights is taken to be the electrical conductance. We show that this measure can be
modelled using our cost function as well.

Furthermore, we propose to utilize the Gaussian Belief Propagation algorithm (GaBP) - an
algorithm from the probabilistic graphical models domain - for efficient and distributed compu-
tation of a solution minimizing a single cost function drawn from our family of quadratic cost
functions. We explicitly show the relation between the algorithm to our proposed cost function
by deriving it from the cost function.

Empirically, our algorithm demonstrates faster convergence than the compared algorithms,
including conjugate gradient algorithms that were proposed in [53,51] to be used in Peer-to-Peer
environments. For comparative study of those methods see [7].

6.2 Unifying Family of Quadratic Cost Functions

We derive a family of unifying cost functions following the intuitive explanation of Koren [37].
His work addresses graphic visualization of networks using spectral graph properties. Recently,
Dell’Amico proposed in [53] to use Koren’s visual layout algorithm for computing a distance
metric that enables ranking nodes in a social network. We further extend this approach by
finding a common base to many of the ranking algorithms that are used in graph visualization,
collaborative filtering and in Peer-to-Peer rating. Beside of the theoretical interest in finding a
unifying framework to algorithms that were not related before, we enable also a single efficient
distributed implementation that takes the specific cost function as input and solves it.

Given a directed graph G = (V, E) we would like to find an output rating x ∈ Rn to each
item where xi is the output rating computed locally in node i. x can be expressed as the solution
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for the following constraint minimization problem:

min
x

E(x) ,
∑
i,j∈E

wij(xi − xj)
2, (6.2)

Given

Var(x) = 1, Mean(x) = 0.

where Var(x) , 1
n

∑
i(xi −Mean(x))2 , Mean(x) , 1

n

∑
i xi .

The cost function E(x) is combined of weighted sums of interactions between neighbors.
From the one hand, ”heavy“ edges wij force nodes to have a similar output rating. From the
other hand, the variance condition prevents a trivial solution of all xi converging to a single
value. In other words, we would like the rating of an item to be scaled. The value of the variance
determines the scale of computed ratings, and is arbitrarily set to one. Since the problem is
invariant under translation, we add also the mean constraint to force a unique solution. The
mean is arbitrarily set to zero.

In this chapter, we address visual layout computed for a single dimension. The work of Koren
and Dell’Amico is more general than ours since it discusses rating in k dimensions. A possible
future extension to this work is to extend our work to k dimensions.

From the visual layout perspective, “stronger” edges wij let neighboring nodes appear closer
in the layout. The variance condition forces a scaling on the drawing.

From the statistical mechanics perspective, the cost function E(x) is considered as the system
energy that we would like to minimize, the weighted sums are called “attractive forces” and the
variance constraint is a “repulsive force”.

One of the most important observations we make is that using Koren’s framework, the chosen
values of the variance and mean are arbitrary and could be changed. This is because the variance
influences the scaling of the layout and the mean the translation of the result. Without the loss of
generality, in some of the proofs we change the values of the mean and variance to reflect easier
mathematical derivation. However, normalization of rated values can be always done at the end,
if needed. Following, we generalize Koren’s method to support a larger variety of cost functions.
The main observation we have, is that the variance condition is used only for scaling the rating,
without relating to the specific problem at hand. We propose to add a second constraint which
is local to each node:

∑
i

wii(xi − yi)
2 + β

∑
i,j∈E

wij(xi − xj)
2. (6.3)

Thus we allow higher flexibility, since we allow yi can be regarded as prior information in the case
of Peer-to-Peer rating, where each node has some initial input it adds to the computation. In
other cases, yi can be some function computed on x like yi = 1

N

∑N
i=1 xi or a function computed

on the graph: yi =
∑

N(i)
wij

deg(i)
.
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Theorem 19. The Eigen-Projection method is an instance of the cost function 6.1 when wij =
1, wii = 1, β = 1/2, yi = 1.

Proof. It is shown in [52] that the optimal solution to the cost function is x = L−11 where L is
the graph Laplacian (as defined in 8). Substitute β = 1/2, wii = 1, wij = 1, yi = 1 in the cost
function (6.1) :

min
x

E(x) ,
∑

i

1(xi − 1)2 + 1/2
∑
i,j∈E

(xi − xj)
2.

The same cost function in linear algebra form (1 is a vector of all ones):

min E(x) , xT Lx− 2x1 + n .

Now we calculate the derivative and compare to zero and get

∇XE(x) = 2xT L− 21 ,

x = L−11.

Theorem 20. Koren’s spectral layout algorithm/Del’Amicco method in a single dimension, is an
instance of the cost function 6.1 when wii = 1, β = 1, yi = deg(i), where deg(i) ,

∑
j∈N(i) wij,

up to a translation.

Proof. Using the notations of [53] the cost function of Koren’s spectral layout algorithm is:

min
x

∑
i,j∈E

wij(xi − xj)
2,

s.t.
∑

i

deg(i)x2
i = n 1

n

∑
i

deg(i)xi = 0.

We compute the weighted cost function

L(x, β, γ) =
∑
ij

wij(xi − xj)
2 − β(

∑
i

deg(i)x2
i − n)− γ

∑
i

deg(i)xi .

Substitute the weights β = 1, γ = 1/2 we get:

=
∑
ij

wij(xi − xj)
2 −

∑
i

deg(i)(xi − 1)2,

Reverting to our cost function formulation we get:

=
∑

i

deg(i)(xi − 1)2 +
∑
ij

wij(xi − xj)
2.

In other words, we substitute wii = deg(i), yi = 1, β = 1 and we get Koren’s formulation.

It is interesting to note, that the optimal solution according to Koren’s work is xi =
∑

j∈N(i)
wijxj

deg(i)

which is equivalent to the thin plate model image processing and PDEs [60].
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6.2.1 Peer-to-Peer Rating

In [20] we have proposed to generalize the Consensus Propagation (CP) algorithm [54] to solve
the general cost function (6.1).

The CP algorithm is a distributed algorithm for calculating the network average, assuming
each node has an initial value. We have extended the CP algorithm in several ways. First, in
the original paper the authors propose to use a very large β for calculating the network average.
As mentioned, large β forces all the nodes to converge to the same value. We remove this
restriction by allowing a flexible selection of β based on the application needs. As β becomes
small the calculation is done in a closer and closer vicinity of the node.

Second, we have extended the CP algorithm to support null value, adapting it to omit the
term (yi−xi)

2 when yi = ⊥, i.e., when node i has no initial rating. This construction is reported
in [20] and not repeated here.

Third, we use non-uniform edge weights wij, which in our settings represent mutual trust
among nodes. This makes the rating local to certain vicinities, since we believe there is no
meaning for getting a global rating in a very large network. This extension allows also asymmetric
links where the trust assigned between neighbors is not symmetric. In that case we get an
approximation to the original problem.

Fourth, we introduce node weights, where node with higher weight has an increasing linear
contribution to the output of the computation.

The Peer-to-Peer rating algorithm was reported in detail in [20].

Theorem 21. The Consensus propagation algorithm is an instance of our cost function 6.1 with
wii = 1, β →∞.

The proof is given in Chapter 11.3

Theorem 22. The Peer-to-Peer rating algorithm is an instance of our cost function 6.1.

The proof is given in [20].

6.2.2 Spatial Ranking

In [20] we presented a new ranking method called Spatial Ranking, based on the work of Jason
K. Johnson et al. [56]. Recently, we found out that a related method was proposed in 1953
in the social sciences field by Leo Katz [55]. The Spatial Ranking method described below is a
generalization of the Katz method, since it allows weighted trust values between social network
nodes (unlike the Katz method which deals with binary relations). Furthermore, we propose a
new efficient implementation for a distributed computation of the Spatial Ranking method.

In our method, each node ranks itself the list of all other nodes based on its network topology
and creates a personalized ranking of its own.

We propose to model the network as a Markov chain with a transition matrix R, and calculate
the fundamental matrix P , where the entry Pij is the expected number of times of a random
walk starting from node i visits node j [61].
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We take the local value Pii of the fundamental matrix P , computed in node i, as node
i’s global importance. Intuitively, the value signifies the weight of infinite number of random
walks that start and end in node i. Unlike the PageRank ranking method, we explicitly bias the
computation towards node i, since we force the random walks to start from it. This captures the
local importance node i has when we compute a personalized rating of the network locally by
node i. Figure 6.1 captures this bias using a simple network of 10 nodes.

The fundamental matrix can be calculated by summing the expectations of random walks of
length one, two, three etc., R+R2+R3+. . . . Assuming that the spectral radius %(R) < 1, we get∑∞

l=1 Rl = (I −R)−1. Since R is stochastic, the inverse (I −R)−1 does not exist. We therefore
slightly change the problem: we select a parameter α < 1, to initialize the matrix J = I − αR
where I is the identity matrix. We know that %(αR) < 1 and thus αR + α2R2 + α3R3 + . . .
converges to (I − αR)−1.

Figure 6.1: Example output of the Spatial ranking (on top) vs. PageRank (bottom) over a
network of 10 nodes. In the Spatial ranking method node rank is biased towards the center,
where in the PageRank method, non-leaf nodes have equal rank. This can be explained by the
fact that the sum of self-returning random walks increases towards the center.

Theorem 23. The Spatial Ranking method is an instance of the cost function 6.1, when yi =
0, wii = 1, and wij are entries in an absorbing Markov chain R.

Proof. We have shown that the fundamental matrix is equal to (I − R)−1. Assume that the
edge weights are probabilities of Markov-chain transitions (which means the matrix is stochastic),
substitute β = α,wii = 1, yi = 1 in the cost function ( 6.1):

min E(x) ,
∑

i

1 ∗ (xi − 1)2 − α
∑
i,j∈E

wij(xi − xj)
2.

The same cost function in linear algebra form:

min E(x) , xT Ix− αxT Rx− 2x.

Now we calculate the derivative and compare to zero and get

x = (I − αR)−1.

We have shown that the Spatial Ranking algorithm fits well within our unifying family of cost
functions. Setting y to a fixed constant, means there is no individual prior input at the nodes,
thus we measure mainly the topological influence in ranking the nodes. In case that we use
wii 6= 1 we will get a biased ranking, where nodes with higher weight have higher influence at
result of the computation.
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6.2.3 Personalized PageRank

The PageRank algorithm is a fundamental algorithm in computing node ranks in the network [57].
The personalized PageRank algorithm is a variant described in [58]. In a nutshell, the Markov-
chain transition probability matrix M is constructed out of the web links graph. A prior probability
x is taken to weight the result. The personalized PageRank calculation can be computed [58]:

PR(x) = (1− α)(I − αM)−1x,

where α is a weighting constant which determines the speed of convergence in trade-off with the
accuracy of the solution and I is the identity matrix.

Theorem 24. The Personalized PageRank algorithm can be expressed using our cost function 6.1,
up to a translation.

proof sketch. The proof is similar to the Spatial Ranking proof. There are two differences: the
first is that the prior distribution x is set in y to weight the output towards the prior. Second,
in the the Personalized PageRank algorithm the result is multiplied by the constant (1 − α),
which we omit in our cost function. This computation can be done locally at each node after the
algorithm terminates, since α is a known fixed system parameter.

6.2.4 Information Centrality

In the information centrality (IC) node ranking method [59], the non-negative weighted graph
G = (V, E) is considered as an electrical network, where edge weights is taken to be the electrical
conductance. A vector of supply b is given as input, and the question is to compute the electrical
potentials vector p. This is done by computing the graph Laplacian and solving the set of linear
equations Lp = b. The IC method (a.k.a current flow betweenness centrality) is defined by:

IC(i) =
n− 1

Σi6=jpij(i)− pij(j)
.

The motivation behind this definition is that a centrality of node is measured by inverse proportion
to the effective resistance between a node to all other nodes. In case the effective resistance is
lower, there is a higher electrical current flow in the network, thus making the node more ”socially
influential”.

One can easily show that the IC method can be derived from our cost function, by calculating
(L + J)−1 where L is the graph Laplacian and J is a matrix of all ones. Note that the inverted
matrix is not sparse, unlike all the previous constructions. Hence, a special construction which
transforms this matrix into a sparse matrix is needed. This topic is out of scope of this work.

6.3 Experimental Results

We have shown that various ranking methods can be computed by solving a linear system of
equations. We propose to use the GaBP algorithm, for efficiently computing the ranking methods
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Figure 6.2: Blog network topology Figure 6.3: DIMES Internet topology

Figure 6.4: US gov documents topology Figure 6.5: MSN Messenger topology
Figures 2-5 illustrate subgraphs taken from the different topologies plotted using the Pajek
software [62]. Despite the different graph characteristics, the GaBP performed very well on all
tested topologies

distributively by the network nodes. Next, we bring simulation results which show that for very
large networks the GaBP algorithm performs remarkably well.

For evaluating the feasibility and efficiency of our rating system, we used several types of large
scale social networks topologies:

1. MSN Live Messenger. We used anonymized data obtained from Windows Live Messenger
that represents Messenger users’ buddy relationships. The Messenger network is rather large
for simulation (over two hundred million users), and so we cut sub-graphs by starting at
a random node, and taking a BFS cut of about one million nodes. The diameter of the
sampled graph is five on average.

2. Blog crawl data. We used blog crawl data of a network of about 1.5M bloggers, and 8M
directed links to other blogs. This data was provided thanks to Elad Yom-Tov from IBM
Research Labs, Haifa, Israel.

3. DIMES Internet measurements. We used a snapshot of an Internet topology from
January 2007 captured by the DIMES project [63]. The 300K nodes are routers and the
2.2M edges are communication lines.
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Topology Nodes Edges Data Source
MSN Messenger graph 1M 9.4M Microsoft

Blogs Web Crawl 1.5M 8M IBM
DIMES 300K 2.2M DIMES Internet measurements

US Government documents 12M 64M Web research collection

Table 6.1: Topologies used for experimentation

4. US gov document repository. We used a crawl of 12M pdf documents of US government,
where the links are links within the pdf documents pointing to other documents within the
repository [64].

One of the interesting questions, is the practical convergence speed of our rating methods.
The results are given using the MSN Messenger social network’s topology, since all of the other
topologies tested obtained similar convergence results. We have tested the Peer-to-Peer rating
algorithm. We have drawn the input ratings yi and edge weights wij in uniformly at random in the
range [0, 1]. We have repeated this experiment with different initializations for the input rating
and the edge weights and got similar convergence results. We have tested other cost functions,
including PageRank and Spatial Ranking and got the same convergence results.

