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Abstract

As the race for faster and stronger CPUs is drawing to a close, it has become almost

impossible to significantly increase computer system performance solely by improving

the physical characteristics of the hardware without negatively impacting form factor or

power consumption. Optimization approaches are therefore gaining more attention, since

they provide an alternative way to increase system performance.

One way to increase system performance is to spread the computational payload be-

tween the system’s several CPUs, instead of trying to improve the main CPU physical

characteristics. Every commercially available PC contains a wealth of untapped comput-

ing resources: the network controller, the disk controller, graphics adapters and many other

peripheral devices have their own CPUs, with power which sometimes compares with or

exceeds that of their host CPU (as is the case with high-end graphics adapters). This ”hid-

den” CPU power is usually available only to a specific group of dedicated applications,

(henceforth referred to as ”offload-aware applications”), which are granted exclusive ac-

cess to this computational resource, and may offload some of their tasks to these peripheral

devices, instead of letting the user or the system designer decide how the system resources

should be distributed.

Our research utilizes a model in which offload-aware applications can use the computa-

tional resources of peripheral devices and share them with other applications. This allows,
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non-offload-aware applications access to services which allow them to offload tasks to the

dedicated devices, and thus release the host CPU for use by other activities. Arguably, the

decision about what tasks should be offloaded to where, should be left to the programmer.

However, once there are several applications in the system and several devices to use, too

many criteria exist for human to make this decision unaided.

This thesis presents a solution to this decision-making process . We describe a frame-

work that allows an optimal offloading layout to be achieved for a given set of applica-

tions. Optimization criteria and offloading constraints are provided by the programmer,

along with the application set definition. This framework has been deployed within the

HYDRA framework ( [WDWAa]) as a tool to facilitate its offloading aspects.
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Chapter 1

Related Work

Integer Linear Programming techniques has been used to solve various scheduling prob-

lems in the past. This section describes state-of-the-art scheduling research, ordered by its

relevance to this work.

1.1 Use of ILP technique to solve optimization problems

1.1.1 Software pipelining optimizations

The paper [GAG94] addresses the SW pipelining problem, specifically, constructing a

software pipelining schedule, given a specific set of processor resources, and maximizing

a running rate, while minimizing the number of resources used. Similar to our research,

the authors of the [GAG94] used the Integer Liner Programming technique to create a

mathematical model to solve the scheduling optimization problem. They also came to the

conclusion that the ILP technique gives a simple and yet resultful solution, which in their

case gives a better performance than other scheduling algorithms for SW pipelining; in

our research, we used greedy approach for comparative analysis.
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1.1.2 Low-power scheduling

The [SC00] presents an ILP-based scheme for high-level synthesis for low-power ap-

plications. In addition, the authors of the [SC00] present a LP-based model for resource

binding that minimizes the amount of switching at the input of the functional units. Similar

to the bandwidth constraints in our work, the [SC00] uses user-defined weighting factors

to define the relative importance of different objective functions. Although our solution

currently allows only one objective function to be used at a time, it might be a fruitful idea

to apply this approach in the future, to allow the user to chose several goal functions at a

time and to determine their relative weight.

Although the ILP-solving SW we are using today does not allow it, the architecture

proposed by this thesis allows the underlying engines to be easily changed, without harm-

ing the rest of the model.

1.2 Use of other techniques to solve optimization prob-

lems

1.2.1 Simulated annealing

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the global opti-

mization problem, namely locating a good approximation for the global optimum of a

given function in a large search space. It is often used when the search space is discrete. In

favorable cases, simulated annealing may be more effective than exhaustive enumeration

of the search space.

Each step of the SA algorithm replaces the current solution with a random “nearby”
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solution, chosen with a probability that depends on the difference between the correspond-

ing function values and on a global parameter T (called the temperature) that is gradually

decreased during the process. The dependency is such that the current solution changes

almost randomly when T is large but increasingly goes “downhill” as T goes to zero. The

allowance for “uphill” moves saves the method from becoming stuck at local minima,

which are the bane of greedier methods.

The method was described by S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi in 1983

[KGV83]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte

Carlo method that generates sample states of a thermodynamic system, invented by N.

Metropolis et al in 1953. In the simulated annealing method, each point of the search space

is analogous to a state of some physical system, and the function E(s) to be minimized is

analogous to the internal energy of the system in that state. The goal is to bring the system

from an arbitrary initial state, to a state with the minimum possible energy.

This method was used, for example, to find a minimum makespan in a job shop,

[vLAL92]. By using SA, their algorithm has been proved to find shorter makespans than

other approximation approaches used in the same time, though at the cost of longer run-

ning times.

1.2.2 Genetic algorithms and hill climbing technique

A genetic algorithm is a search technique used in computing to find exact or approxi-

mate solutions to optimization and search problems. Genetic algorithms are categorized

as global search heuristics and are a particular class of evolutionary algorithms that use

techniques inspired by evolutionary biology such as inheritance, mutation, selection, and

crossover.

Hill climbing is an optimization technique that belongs to the family of local search. It
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is a relatively simple technique to implement, making it a popular first choice. Although

more advanced algorithms may give better results, there are situations where hill climbing

works well. Hill climbing can be used to solve problems that have many solutions but

where some solutions are better than others. The algorithm is started with a random (and

thus probably a bad) solution to the problem. The algorithm sequentially makes small

changes to the solution, each time improving it a little bit. At some point, the algorithm

arrives at a point where it cannot see any improvement anymore, at which point the algo-

rithm terminates. Ideally, at that point a solution is found that is close to optimal, but it is

not guaranteed that hill climbing will ever come close to the optimal solution.

Both genetic algorithms and hill climbing techniques do not operate on dynamic data

sets, as genomes begin to converge early on towards solutions that may no longer be valid

for later data. However, based on those techniques, [YM93] shows a dynamic hill climb-

ing technique, which overcomes this obstacle. “Furthermore,” the article says, “the algo-

rithm moves from a coarse-grained search to a fine-grained search of the function space

by changing its mutation rate and uses a diversity-based distance metric to ensure that is

searches new regions of the space.”

Moshe Sidi and Reuven Elbaum, [ES96], on the other hand, use genetic algorithms to

design local area networks with the objective of minimizing the average network delay.

