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Abstract

Recent work by Lorentz and Boyd present a robust minimal variance beamformer

(RMVB) that is robust to the transmitter angle of arrival. In the current work we

extend the RMVB construction in two directions. First, we propose a distributed

algorithm that be computed jointly by the receiving antennas. Second, we extend

the RMVB model to allow uncertainties in both phase and amplitude of the received

signal as well as the angle of arrival.

Finally, we show that our distributed RMVB model reaches at least the same accuracy

in calculating the beamformer as the regular one, besides being more efficient.
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Chapter 1

Introduction

1.1 Background

Distributed beamforming is a subject of recent interest as it is applicable in sensor net-

works and other distributed systems, where cooperation among terminals is needed.

A system with transmitter cooperation or transmit–beamforming includes a number

of antennas transmitting similar narrowband signals, each using a different complex

weight. The beamforming weights are determined so that the different transmitted

waves add constructively in the direction of the receiver. In a system with receiver

cooperation or receive beamforming, the different weights are applied to the signals

received at the different antennas/terminals, so that the weighted signals coherently

add for waves received from a desired physical direction, where the transmitter is lo-

cated. Transmit and receive beamforming are mathematically very similar and their

optimal weights are identical. When applied to sensor networks, receive beamforming

is more challenging because it requires the collection of signals received at different

terminals.

The common method of calculating the weights in a centralized system is called

Minimum Variance Beamforming (MVB) or Capon’s method [1]. In this method, the

weights minimize the SNR with a constraint that the overall gain of the desired signal

is fixed. The MVB method is not robust to inaccuracies of the CSI (channel state

information); In particular, the MVB solution is not robust to uncertainty regarding

the angle of arrival in the receive beamforming setting or the desired angle of the

beam in the transmit beamforming case. A significant improvement to the MVB

method, named Robust Minimum Variance Beamforming, was suggested by Lorenz

& Boyd [1]. This (centralized) algorithm takes into account the uncertainty in the
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channel, as well as in the desired direction of the beam. Our work extends the RMVB

method to a distributed settings, where the beamformer is computed jointly by the

receiving antennas.

1.2 Thesis Outline

The thesis is organized as the following. Chapter 2 introduces the related work that

was done in this area. There is a review of several essays that contribute to the

understanding of the field. The problem settings, Capon and RMVB algorithms

are described in Chapter 3. Chapter 4 discusses our construction of the solution.

The experimental results are shown in Chapter 5. Finally, Chapter 6 concludes the

research and discusses future work.



Chapter 2

Related Work

2.1 Background

In wireless sensor/relay networks, each node serves as a distributed transmitter trying

to send a message to a common base-station receiver. The applications for such net-

works may vary and among others there are acoustics, radar, sonar, communications,

medical imaging and data processing etc.

By focusing the transmission of each node in the direction of the base-station the

systems enjoys a proportional SNR increase. Thus, if a single transmitter sends a

message with power P and the receiver achieves an SNR of p, an array of N such

transmitter will achieve N*p SNR with the same total gain P. Meaning that each

transmitter will now have to use only P/N power. Such an effect happens if the

signals of the transmitters are adapted to constructively interfere at the receiver.

This enhanced energy efficiency can be crucial for a network design. Adaptive antenna

arrays also cancel the interference by null-steering.

Keeping this in mind, it’s obvious that beamforming can also be used in networks

of limited transmit power sensors. A solution for increasing communication distance

can be simply adding more transmitters. In addition to these cases, beamforming can

be used in networks, such as low carrier frequencies communication networks, where

in some cases directional antennas are hard to implement.
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2.2 The Challenge

The challenge in implementing beamforming is the requirement of phase and fre-

quency synchronization. In a distributed network, in comparison to a centralized

one, each transmitter has its’ own carrier RF signal which comes from a separate

local oscillator circuit. It means that the signals are not synchronized a priori. Cen-

tralized antenna arrays make several assumptions, which are not met in a distributed

system. The base-band signals are synchronized and the carrier frequency and phase,

which coherent the signals, are the same for all the nodes. It is easily accomplished

thanks to common circuits that generate the signals and the a priori known delays

between the circuits. Capon’s implementation suffers from the distributed network

characteristics. The assumption of a point source, as in Capon’s solution, is not al-

ways practical. Opposite examples are cellular mobile communications, radar and

sonar, where the source of interest is scattered around some nominal position. It can

also be easily shown, and our results show it, that whenever the knowledge of the

signal vector is imprecise, which is common as a result of imprecise angle of arrival

estimation or inaccurate array response knowledge, Capon’s beamformer performance

decreases.