Figure 6.6 shows the convergence speed of the Peer-to-Peer rating algorithm. The x-axis
represents round numbers. The rounds are given only for reference, in practice there is no need
for the nodes to be synchronized in rounds as shown in [65]. The y-axis represents the sum-total
of change in ratings relative to the previous round. We can see that the node ratings converge
very fast towards the optimal rating derived from the cost function. After only five iterations, the
total change in nodes ratings is about 1 (which means an average change of 1× 10−6 per node).

6.3.1 Rating Benchmark

For demonstrating the applicability of our proposed cost functions, we have chosen to implement
a “benchmark” that evaluates the effectiveness of the various cost functions. Demonstrating this
requires a quantitative measure beyond mere speed and scalability. The benchmark approach
we take is as follows. First, we produce a ladder of “social influence” that is inferred from the
network topology, and rank nodes by this ladder, using the Spatial ranking cost function. Next,
we test our Peer-to-Peer rating method in the following settings. Some nodes are initialized
with rate values, while other nodes are initialized with empty ratings. Influential nodes are given
different initial ratings than non-influential nodes. The expected result is that the ratings of
influential nodes should affect the ratings of the rest of the network so long as they are not vastly
outnumbered by opposite ratings.

As a remark, we note that we can use the social ranks additionally as trust indicators, giving
higher trust values to edges which are incident to high ranking nodes, and vice versa. This has
the nice effect of initially placing low trust on intruders, which by assumption, cannot appear
influential.
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Figure 6.6: Convergence of rating over a social network of 1M nodes and 9.4M edges. Note,
that using asynchronous rounds, the algorithm converges faster, as discussed in [65]

For performing our benchmark tests, we once again used simulation over the 1 million nodes
sub-graph of the Messenger network. Using the ranks produced by our spatial ranking, we selected
the seven highest ranking nodes and assigned them an initial rating value 5. We also selected
seven of the lowest ranking nodes and initialized them with rating value 1. All other nodes started
with null input. The results of the rating system in this settings are given in Figure 3. After
about ten rounds, a majority of the nodes converged to a rating very close to the one proposed
by the influential nodes. We ran a variety of similar tests and obtained similar results in all cases
where the influential nodes were not totally outnumbered by opposite initial ratings; for brevity,
we report only one such test here.

The conclusion we draw from this test is that a combination of applying our GaBP solver for
computing first the rating of nodes, and then using this rating for choosing influential nodes and
spreading their beliefs in the network has the desired effect of fast and influential dissemination
of the socially influential nodes. This effect can have a lot of applications in practice, including
targeted commercials to certain zones in the social network.

Quite importantly, our experiment shows that our framework provide good protection against
malicious infiltrators: Assuming that intruders have low connectivity to the rest of the network,
we demonstrate that it is hard for them to influence the rating values in the system. Furthermore,
we note that this property will be reinforced if the trust values on edges are reduced due to their
low ranks, and using users satisfaction feedback.
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Figure 6.7: Final rating values in a network of 1M nodes. Initially, 7 highest ranking nodes rate
5 and 7 lowest ranking nodes rate 1.
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Chapter 7

Linear Detection

Consider a discrete-time channel with a real input vector x = {x1, . . . , xK}T and a corresponding
real output vector y = {y1, . . . , yK}T = f{xT} ∈ RK .1 Here, the function f{·} denotes the
channel transformation. Specifically, CDMA multiuser detection problem is characterized by the
following linear channel

y = Sx + n ,

where SN×K is the CDMA chip sequence matrix, x ∈ {−1, 1}K is the transmitted signal, y ∈ RN

is the observation vector and n is a vector of AWGN noise. The multiuser detection problem is
stated as follows. Given S,y and knowledge about the noise, we would like to infer the most
probable x. This problem is NP-hard.

The matched filter output is
STy = Rx + STn ,

where STn is a K × 1 additive noise vector and Rk×k = STS is a positive-definite symmetric
matrix, often known as the correlation matrix.

Typically, the binary constraint on x is relaxed to x ∈ [−1, 1]. This relaxation is called linear
detection. In linear detection the decision rule is

x̂ = ∆{x∗} = ∆{R−1STy} . (7.1)

The vector x∗ is the solution (over R) to Rx = STy. Estimation is completed by adjusting the
(inverse) matrix-vector product to the input alphabet, accomplished by using a proper clipping
function ∆{·} (e.g. , for binary signaling ∆{·} is the sign function).

Assuming linear channels with AWGN with variance σ2 as the ambient noise, the linear min-
imum mean-square error (MMSE) detector can be described by using R + σ2IK , known to be
optimal when the input distribution Px is Gaussian. In general, linear detection is suboptimal
because of its deterministic underlying mechanism (i.e. , solving a given set of linear equations),
in contrast to other estimation schemes, such as MAP or maximum likelihood, that emerge from
an optimization criteria.

1An extension to the complex domain is straightforward.
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The essence of detection theory is to estimate a hidden input to a channel from empirically-
observed outputs. An important class of practical sub-optimal detectors is based on linear detec-
tion. This class includes, for instance, the conventional single-user matched filter, the decorrelator
(also, called the zero-forcing equalizer), the linear minimum mean-square error (LMMSE) detec-
tor, and many other detectors with widespread applicability [66, 67]. In general terms, given a
probabilistic estimation problem, linear detection solves a deterministic system of linear equations
derived from the original problem, thereby providing a sub-optimal, but often useful, estimate of
the unknown input.

Applying the GaBP solver to linear detection, we establish a new and explicit link between
BP and linear detection. This link strengthens the connection between message-passing inference
and estimation theory, previously seen in the context of optimal maximum a-posteriori (MAP)
detection [68, 69] and several sub-optimal nonlinear detection techniques [70] applied in the
context of both dense and sparse [71,72] graphical models.

In the following experimental study, we examine the implementation of a decorrelator detector
in a noiseless synchronous CDMA system with binary signaling and spreading codes based upon
Gold sequences of length m = 7.2 Two system setups are simulated, corresponding to n = 3 and
n = 4 users, resulting in the cross-correlation matrices

R3 =
1

7




7 −1 3
−1 7 −5

3 −5 7


 , (7.2)

and

R4 =
1

7




7 −1 3 3
−1 7 3 −1

3 3 7 −1
3 −1 −1 7


 , (7.3)

respectively.3

The decorrelator detector, a member of the family of linear detectors, solves a system of
linear equations, Rx = STy, thus the vector of decorrelator decisions is determined by taking
the signum of the vector R−1STy. Note that R3 and R4 are not strictly diagonally dominant,
but their spectral radius are less than unity, since ρ(|I3−R3|) = 0.9008 < 1 and ρ(|I4−R4|) =
0.8747 < 1, respectively. In all of the experiments, we assumed the output vector was the all-ones
vector.

Table 7.1 compares the proposed GaBP algorithm with standard iterative solution meth-
ods [2] (using random initial guesses), previously employed for CDMA multiuser detectors (MUD).
Specifically, MUD algorithms based on the algorithms of Jacobi, Gauss-Seidel (GS) and (opti-
mally weighted) successive over-relaxation (SOR)4 were investigated [11,12]. The table lists the

2In this case, as long as the system is not overloaded, i.e. the number of active users n is not greater than the
spreading code’s length m, the decorrelator detector yields optimal detection decisions.

3These particular correlation settings were taken from the simulation setup of Yener et al. [13].
4This moving average improvement of Jacobi and GS algorithms is equivalent to what is known in the BP

literature as ‘damping’ [73].
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Algorithm Iterations t (R3) Iterations t (R4)

Jacobi 111 24

GS 26 26

Parallel GaBP 23 24

Optimal SOR 17 14

Serial GaBP 16 13

Table 7.1: Decorrelator for K = 3, 4-user, N = 7 Gold code CDMA. Total number of iterations
required for convergence (threshold ε = 10−6) for GaBP-based solvers vs. standard methods.
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Figure 7.1: Convergence of the two gold CDMA matrices. To the left R3, to the right, R4.

convergence rates for the two Gold code-based CDMA settings. Convergence is identified and
declared when the differences in all the iterated values are less than 10−6. We see that, in compar-
ison with the previously proposed detectors based upon the Jacobi and GS algorithms, the GaBP
detectors converge more rapidly for both n = 3 and n = 4. The serial (asynchronous) GaBP
algorithm achieves the best overall convergence rate, surpassing even the SOR-based detector.

Further speed-up of GaBP can be achieved by adapting known acceleration techniques from
linear algebra, such Aitken’s method and Steffensen’s iterations, as explained in Section 3.2.
Table 7.2 demonstrates the speed-up of GaBP obtained by using these acceleration methods,
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Algorithm R3 R4

Jacobi+Steffensen5 59 −

Parallel GaBP+Steffensen 13 13

Serial GaBP+Steffensen 9 7

Table 7.2: Decorrelator for K = 3, 4-user, N = 7 Gold code CDMA. Total number of itera-
tions required for convergence (threshold ε = 10−6) for Jacobi, parallel and serial GaBP solvers
accelerated by Steffensen iterations.

in comparison with that achieved by the similarly modified Jacobi algorithm.6 We remark that,
although the convergence rate is improved with these enhanced algorithms, the region of conver-
gence of the accelerated GaBP solver remains unchanged.

For the algorithms we examined, Figure 7.1 displays the Euclidean distance between the
tentative (intermediate) results and the fixed-point solution as a function of the number of
iterations. As expected, all linear algorithms exhibit a logarithmic convergence behavior. Note
that GaBP converges faster on average, although there are some fluctuations in the GaBP curves,
in contrast to the monotonicity of the other curves.

An interesting question concerns the origin of this convergence speed-up associated with
GaBP. Better understanding may be gained by visualizing the iterations of the different methods
for the matrix R3 case. The convergence contours are plotted in the space of {x1, x2, x3}
in Fig. 7.3. As expected, the Jacobi algorithm converges in zigzags towards the fixed point
(this behavior is well-explained in Bertsekas and Tsitsiklis [46]). The fastest algorithm is serial
GaBP. It is interesting to note that GaBP convergence is in a spiral shape, hinting that despite
the overall convergence improvement, performance improvement is not guaranteed in successive
iteration rounds. In this case the system was simulated with a specific R matrix for which Jacobi
algorithm and other standard methods did not even converge. Using Aitken’s method, a further
speed-up in GaBP convergence was obtained.

Despite the fact that the examples considered correspond to small multi-user systems, we
believe that the results reflect the typical behavior of the algorithms, and that similar qualitative
results would be observed in larger systems. In support of this belief, we note, in passing, that
GaBP was experimentally shown to converge in a logarithmic number of iterations in the cases of
very large matrices both dense (with up to hundreds of thousands of dimensions [75]) and sparse
(with up to millions of dimensions [20]).

As a final remark on the linear detection example, we mention that, in the case of a channel
with Gaussian input signals, for which linear detection is optimal, the proposed GaBP scheme
reduces to the BP-based MUD scheme, recently introduced by Montanari et al. [50], as shown in

6Application of Aitken and Steffensen’s methods for speeding-up the convergence of standard (non-BP) iter-
ative solution algorithms in the context of MUD was introduced by Leibig et al. [74].
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Figure 7.2: Convergence acceleration of the GaBP algorithm using Aitken and Steffensen meth-
ods. The left graph depicts a 3 × 3 gold CDMA matrix, the right graph 4 × 4 gold CDMA
matrix.
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Figure 7.3: Convergence of the GaBP algorithm vs. Jacobi on a 3× 3 gold CDMA matrix. Each
dimension shows one coordinate of the solution. Jacobi converges in zigzags while GaBP has
spiral convergence.

Chapter 11.1. Montanari’s BP scheme, assuming a Gaussian prior, has been proven to converge
to the MMSE (and optimal) solution for any arbitrarily loaded, randomly-spread CDMA system
(i.e. , a system where ρ(|In−R|) Q 1).7Thus Gaussian-input additive white Gaussian noise CDMA

7For non-Gaussian signaling, e.g. with binary input alphabet, this BP-based detector is conjectured to converge
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is another example for which the proposed GaBP solver converges to the MAP decisions for any
m× n random spreading matrix S, regardless of the spectral radius.

7.1 Extending GaBP to support non-square matrices

In the previous section, linear detection has been explicitly linked to BP [7], using a Gaussian belief
propagation (GaBP) algorithm. This allows for an efficient iterative computation of the linear
detector [14], circumventing the need of, potentially cumbersome, direct matrix inversion (via,
e.g. , Gaussian elimination). The derived iterative framework was compared quantitatively with
‘classical’ iterative methods for solving systems of linear equations, such as those investigated
in the context of linear implementation of CDMA demodulation [11, 12, 13]. GaBP is shown to
yield faster convergence than these standard methods. Another important work is the BP-based
MUD, recently derived and analyzed by Montanari et al. [50] for Gaussian input symbols.

There are several drawbacks to the linear detection technique presented earlier [7]. First, the
input matrix Rn×n = ST

n×kSk×n (the chip correlation matrix) needs to be computed prior to
running the algorithm. This computation requires n2k operations. In case where the matrix S
is sparse [72], the matrix R might not no longer be sparse. Second, GaBP uses 2n2 memory to
store the messages. For a large n this could be prohibitive.

In this section, we propose a new construction that addresses those two drawbacks. In our
improved construction, given a non-rectangular CDMA matrix Sn×k, we compute the MMSE
detector x = (STS + Ψ)−1ST y, where Ψ = σ−2I is the AWGN diagonal inverse covariance
matrix. We utilize the GaBP algorithm which is an efficient iterative distributed algorithm. The
new construction uses only 2nk memory for storing the messages. When k ¿ n this represents
significant saving relative to the 2n2 in our previously proposed algorithm. Furthermore, we do
not explicitly compute STS, saving an extra n2k overhead.

In Chapter 11.1 we show that Montanari’s algorithm [50] is an instance of GaBP. By showing
this, we are able to prove new convergence results for Montanari’s algorithm. Montanari proves
that his method converges on normalized random-spreading CDMA sequences, assuming Gaussian
signaling. Using binary signaling, he conjectures convergence to the large system limit. Here,
we extend Montanari’s result, to show that his algorithm converges also for non-random CDMA
sequences when binary signaling is used, under weaker conditions. Another advantage of our work
is that we allow different noise levels per bit transmitted.

7.1.1 Distributed Iterative Computation of the MMSE Detector

In this section, we efficiently extend the applicability of the proposed GaBP-based solver for
systems with symmetric matrices [7] to systems with any square (i.e. , also nonsymmetric) or
rectangular matrix. We first construct a new symmetric data matrix R̃ based on an arbitrary

only in the large-system limit, as n,m →∞ [50].
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(non-rectangular) matrix S ∈ Rk×n

R̃ ,
(

Ik ST

S −Ψ

)
∈ R(k+n)×(k+n). (7.4)

Additionally, we define a new vector of variables x̃ , {x̂T , zT}T ∈ R(k+n)×1, where x̂ ∈ Rk×1

is the (to be shown) solution vector and z ∈ Rn×1 is an auxiliary hidden vector, and a new
observation vector ỹ , {0T ,yT}T ∈ R(k+n)×1.