1.3 Related frameworks

1.3.1 FlowOS

FlowOS [BK03] proposes an architecture that removes the host’s memory subsystem and

CPU from the critical data path. The main role of the OS is to manage the data flow
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between different peripheral devices and to schedule the flows between different appli-

cations. Although FlowOS does not provide an offloading framework or a programming

model for creating offload-aware applications, the proposed flow abstraction can further

extend this research. By defining a “flow” overlay that spans several offloaded applica-

tions, one can guarantee the required QoS for a specific application.

1.3.2 FarGo and FarGo-DA

Although not dealing with offloading, FarGo [HBSG99b, HBSG99a] and FarGo-DA [WBS02]

propose a programming model that enables a developer to program relocation and discon-

nection semantics in a separate phase during the application development cycle. The basic

assumption for their work is that the application is fully composed of a set of components

that are tagged by a specific interface (called: Complet). The components are hosted in

a virtual machine and can migrate to a remote VM using marshaling and unmarshaling

mechanisms (much as in the RPC [Sri95, BN84], RMI [Sun98, rmi99], CORBA [Sie98],

DCOM [BK98], or WebService [Org] models). Our framework extends the above model

by defining an “offloading-layout” that is used to define the offloading aspects of the ap-

plication.

1.4 Summary

In this chapter, we surveyed the existing body of work in the area of different optimization

techniques, specifically, but not limited to, ILP used in this thesis. We also viewed ILP

formulations for solving various kinds of scheduling problems. Development of a special

mathematical model and examination of the specific system support that is required for

realizing such a model are the goals of this research.
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Introduction

Many computer peripheral devices are software driven: they are, in fact, programmable

devices with their own memory and a CPU, programmed to perform tasks set by the de-

signer. The choice of the task set is usually dictated by the device category: for example,

network controllers send and receive packets, and disk controllers read and write blocks

of data.

Programmable peripheral devices usually execute some kind of control software; how-

ever, richer software can also be embedded into some devices. A famous example is the

TCP Offload Engines (TOEs) [Cur04], which has been built into Network Interface Cards

(NICs) firmware. This is a classic example of “host functionality” being statically of-

floaded into a peripheral device to achieve better system performance, lower latency, and

to decrease host CPU utilization.

There have been other attempts to offload traditionally-host-performed functionality

onto peripheral devices. Quite a few such attempts have been made in the context of dis-

tributed communication algorithms, particularly in cluster network environments. An ex-

ample of this is fast barrier software using programmable NICs, [BPS01]; other examples
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include broadcast/multicast distribution speedup, [BPDS00], and a message passing inter-

face (MPI) with a rich set of performance enhancements achieved by offloading the MPI

to the NIC [ZKW02]. There have also been similar attempts in more consumer-oriented

areas, such as the acceleration of multimedia applications using intelligent peripherals

[FMOB98].

All the above-mentioned examples are implementations of static offloading, in which

an optimization is hard-coded into a peripheral’s firmware in order to achieve the highest

possible performance gain. While such approaches have proved successful in improving

overall system performance, they suffer from a few drawbacks. The first and most im-

mediate one is that such an optimization is a complex task requiring the involvement of

embedded system experts, who would be aware of the intricacies and potential complica-

tions involved. A second drawback is that features hard-coded into the peripheral firmware

are inflexible: each offloaded optimization is usually specifically designed for a particular

application. But resources available on peripherals are very scarce; hence, only a limited

number of applications may be compiled into the firmware at any given time.

Dynamic offloading tries to address flexibility and development complexity issues

while preserving the benefits of the static approach. To make this possible, the periph-

eral devices’ software is designed so as to allow future extensibility.

Several design choices have been studied for dynamic offloading. One of them is the

Virtual Machine-based firmware. This was used in Myrinet clusters, research [WJPR04],

to provide grounds for optimizing several MPI primitives. The other design choice in-

volves basing the firmware on an operating system (OS) specially tailored for run-time

configurability (usually using an academic OS). Both approaches improve the applica-

tion’s optimization potential to some extent, yet they come at a cost: virtual machines

trade off performance for configurability, and OSs tend to have rather complicated load-

ers with non-negligible footprints [BMW03]. Furthermore, both design choices involve
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aspects which lie far from industry common practices.

Existing systems which deploy dynamic offloading are not considerably more flex-

ible than static offloading-based systems. While they do target a class of applications

(as opposed to static-offloading systems which target a single specific application), the

class of applications that they target is very narrow. This is in addition to the fact that

dynamic-offloading systems are, in practice, very inflexible in peripheral choice and setup

configuration options (as we have seen in the previous paragraph.)

In the past, peripheral devices provided minimal functionality, and left the rest to the

host. This is no longer the case: trends in digital design have followed an exponential

increase in the number of transistors on an integrated circuit. This ongoing trend of de-

creasing cost and increasing density of transistors has motivated hardware and embedded

system designers to use programmable solutions in their products. The proliferation of

programmable peripheral devices for personal computers opens up new possibilities for

academic research that will influence system designs in the near future.

Programmability is a key feature that enables application-specific extensions to im-

prove performance and offer new features for their respective applications. Increasing

transistor density and decreasing cost allow for surplus computational power in devices

such as disk controllers, network interface cards, video cards, and more. Such designs are

cheaper and more flexible than custom ASIC solutions. The performance capabilities of

programmable devices, and microprocessors in particular, will extend well into the range

of applications that formerly required DSPs or custom hardware designs.

2.1 HYDRA overview

HYDRA, fully described in [WDWAb, WDWAa, Yar07], has proposed a novel offloading

framework that enables utilization of various peripheral devices. The motivation for such
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a framework becomes clearer as peripheral devices become powerful and programmable.

In every modern PC, there is a wealth of unused computing resources. For example, the

NIC has a CPU, the disk controller is programmable and some high-end graphics adapters

are already more powerful than host CPUs.

The HYDRA framework enables an application developer to design the offloading as-

pects of the application by specifying an “offloading layout,” which is enforced by the

runtime during application deployment. This framework defines a model in which applica-

tions execute cooperatively and concurrently in host processors and in device peripherals.

In HYDRA model, applications can offload specific tasks to devices to improve the overall

application’s performance. The HYDRA framework also provides the necessary abstrac-

tions, programming constructs, and development tools to develop such applications.

This section provides a short overview of the HYDRA framework. For brevity, we

present only the basic abstractions provided by the framework. The interested reader is

advised to read [Yar07].

2.1.1 Offcode manifesto

An Offcode manifesto is the means by which an Offcode (the peace of SW being offloaded)

defines its dependencies on peer Offcodes and its requirements from the target device and

software environment.