Now, we would like to show that solving the symmetric linear system R̃x̃ = ỹ and taking
the first k entries of the corresponding solution vector x̃ is equivalent to solving the original (not
necessarily symmetric) system Rx = y. Note that in the new construction the matrix R̃ is sparse
again, and has only 2nk off-diagonal nonzero elements. When running the GaBP algorithm we
have only 2nk messages, instead of n2 in the previous construction.

Writing explicitly the symmetric linear system’s equations, we get

x̂ + STz = 0, Sx̂−Ψz = y.

Thus,

x̂ = Ψ−1ST (y − Sx̂),

and extracting x̂ we have

x̂ = (STS + Ψ)−1STy.

Note, that when the noise level is zero, Ψ = 0m×m, we get the Moore-Penrose pseudoinverse
solution

x̂ = (STS)−1STy = S†y.

7.1.2 Relation to Factor Graph

In this section we give an alternate proof of the correctness of our construction. Given the inverse
covariance matrix R̃ defined in (7.4), and the shift vector x̃ we can derive the matching self and
edge potentials

ψij(xi, xj) , exp(−xiRijxj) ,

φi(xi) , exp(−1/2xiR
2
iixi − xiyi) ,

which is a factorization of the Gaussian system distribution

p(x) ∝
∏

i

φi(xi)
∏
i,j

ψij(xi, xj) =
∏

i≤k

φi(xi)
∏

i>k

φi(xi)
∏
i,j

ψij(xi, xj) =

=
∏

i≤k

prior on x︷ ︸︸ ︷
exp(−1

2
x2

i )
∏

i>k

exp(−1

2
Ψix

2
i − xiyi)

∏
i,j

exp(−xi

Rij︷︸︸︷
Sij xj).
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Figure 7.4: Factor graph describing the linear channel

Next, we show the relation of our construction to a factor graph. We will use a factor graph
with k nodes to the left (the bits transmitted) and n nodes to the right (the signal received),
shown in Fig 7.4. Using the definition x̃ , {x̂T , zT}T ∈ R(k+n)×1 the vector x̂ represents the k
input bits and the vector z represents the signal received. Now we can write the system probability
as:

p(x̃) ∝
∫

x̂

N (x̂; 0, I)N (z; Sx̂, Ψ)dx̂ .

It is known that the marginal distribution over z is:

= N (z; 0,STS + Ψ).

The marginal distribution is Gaussian, with the following parameters:

E(z|x̂) = (STS + Ψ)−1STy,

Cov(z|x̂) = (STS + Ψ)−1.

It is interesting to note that a similar construction was used by Frey [76] in his seminal 1999
work when discussing the factor analysis learning problem. Comparison to Frey’s work is found
in Chapter 11.2.

7.1.3 Convergence Analysis

In this section we characterize the convergence properties of our linear detection method base
on GaBP. We know that if the matrix R̃ is strictly diagonally dominant, then GaBP converges
and the marginal means converge to the true means [8, Claim 4]. Noting that the matrix R̃ is
symmetric, we can determine the applicability of this condition by examining its columns. As
shown in Figure 7.5 we see that in the first k columns, we have the k CDMA sequences. We
assume random-spreading binary CDMA sequences where the total system power is normalized to
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1 0 · · · 0 1/n −1/n −1/n 1/n . . . 1/n
0 1 0

· · · . . .

0 0 · · · 1 1/n −1/n 1/n −1/n . . . −1/n
1/n · · · 1/n Ψ1 0 0 · · · 0
−1/n −1/n 0 Ψ2 . . .
−1/n 1/n
1/n −1/n
...

...
. . . 0

1/n −1/n · · · 0 Ψn




Figure 7.5: An example randomly spreading CDMA sequences matrices using our new construc-
tion. Using this illustration, it is easy to give a sufficient convergence proof to the GaBP algorithm.
Namely, when the above matrix is diagonally dominant.

one. In other words, the absolute sum of each column is 1. By adding ε to the main diagonal, we
insure that the first k columns are diagonally dominant. In the next n columns of the matrix R̃,
we have the diagonal covariance matrix Ψ with different noise levels per bit in the main diagonal,
and zero elsewhere. The absolute sum of each column of S is k/n, thus when the noise level
of each bit satisfies Ψi > k/n, we have a convergence guarantee. Note, that the convergence
condition is a sufficient condition. Based on Montanari’s work, we also know that in the large
system limit, the algorithm converges for binary signaling, even in the absence of noise.

In Chapter 11.1 we prove that Montanari’s algorithm is an instance of our algorithm, thus
our convergence results apply to Montanari’s algorithm as well.

7.2 Applying GaBP Convergence Fix

Next, we apply our novel double loop technique described in Chapter 5, for forcing the convergence
of our linear detection algorithm using GaBP. We use the following setting: given a random-
spreading CDMA code8 with chip sequence length n = 256, and k = 64 users. We assume a
diagonal AWGN with σ2 = 1. Matlab code of our implementation is available on [77].

Using the above settings, we have drawn at random random-spreading CDMA matrix. Typi-
cally, the sufficient convergence conditions for the GaBP algorithm do not hold. For example, we
have drawn at random a randomly-spread CDMA matrix with ρ(|IK − CN |) = 4.24, where CN

is a diagonally-normalized version of (C + σ2IK). Since ρ(|IK −CN |) > 1, the GaBP algorithm
for multiuser detection is not guaranteed to converge.

Figure 7.6 shows that under the above settings, the GaBP algorithm indeed diverged. The x-
axis represent iteration number, while the values of different xi are plotted using different colors.
This figure depicts well the fluctuating divergence behavior.

8Randomly-spread CDMA code is a code where the matrix S is initialized uniformly with the entries ± 1
n .
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Figure 7.6: Divergence of the GaBP algorithm for the multiuser detection problem, when n =
256, k = 64.

Next, we deployed our proposed construction and used a diagonal loading to force convergence.
Figure 7.7 shows two different possible diagonal loadings. The x-axis shows the Newton step
number, while the y-axis shows the residual. We experimented with two options of diagonal
loading. In the first, we forced the matrix to be diagonally-dominant (DD). In this case, the
spectral radius ρ = 0.188. In the second case, the matrix was not DD, but the spectral radius
was ρ = 0.388. Clearly, the Newton method converges faster when the spectral radius is larger.
In both cases the inner iterations converged in five steps to an accuracy of 10−6.
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Figure 7.7: Convergence of the fixed GaBP iteration under the same settings (n = 256, k = 64).

The tradeoff between the amount of diagonal weighting to the total convergence speed is
shown in Figures 3,4. A CDMA multiuser detection problem is shown (k = 128, n = 256).
Convergence threshold for the inner and outer loops where 10−6 and 10−3. The x-axis present
the amount of diagonal weighting normalized such that 1 is a diagonally-dominant matrix. y-
axis represent the number of iterations. As expected, the outer loop number of iterations until
convergence grows with γ. In contrast, the average number of inner loop iterations per Newton
step (Figure 4) tends to decrease as γ increases. The total number of iterations (inner × outer)
represents the tradeoff between the inner and outer iterations and has a clear global minima.
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Chapter 8

Support Vector Regression

In this chapter, we introduce a distributed support vector regression solver based on the Gaussian
Belief Propagation (GaBP) algorithm. We improve on the original GaBP algorithm by reducing
the communication load, as represented by the number of messages sent in each optimization
iteration, from n2 to n aggregated messages, where n is the number of data points. Previously,
it was known that the GaBP algorithm is very efficient for sparse matrices. Using our novel
construction, we demonstrate that the algorithm exhibits very good performance for dense ma-
trices as well. We also show that the GaBP algorithm can be used with kernels, thus making the
algorithm more powerful than previously possible.

Using extensive simulation we demonstrate the applicability of our protocol vs. the state-of-
the-art existing parallel SVM solvers. Using a Linux cluster of up to a hundred machines and
the IBM Blue Gene supercomputer we managed to solve very large data sets up to hundreds of
thousands data point, using up to 1,024 CPUs working in parallel. Our comparison shows that
the proposed algorithm is just as accurate as these solvers, while being significantly faster.

We start by giving on overview of the related SVM problem.

8.1 Classification Using Support Vector Machines

We begin by formulating the SVM problem. Consider a training set:

D = {(xi, yi) , i = 1, . . . , N, xi ∈ Rm, yi ∈ {−1, 1}} . (8.1)

The goal of the SVM is to learn a mapping from xi to yi such that the error in mapping, as
measured on a new dataset, would be minimal. SVMs learn to find the linear weight vector that
separates the two classes so that

yi (xi ·w + b) ≥ 1 for i = 1, . . . , N. (8.2)

There may exist many hyperplanes that achieve such separation, but SVMs find a weight
vector w and a bias term b that maximize the margin 2/ ‖w‖. Therefore, the optimization
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problem that needs to be solved is

min JD(w) =
1

2
‖w‖ , (8.3)

subject to yi (xi ·w + b) ≥ 1 for i = 1, . . . , N. (8.4)

Points lying on the hyperplane yi (xi ·w + b) = 1 are called support vectors.

If the data cannot be separated using a linear separator, a slack variable ξ ≥ 0 is introduced
and the constraint is relaxed to:

yi (xi ·w + b) ≥ 1− ξi for i = 1, . . . , N. (8.5)

The optimization problem then becomes:

min JD(w) = 1
2
‖w‖2

2 + C

N∑
i=1

ξi, (8.6)

subject to yi (xi ·w + b) ≥ 1 for i = 1, . . . , N, (8.7)

ξi ≥ 0 for i = 1, . . . , N. (8.8)

The weights of the linear function can be found directly or by converting the problem into its
dual optimization problem, which is usually easier to solve.

Using the notation of Vijayakumar and Wu [78], the dual problem is thus:

max LD(h) =
∑

i

hi − 1
2
hT Dh , (8.9)

subject to 0 ≤ hi ≤ C, i = 1, ..., N , (8.10)

Σihiyi = 0 , (8.11)

where D is a matrix such that Dij = yiyjK (xi,xj) and K (·, ·) is either an inner product of the
samples or a function of these samples. In the latter case, this function is known as the kernel
function, which can be any function that complies with the Mercer conditions [79]. For example,
these may be polynomial functions, radial-basis (Gaussian) functions, or hyperbolic tangents.
If the data is not separable, C is a tradeoff between maximizing the margin and reducing the
number of misclassifications.

The classification of a new data point is then computed using the following equation:

f (x) = sign

(∑
i∈SV

hiyiK (xi, x) + b

)
(8.12)
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8.2 Kernel Ridge Regression problem

Kernel Ridge Regression (KRR) implements a regularized form of the least squares method useful
for both regression and classification. The non-linear version of KRR is similar to Support-Vector
Machine (SVM) problem. However, in the latter, special emphasis is given to points close to the
decision boundary, which is not provided by the cost function used by KRR.

Given training data
D = {xi, yi}l

i=1, xi ∈ Rd , yi ∈ R ,

the KRR algorithm determines the parameter vector w ∈ Rd of a non-linear model (using the
“kernel trick”), via minimization of the following objective function: [75]:

min λ||w||2 +
l∑

i=1

(yi −wT Φ(xi))
2 ,

where λ is a tradeoff parameter between the two terms of the optimization function, and Φ()̇ is
a (possible non-linear) mapping of the training patterns.

One can show that the dual form of this optimization problem is given by:

max W (α) = yT α + 1
4
λαTKα− 1

4
αT α , (8.13)

where K is a matrix whose (i, j)-th entry is the kernel function Ki,j = Φ(xi)
T Φ(xj).

The optimal solution to this optimization problem is:

α = 2λ(K + λI)−1y

The corresponding prediction function is given by:

f(x) = wT Φ(x) = yT (K + λI)−1K(xi,x).

8.3 Previous Approaches for Solving Parallel SVMs

There are several main methods for finding a solution to an SVM problem on a single-node
computer. (See [79, Chapter 10]) for a taxonomy of such methods.) However, since solving an
SVM is quadratic in time and cubic in memory, these methods encounter difficulty when scaling
to datasets that have many examples and support vectors. The latter two are not synonymous.
A large dataset with many repeated examples might be solved using sub-sampling approaches,
while a highly non-separable dataset with many support vectors will require an altogether different
solution strategy. The literature covers several attempts at solving SVMs in parallel, which allow
for greater computational power and larger memory size. In Collobert et al. [80] the SVM solver is
parallelized by training multiple SVMs, each on a subset of the training data, and aggregating the
resulting classifiers into a single classifier. The training data is then redistributed to the classifiers
according to their performance and the process is iterated until convergence is reached. The
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need to re-divide the data among the SVM classifiers implies that the data must be exchanged
between nodes several times; this rules out the use of an approach where bandwidth is a concern.
A more low-level approach is taken by Zanghirati et al. [81], where the quadratic optimization
problem is divided into smaller quadratic programs, each of which is solved on a different node.
The results are aggregated and the process is repeated until convergence. The performance of
this method has a strong dependence on the caching architecture of the cluster. Graf et al. [82]
partition the data and solve an SVM for each partition. The support vectors from each pair of
classifiers are then aggregated into a new training set for which an SVM is solved. The process
continues until a single classifier remains. The aggregation process can be iterated, using the
support vectors of the final classifier in the previous iteration to seed the new classifiers. One
problem with this approach is that the data must be repeatedly shared between nodes, meaning
that once again the goal of data distribution cannot be attained. The second problem, which
might be more severe, is that the number of possible support vectors is restricted by the capacity
of a single SVM solver. Yom Tov [83] proposed modifying the sequential algorithm developed
in [78] to batch mode. In this way, the complete kernel matrix is held in distributed memory and
the Lagrange multipliers are computed iteratively. This method has the advantage that it can
efficiently solve difficult SVM problems that have many support vectors to their solution. Based
on that work, we show how an SVM solution can be obtained by adapting a Gaussian Belief
Propagation algorithm to the solution of the algorithm proposed in [78].

Recently, Hazan et al. proposed an iterative algorithm for parallel decomposition based on
Fenchel Duality [84]. Zanni et al. propose a decomposition method for computing SVM in paral-
lel [85]. We compare our running time results to both systems in Section 8.5.

For our proposed solution, we take the exponent of dual SVM formulation given in equation
(8.9) and solve max exp(LD(h)). Since exp(LD(h)) is convex, the solution of max exp(LD(h))
is a global maximum that also satisfies max LD(h) since the matrix D is symmetric and positive
definite. Now we can relate to the new problem formulation as a probability density function,
which is in itself Gaussian:

p(h) ∝ exp(−1
2
hT Dh + hT1),

where 1 is a vector of (1, 1, · · · , 1), and find the assignment of ĥ = arg max p(h). To solve the
inference problem, namely computing the marginals ĥ, we propose using the GaBP algorithm,
which is a distributed message passing algorithm. We take the computed ĥ as the Lagrange
multiplier weights of the support vectors of the original SVM data points and apply a threshold
for choosing data points with non-zero weight as support vectors.

Note that using this formulation we ignore the remaining constraints (8.10), (8.11). In other
words we do not solve the SVM problem, but the unconstrained kernel ridge regression problem
(8.13). Nevertheless, empirical results presented in Chapter 8.5 show that we achieve a very good
classification vs. state-of-the-art SVM solvers.

Finally, following [78], we remove the explicit bias term b and instead add another dimension to
the pattern vector xi such that x̂i = (x1, x2, . . . , xN , λ), where λ is a scalar constant. The mod-
ified weight vector, which incorporates the bias term, is written as ŵ = (w1, w2, . . . , wN , b/λ).
However, this modification causes a change to the optimized margin. Vijayakumar and Wu [78]
discuss the effect of this modification and reach the conclusion that “setting the augmenting term
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to zero (equivalent to neglecting the bias term) in high dimensional kernels gives satisfactory re-
sults on real world data”. We did not completely neglect the bias term and in our experiments,
which used the Radial Basis Kernel, we set it to 1/N , as proposed in [83].

8.4 Our novel construction

We propose to use the GaBP algorithm for solving the SVR problem (8.13). In order to force the
algorithm to converge, we artificially weight the main diagonal of the kernel matrix D to make
it diagonally dominant. Section 8.5 outlines our empirical results showing that this modification
did not significantly affect the error in classifications on all tested data sets.

A partial justification for weighting the main diagonal is found in [75]. In the 2-Norm soft
margin formulation of the SVM problem, the sum of squared slack variables is minimized:

min
ξ,w,b

‖w‖2
2 + CΣiξ

2
i

such that yi(w · xi + b) ≥ 1− ξi

The dual problem is derived:

W (h) = Σihi − 1

2
Σi,jyiyjhihj(xi · xj + 1

C
δij),

where δij is the Kronecker δ defined to be 1 when i = j, and zero elsewhere. It is shown that the
only change relative to the 1-Norm soft margin SVM is the addition of 1/C to the diagonal of the
inner product matrix associated with the training set. This has the effect of adding 1/C to the
eigenvalues, rendering the kernel matrix (and thus the GaBP problem) better conditioned [75].

One of the desired properties of a large scale algorithm is that it should converge in asyn-
chronous settings as well as in synchronous settings. This is because in a large-scale communica-
tion network, clocks are not synchronized accurately and some nodes may be slower than others,
while some nodes experience longer communication delays.

Corollary 25. Assuming one of the convergence conditions (Theorems 14, 15) holds, the GaBP
algorithm convergence using serial (asynchronous) scheduling as well.

Proof. The quadratic Min-Sum algorithm [6] provides a convergence proof in the asynchronous
case. In Chapter 11.4 we show equivalence of both algorithms. Thus, assuming one of the
convergence conditions holds, the GaBP algorithm converges using serial scheduling as well.

8.5 Experimental Results

We implemented our proposed algorithm using approximately 1,000 lines of code in C. We imple-
mented communication between the nodes using the MPICH2 message passing interface.1 Each
node was responsible for d data points out of the total n data points in the dataset.

1http://www-unix.mcs.anl.gov/mpi/mpich/

66



CHAPTER 8. SVR 8.5. EXPERIMENTAL RESULTS

Dataset Dimension Train Test Error (%)
GaBP Sequential SVMlight

Isolet 617 6238 1559 7.06 5.84 49.97
Letter 16 20000 2.06 2.06 2.3
Mushroom 117 8124 0.04 0.05 0.02
Nursery 25 12960 4.16 5.29 0.02
Pageblocks 10 5473 3.86 4.08 2.74
Pen digits 16 7494 3498 1.66 1.37 1.57
Spambase 57 4601 16.3 16.5 6.57

Table 8.1: Error rates of the GaBP solver versus those of the parallel sequential solver and
SVMlight.

Dataset Run times (sec)
GaBP Sequential

Isolet 228 1328
Letter 468 601
Mushroom 226 176
Nursery 221 297
Pageblocks 26 37
Pen digits 45 155
Spambase 49 79

Table 8.2: Running times (in seconds) of the GaBP solver (working in a distributed environment)
compared to that of the IBM parallel solver.

Our implementation used synchronous communication rounds because of MPI limitations. In
Section 8.6 we further elaborate on this issue.

Each node was assigned several examples from the input file. Then, the kernel matrix D
was computed by the nodes in a distributed fashion, so that each node computed the rows of
the kernel matrix related to its assigned data points. After computing the relevant parts of the
matrix D, the nodes weighted the diagonal of the matrix D, as discussed in Section 8.4. Then,
several rounds of communication between the nodes were executed. In each round, using our
optimization, a total of n sums were calculated using MPI Allreduce system call. Finally, each
node output the solution x, which was the mean of the input Gaussian that matched its own data
points. Each xi signified the weight of the data point i for being chosen as a support vector.

To compare our algorithm performance, we used two algorithms: Sequential SVM (SVMSeq)
[78] and SVMlight [86]. We used the SVMSeq implementation provided within the IBM Parallel
Machine Learning (PML) toolbox [87]. The PML implements the same algorithm by Vijaykumar
and Wu [78] that our GaBP solver is based on, but the implementation in through a master-slave
architecture as described in [83]. SVMlight is a single computing node solver.
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Figure 8.1: Speedup of the GaBP algorithm vs. 2 CPUS.

Table 8.1 describes the seven datasets we used to compare the algorithms and the classification
accuracy obtained. These computations were done using five processing nodes (3.5GHz Intel
Pentium machines, running the Linux operating system) for each of the parallel solvers. All
datasets were taken from the UCI repository [88]. We used medium-sized datasets so that run-
times using SVMlight would not be prohibitively high. All algorithms were run with an RBF
kernel. The parameters of the algorithm (kernel width and misclassification cost) were optimized
using a line-search algorithm, as detailed in [89].

Note that SVMlight is a single node solver, which we use mainly as a comparison for the
accuracy in classification.

Using the Friedman test [90], we did not detect any statistically significant difference between
the performance of the algorithms with regards to accuracy (p < 0.10−3).

Figure 8.1 shows the speedup results of the algorithm when running the GaBP algorithm on
a Blue Gene supercomputer. The speedup with N nodes is computed as the run time of the
algorithm on a single node, divided by the run time using N nodes. Obviously, it is desirable
to obtain linear speedup, i.e., doubling computational power halves the processing time, but this
is limited by the communication load and by parts of the algorithm that cannot be parallelized.
Since Blue Gene is currently limited to 0.5 GB of memory at each node, most datasets could not
be executed on a single node. We therefore show speedup compared to two nodes. As the figure
shows, in most cases we get a linear speedup up to 256 CPUs, which means that the running time
is linearly proportional to one over the number of used CPUs. When using 512 - 1024 CPUs, the
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Dataset Dim Num of examples Run time GaBP (sec) Run time [85] (sec) Run time [84]
Covertype 54 150,000/300,000 468 24365 16742
MNIST 784 60,000 756 359 18

Table 8.3: Running times of the GaBP solver for large data sets using 1024 CPUs on an IBM
Blue Gene supercomputer. Running time results are compared to two state-of-the-art solvers:
[85] and [84].

communication overhead reduces the efficiency of the parallel computation. We identified this
problem as an area for future research into optimizing the performance for larger scale grids.

We also tested the ability to build classifiers for larger datasets. Table 8.3 shows the run times
of the GaBP algorithm using 1024 CPUs on two larger datasets, both from the UCI repository.
This demonstrates the ability of the algorithm to process very large datasets in a reasonably
short amount of time. We compare our running time to state-of-the-art parallel decomposition
method by Zanni et al. [85] and Hazan et al. . Using the MNIST dataset we where considerably
slower by a factor of two, but in the larger Covertype dataset we have a superior performance.
Note that the reported running times should be taken with a grain of salt, since the machines
used for experimentation are different. Zanni used 16 Pentium IV machines with 16Gb memory,
Hazan used 10 Pentium IV machines with 4Gb memory, while we used a larger number of weaker
Pentium III machines with 400Mb of memory. Furthermore, in the Covertype dataset we used
only 150,000 data points while Zanni and Hazan used the full dataset which is twice larger.

8.6 Discussion

In this chapter we demonstrated the application of the Gaussian Belief Propagation to the solution
of SVM problems. Our experiments demonstrate the usefulness of this solver, being both accurate
and scalable.

We implemented our algorithm using a synchronous communication model mainly because
MPICH2 does not support asynchronous communication. While synchronous communication is
the mode of choice for supercomputers such as Blue Gene, in many cases such as heterogeneous
grid environments, asynchronous communication will be preferred. We believe that the next
challenging goal will be to implement the proposed algorithm in asynchronous settings, where
algorithm rounds will no longer be synchronized.

Our initial experiments with very large sparse kernel matrices (millions of data points) show
that asynchronous settings converge faster. Recent work by Elidan et al. [65] supports this claim
by showing that in many cases the BP algorithm converges faster in asynchronous settings.

Another challenging task would involve scaling to data sets of millions of data points. Cur-
rently the full kernel matrix is computed by the nodes. While this is effective for problems with
many support vectors [83], it is not required in many problems that are either easily separable or
where the classification error is less important compared to the time required to learn the mode.
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Thus, solvers scaling to much larger datasets may have to diverge from the current strategy of
computing the full kernel matrix and instead sparsify the kernel matrix as is commonly done in
single node solvers.

Finally, it remains an open question whether SVMs can be solved efficiently in Peer-to-Peer
environments, where each node can (efficiently) obtain data from only several close peers. Future
work will be required in order to verify how the GaBP algorithm performs in such an environment,
where only partial segments of the kernel matrix can be computed by each node.
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Chapter 9

Distributed Computation of Kalman
Filter

In Chapter 7 we show how to compute efficiently and distributively the MMSE prediction for the
multiuser detection problem, using the Gaussian Belief Propagation (GaBP) algorithm. The basic
idea is to shift the problem from the linear algebra domain into a probabilistic graphical model,
solving an equivalent inference problem using the efficient belief propagation inference engine.

In this chapter, we propose to extend the previous construction, and show, that by performing
the MMSE computation twice on the matching inputs we are able to compute several algorithms:
Kalman filter, Gaussian information bottleneck and the Affine-scaling interior point method. We
reduce the discrete Kalman filter computation [91] to a matrix inversion problem and show how
to solve it using the GaBP algorithm. We show that Kalman filter iteration that is composed from
prediction and measurement steps can be computed by two consecutive MMSE predictions. We
explore the relation to Gaussian information bottleneck (GIB) [92] and show that Kalman filter
is a special instance of the GIB algorithm, when the weight parameter β = 1. To the best of our
knowledge, this is the first algorithmic link between the information bottleneck framework and
linear dynamical systems. We discuss the connection to the Affine-scaling interior-point method
and show it is an instance of the Kalman filter.

Besides of the theoretical interest of linking compression, estimation and optimization to-
gether, our work is highly practical, since it proposes a general framework for computing all of
the above tasks distributively in a computer network. This result can have many applications in
the fields of estimation, collaborative signal processing, distributed resource allocation, etc.

A closely related work is [39]. In this work, Frey et al. focus on the belief propagation algorithm
(a.k.a sum-product algorithm) using factor graph topologies. They show that the Kalman filter
algorithm can be computed using belief propagation over a factor graph. In this contribution
we extend their work in several directions. First, we extend the computation to vector variables
(relative to scalar variables in Frey’s work). Second, we use a different graphical model: an
undirected graphical model, which results in simpler update rules, where Frey uses factor-graph
with two types of messages: factor to variables and variables to factors. Third and most important,
we allow an efficient distributed calculation of the Kalman filter steps, where Frey’s algorithm is
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centralized.
Another related work is [93]. In this work the link between Kalman filter and linear program-

ming is established. In this thesis we propose a new and different construction that ties the two
algorithms.

9.1 Kalman Filter

The Kalman filter is an efficient iterative algorithm to estimate the state of a discrete-time
controlled process x ∈ Rn that is governed by the linear stochastic difference equation1:

xk = Axk−1 + Buk−1 + wk−1 , (9.1)

with a measurement z ∈ Rm that is zk = Hxk + vk. The random variables wk and vk that
represent the process and measurement AWGN noise (respectively). p(w) ∼ N (0, Q), p(v) ∼
N (0, R). We further assume that the matrices A,H, B, Q, R are given.2

The discrete Kalman filter update equations are given by [91]:
The prediction step:

x̂−k = Ax̂k−1 + Buk−1, (9.2a)

P−
k = APk−1A

T + Q. (9.2b)

The measurement step:

Kk = P−
k HT (HP−

k HT + R)−1, (9.3a)

x̂k = x̂−k + Kk(zk −Hx̂−k ), (9.3b)

Pk = (I −KkH)P−
k . (9.3c)

where I is the identity matrix.
The algorithm operates in rounds. In round k the estimates Kk, x̂k, Pk are computed, incor-

porating the (noisy) measurement zk obtained in this round. The output of the algorithm are the
mean vector x̂k and the covariance matrix Pk.

9.2 Our Construction

Our novel contribution is a new efficient distributed algorithm for computing the Kalman filter.
We begin by showing that the Kalman filter can be computed by inverting the following covariance
matrix:

E =



−Pk−1 A 0

AT Q H
0 HT R


 , (9.4)

1We assume there is no external input, namely xk = Axk−1 + wk−1. However, our approach can be easily
extended to support external inputs.

2Another possible extension is that the matrices A,H, B, Q, R change in time, in this thesis we assume they
are fixed. However, our approach can be generalized to this case as well.
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and taking the lower right 1× 1 block to be Pk.
The computation of E−1 can be done efficiently using recent advances in the field of Gaussian

belief propagation [14,19]. The intuition for our approach, is that the Kalman filter is composed
of two steps. In the prediction step, given xk, we compute the MMSE prediction of x−k [39].
In the measurement step, we compute the MMSE prediction of xk+1 given x−k , the output of
the prediction step. Each MMSE computation can be done using the GaBP algorithm [19].
The basic idea is that given the joint Gaussian distribution p(x,y) with the covariance matrix

C =

(
Σxx Σxy

Σyx Σyy

)
, we can compute the MMSE prediction

ŷ = arg max
y

p(y|x) ∝ N (µy|x, Σ
−1
y|x) ,

where
µy|x = (Σyy − ΣyxΣ

−1
xx Σxy)

−1ΣyxΣ
−1
xx x ,

Σy|x = (Σyy − ΣyxΣ
−1
xx Σxy)

−1 .