The manifesto is realized in an Offcode Description File (ODF). An ODF contains

three parts: the first part describes the structure of the Offcode’s package, containing the

binding name of the Offcode at the target device, and the Offcode’s supported interfaces.

The Offcode’s interfaces are typically described by a standard WSDL [wo] file. Figure 2.1

presents a typical import section defined in an Offcode’s ODF.

The binding name identifies the Offcode at the target device and is used in the various
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<ocode>
<!-- ocode package info -->
<package>
<bindname>Hydra.net.utils.Socket</bindname>
<GUID>7070714</GUID>

<interface>
<!-- WSDL interface specification >
<include>"/offcodes/socket.wsdl"</include>

</interface>
</package>

Figure 2.1: ODF - Part I

HYDRA APIs to identify the Offcode.

<!-- ocode dependencies -->
<sw-env>
<import>
<file>"/offcodes/checksum.odf"</file>
<bindname>Hydra.net.utils.Checksum</bindname>
<reference type="Pull" pri="0"></reference>
<GUID>6060843</GUID>

</import>
</sw-env>

Figure 2.2: ODF - Part II

The second part of an ODF describes the Offcode’s dependencies on peer Offcodes.

This section enables a developer to “design” the offloading process that will occur at de-

ployment time.

2.1.2 Constraints

HYDRA provides several constraints presented in Figure 2.3 that can be used between any

two Offcodes denoted by α and β. The set of Offcodes and related constraints form an
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Offloading Layout Graph, with Offcodes as nodes and constraints as edges. The runtime

(recursively) processes an Offcode’s ODF file to produce such a graph, which is later used

by the runtime to decide on the actual placement of Offcodes.

• Link: The Link constraint is denoted as α
Link⇔ β. This is the default constraint from

α to β, which actually poses no constraints: α and β may or may not be mutually
offloaded (to the same or different target device). It does, however, indicate that at
least one of the Offcodes needs the other to function.

• Pull: The Pull constraint is denoted as α
Pull⇔ β. This reference is used to ensure that

both Offcodes will be offloaded to the same target device.

• Gang: The gang constraint is denoted as α
Gang⇔ β. This constraint is used to ensure

that both Offcodes will be offloaded to their respective target devices. That is, if α

is offloaded, β will be too, albeit on perhaps a different device.

• Asymmetric Gang: This constraint is denoted as α
∼Gang→ β and provides the asym-

metric version of Gang. Offloading β doesn’t implies offloading α.

Figure 2.3: Offcodes’ Constraints

Note that there is no Asymmetric Pull constraint as the motivation for using Pull is

a tight interaction between two Offcodes. Enabling asymmetry may result in the place-

ment of two Offcodes in two different execution domains, which we would want to pre-

vent. Figure 2.2 presents the mechanism by which a constraint is set on an Offcode ref-

erence. In this example, a Pull constraint is set for the peer Offcode denoted by: “Hy-

dra.net.utils.Checksum.”

2.1.3 Device mapping

The last part of the ODF is concerned with device mapping. To enable dynamic mapping

between Offcodes and peripheral devices, on different host configurations, a developer is
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required to supply a list of potential target device classes that can be used for offloading.

<!-- device classes -->
<targets>
<device-class id=0x0001>
<type>NIC</type>
<mac>ethernet</mac>
<bus>pci</bus> <!-- (optional) -->
<rate>1000</rate> <!-- (Mbps) -->
<vendor>3COM</vendor> <!-- (optional) -->

</device-class>

<device-class id=0x0002>
<type>NIC</type>
<mac>myrinet</mac>
<rate>10000</rate> <!-- (Mbps) -->

</device-class>
</targets>

</offcode>

Figure 2.4: ODF - Part III

Figure 2.4 shows a sample Offcode for which the developer has indicated the classes

of potential devices on which it can operate. It is the runtime’s responsibility to locate an

instance of such an Offcode that will comply with: a) being suitable for running at one of

the local devices and b) being in one of the listed classes. Alternatively, the developer can

specify the exact target for each Offcode using an Offcode’s URL.

2.1.4 Offcode URL

An Offcode is uniquely identified by an Offcode URL. The URL consists of four parts:

the host, the device’s physical address, the hardware identifier, and the Offcode’s binding

name that is unique per device. The physical address and the hardware identifier uniquely

identify the target device. Figure 2.5 presents an Offcode’s URL format and a sample URL
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for some PCI device. A PCI device is physically addressable by a bus number (8 bits), a

device number (5 bits), and a function number (3 bits). The hardware identifier is further

identified by a 32-bit signature that includes the vendor identifier and the device identifier.

[host]:/[physical-address]/[hardware identifier]/[binding-name]

Example:
---------
The Hydra runtime \offcode\ on the Netgear GA-620T (TigonII chipset)
device is identified by the string:

localhost:/pci/00/11/1385/620A/Hydra.Runtime

Figure 2.5: Offcode URL format

2.2 Multi-user environments

The strength of our proposed programming model lies in the system’s ability to reuse

Offcode components. Although reusability may simplify and speed up the development

cycle, in multi-user environments, reusing the same Offcode in several applications may

substantially complicate the offloading layout design. Intuitively, the problem of defin-

ing an optimal offloading layout graph for a group of offload-aware applications may be

computationally hard.

Our research uses the Integer Linear Programming methodology (ILP) to optimize

such complex layouts. ILP formulation enables expression of every offloading layout

graph as a set of linear equations. Any ILP solver can then be used to solve the equations,

given a target optimization function. In the following chapters we will show examples of

one specific ILP solver that ran on a few specific scenarios, although the software archi-

tecture proposed in chapter 4 supports any ILP solver.
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In section 3.2 we provide a mathematical presentation of an offloading layout graph,

together with a few examples of criteria that could be used as target optimization functions.

We also show a detailed example of how to formulate a sample offloading graph and a short

description of an ILP solver used to solve those examples. Although the examples might

seem rather obvious to the reader, we present them only to prove the concept.

We solve the scenarios with different devices and Offcodes. These scenarios become

non obvious very fast, and it is very hard for a person to find an optimal solution using

simple methods. We also argue - and it will become clear from the additional examples -

that a greedy solution does not apply, not only because it is hard to satisfy all the constraints

with a greedy solution, but also because a greedy solution will not be optimal if some more

complex constraints are present.

The offloading layout which we use is usually statically defined or set during deploy-

ment in order to minimize the overhead costs which result from offloading operations.