This in turn is equivalent to computing the Schur complement of the lower right block of the
matrix C. In total, computing the MMSE prediction in Gaussian graphical model boils down to a
computation of a matrix inverse. In [14] we have shown that GaBP is an efficient iterative algo-
rithm for solving a system of linear equations (or equivalently computing a matrix inverse). In [19]
we have shown that for the specific case of linear detection we can compute the MMSE estimator
using the GaBP algorithm. Next, we show that performing two consecutive computations of the
MMSE are equivalent to one iteration of the Kalman filter.

Theorem 26. The lower right 1×1 block of the matrix inverse E−1 (eq. 9.4), computed by two
MMSE iterations, is equivalent to the computation of Pk done by one iteration of the Kalman
filter algorithm.

Proof. We prove that inverting the matrix E (eq. 9.4) is equivalent to one iteration of the
Kalman filter for computing Pk.

We start from the matrix E and show that P−
k can be computed in recursion using the Schur

complement formula:
D − CA−1B (9.5)

applied to the 2 × 2 upper left submatrix of E, where D , Q, C , AT , B , A,A , Pk−1, we
get:

P−
k =

D︷︸︸︷
Q

−︷︸︸︷
+

C︷︸︸︷
AT

−A−1︷︸︸︷
Pk−1

B︷︸︸︷
A .

Now we compute recursively the Schur complement of lower right 2 × 2 submatrix of the
matrix E using the matrix inversion lemma:

A−1 + A−1B(D − CA−1B)−1CA−1
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where A−1 , P−
k , B , HT , C , H, D , Q. In total we get:

A−1

︷︸︸︷
P−

k +

A−1

︷︸︸︷
P−

k

B︷︸︸︷
HT (

D︷︸︸︷
R +

C︷︸︸︷
H

A−1

︷︸︸︷
P−

k

B︷︸︸︷
HT )−1

C︷︸︸︷
H

A−1

︷︸︸︷
P−

k = (9.6)

(I −
(9.3a)︷ ︸︸ ︷

P−
k HT (HP−

k HT + R)−1 H)P−
k =

(9.3c)︷ ︸︸ ︷
(I −KkH)P−

k = Pk

In Section 9.2 we explain how to utilize the above observation to an efficient distributed
iterative algorithm for computing the Kalman filter.

9.3 Gaussian Information Bottleneck

Given the joint distribution of a source variable X and another relevance variable Y, Information
bottleneck (IB) operates to compress X, while preserving information about Y [94,95], using the
following variational problem:

min
p(t|x)

L : L ≡ I(X; T )− βI(T ; Y )

T represents the compressed representation of X via the conditional distributions p(t|x), while
the information that T maintains on Y is captured by the distribution p(y|t). β > 0 is a
lagrange multiplier that weights the tradeoff between minimizing the compression information
and maximizing the relevant information. As β → 0 we are interested solely in compression,
but all relevant information about Y is lost I(Y ; T ) = 0. When β → ∞ we are focused on
preservation of relevant information, in this case T is simply the distribution X and we obtain
I(T ; Y ) = I(X; Y ). The interesting cases are in between, when for finite values of β we are able
to extract rather compressed representation of X while still maintaining a significant fraction of
the original information about Y.

An iterative algorithm for solving the IB problem is given in [95]:

P k+1(t|x) = P k(t)
Zk+1(x,β)

exp(−βDKL[p(y|x)||pk(y|t)]) ,

P k(t) =
∫

x
p(x)P k(t|x)dx , (9.7a)

P k(y|t) = 1
P k(t)

∫
x
P k(t|x)p(x, y)dx , (9.7b)

where Zk+1 is a normalization factor computed in round k + 1.
The Gaussian information bottleneck (GIB) [92] deals with the special case where the under-

lying distributions are Gaussian. In this case, the computed distribution p(t) is Gaussian as well,
represented by a linear transformation Tk = AkX + ξk where Ak is a joint covariance matrix
of X and T , ξk ∼ N (0, Σξk

) is a multivariate Gaussian independent of X. The outputs of the
algorithm are the covariance matrices representing the linear transformation T: Ak, Σξk

.
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Figure 9.1: Comparison of the different graphical models used. (a) Gaussian Information Bottle-
neck [92] (b) Kalman Filter (c) Frey’s sum-product factor graph [39] (d) Our new construction.

An iterative algorithm is derived by substituting Gaussian distributions into (9.7), resulting in
the following update rules:

Σξ+1 = (βΣtk|y − (β − 1)Σ−1
tk

), (9.8a)

Ak+1 = βΣξk+1Σ
−1
tk|yAk(I − Σy|xΣ

−1
x ). (9.8b)

Table 9.1: Summary of notations in the GIB [92] paper vs. Kalman filter [91]
GIB [92] Kalman [91] Kalman meaning

Σx P0 a-priori estimate error covariance
Σy Q process AWGN noise
Σtk R measurement AWGN noise
Σxy A process state transformation matrix
Σyx AT -”-

ΣxyA HT measurement transformation matrix
AT Σyx H -”-

Σξk
Pk posterior error covariance in round k

Σx|yk
P−

k a-priori error covariance in round k

Since the underlying graphical model of both algorithms (GIB and Kalman filter) is Markovian
with Gaussian probabilities, it is interesting to ask what is the relation between them. In this work
we show, that the Kalman filter posterior error covariance computation is a special case of the
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GIB algorithm when β = 1. Furthermore, we show how to compute GIB using the Kalman filter
when β > 1 (the case where 0 < β < 1 is not interesting since it gives a degenerate solution
where Ak ≡ 0 [92].) Table 9.1 outlines the different notations used by both algorithms.

Theorem 27. The GIB algorithm when β = 1 is equivalent to the Kalman filter algorithm.

Proof. Looking at [92, §39], when β = 1 we get

Σξ+1 = (Σ−1
tk|y)

−1 = Σtk|y =

MMSE︷ ︸︸ ︷
Σtk − ΣtkyΣ

−1
y Σytk =

[92, §38b]︷ ︸︸ ︷
Σtk + BT Σy|tkB =

Σtk +

[92, §34]︷ ︸︸ ︷
Σ−1

tk
Σtky Σy|tk

[92, §34]︷ ︸︸ ︷
ΣytkΣ

−1
tk

=

[92, §33]︷ ︸︸ ︷
AT ΣxA + Σξ +

[92, §33]︷ ︸︸ ︷
(AT ΣxA + Σξ) AT Σxy·

·Σy|tkΣyxA

[92, §33]︷ ︸︸ ︷
(AT ΣxA + Σξ)

T = AT ΣxA + Σξ + (AT ΣxA + Σξ)A
T Σxy·

·
MMSE︷ ︸︸ ︷

(Σy + ΣytkΣ
−1
tk

Σtky) ΣyxA(AT ΣxA + Σξ)
T = AT ΣxA + Σξ + (AT ΣxA + Σξ)A

T Σxy·

(Σy +

[92, §5]︷ ︸︸ ︷
AT Σyx

( [92, §5]︷ ︸︸ ︷
(AΣxA

T + Σξ)

[92, §5]︷ ︸︸ ︷
ΣxyA )ΣyxA(AT ΣxA + Σξ)

T .

Now we show this formulation is equivalent to the Kalman filter with the following notations:

P−
k , (AT ΣxA + Σξ) , H , AT Σyx, R , Σy, Pk−1 , Σx, Q , Σξ.

Substituting we get:

P−k︷ ︸︸ ︷
(AT ΣxA + Σξ) +

P−k︷ ︸︸ ︷
(AT ΣxA + Σξ)

HT︷ ︸︸ ︷
AT Σxy ·(

R︷︸︸︷
Σy +

H︷ ︸︸ ︷
AT Σyx

P−k︷ ︸︸ ︷
(AT ΣxA + Σξ)

HT︷ ︸︸ ︷
ΣxyA)

H︷ ︸︸ ︷
ΣyxA

P−k︷ ︸︸ ︷
(AT ΣxA + Σξ) .

Which is equivalent to (9.6). Now we can apply Theorem 1 and get the desired result.

Theorem 28. The GIB algorithm when β > 1 can be computed by a modified Kalman filter
iteration.

Proof. In the case where β > 1, the MAP covariance matrix as computed by the GIB algorithm
is:

Σξk+1
= βΣtk|y + (1− β)Σtk (9.9)

This is a weighted average of two covariance matrices. Σtk is computed at the first phase of
the algorithm (equivalent to the prediction phase in Kalman literature), and Σtk|y is computed
in the second phase of the algorithm (measurement phase). At the end of the Kalman iteration,
we simply compute the weighted average of the two matrices to get (9.9). Finally, we compute
Ak+1 using (eq. 9.8b) by substituting the modified Σξk+1

.
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Figure 9.2: Comparison of the schematic operation of the different algorithms. (a) iterative
information bottleneck operation (b) Kalman filter operation (c) Affine-scaling operation.

There are some differences between the GIB algorithm and Kalman filter computation. First,
the Kalman filter has input observations zk in each round. Note that the observations do not
affect the posterior error covariance computation Pk (eq. 9.3c), but affect the posterior mean
x̂k (eq. 9.3b). Second, Kalman filter computes both posterior mean x̂k and error covariance Pk.
The covariance Σξk

computed by the GIB algorithm was shown to be identical to Pk when β = 1.
The GIB algorithm does not compute the posterior mean, but computes an additional covariance
Ak (eq. 9.8b), which is assumed known in the Kalman filter.

From the information theoretic perspective, our work extends the ideas presented in [96].
Predictive information is defined to be the mutual information between the past and the future of
a time serias. In that sense, by using Theorem 2, Kalman filter can be thought of as a prediction
of the future, which from the one hand compresses the information about past, and from the
other hand maintains information about the present.

The origins of similarity between the GIB algorithm and Kalman filter are rooted in the IB
iterative algorithm: For computing (9.7a), we need to compute (9.7a,9.7b) in recursion, and
vice versa.

9.4 Relation to the Affine-Scaling Algorithm

One of the most efficient interior point methods used for linear programming is the Affine-
scaling algorithm [97]. It is known that the Kalman filter is linked to the Affine-scaling algorithm
[93]. In this work we give an alternate proof, based on different construction, which shows that
Affine-scaling is an instance of Kalman filter, which is an instance of GIB. This link between
estimation and optimization allows for numerous applications. Furthermore, by providing a single
distribute efficient implementation of the GIB algorithm, we are able to solve numerous problems
in communication networks.
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The linear programming problem in its canonical form is given by:

minimize cTx , (9.10a)

subject to Ax = b, x ≥ 0 , (9.10b)

where A ∈ Rn×p with rank{A} = p < n. We assume the problem is solvable with an optimal
x∗. We also assume that the problem is strictly feasible, in other words there exists x ∈ Rn that
satisfies Ax = b and x > 0.

The Affine-scaling algorithm [97] is summarized below. Assume x0 is an interior feasible point
to (9.10b). Let D = diag(x0). The Affine-scaling is an iterative algorithm which computes a
new feasible point that minimizes the cost function (10.1a):

x1 = x0 − α

γ
D2r , (9.11)

where 0 < α < 1 is the step size, r is the step direction.

r = (c− ATw) , (9.12a)

w = (AD2AT )−1AD2c , (9.12b)

γ = max
i

(eiPDc) . (9.12c)

where ei is the ith unit vector and P is a projection matrix given by:

P = I −DAT (AD2AT )−1AD . (9.13)

The algorithm continues in rounds and is guaranteed to find an optimal solution in at most n
rounds. In a nutshell, in each iteration, the Affine-scaling algorithm first performs an Affine-
scaling with respect to the current solution point xi and obtains the direction of descent by
projecting the gradient of the transformed cost function on the null space of the constraints set.
The new solution is obtained by translating the current solution along the direction found and
then mapping the result back into the original space [93]. This has interesting analogy for the
two phases of the Kalman filter.

Theorem 29. The Affine-scaling algorithm iteration is an instance of the Kalman filter algorithm
iteration.

Proof. We start by expanding the Affine-scaling update rule:

x1 =

(9.11)︷ ︸︸ ︷
x0 − α

γ
D2r = x0 − α

max
i

eiPDc
︸ ︷︷ ︸

(9.12c)

D2r == x0 − α

maxi ei (I −DAT (AD2AT )AD)︸ ︷︷ ︸
(9.13)

Dc
D2r =

= x0 − αD2

(9.12a)︷ ︸︸ ︷
(c− ATw)

maxi ei(I−DAT (AD2AT )−1AD)Dc
= x0 − αD2(c−AT

(9.12b)︷ ︸︸ ︷
(AD2AT )−1AD2c)

maxi ei(I−DAT (AD2AT )AD)−1Dc
=

= x0 − αD(I−DAT (AD2AT )−1AD)Dc
maxi ei(I−DAT (AD2AT )−1AD)Dc

.
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Looking at the numerator and using the Schur complement formula (9.5) with the follow-
ing notations: A , (AD2AT )−1, B , AD, C , DAT , D , I we get the following matrix:(

AD2AT AD
DAT I

)
. Again, the upper left block is a Schur complement A , 0, B , AD, C ,

DAT , D , I of the following matrix:

(
0 AD

DAT I

)
. In total we get a 3× 3 block matrix of

the form:




0 AD 0
DAT I AD

0 DAT I


.

Note that the divisor is a scalar that affects the scaling of the step size.
Using Theorem 1, we get a computation of Kalman filter with the following parameters:

A,H , AD, Q , I, R , I, P0 , 0. This has an interesting interpretation in the context of
Kalman filter: both prediction and measurement transformation are identical and equal AD. The
noise variance of both transformations are Gaussian variables with prior ∼ N (0, I).

We have shown how to express the Kalman filter, Gaussian information bottleneck and Affine-
scaling algorithms as a two step MMSE computation. Each step involves inverting a 2× 2 block
matrix. The MMSE computation can be done efficiently and distributively using the Gaussian
belief propagation algorithm.
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Chapter 10

Linear Programming

In recent years, considerable attention has been dedicated to the relation between belief prop-
agation message passing and linear programming schemes. This relation is natural since the
maximum a-posteriori (MAP) inference problem can be translated into integer linear program-
ming (ILP) [98].