The research which follows deals with defining the offloading layout, given a set of

constraints, a desired goal function, and a list of devices present in the system. The ex-

act offloading mechanism is not a part of this paper and will not be discussed here; the

interested reader can refer to [Yar07].



Chapter 3

Mathematical Model

3.1 ILP overview

3.1.1 ILP definition

Linear Programming (LP) is a tool used to solve a subset of optimization problems; it

focuses on minimizing or maximizing objective function f (x1, ..,xn) subject to a set of

constraints. The objective function must be a linear function of x j, while constraints are

linear equilities/inequalities, involving the same decision variables as the objective func-

tion.

An LP problem is called integer linear programming (ILP) if all variables are required

to be integers. 0-1 integer programming is a special class of ILP in which variables are

required to be 0 or 1 rather than arbitrary integers.
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3.1.2 Problem example

This example is taken from the Operations Research: Applications and Algorithms book,

[Win].

Giapetto’s Woodcarving Inc. manufactures two types of wooden toys: soldiers and

trains. The manufacture of wooden soldiers and trains requires raw materials and two types

of skilled labor: carpentry and finishing. The weekly amount of resources is limited as is

the demand. The goal is to find the numbers of soldiers and trains that will maximize the

weekly profit. All numeric quantities and assumptions about this problem are summarized

below:

1. There are two types of wooden toys: soldiers and trains.

2. A soldier sells for $27, uses $10 worth of raw materials, and increases variable labor

and overhead costs by $14.

3. A train sells for $21, uses $9 worth of raw materials, and increases variable labor

and overhead costs by $10.

4. A soldier requires 2 hours of finishing labor and 1 hour of carpentry labor.

5. A train requires 1 hour of finishing labor and 1 hour of carpentry labor.

6. At most, 100 finishing hours and 80 carpentry hours are available weekly.

7. The weekly demand for trains is unlimited, while, at most, 40 soldiers will be sold.

3.1.3 Problem example - ILP modeling

To model a linear problem, the decision variables are established first, since they will de-

termine the value of the objective function and, hence, the optimal solution. In Giapetto’s
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shop, the objective function is the profit, which is a function of the number of soldiers and

trains produced each week. Therefore, the two decision variables in this problem are the

following:

• x1: Number of soldiers produced each week

• x2: Number of trains produced each week

Once the decision variables are known, the objective function of this problem is simply

the revenue minus the costs for each toy, as a function of x1 and x2.

z = (27−10−14)x1 +(21−9−10)x2 = 3x1 +2x2

* Note that the profit depends linearly on x1 and x2 – this is a linear problem.

Now we need to analyze the assumptions made for this problem to formulate the con-

straints (or else the model is very likely to be wrong). The first three assumptions deter-

mined the decision variables and the objective function. The fourth and sixth assumptions

say that finishing the soldiers requires time for carpentry and finishing.

One soldier requires 2 hours of finishing labor, and Giapetto has at most 100 hours

of finishing labor per week, so he can’t produce more than 50 soldiers per week. Simi-

larly, the carpentry hours constraint makes it impossible to produce more than 80 soldiers

weekly. Note here that the first constraint is stricter than the second. The first constraint is

effectively a subset of the second; thus, the second constraint is redundant.

Since both soldiers and trains require finishing time, both need to be taken into account.

The general constraint in terms of the decision variables is: 2x1 + x2 ≤ 100.

Now that the constraint for the finishing hours is ready, the carpentry hours constraint

is found in the same way to be: x1 + x2 ≤ 80.

According to the problem description, there can be at most 40 soldiers produced each

week: x1 ≤ 40.
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The demand for trains is unlimited, so no constraint can be written for it. The model is

finished and consists of the equations:

(1) max z = 3x1 +2x2 (objective function)

(2) 2x1 + x2 ≤ 100 (finishing constraint)

(3) x1 + x2 ≤ 80 (carpentry constraint)

(4) x1 ≤ 40 (demand for solders)

(5) x1 ≥ 0,x2 ≥ 0 (sign constraints)

Note the last constraint. It ensures that the values of the decision variables will always

be positive. The problem does not state this explicitly, but it’s still important (and obvious).

Figure 3.1: Giapetto’s Feasible Region



28 ILP overview

Let’s check the problem’s solution space. With two decision variables, it has two

dimensions. The solution space that satisfies all the constraints is called the feasible region.

Figure 3.1.3 shows the feasible region for Giapetto’s shop. Any (x1,x2) pair that falls into

that region is a potential solution to the problem.

Using substitution, we can see that the (trains=60, solders=20) vertex makes the high-

est value of objective functions (180) among other vertexes. The optimal solution is always

found on the boundary because of the continuity of the target function. So, we conclude

that is the optimal solution.

Two-dimensional cases are relatively simple ones. In general, once the problem is

modeled as an ILP problem, i.e., all constraints and objective functions are formalized,

any ILP solver can be used to achieve the solution.
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3.2 ILP formulation for dynamic offloading layout

This section provides an Integer Linear Programming methodology (ILP) for optimizing

such complex layouts. The purpose of such a formulation is to enable expression of every

offloading layout graph as a set of linear equations. Given a target optimization function,

any ILP solver can then be used to solve the equations.

We provide the mathematical presentation of an offloading layout graph and later

present, as an example, two possible criteria that could be used as target optimization

functions. We have included several detailed examples of formulating a sample offloading

graph. As the simple graphs are trivially easy to solve, the strength of such a formulation is

only apparent in complicated scenarios. Such scenarios make the offloading layout design

process significantly more difficult. In such cases, a greedy solution does not provide an

optimal solution; hence, the need for such a formulation is apparent. This section provides

the necessary ILP formulation to optimize the offloading layout graph.

A result for our problem will be a matrix that will provide a solution to the optimization

problem described below, while satisfying all the necessary constraints.

3.2.1 Problem domain definitions

We begin by defining the basic elements of the layout graph. The layout graph G = (V,E)

includes the set of Offcodes as vertices, and the channel constraints among them are the

edges. At deployment time, the runtime associates with each node n (Offcode) a compat-

ibility target vector ~Cn representing the potential target devices that can host the Offcode.

Note that the host CPUs are included in the list of devices. Let N = |V | be the total number

of Offcodes, and let K = |~C| be the number of HYDRA-compatible devices.

1. Let K be the number of HYDRA-aware devices in the system.
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2. Let k = 0 identify the host “device” (i.e, the host CPU).

3. Let N be the number of application Offcodes used by the given applications.

4. Let G = (V,E) be an offloading layout graph - the actual result we would like to

achieve.

5. Let ~C be a constant binary bit vector. Ck
n = 1 if Offcode n can be offloaded to device

k.

Naturally, we have a mandatory constraint here:

6. ∀n ∈ N,k ∈ K, Ck
n ∈ {0,1} - Each Offcode n can be either offloaded or not offloaded

to a device k.

Now, let ~X be the ILP output vector.

1. Xk
n = 1 if Offcode n should be offloaded to device k.

2. ∀n,X0
n = 1 iff Offcode n has not been offloaded - for each Offcode n, the value of an

ILP output vector for the host device (device 0) will be 1 if the Offcode will not be

offloaded.

Naturally, similar to the constraint vector, we limit the value for the output vector:

3. ∀n ∈ N,k ∈ K, Xk
n ∈ {0,1}.

In addition, we do not allow the same Offcode to be offloaded to more than one

device:

4. ∑
N
n=1 ∑

K
k=1 Xk

n ·Ck
n = 1
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3.2.2 Constraints definitions

To simplify the presentation, we assume that the first entry in each vector ~C corresponds

to the host CPU. Let En
m = (m,n) be an edge E from Offcode m to n:

1. Link Constraint does not really provide a mathematical constraint.

2. ∀En
m ∈ Pull,∀k : Xk

n = Xk
m. The Pull Constraint between Offcodes m and n indi-

cates that if both are offloaded, they should be offloaded to the same device. For

example, if Offcode n is responsible for filtering packets received from the network

and Offcode m is responsible for processing those packets, they should probably

be offloaded to the same network device. Note, though, that this constraint doesn’t

present a limitation for one of them to not be offloaded at all. Hence, the layout

graph is where we offload the filtering to the device, but we process the packets on

the host; this graph will be perfectly legal.

3. ∀En
m ∈ Asymmetric Gang : ∑

K
k=1 Xk

n ≤ ∑
K
k=1 Xk

m. The Asymmetric Gang Constraint

from Offcode n to Offcode m makes sure that if n is offloaded so should m. Note

that this Does Not mean the opposite direction. m may be downloaded alone. This

constraint is useful when n uses m tightly, but not vice versa. For example, m is

again an Offcode that filters packets, this time outgoing, and n is responsible for

sending a specific type of packets. This is perfectly fine for m to be downloaded

alone, but once n (the packet producer that needs filtering) is being downloaded, it

wouldn’t make sense to send the packet back to the host to be filtered.

4. ∀En
m ∈ Symmetric Gang : ∑

K
k=1 Xk

n = ∑
K
k=1 Xk

m. This constraint implies that both m

and n always go together; similar to Siamese twins, wherever one of them goes,

the other one simply must follow. For example, imagine Offcodes that use some

mutual resource (actually much as Siamese twins do). It is possible to think about
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two instances of an Offcode that performs streaming. They can reside on a NIC and

on a “Smart Disk” device. Since we don’t want packets to traverse the bus twice

(which will inevitably happen when only one of the instances is offloaded), we must

have a Gang Constraint between the instances.

These equations are sufficient to represent the joint offloading layout graph as a set of

linear equations.

3.2.3 Optimization objectives

We have identified several optimization functions, two of which are presented below. The

list is by no mean complete; additional objectives functions can be easily added to address

various application needs. We will suggest some of those in the future work section.

1. Maximized Offloading – The trivial objective is to offload as many Offcodes as

possible. The motivation for such a goal is to minimize the CPU usage and memory

contention at the host:
max

(
N

∑
n=1

K

∑
k=1

Xk
n

)
.

2. Utilize bus bandwidth between devices as much as you can. We assign each Offcode

a “price,” which is an average bus bandwidth this Offcode will use (different scales

may be used here, for example use scale -10 .. 10, -10 defines a high penalty in

offloading this Offcode in terms of bus utilization, 10 - this Offcode uses 100% of

the bus bandwidth in average).

In addition, we define a capability matrix of prices for each Offcode that describes

the maximum bus bandwidth that might be needed by each Offcode . We will vali-

date our solution with this matrix, after the problem has been solved.
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So, let P be the price vector, where Pn defines the average for Offcode n, the ob-

jective function will be: max (P∗C), where C is a constraint matrix, built from the

constraint vectors described above.

We will present a detailed example that uses everything that we have described in the

evaluation chapter.
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Chapter 4

Software Architecture for ILP Compiler

In this chapter, we present the detailed design of the application, whose inputs are the

devices, Offcodes, and constraints we talked about in the previous chapters, and whose

output is the offloading layout graph that tells the runtime system which Offcodes actually

should be offloaded.

4.1 HYDRA SW architecture

The system implements the model and provides facilities for programming, testing, de-

ploying, and managing OA-applications and Offcodes. Both the host OS and the target

device firmware must support the interfaces defined by the programming API and imple-

ment the runtime functionality. A critical decision is to modularize the framework into

independent parts, so that modifying one will not affect the rest.

Runtime library requirements for a particular target device may be provided by the

device manufacturer, system integrator, or by researchers and the open source community.

The second half of the runtime system exists on the host as operating system extensions.
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Our host implementation for Linux is modular, in that it maintains strict separation be-

tween device-specific code and generic code. It is implemented as a set of kernel modules

that are loadable on demand and do not require kernel source code modifications.

4.1.1 HYDRA components

The HYDRA runtime is composed of several components as shown in Figure 4.2. It is

accessed through an offloading access layer that consists of a user-level library linked to

each OA-Application and a kernel-level set of generic services.

user layer API

OA−App

Device Device OS

User

Mgmt
Offloading

API
Channel

Mgmt
Memory
Mgmt

Layout
Mgmt

Resource
Mgmt

Kernel

Runtime API

Sys Call

TCP/IP

Local Remote

Channel Executive

PCI RDMAiSCSI

Channel Providers

α
β

Offcode
Offcode

Offloading
Extensions

Runtime

Figure 4.1: System Architecture

The kernel layer consists of several functional blocks. The System Call Manage-

ment and Offloading API blocks implement the various APIs defined in the program-

ming model. The Channel Management unit manages the channels by interacting with
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the Channel Executive. This module handles channel creation by using a particular Chan-

nel Provider. These providers are target-specific and provided as an extended driver for

each programmable device. A channel provider creates various specialized channel types

to the device and provides a cost metric regarding the “price” for communicating with the

device through a specific channel, in terms of latency and throughput. The Channel Exec-

utive uses this capability information to decide on the best provider for a specific Offcode.