Weiss et al. [98] approximate the solution to the ILP problem by relaxing it to a LP problem
using convex variational methods. In [99], tree-reweighted belief propagation (BP) is used to find
the global minimum of a convex approximation to the free energy. Both of these works apply
discrete forms of BP. Globerson et al. [100,101] assume convexity of the problem and modify the
BP update rules using dual-coordinate ascent algorithm. Hazan et al. [84] describe an algorithm
for solving a general convex free energy minimization. In both cases the algorithm is guaranteed
to converge to the global minimum as the problem is tailored to be convex.

This chapter takes a different path. Unlike most of the previous work, which uses gradient-
descent methods, we show how to use interior-point methods, which are shown to have strong
advantages over gradient and steepest descent methods. (For a comparative study see [102,
§9.5,p. 496].) The main benefit of using interior point methods is their rapid convergence,
which is quadratic once we are close enough to the optimal solution. Their main drawback
is that they require heavier computational effort for forming and inverting the Hessian matrix
needed for computing the Newton step. To overcome this, we propose the use of Gaussian BP
(GaBP) [14,7], which is a variant of BP applicable when the underlying distribution is Gaussian.
Using GaBP, we are able to reduce the time associated with the Hessian inversion task, from
O(n2.5) to O(nplog(ε)/log(γ)) at the worst case, where p < n is the size of the constraint matrix
A, ε is the desired accuracy, and 1/2 < γ < 1 is a parameter characterizing the matrix A. This
computational savings is accomplished by exploiting the sparsity of the Hessian matrix.

An additional benefit of our GaBP-based approach is that the polynomial-complexity LP solver
can be implemented in a distributed manner, enabling efficient solution of large-scale problems.
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10.1 Standard Linear Programming

Consider the standard linear program

minimizex cTx , (10.1a)

subject to Ax = b, x ≥ 0 , (10.1b)

where A ∈ Rn×p with rank{A} = p < n. We assume the problem is solvable with an optimal
x∗ assignment. We also assume that the problem is strictly feasible, or in other words there exists
x ∈ Rn that satisfies Ax = b and x > 0.

Using the log-barrier method [102, §11.2], one gets

minimizex,µ cTx− µΣn
k=1 log xk , (10.2a)

subject to Ax = b. (10.2b)

This is an approximation to the original problem (10.1a). The quality of the approximation
improves as the parameter µ → 0.

Table 10.1: The Newton algorithm [102, §9.5.2] .
Given feasible starting point x0 and tolerance ε > 0, k = 1
Repeat 1 Compute the Newton step and decrement

∆x = f ′′(x)−1f ′(x), λ2 = f ′(x)T ∆x
2 Stopping criterion. quit if λ2/2 ≤ ε
3 Line search. Choose step size t by backtracking line search.
4 Update. xk := xk−1 + t∆x, k = k + 1

Now we would like to use the Newton method for solving the log-barrier constrained objective
function (10.2a), described in Table 10.1. Suppose that we have an initial feasible point x0 for
the canonical linear program (10.1a). We approximate the objective function (10.2a) around the
current point x̃ using a second-order Taylor expansion

f(x̃ + ∆x) ' f(x̃) + f ′(x̃)∆x + 1/2∆xT f ′′(x̃)∆x. (10.3)

Finding the optimal search direction ∆x yields the computation of the gradient and compare it
to zero

∂f

∂∆x
= f ′(x̃) + f ′′(x̃)∆x = 0, (10.4)

∆x = −f ′′(x̃)−1f ′(x̃). (10.5)

Denoting the current point x̃ , (x, µ,y) and the Newton step ∆x , (x,y, µ), we compute
the gradient

f ′(x, µ,y) ≡ (∂f(x, µ,y)/∂x, ∂f(x, µ,y)/∂µ, ∂f(x, µ,y)/∂y)
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The Lagrangian is

L(x, µ,y) = cTx− µΣk log xk + yT (b−Ax), (10.7)

∂L(x, µ,y)

∂x
= c− µX−11− yTA = 0, (10.8)

∂2L(x, µ,y)

∂x
= µX−2, (10.9)

where X , diag(x) and 1 is the all-one column vector. Substituting (10.8)-(10.9) into (10.4),
we get

c− µX−11− yTA + µX−2x = 0 , (10.10)

c− µX−11 + xµX−2 = yTA , (10.11)

∂L(x, µ,y)

∂y
= Ax = 0 . (10.12)

Now multiplying (10.11) by AX2, and using (10.12) to eliminate x we get

AX2ATy = AX2c− µAX1 . (10.13)

These normal equations can be recognized as generated from the linear least-squares problem

min
y
||XATy −Xc− µAX1||22. (10.14)

Solving for y we can compute the Newton direction x, taking a step towards the boundary
and compose one iteration of the Newton algorithm. Next, we will explain how to shift the
deterministic LP problem to the probabilistic domain and solve it distributively using GaBP.

10.2 From LP to Probabilistic Inference

We start from the least-squares problem (10.14), changing notations to

min
y
||Fy − g||22 , (10.15)

where F , XAT ,g , Xc + µAX1. Now we define a multivariate Gaussian

p(x̂) , p(x,y) ∝ exp(−1/2(Fy − g)T I(Fy − g)) . (10.16)

It is clear that ŷ, the minimizing solution of (10.15), is the MAP estimator of the conditional
probability

ŷ = arg max
y

p(y|x) = N ((FTF)−1FTg, (FTF)−1) .
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As shown in Chapter 7, the pseudo-inverse solution can be computed efficiently and distribu-
tively by using the GaBP algorithm.

The formulation (10.16) allows us to shift the least-squares problem from an algebraic to
a probabilistic domain. Instead of solving a deterministic vector-matrix linear equation, we now
solve an inference problem in a graphical model describing a certain Gaussian distribution function.
We define the joint covariance matrix

C ,
( −I F

FT 0

)
, (10.17)

and the shift vector b , {0T ,gT}T ∈ R(p+n)×1.
Given the covariance matrix C and the shift vector b, one can write explicitly the Gaussian den-

sity function, p(x̂) , and its corresponding graph G with edge potentials (‘compatibility functions’)
ψij and self-potentials (‘evidence’) φi. These graph potentials are determined according to the
following pairwise factorization of the Gaussian distribution p(x) ∝ ∏n

i=1 φi(xi)
∏
{i,j} ψij(xi, xj),

resulting in ψij(xi, xj) , exp(−xiCijxj), and φi(xi) , exp
(
bixi − Ciix

2
i /2

)
. The set of edges

{i, j} corresponds to the set of non-zero entries in C (10.17). Hence, we would like to calculate
the marginal densities, which must also be Gaussian,

p(xi) ∼ N (µi = {C−1g}i, P
−1
i = {C−1}ii),

∀i > p,

where µi and Pi are the marginal mean and inverse variance (a.k.a. precision), respectively.
Recall that in the GaBP algorithm, the inferred mean µi is identical to the desired solution ŷ of
(10.17).

10.3 Extending the Construction to the Primal-Dual Method

In the previous section we have shown how to compute one iteration of the Newton method
using GaBP. In this section we extend the technique for computing the primal-dual method. This
construction is attractive, since the extended technique has the same computation overhead.

The dual problem ( [103]) conforming to (10.1a) can be computed using the Lagrangian

L(x,y, z) = cTx + yT (b−Ax)− zTx, z ≥ 0,

g(y, z) = inf
x
L(x,y, z), (10.18a)

subject to Ax = b,x ≥ 0. (10.18b)

while
∂L(x,y, z)

∂x
= c−ATy − z = 0. (10.19)

83



10.3. EXTENDED CONSTRUCTION CHAPTER 10. LINEAR PROGRAMMING

Substituting (10.19) into (10.18a) we get

maximizey bTy

subject to ATy + z = c, z ≥ 0.

Primal optimality is obtained using (10.8) [103]

yTA = c− µX−11. (10.21)

Substituting (10.21) in (10.20a) we get the connection between the primal and dual

µX−11 = z.

In total, we have a primal-dual system (again we assume that the solution is strictly feasible,
namely x > 0, z > 0)

Ax = b, x > 0,

ATy + z = c, z > 0,

Xz = µ1.

The solution [x(µ),y(µ), z(µ)] of these equations constitutes the central path of solutions to
the logarithmic barrier method [102, 11.2.2]. Applying the Newton method to this system of
equations we get 


0 AT I
A 0 0
Z 0 X







∆x
∆y
∆z


 =




b−Ax
c−ATy − z

µ1−Xz


 . (10.23)

The solution can be computed explicitly by

∆y = (AZ−1XAT )−1(AZ−1X(c− µX−11−ATy) + b−Ax),
∆x = XZ−1(AT ∆y + µX−11 = c + ATy),
∆z = −AT ∆y + c−ATy − z.

The main computational overhead in this method is the computation of (AZ−1XAT )−1, which
is derived from the Newton step in (10.5).

Now we would like to use GaBP for computing the solution. We make the following simple
change to (10.23) to make it symmetric: since z > 0, we can multiply the third row by Z−1 and
get a modified symmetric system




0 AT I
A 0 0
I 0 Z−1X







∆x
∆y
∆z


 =




b−Ax
c−ATy − z
µZ−11−X


 .

Defining Ã ,




0 AT I
A 0 0
I 0 Z−1X


 , and b̃ ,




b−Ax
c−ATy − z
µZ−11−X


 . one can use the GaBP

algorithm.
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Figure 10.1: A simple example of using GaBP for solving linear programming with two variables
and eleven constraints. Each red circle shows one iteration of the Newton method.

In general, by looking at (10.4) we see that the solution of each Newton step involves inverting
the Hessian matrix f ′′(x). The state-of-the-art approach in practical implementations of the
Newton step is first computing the Hessian inverse f ′′(x)−1 by using a (sparse) decomposition
method like (sparse) Cholesky decomposition, and then multiplying the result by f ′(x). In our
approach, the GaBP algorithm computes directly the result ∆x, without computing the full matrix
inverse. Furthermore, if the GaBP algorithm converges, the computation of ∆x is guaranteed to
be accurate.

10.3.1 Applications to Interior-Point Methods

We would like to compare the running time of our proposed method to the Newton interior-point
method, utilizing our new convergence results of the previous section. As a reference we take the
Karmarkar algorithm [104] which is known to be an instance of the Newton method [105]. Its
running time is composed of n rounds, where on each round one Newton step is computed. The
cost of computing one Newton step on a dense Hessian matrix is O(n2.5), so the total running
time is O(n3.5).

Using our approach, the total number of Newton iterations, n, remains the same as in the
Karmarkar algorithm. However, we exploit the special structure of the Hessian matrix, which is
both symmetric and sparse. Assuming that the size of the constraint matrix A is n × p, p <
n, each iteration of GaBP for computing a single Newton step takes O(np), and based on
the convergence analysis in Section 3.1, for a desired accuracy ε||b||∞ we need to iterate for
r = dlog(ε)/log(γ)e rounds, where γ is defined in (3.1). The total computational burden for a
single Newton step is O(nplog(ε)/log(γ)). There are at most n rounds, hence in total we get
O(n2plog(ε)/log(γ)).
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10.4 Case Study: Network Utility Maximization

We consider a network that supports a set of flows, each of which has a nonnegative flow rate,
and an associated utility function. Each flow passes over a route, which is a subset of the edges
of the network. Each edge has a given capacity, which is the maximum total traffic (the sum
of the flow rates through it) it can support. The network utility maximization (NUM) problem
is to choose the flow rates to maximize the total utility, while respecting the edge capacity
constraints [106,107]. We consider the case where all utility functions are concave, in which case
the NUM problem is a convex optimization problem.

A standard technique for solving NUM problems is based on dual decomposition [108, 109].
This approach yields fully decentralized algorithms, that can scale to very large networks. Dual
decomposition was first applied to the NUM problem in [110], and has led to an extensive body
of research on distributed algorithms for network optimization [111, 112, 113] and new ways to
interpret existing network protocols [114].

Recent work by Zymnis et al. [115], presents a specialized primal-dual interior-point method
for the NUM problem. Each Newton step is computed using the preconditioned conjugate gradient
method (PCG). This proposed method had a significant performance improvement over the dual
decomposition approach, especially when the network is congested. Furthermore, the method
can handle utility functions that are not strictly concave. The main drawback of the primal-dual
method is that it is centralized, while the dual decomposition methods are easily distributed.

Next, we compare the performance of the GaBP solver proposed in this chapter, to the
truncated Newton method and dual decomposition approaches. We provide the first comparison
of performance of the GaBP algorithm vs. the PCG method. The PCG method is a state-
of-the-art method used extensively in large-scale optimization applications. Examples include
`1-regularized logistic regression [116], gate sizing [117], and slack allocation [118]. Empirically,
the GaBP algorithm is immune to numerical problems with typically occur in the PCG method,
while demonstrating a faster convergence. The only previous work comparing the performance of
GaBP vs. PCG we are aware of is [119], which used a small example of 25 nodes, and the work
of [8] which used a grid of 25× 25 nodes.

We believe that our approach is general and not limited to the NUM problem. It could
potentially be used for the solution of other large scale distributed optimization problems.

10.4.1 NUM Problem Formulation

There are n flows in a network, each of which is associated with a fixed route, i.e. , some subset
of m links. Each flow has a nonnegative rate, which we denote f1, . . . , fn. With the flow j
we associate a utility function Uj : R → R, which is concave and twice differentiable, with
domUj ⊆ R+. The utility derived by a flow rate fj is given by Uj(fj). The total utility
associated with all the flows is then U(f) = U1(f1) + · · ·+ Un(fn).

The total traffic on a link in the network is the sum of the rates of all flows that utilize that
link. We can express the link traffic compactly using the routing or link-route matrix R ∈ Rm×n,
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defined as

Rij =

{
1 flow j’s route passes over link i
0 otherwise.

Each link in the network has a (positive) capacity c1, . . . , cm. The traffic on a link cannot exceed
its capacity, i.e. , we have Rf ≤ c, where ≤ is used for componentwise inequality.

The NUM problem is to choose the rates to maximize total utility, subject to the link capacity
and the nonnegativity constraints:

maximize U(f)
subject to Rf ≤ c, f ≥ 0,

(10.24)

with variable f ∈ Rn. This is a convex optimization problem and can be solved by a variety of
methods. We say that f is primal feasible if it satisfies Rf ≤ c, f ≥ 0.

The dual of problem (10.24) is

minimize λT c +
∑n

j=1(−Uj)
∗(−rT

j λ)

subject to λ ≥ 0,
(10.25)

where λ ∈ Rm
+ is the dual variable associated with the capacity constraint of problem (10.24), rj

is the jth column of R and (−Uj)
∗ is the conjugate of the negative jth utility function [120, §3.3],

(−Uj)
∗(a) = sup

x≥0
(ax + Uj(x)).