The Resource Management unit keeps track of all active Offcodes and related resources.

Resources are managed hierarchically to allow for robust clean-up of child resources in

the case of a failing parent object. The Memory Management module exports memory

services such as user memory pinning that is used by zero-copy channels. The Layout

Management unit performs layout-related functionalities such as analyzing the offloading

layout graph. This unit receives the offloading layout graph as input and produces the map-

ping between Offcodes and target devices. The module can be easily extended to support

future offloading constraints.

4.2 ILP compiler architecture

The red components in Figure 4.2 mark the dynamic offloading framework’s specific com-

ponents that are discussed in this paper: the ILP compiler and the application API.
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Figure 4.2: System Architecture

4.2.1 ILP compiler components

Device Enumerator

This component is responsible for gathering findings of all leaf enumerators and provid-

ing a combined output to the Offcode matching database. The device enumerator is

implemented as a container of leaf enumerator objects. This component has a proprietary

interface, both for input and output, and its implementation is OS independent.

The leaf enumerator provides device identifiers; it searches through some source and

reports all found devices, for example, it parses “lspci” output in Linux. Naturally, this
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object is operating system aware, as every system represents its devices differently. All

enumerators provide their outputs in XML files of a defined format, which the Device

Enumerator understands.

PCI leaf 

enumerator
USB

SDIO leaf 

enumerator
...

System devices XML

Device Enumerator
Device Objects 

Database

Enumerate

Figure 4.3: Device Enumerator
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Offcode Enumerator

This component is responsible for enumerating Offcodes. It iterates through Offcodes’

ODFs, instantiates entries that describe Offcodes and provides them to Offcode matching

database.

As an input, the Offcode enumerator is provided with a list of ODF files describing

all known Offcodes. It iterates through the list of files, using an XML parser and ODF

scheme on each ODF file to parse it.

ODF files list

Offcode Enumerator

Offcodes 

Objects 

Database

Enumerate

Figure 4.4: Offcode Enumerator
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Offcode matching database

This component is responsible for activating the Offcode enumerator and device enumer-

ator, described above, to build a database of Offcodes and devices. Then it filters out

Offcodes that don’t match any of the devices. It interacts with the graphical front end,

providing it with the resulting list of Offcodes eligible for offloading and devices those

Offcodes can be offloaded to.

ODF files list

Offcode 

Enumerator

Offcodes Objects 

Database

Enumerate

PCI leaf 

enumerato

r

USB

SDIO leaf 

enumerato

r

...

System devices XML

Device 

Enumerator

Device Objects 

Database
Enumerate

Matching Devices database
Graphical Front End

Figure 4.5: Offcode Matching Database
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Constraints Container

The constraints container contains objects that represent all constraints available in the

system. They have logical representation that is used for ILP formulation. This logical

representation shapes the [in]equations, once the constraint has been instantiated for par-

ticular Offcodes. Each constraint object has graphical representation as well, which is

provided to the graphical front end by the container.

To make our system more scalable, in this case by making it easy to add additional

constraints, we use a separate class to describe every kind of constraint. Every such class,

for example, the PullConstraint class, gangConstraint class etc, inherit from a generic

abstract (in Java terms) Constraint class that provides an identical interface for all kinds

of constraints. This abstract class practically enforces all its successors to implement a

constructor, a function to provide graphical representation for a graphical front end and a

function that provides logical representation for the ILP formulation.

Goal Function Container

The goal functions container is similar to the constraints container, except that the goal

functions container holds goal functions representations. There is a similarity between

objects representing goal functions and constraints as well. Goal functions also have an

equation-shaping logic and graphical representation.

Similarly to the constraints collection, goal functions can also be easily extended by

new ones, but it’s in hands of the system designer rather than the user.

ILP Subsystem

The ILP subsystem is in fact a set of components. It consists of an external ILP solver

engine and several decorators that “stitch” the engine to the rest of the system.
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One of the decorators translates abstract equations from constraints and goal functions

into the ILP solver input format. The others translate the ILP solver’s output to the format

readable to the user, a format that the graphical front end understands and, naturally, a

format that can be used as an input to the dynamic Offcode offloading engine.

External ILP solver

ILP formulation translator

Logical ILP representation

Output translating decorators

Figure 4.6: ILP Subsystem
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It is clear that practically any ILP solver can be rather easily incorporated into this

architecture. In fact, the system designer has to only provide those decorators together

with the solver (and those are usually relatively easy to implement).



Chapter 5

Evaluation

In this section, we describe two real-life scenarios and translate them into ILP instances

according to the model presented in Section 3.2. We present solutions found by solving

ILP and compare them to greedy solutions. We also describe the free off-the-shelf ILP

solver we used throughout this evaluation.

We chose a specific group of application as experimental system, complex enough

to provide non-trivial examples yet simple enough to embrace. Devices, Offcodes, their

types and numbers are invariants of the system along with several mandatory constraints.

The only unknown left are constraints and goal functions, normally given by the user. We

create several scenarios on top of this system by fixing different sets of “user-defined”

constraints and goal functions.

5.1 AMPL ILP solver

To solve the ILP problems that we define in the following section, we use AMPL [AMP]

SW. “AMPL is a comprehensive and powerful algebraic modeling language for linear and
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nonlinear optimization problems, in discrete or continuous variables, developed at Bell

Laboratories,” can be found at www.ampl.com.

AMPL SW provides both a command line environment for the user and a command

line interface, so that it can be invoked from another application. We explain the way this

SW should be used in the architecture section of this paper.

5.2 Experimental application

There are, in fact, several applications and several peripheral devices involved. Here are

the participating applications:

1. The Tivo PC application that is composed of several Offcodes and is supposed to

run on peripherals. It reads content from the OSD [Ruw] device and sends it to the

graphics card.

2. A firewall application that filters network traffic and stores a log on another OSD

device.

3. A back-up utility that writes on to an OSD device.

Devices present in the system

There are four offloading capable devices present in the system:

• Network Interface Card (NIC)

• Two Object Storage disk (OSD) devices and a

• graphics card (GPU).
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We stream a movie and run backups in parallel, while the firewall is running on the

NIC, logging part of its activities on one of our OSD devices. Figure 5.1 shows the com-

plete data flow between devices for the chosen application load.

Network

Home PC

Network 

controller

OSDOSD

Graphics card

1

2

3
4

Figure 5.1: Application Data Flow
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Available offcodes

The applications described introduce the following Offcodes:

• Offcode A - OSD writer. We have one instance of this Offcode, which is allowed to

run on OSD devices OSD1 and OSD2. This Offcode is used to write any received

input to the storage device.

• Offcode B - OSD reader. We also have one instance of this Offcode, which is al-

lowed to run on OSD devices OSD1 and OSD2. This Offcode is used to read from

the storage device.

• Offcode C - network firewall. We have only one instance of this Offcode, which

is allowed to run on the device NIC and implements a simple filtering function for

incoming and outgoing network packets. As a part of its filtering operation, this Of-

fcode logs statistics about the dropped packets on the storage device, using Offcode

B.

• Offcode D - network movie server. We have only one instance of this Offcode,

which is allowed to run on the device NIC; its only purpose is to forward a movie

from some source (e.g., storage) to a client, also attached to a network. It uses

Offcode B to read the movie stream from the network and uses Offcode A to stream

a movie to the network client.

• Offcode E - actual movie streamer. We also have only one instance of this Offcode.

It should run on the graphics processing device (GPU) and finally show us the movie.

Naturally, it uses the OSD reader (Offcode B) to read the movie from the network.
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5.2.1 System ILP formulation

Now, in terms of the ILP formulation described in section 3.2, our application should be

represented in the following way:

K (number of devices) = 4,

N (number of Offcodes ) = 5.

Let’s now define the decision variables and initial constraints matrices.

Constraint matrix =

A B C D E

OSD1 1 1 0 0 0

OSD2 1 1 0 0 0

NIC 0 0 1 1 0

GPU 0 0 0 0 1
X = 

X1
1 X1

2 X1
3 X1

4 X1
5

X2
1 X2

2 X2
3 X2

4 X2
5

X3
1 X3

2 X3
3 X3

4 X3
5

X4
1 X4

2 X4
3 X4

4 X4
5


C = 

1 1 0 0

1 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1


So, the first group of constraints (C*X) is the mandatory one. It imposes the model’s

feasibility and is required for sanity:

∀n ∈ {1..5}, ~Cn ∗ ~Xn <= 1:

And if we formulate it in the AMPL tool, section 5.1, we will get the following:
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• n = 1: X1
1 +X2

1 <= 1,

• n = 2: X1
2 +X2

3 <= 1

• n = 3: X3
3 <= 1,

• n = 4: X3
4 <= 1,

• n = 5: X4
5 <= 1

Figure 5.2: Mandatory Constraints

• subject to n1 : X11 +X12 +X13 +X14 <= 1;

• subject to n2 : X21 +X22 +X23 +X24 <= 1;

• subject to n3 : X31 +X32 +X33 +X34 <= 1;

• subject to n4 : X41 +X42 +X43 +X44 <= 1;

• subject to n5 : X51 +X52 +X53 +X54 <= 1;

Figure 5.3: AMPL Mandatory Constraints
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Each Offcode instance can be offloaded to, at most, one device. Note that we give the

AMPL the whole constraint without simplifying it.

In the next two subsections, we shall prove two claims of this research:

1. The model presented by us is sound (provides correct results).

2. The model presented by us is optimal, or, at least, provides results better than the

greedy approach.

We will show examples for both of our claims. Although, the examples are rather

intuitive, this is done only so the reader can easily follow our examples.

5.3 Example set 1

In this set of examples, we provide several groups of user-defined constraints. Each such

group, combined with definitions from the previous section, completes the ILP problem

definition. Then we present the solutions generated by ILP solver and show that they

satisfy the constraints.

5.3.1 Example 1

First, we’ll try to build an easy-to-track example with not-too-complex constraints and a

trivial objective function.

We would like to impose minimum overhead on the host CPU, i.e., offload as much

functionality as possible. The easiest way to accomplish that is by tailoring gang con-

straints through the whole bunch of Offcodes. We will use the Symmetric Gang, so any

chosen Offcode results in choosing the rest.

Using decision variables from the previous section, we define the following constraints,

complying with the policy above:
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• C
Gang⇔ A: −X1

1 −X2
1 +X3

3 = 0

• D
Gang⇔ A: −X1

1 −X2
1 +X3

4 = 0

• D
Gang⇔ B: −X1

2 −X2
2 +X3

4 = 0

• E
Gang⇔ B: −X1

2 −X2
2 +X4

5 = 0

Figure 5.4 presents the dependency graph of those constraints.

A

D E
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GangGang
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a
n
g

Figure 5.4: Offcode Constraints Graph

Figure 5.5 presents the AMPL tool input representation of these constraints.

As we already mentioned, the user-defined objective function is to maximize the num-

ber of downloaded Offcodes : max(∑N
n=1 ∑

K
k=1 Xk

n )

By running AMPL software, described in section 5.1, we acquire the following result:

It’s easy to see that both sets of constraints are satisfied:

1) sanity ones supplied with application → each Offcode ended up in the right device.

2) gang group we just defined → all Offcodes were chosen.
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• subject to CgangA : −X1
1 −X2

1 +X3
3 = 0;

• subject to DgangA : −X1
1 −X2

1 +X3
4 = 0;

• subject to DgangB : −X1
2 −X2

2 +X3
4 = 0;

• subject to EgangB : −X1
2 −X2

2 +X4
5 = 0;

Figure 5.5: AMPL Gang Constraints

maximize download: X1
1 + X1

1 + X2
1 + X3

1 + X4
1 + X1

2 + X2
2 + X3

2 + X4
2 + X1

3 + X2
3 + X3

3 +
X4

3 +X1
4 +X2

4 +X3
4 +X4

4 +X1
5 +X2

5 +X3
5 +X4

5 ;

Figure 5.6: AMPL Maximize Download

• Offcode A to device 1

• Offcode B to device 1

• Offcode C to device 3

• Offcode D to device 3 and

• Offcode E to device 4

Figure 5.7: Example 1 Solution

• X1
1 = 1;X2

1 = 0;X3
1 = 0;X4

1 = 0;

• X1
2 = 1;X2

2 = 0;X3
2 = 0;X4

2 = 0;

• X1
3 = 0;X2

3 = 0;X3
3 = 1;X4

3 = 0;

• X1
4 = 0;X2

4 = 0;X3
4 = 1;X4

4 = 0;

• X1
5 = 0;X2

5 = 0;X3
5 = 0;X4

5 = 1;

Figure 5.8: Example 1.1 AMPL solution
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5.3.2 Example 2

Now we will make this a bit more interesting by requiring that both OSD accessing Off-

codes (i.e., the reader and the writer) be offloaded to the same device. We will accomplish

this by adding a pull constraint between Offcodes A and B.