We say that λ is dual feasible if it satisfies λ ≥ 0 and λ ∈ ∩n
j=1 dom(−Uj)

∗.

10.4.2 Previous Work

In this section we give a brief overview of the dual-decomposition method and the primal-dual
interior point method proposed in [115].

Dual decomposition [108, 109, 110, 111] is a projected (sub)gradient algorithm for solving
problem (10.25), in the case when all utility functions are strictly concave. We start with any
positive λ, and repeatedly carry out the update

fj := arg max
x≥0

(
Uj(x)− x(rT

j λ)
)
, j = 1, . . . , n,

λ := (λ− α (c−Rf))+ ,

where α > 0 is the step size, and x+ denotes the entrywise nonnegative part of the vector x. It
can be shown that for small enough α, f and λ will converge to f ? and λ?, respectively, provided
all Uj are differentiable and strictly concave. The term s = c − Rf appearing in the update
is the slack in the link capacity constraints (and can have negative entries during the algorithm
execution). It can be shown that the slack is exactly the gradient of the dual objective function.

Dual decomposition is a distributed algorithm. Each flow is updated based on information
obtained from the links it passes over, and each link dual variable is updated based only on the
flows that pass over it.
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The primal-dual interior-point method is based on using a Newton step, applied to a suitably
modified form of the optimality conditions. The modification is parameterized by a parameter t,
which is adjusted during the algorithm based on progress, as measured by the actual duality gap
(if it is available) or a surrogate duality gap (when the actual duality gap is not available).

We first describe the search direction. We modify the complementary slackness conditions to
obtain the modified optimality conditions

−∇U(f) + RT λ− µ = 0

diag(λ)s = (1/t)1

diag(µ)f = (1/t)1 ,

where t > 0 is a parameter that sets the accuracy of the approximation. (As t →∞, we recover
the optimality conditions for the NUM problem.) Here we implicitly assume that f, s, λ, µ > 0.
The modified optimality conditions can be compactly written as rt(f, λ, µ) = 0, where

rt(f, λ, µ) =



−∇U(f) + RT λ− µ
diag(λ)s− (1/t)1
diag(µ)f − (1/t)1


 .

The primal-dual search direction is the Newton step for solving the nonlinear equations
rt(f, λ, µ) = 0. If y = (f, λ, µ) denotes the current point, the Newton step ∆y = (∆f, ∆λ, ∆µ)
is characterized by the linear equations

rt(y + ∆y) ≈ rt(y) + r′t(y)∆y = 0 ,

which, written out in more detail, are



−∇2U(f) RT −I
−diag(λ)R diag(s) 0

diag(µ) 0 diag(f)







∆f
∆λ
∆µ


 = −rt(f, λ, µ) . (10.26)

During the algorithm, the parameter t is increased, as the primal and dual variables approach
optimality. When we have easy access to a dual feasible point during the algorithm, we can make
use of the exact duality gap η to set the value of t; in other cases, we can use the surrogate
duality gap η̂.

The primal-dual interior point algorithm is given in [120, §11.7], [121].
The most expensive part of computing the primal-dual search direction is solving equation

(10.26). For problems of modest size, i.e. , with m and n no more than 104, it can be solved
using direct methods such as a sparse Cholesky decomposition.

For larger problem instances [115] proposes to solve (10.26) approximately, using a precon-
ditioned conjugate gradient (PCG) algorithm [122, §6.6], [123, chap. 2], [124, chap. 5]. When
an iterative method is used to approximately solve a Newton system, the algorithm is referred to
as an inexact, iterative, or approximate Newton method (see [123, chap. 6] and its references).
When an iterative method is used inside a primal-dual interior-point method, the overall algorithm
is called a truncated-Newton primal-dual interior-point method. For details of the PCG algorithm,
we refer the reader to the references cited above. Each iteration requires multiplication of the
matrix by a vector, and a few vector inner products.
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10.4.3 Experimental Results

In our first example we look at the performance of our method on a small network. The utility
functions are all logarithmic, i.e. , Uj(fj) = log fj. There are n = 103 flows, and m = 2 · 103

links. The elements of R are chosen randomly and independently, so that the average route
length is 10 links. The link capacities ci are chosen independently from a uniform distribution on
[0.1, 1]. For this particular example, there are about 104 nonzero elements in R (0.5% density).

We compare three different algorithms for solving the NUM problem: The dual-decomposition
method, a truncated Newton method via PCG and a customized Newton method via the GaBP
solver. Out of the examined algorithms, the Newton method is centralized, while the dual-
decomposition and GaBP solver are distributed algorithms. The source code of our Matlab
simulation is available on [77].
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Figure 10.2: Convergence rate using the small settings.

Figure 10.2 depicts the solution quality, where the X-axis represents the number of algorithm
iterations, and the Y-axis is the surrogate duality gap (using a logarithmic scale). As clearly shown,
the GaBP algorithm has a comparable performance to the sparse Cholesky decomposition, while
it is a distributed algorithm. The dual decomposition method has much slower convergence.

Our second example is too large to be solved using the primal-dual interior-point method with
direct search direction computation, but is readily handled by the truncated-Newton primal-dual
algorithm using PCG, the dual decomposition method and the customized Newton method via
GaBP. The utility functions are all logarithmic: Uj(fj) = log fj. There are n = 104 flows, and
m = 2 · 104 links. The elements of R and c are chosen as for the small example. For dual
decomposition, we initialized all λi as 1. For the interior-point method, we initialized all λi and
µi as 1. We initialize all fj as γ, where we choose γ so that Rf ≤ 0.9c.

Our experimental results shows, that as the system size grows larger, the GaBP solver has
favorable performance. Figure 10.3 plots the duality gap of both algorithms, vs. the number of
iterations performed.
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Figure 10.3: Convergence rate in the larger settings.

Figure 10.4 shows that in terms of Newton steps, both methods had comparable performance.
The Newton method via the GaBP algorithm converged in 11 steps, to an accuracy of 10−4 where
the truncated Newton method implemented via PCG converged in 13 steps to the same accuracy.
However, when examining the iteration count in each Newton step (the Y-axis) we see that the
GaBP remained constant, while the PCG iterations significantly increase as we are getting closer
to the optimal point.
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Figure 10.4: Iteration count per Newton step.

We have experimented with larger settings, up to n = 105 flows, and m = 2 · 105 links. The
GaBP algorithm converged in 11 Newton steps with 7-9 inner iteration in each Newton step. The
PCG method converged in 16 Newton steps with an average of 45 inner iterations.

Overall, we have observed three types of numerical problems with the PCG method. First,
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the PCG Matlab implementation runs into numerical problems and failed to compute the search
direction. Second, the line search failed, which means that no progress is possible in the computed
direction without violating the problem constraints. Third, when getting close to the optimal
solution, the number of PCG iterations significantly increases.

The numerical problems of the PCG algorithm are well known, see of example [125, 126]. In
contrary, the GaBP algorithm did not suffer from the above numerical problems.

Furthermore, the PCG is harder to distribute, since in each PCG iteration a vector dot product
and a matrix product are performed. Those operations are global, unlike the GaBP which exploits
the sparseness of the input matrix.

We believe that the NUM problem serves as a case study for demonstrating the superior
performance of the GaBP algorithm in solving sparse systems of linear equations. Since the
problem of solving a system of linear equations is a fundamental problem in computer science
and engineering, we envision many other applications for our proposed method.
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Chapter 11

Relation to Other Algorithms

In this chapter we discuss the relation between the GaBP algorithm and several other algorithms,
and show that all of them are instances of the GaBP algorithm. Thus, a single efficient imple-
mentation of GaBP can efficiently compute different cost functions without the need of deriving
new update rules. Furthermore, it is easier to find sufficient conditions for convergence in our
settings.

11.1 Montanari’s Linear Detection Algorithm

In this section we show that the Montanari’s algorithm [50], which is an iterative algorithm for
linear detection, is an instance of Gaussian BP. A reader that is not familiar with Montanari’s
algorithm or linear detection is referred to Chapter 7. Our improved algorithm for linear detection
described in Section 7.1 is more general. First, we allow different noise level for each received
bit, unlike his work that uses a single fixed noise for the whole system. In practice, the bits
are transmitted using different frequencies, thus suffering from different noise levels. Second,
the update rules in his paper are fitted only to the randomly-spreading CDMA codes, where
the matrix A contains only values which are drawn uniformly from {−1, 1}. Assuming binary
signalling, he conjectures convergence to the large system limit. Our new convergence proof
holds for any CDMA matrices provided that the absolute sum of the chip sequences is one, under
weaker conditions on the noise level. Third, we propose in [7] an efficient broadcast version for
saving messages in a broadcast supporting network.

The probability distribution of the factor graph used by Montanari is:

dµN,K
y =

1

ZN,K
y

N∏
a=1

exp(−1

2
σ2ω2

a + jyaωa)
K∏

i=1

exp(−1

2
x2

i ) ·
∏
i,a

exp(− j√
N

saiωaxi)dω

Extracting the self and edge potentials from the above probability distribution:

ψii(xi) , exp(−1

2
x2

i ) ∝ N (x; 0, 1)
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ψaa(ωa) , exp(−1

2
σ2ω2

a + jyaωa) ∝ N (ωa; jya, σ
2)

ψia(xi, ωa) , exp(− j√
N

saiωaxi) ∝ N (x;
j√
N

sai, 0)

For convenience, Table 11.1 provides a translation between the notations used in [7] and that
used by Montanari et al. in [50]:

Table 11.1: Summary of notations
GaBP [7] Montanari el al. [50] Description

Pij λ
(t+1)
i→a precision msg from left to right

λ̂
(t+1)
a→i precision msg from right to left

µij γ
(t+1)
i→a mean msg from left to right

γ̂
(t+1)
a→i mean msg from right to left

µii yi prior mean of left node
0 prior mean of right node

Pii 1 prior precision of left node
Ψi σ2 prior precision of right node
µi

Gi

Li
posterior mean of node

Pi Li posterior precision of node
Aij

−jsia√
N

covariance

Aji
−jsai√

N
covariance

j j =
√−1

Theorem 30. Montanari’s update rules are special case of the GaBP algorithm.

Proof. Now we derive Montanari’s update rules. We start with the precision message from left
to right:

Pij︷ ︸︸ ︷
λ

(t+1)
i→a = 1 +

1

N
Σb 6=a

s2
ib

λ̂
(t)
b→i

=

Pii︷︸︸︷
1 +Σb6=a

Pki︷ ︸︸ ︷
1

N

s2
ib

λ̂
(t)
b→i

=

Pii︷︸︸︷
1 −Σb6=a

−Aij︷ ︸︸ ︷
−jsib√

N

(Pj\i)
−1

︷︸︸︷
1

λ̂
(t)
b→i

Aji︷ ︸︸ ︷
−jsib√

N
.

By looking at Table 11.1, it is easy to verify that this precision update rule is equivalent to 2.17.
Using the same logic we get the precision message from right to left:

Pji︷ ︸︸ ︷
λ̂

(t+1)
i→a =

Pii︷︸︸︷
σ2 +

−A2
ijP−1

j\i︷ ︸︸ ︷
1

N
Σk 6=i

s2
ka

λ
(t)
k→a

.
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The mean message from left to right is given by

γ
(t+1)
i→a =

1

N
Σb6=a

sib

λ
(t)
b→i

γ̂
(t)
b→i =

µii︷︸︸︷
0 −Σb6=a

−Aij︷ ︸︸ ︷
−jsib√

N

P−1
j\i︷︸︸︷
1

λ̂
(t)
b→i

µj\i︷︸︸︷
γ̂

(t)
b→i .

The same calculation is done for the mean from right to left:

γ̂
(t+1)
i→a = ya − 1

N
Σk 6=i

ska

λ
(t)
k→a

γ
(t)
k→a.

Finally, the left nodes calculated the precision and mean by

G
(t+1)
i =

1√
N

Σb
sib

λ
(t)
b→i

γ̂
(t)
b→i , Ji = G−1

i .

L
(t+1)
i = 1 +

1

N
Σb

s2
ib

λ
(t)
b→i

, µi = LiG
−1
i .

The key difference between the two constructions is that Montanari uses a directed factor
graph while we use an undirected graphical model. As a consequence, our construction provides
additional convergence results and simpler update rules.

11.2 Frey’s Local Probability Propagation Algorithm

Frey’s local probability propagation [127] was published in 1998, before the work of Weiss on
Gaussian Belief propagation. That is why it is interesting to find the relations between those two
works. Frey’s work deals with the factor analysis learning problem. The factor analyzer network
is a two layer densely connected network that models bottom layer sensory inputs as a linear
combination of top layer factors plus independent gaussian sensor noise.

In the factor analysis model, the underlying distribution is Gaussian. There are n sensors that
sense information generated from k factors. The prior distribution of the sensors is

p(z) = N (z; 0, I) , p(x|z) = N (z; Sx, Ψ) .

The matrix S defines the linear relation between the factors and the sensors. Given S, the
observation y and the noise level Ψ, the goal is to infer the most probable factor states x. It is
shown that maximum likelihood estimation of S and Ψ performs factor analysis.

The marginal distribution over x is:

p(x) ∝
∫

x

N (x; 0, I)N (z;Sx, Ψ)dx = N (z; 0,STS + Ψ).
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Table 11.2: Notations of GaBP (Weiss) and Frey’s algorithm

[7] Frey comments

P−1
ij −φ

(i)
nk precision message from left i to right a

ν
(i)
kn precision message from right a to right i

µij µ
(i)
nk mean message from left i to right a

η
(i)
kn mean message from right a to left i

µii xn prior mean of left node i
0 prior mean of right node a

Pii 1 prior precision of left node i
ψn prior precision of right node i

µi υ
(i)
k posterior mean of node i

Pi ẑ
(i)
k posterior precision of node i

Aij λnk covariance of left node i and right node a
Aji 1 covariance of right node a and left node i

This distribution is Gaussian as well, with the following parameters:

E(z|x) = (STS + Ψ)−1STy,

Cov(z|x) = (STS + Ψ)−1.

Theorem 31. Frey’s iterative propagability propagation is an instance of GaBP.

Proof. We start by showing that Frey’s update rules are equivalent to the GaBP update rules.
From right to left:

−P−1
ij︷︸︸︷

φ
(i)
nk =

Ψn + Σkλ
2
nkυ

(i−1)
kn

λ2
nk

− υ
(i−1)
kn =

Pi\j︷ ︸︸ ︷
Ψn + Σk 6=jυjn

λ2
nk︸︷︷︸

A2
ij

,

µij︷︸︸︷
µ

(i)
nk =

xn − Σkλnkη
(i−1)
kn

λnk

+ η
(i−1)
kn =

µiiPii︷︸︸︷
xn −

Σj 6=k−Pkiµki︷ ︸︸ ︷
Σj 6=kη

(i−1)
kn

λnk︸︷︷︸
Aij

.