A Pull⇔ B: X1
1 <= X1

2 ; X2
1 <= X2

2

• subject to ApullB1 : X1
1 −X1

2 <= 0;

• sub jecttoApullB2 : X2
1 −X2

2 <= 0;

Figure 5.9: AMPL Pull Constraint

In this case, AMPL generates a similar solution:

• Offcode A to device 2

• Offcode B to device 2

• Offcode C to device 3

• Offcode D to device 3 and

• Offcode E to device 4

Figure 5.10: Example 1.2 Solution

The difference between this solution and the previous one is that Offcodes A and B are

offloaded into OSD2 instead of OSD1. But this is perfectly fine with the sanity constraints

and also with the A Pull⇔ B one.
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5.3.3 Example 3

In this case, we force Offcodes A and B to be downloaded to different devices rather than

to the same one, by switching the pull constraint to a gang constraint.

A
Gang⇔ B: X1

1 +X2
1 −X1

2 −X2
2 >= 0

• subject to AgangB : X1
1 +X2

1 −X1
2 −X2

2 >= 0;

Figure 5.11: AMPL, Yet Another Gang Constraint

In this case, the following solution has been generated:

• Offcode A to device 1

• Offcode B to device 2

• Offcode C to device 3

• Offcode D to device 3 and

• Offcode E to device 4

Figure 5.12: Example 1.3 Solution

We see that, again, the solution matches our expectations. Offcodes A and B have been

downloaded to different, yet compatible devices.

So, now, when we have shown the reader that the solution basically works, we can

move to the second claim we promised to show - optimality of the solution.
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5.4 Example set 2

In this section, we will use the same method we used in the previous section to define

several more examples. We will use even more complicated/diverse scenarios. But this

time we focus on showing the optimality of the solutions. We choose one scenario to show

that a greedy approach finds a suboptimal solution.

5.4.1 Example 1

We will use the same system described in the Section 5.2, while adding the bandwidth

constraint, i.e., we need to formulate such a constraint, so the host-to-device traffic will

be minimal. Basically, we must ensure that data exchange between two Offcodes won’t

happen via host, i.e., collaborating Offcodes must be offloaded together (if at all).

In the obvious case, constraints similar to those, which we defined in example 1 of the

previous section will do, because all the Offcodes get to be offloaded. However, in this

case it is rather a side effect of maximizing offloaded Offcodes .

So, we will use the following group of constraints:

• A
Gang⇔ C

• A
Gang⇔ D

• D
Gang⇔ B

• E
Gang⇔ B

and a very simple penalty vector P = (1, 2, 3, 4, 5)

The objective function here will be
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maximize bandwidth: (X1
1 +X2

1 +X3
1 +X4

1 +2∗X1
2 +2∗X2

2 +2∗X3
2 +2∗X4

2 +3∗X1
3 +3∗

X2
3 +3∗X3

3 +3∗X4
3 +4∗X1

4 +4∗X2
4 +4∗X3

4 +4∗X4
4 +5∗X1

5 +5∗X2
5 +5∗X3

5 +5∗X4
5 )

Figure 5.13: Bandwidth Goal Function

The solution, obviously, will be the same as in the previous section, because all Off-

codes can be offloaded to the devices.

5.4.2 Example 2

Now let’s leave the constraints as in the previous example and change bus utilization for

some of the Offcodes. This means altering penalty vector P. We choose it to be:

Vector P = (-1, 2, 3, 4, 5)

Now, our solution will be:

• Offcode A to device 0 - DO NOT OFFLOAD Offcode A

• Offcode B to device 1

• Offcode C to device 3

• Offcode D to device 3 and

• Offcode E to device 4

Figure 5.14: Example 2.2 Solution

5.4.3 Example 3

Now, let’s change the constraint to be: D
Gang⇔ A - if D is offloaded, so should A.

Vector P = (-1, 2, 3, 4, 5)
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Now the solution will be to offload all the Offcodes, which is correct, because we gain

more by offloading D than we lose by offloading A. On the other hand, a greedy solution

would obviously have dropped both A and D.

So, in this section we observed the bandwidth objective function and the optimality of

the model we describe in this paper.



Chapter 6

Conclusions and Future Work

In this thesis, we have presented a mathematical model for building an optimized layout

graph for Offcodes offloading, as well as a software architecture for an application that

implements this model.

We have shown that the model presented by this paper is sound, it provides a correct

solution for every example we have presented, and this model provides optimal solutions

for those problems, while other methods, greedy for example, provide suboptimal solu-

tions. And although the solutions to the examples above seem rather visible to a user, once

a few more constraints are added, it becomes humanly impossible to solve this problem.

We have also presented a scalable OS and HW specification independent SW architec-

ture for implementation of this model. Its scalability allows us to expand this model with-

out much implementation effort, and the sky is the limit here. There are many constraints

that can be added. Some might seem non-linear at first, but it is up to the researcher to

bring them to a simpler, linear form. As for goal functions, we presented only two of them,

but there are many more things that can be optimized, e.g., runtime memory consumption,

runtime RAM access latency, number of IO accesses (in case those can be offloaded to
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some peer-to-peer protocol,) and much more.

This research is an ongoing effort. The solution we present in this research deals only

with an off-line pre-compilation. Taken into account that solving an ILP problem is rela-

tively fast, and there are a lot of studies dealing with optimizing the ILP solution overhead,

while preserving the soundness of the solution, the future of this work is to make it update-

able in the runtime environment. It should be running in the system all the time, tracking

new applications that are being loaded into the system, hot-plug devices being plugged in

and out, new Offcodes being updated in the Offcode database, constantly monitoring the

system resources, and updating the offloading layout according to the system parameters

and to the user needs.

Taken into account the presented SW architecture, it should be relatively simple to ad-

just it to be an online application. All the presented modules should still be there, several

online modules should be added, like hot-plug devices observer, and its databases should

be constantly updated. When several solutions are applicable (satisfy the constraints), it-

eratively change the Offcode prices to be closer to the capability matrix to find the optimal

solution or even empirically switch between the solutions to achieve the best results.
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