And from left to right:

P−1
ji︷︸︸︷

η
(i)
kn = 1/(1/(1/(1 + Σn1/ψ

(i)
nk − 1/ψ

(i)
nk))) =

A2
ji︷︸︸︷
1 /(

Pii︷︸︸︷
1 +

Σj 6=k−Pij︷ ︸︸ ︷
Σj 6=k1/ψ

(i)
nk),
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ν
(i)
kn = η

(i)
kn(Σnµ

(i)
nk/ψ

(i)
nk − µ

(i)
nk/ψ

(i)
nk) = η

(i)
kn(Σj 6=kµ

(i)
nk/ψ

(i)
nk) =

Aij︷︸︸︷
1

P−1
ij︷︸︸︷

η
(i)
kn (

µiiPii︷︸︸︷
0 +Σj 6=k

µjiPji︷ ︸︸ ︷
µ

(i)
nk/ψ

(i)
nk).

It is interesting to note, that in Frey’s model the graph is directed. That is why the edges Aji = 1
in the update rules from right to left.

11.3 Moallami and Van-Roy’s Consensus Propagation

The consensus propagation (CP) [54] is a distributed algorithm for calculating the average value
in the network. Given an adjacency graph matrix Q and a vector input values y, the goal is to
compute the average value ȳ.

It is clear that the CP algorithm is related to the BP algorithm. However the relation to GaBP
was not given. In this section we derive the update rules used in CP from the GaBP algorithm
(Weiss).

The self potentials of the nodes are

ψii(xi) ∝ exp(−(xi − yi)
2)

The edge potentials are:
ψij(xi, xj) ∝ exp(−βQij(xi − xj)

2)

In total, the probability distribution p(x)

p(x) ∝ Πi exp(−(xi − yi))
2Πe∈E exp(−βQij(xi − xj)

2)

= exp(Σi(−(xi − yi))
2 − βΣe∈EQij(xi − xj)

2)

We want to find an assignment x∗ = maxxp(x). It is shown in [54] that this assignment conforms
to the mean value in the network: y = 1

n
Σiyi when β is very large.

For simplicity of notations, we list the different notations in Table 11.3.

Theorem 32. The consensus propagation algorithm is an instance of the Gaussian belief prop-
agation algorithm.

Proof. We prove this theorem by substituting the self and edge potentials used in the CP paper
in the belief propagation update rules, deriving the update rules of the CP algorithm.

mij(xj) ∝
∫

xi

ψii(xi)︷ ︸︸ ︷
exp(−(xi − µii)

2)

ψij(xi,xj)︷ ︸︸ ︷
exp(−βQik(xi − xj)

2)

∏
mki(xi)︷ ︸︸ ︷

exp(−ΣkPki(xi − µki)
2)dxi =

∫

xi

exp(−x2
i +2xiµii−µ2

ii−βQikx
2
i +2βQijxixj−βQijx

2
j−ΣkPkix

2
i +ΣkPkiµki−ΣkP

2
kiµ

2
ki)dxi =
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Table 11.3: Notations of GaBP (Weiss) and Consensus Propagation

Weiss CP comments

P0 K̃ precision of ψii(xi)
∏

xk∈N(xi)\xj
mki(xi)

µ0 µ(K) mean of ψii(xi)
∏

xk∈N(xi)\xj
mki(xi)

Pij Fij(K) precision message from i to j
µij Gij(K) mean message from i to j
µii yi prior mean of node i
Pii 1 prior precision of node i
µi y posterior mean of node i (identical for all nodes)
Pi Pii posterior precision of node i
b Qji covariance of nodes i and j
b′ Qij covariance of nodes i and j
a 0 variance of node i in the pairwise covariance matrix Vij

c 0 variance of node j in the pairwise covariance matrix Vij

exp(−µ2
ii−βQijx

2
j +ΣkP

2
ijm

2
ij)

∫

xi

ax2︷ ︸︸ ︷
exp((1 + βQij + ΣkPki)x

2
i +

bx︷ ︸︸ ︷
2(βQijxj + Pkiµki + µii)xi dxi

(11.1)
Now we use the following integration rule:

∫

x

exp(−(ax2 + bx))dx =
√

π/a exp(
b2

4a
)

We compute the integral:

∫

xi

ax2︷ ︸︸ ︷
exp(1 + βQij + ΣkPki)x

2
i +

bx︷ ︸︸ ︷
2(βQijxj + Pkiµki + µii)xi dxi =

=
√

π/a exp(

b2︷ ︸︸ ︷
¢4(βQijxj + Pkiµki + µii)

2

¢4(1 + βQki +
∑

k

Pkl)

︸ ︷︷ ︸
4a

) ∝ exp(
β2Q2

ijx
2
j + 2βQij(Pkiµki + µii)xj + (µki + µii)

2

1 + βQki + ΣkPki

)

Substituting the result back into (11.1) we get:

mij(xj) ∝ exp(−µ2
ii−βQijx

2
j +ΣkP

2
ijµ

2
ij) exp(

β2Q2
ijx

2
j + 2βQij(Pkiµki + µii)xj + (µki + µii)

2

1 + βQki + ΣkPki

)

(11.2)
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For computing the precision, we take all the terms of x2
j from (11.2) and we get:

Pij(xj) ∝ exp(−βQij +
β2Q2

ij

1 + βQij + ΣPki

) =

−βQij(1 + βQij + ΣPki) + β2Q2
ij

1 + βQij + ΣPki

=

−βQij −©©©©β2Q2
ij − βQijΣPki +©©©©β2Q2

ij

1 + βQij + ΣPki

=

= − 1 + ΣPki

βQij + 1 + ΣPki

The same is done for computing the mean, taking all the terms of xj from equation (11.2):

µij(xj) ∝ βQij(µii + ΣPkiµki)

1 + βQij + ΣPki

=
µii + ΣPkiµki

1 + 1+ΣPki

βQij

11.4 Quadratic Min-Sum Message Passing Algorithm

The quadratic Min-Sum message passing algorithm was initially presented in [6]. It is a variant
of the max-product algorithm, with underlying Gaussian distributions. The quadratic Min-Sum
algorithm is an iterative algorithm for solving a quadratic cost function. Not surprisingly, as we
have shown in Section 2.4 that the Max-Product and the Sum-Product algorithms are identical
when the underlying distributions are Gaussians. In this chapter, we show that the quadratic
Min-Sum algorithm is identical to the GaBP algorithm, although it was derived differently.

In [6] the authors discuss the application for solving linear system of equations using the
Min-Sum algorithm. Our work [7] was done in parallel to their work, and both papers appeared
in the 45th Allerton 2007 conference.

Theorem 33. The Quadratic Min-Sum algorithm is an instance of the GaBP algorithm.

Proof. We start in the quadratic parameter updates:

γij =
1

1− Σu∈N(i)\jΓ2
uiγui

=

P−1
i\j︷ ︸︸ ︷

(

Aii︷︸︸︷
1 −Σu∈N(i)\j

Aui︷︸︸︷
Γui

P−1
ui︷︸︸︷

γui

Aiu︷︸︸︷
Γiu )−1

Which is equivalent to 2.17. Regarding the mean parameters,

zij =
Γij

1− Σu∈N(i)\jΓ2
uiγui

(hi − Σu∈N(i)\jzui) =

µi\j︷ ︸︸ ︷
Aij︷︸︸︷
Γij

(Pi\j)
−1

︷︸︸︷
γij (

bi︷︸︸︷
hi −Σu∈N(i)\jzui)

Which is equivalent to 2.18.
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For simplicity of notations, we list the different notations in Table 11.4. As shown in Ta-

Table 11.4: Notations of Min-Sum [6] vs. GaBP

Min-Sum [6] GaBP [7] comments

γ
(t+1)
ij P−1

i\j quadratic parameters / product rule precision from i to j

z
(t+1)
ij µi\j linear parameters / product rule mean rom i to j
hi bi prior mean of node i
Aii 1 prior precision of node i
xi xi posterior mean of node i
− Pi posterior precision of node i
Γij Aij covariance of nodes i and j

ble 11.4, the Min-Sum algorithm assumes the covariance matrix Γ is first normalized s.t. the
main diagonal entries (the variances) are all one. The messages sent in the Min-Sum algorithm
are called linear parameters (which are equivalent to the mean messages in GaBP) and quadratic
parameters (which are equivalent to variances). The difference between the algorithm is that in
the GaBP algorithm, a node computes the product rule and the integral, and sends the result to
its neighbor. In the Min-Sum algorithm, a node computes the product rule, sends the intermedi-
ate result, and the receiving node computes the integral. In other words, the same computation
is performed but on different locations. In the Min-Sum algorithm terminology, the messages are
linear and quadratic parameters vs. Gaussians in our terminology.
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Appendices

12.1 Equivalence of Weiss and Johnson Formulations

One of the confusing aspects of learning GaBP is that each paper is using its own model as well
as its own notations. For completeness, we show equivalence of notations in Weiss’ vs. Johnsons
papers. In [128] it is shown that one of the possible ways of converting the information form to
pairwise potentials form is when the inverse covariance matrices used are of the type:

Vij =

(
0 Jij

Jji 0

)
,

where the terms Jij = Jji are the entries of the inverse covariance matrix J in the information
form. First we list the equivalent notations in the two papers:

Weiss Johnson comments

P0 Ĵi\j precision of ψii(xi)
∏

xk∈N(xi)\xj
mki(xi)

µ0 ĥi\j mean of ψii(xi)
∏

xk∈N(xi)\xj
mki(xi)

Pij ∆Ji→j precision message from i to j
µij ∆hi→j mean message from i to j
µii hi prior mean of node i
Pii Jii prior precision of node i
Pi (Pii)

−1 posterior precision of node i
µi µi posterior mean of node i
b Jji covariance of nodes i and j
b′ Jij covariance of nodes i and j
a 0 variance of node i in the pairwise covariance matrix Vij

c 0 variance of node j in the pairwise covariance matrix Vij

Using this fact we can derive again the BP equations for the scalar case (above are the same
equation using Weiss’ notation).
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µ0︷︸︸︷
hi\j =

µii︷︸︸︷
hi +

∑

k∈N(i)\j

µki︷ ︸︸ ︷
∆hk→i ,

P0︷︸︸︷
Ji\j =

Pii︷︸︸︷
Jii +

∑

k∈N(i)\j

Pki︷ ︸︸ ︷
∆Jk→i, (12.1)

µij︷ ︸︸ ︷
∆hi→j = −

b︷︸︸︷
Jji

(a+P0)−1

︷ ︸︸ ︷
(Ji\j)

−1

µ0︷︸︸︷
hi\j ,

Pij︷ ︸︸ ︷
∆Ji→j =

c︷︸︸︷
0 −

b︷︸︸︷
Jji

(a+P0)−1

︷ ︸︸ ︷
(0 + Ji\j)

−1

b′︷︸︸︷
Jij . (12.2)

Finally:

ĥi = hii +
∑

k∈N(i)

∆hk→i , Ĵi = Jii +
∑

k∈N(i)

∆Jk→i,

µi = Ĵ−1
i hi , Pii = Ĵ−1

i .

12.2 GaBP code in Matlab

Latest code appears on the web on: [77].

12.2.1 The file gabp.m

% Implementation of the Gaussian BP algorithm, as given in:
% Linear Detection via Belief Propagation
% By Danny Bickson, Danny Dolev, Ori Shental, Paul H. Siegel and Jack K. Wolf.
% In the 45th Annual Allerton Conference on Communication, Control and Computing,
% Allerton House, Illinois, Sept. 07’
%
%
% Written by Danny Bickson.
% updated: 24-Aug-2008
%
% input: A - square matrix nxn
% b - vector nx1
% max_iter - maximal number of iterations
% epsilon - convergence threshold
% output: x - vector of size nx1, which is the solution to linear systems

of equations A x = b
% Pf - vector of size nx1, which is an approximation to the main
% diagonal of inv(A)
function [x,Pf] = gabp(A, b, max_iter, epsilon)

% Stage 1 - initialize
P = diag(diag(A));
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U = diag(b./diag(A));
n = length(A);

% Stage 2 - iterate
for l=1:max_iter
% record last round messages for convergence detection

old_U = U;

for i=1:n
for j=1:n
% Compute P i\j - line 2
if (i~=j && A(i,j) ~= 0)

p_i_minus_j = sum(P(:,i)) - P(j,i); %
assert(p_i_minus_j ~= 0);
%iterate - line 3
P(i,j) = -A(i,j) * A(j,i) / p_i_minus_j;
% Compute U i\j - line 2
h_i_minus_j = (sum(P(:,i).*U(:,i)) - P(j,i)*U(j,i)) / p_i_minus_j;
%iterate - line 3
U(i,j) = - A(i,j) * h_i_minus_j / P(i,j);

end
end

end

% Stage 3 - convergence detection
if (sum(sum((U - old_U).^2)) < epsilon)

disp([’GABP converged in round ’, num2str(l)]);
break;

end

end % iterate

% Stage 4 - infer
Pf = zeros(1,n);
x = zeros(1,n);
for i = 1:n

Pf(i) = sum(P(:,i));
x(i) = sum(U(:,i).*P(:,i))./Pf(i);

end

end
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12.2.2 The file run gabp.m

% example for running the gabp algorithm, for computing the solution to Ax = b
% Written by Danny Bickson

% Initialize

%format long;
n = 3; A = [1 0.3 0.1;0.3 1 0.1;0.1 0.1 1];
b = [1 1 1]’;
x = inv(A)*b;
max_iter = 20;
epsilon = 0.000001;

[x1, p] = gabp(A, b, max_iter, epsilon);

disp(’x computed by gabp is: ’);

x1

disp(’x computed by matrix inversion is : ’);

x’

disp(’diag(inv(A)) computed by gabp is: (this is an
approximation!) ’);

p

disp(’diag(inv(A)) computed by matrix inverse is: ’);

diag(inv(A))’
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[126] M. Kočvara and M. Stingl, “On the solution of large-scale SDP problems by the modified barrier method
using iterative solvers,” Math. Program., vol. 109, no. 2, pp. 413–444, 2007.

[127] B. J. Frey, “Local probability propagation for factor analysis,” in Neural Information Processing Systems
(NIPS), Denver, Colorado, Dec 1999, pp. 442–448.

[128] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and belief propagation in Gaussian graphical
models,” in Journal of Machine Learning Research, vol. 7, Oct. 2006.

110