Distributed beamforming network, faces several more difficulties. The channel

phase response complicates the phase coherence of the signals. Also, one must re-

member that it is common for a network to have certain constrains one its’ nodes,

such as complexity, gain and communication with other nodes as well as with the

receiver.

Trying to design a network that solves the synchronization problem by estimating

the channel directly and then sending the estimation to the receiver, requires a large

overhead since all the channels paths between each transmitter must be calculated.

Thus, the existing beamforming schemes sum up to networks where the receiver and

the transmitter have no knowledge about the channel realization.

In master-slave implementations, which are described later, there is an unknown

propagation delay between the transmitters. Finally, another effect which would be

considered in some realizations is channel phase responses change in time. This might

happen, for example, due to Doppler effects from moving elements.
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2.3 Master-Slave Implementation

The authors of [2] and [3] suggest a master-slave architecture, where the master

transmitter is in charge of the signal synchronization of other slave sensors. There

is no communication with the remote base station. Instead, there is only a need in

a cheap local communication with the master. Thus, a centralized antenna array is

emulated. Their research shows that as time goes by, even once the slave transmitters

are synchronized, phase noise in oscillators gets them out of sync. That’s why the

master sensor has to resynchronize its slaves periodically. The simulation results show

that even using a non-optimal PLL(phase-locked loop) and having phase error on the

order of 60◦, the achieved SNR can reach 70% of the maximum.

2.4 Feedback Channel

The beamforming schemes in [4], [5] and [6] offer a structure consisting of several

transmitters, receiver and a limited (usually in bandwidth) feedback channel.

In [4], the setup is restricted to sending binary messages to a receiver (sending

+1 or -1) and accepting a one bit feedback channel (+1 or -1). This simplified setup

serves the authors to prove good upper and lower bound to the convergence time and

to show it is linear in the number of sensors in the network. The authors strictly state

that the settings are not representative of a real wireless channel but the combinatorial

techniques is worth presenting. The algorithm is as follows. Given N sensors, sensor i

sends the message ci[j] ∈ {+1,−1} at round j. The channel is represented by a vector
c ∈ {+1,−1}N . The transmission of the message through the channel is multiplying
both vectors element by element, which result at vector Y [j]. The gain at the receiver

is naturally |Y [j]|.

The beamforming algorithm uses randomization. Each node starts with an arbi-

trary signal (+1 or -1). At every round, each node flips a coin with some certain (later

changing) probability to land on heads. The node will toggle its signal according to

the flip and send it. The receiver, after accepting Y [j], will compare it to Y [j − 1]
and return +1 (-1) if Y [j] > Y [j − 1] (Y [j] ≤ Y [j − 1]). Nodes that toggled their
signal and received +1, change their defaults. Others remain with the defaults. It is

shown that although the time required satisfying the convergence condition (which

is: Y [j] >= βN for β < 1, β is some percentage of the maximum gain) is linear at

N, the upper and lower bounds are loose.
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The distributed synchronization procedure in [6] is related to several similar re-

searches. The authors show new theoretical results and observations on a known

prototype. It is made of master-slave architecture in order to synchronize the fre-

quency and carrier signals and a one bit feedback channel with the base station. The

feedback control algorithm is similar to the one described in [4] except of two differ-

ences. A phase rotation angle is randomized at each round, instead of a single bit.

Also after a successful round the phase is added to the node’s default value, instead

of being toggled. The authors build an analytical model for the convergence of the

algorithm and show three interesting results: 1) the algorithm is reaching perfect

coherence almost surely for any initial phase angle; 2) the expected received signal is

a non-decreasing function of N; 3) the time needed for convergence is at most linear

at N.

In addition, an improved algorithm that takes special care of channel phase change

in time is presented.

[5] is based on the feedback structure, which is described in [6], but it also presents

a new research of the process. The algorithm for improving the SNR by randomizing

a change in phase is being analyzed together with its’ performance. The authors are

interested in the reasons behind the effectiveness of the proposed scheme. In order to

solve this, they establish equivalence between a local random search algorithm and

the magnitude function Mag(.), which measures the received signal magnitude. Nat-

urally, Mag(.) needs to be maximized in order to enhance the SNR. This comparison

lets them study the convergence of the distributed beamforming scheme.

The research is built in several steps. First, after the equivalence has been con-

structed, it’s necessary to show that Mag(.) has no local maxima other than the

global ones. Otherwise the local search algorithm can stuck on some local maximum

if the random phase delta is too small. This is a necessary condition for the conver-

gence. Then, they show that Mag(.) has multiple global maxima. This denotes the

fast convergence issue. In addition, the hitting time proof shows that it scales linearly

with the number of transmitters.

2.5 GRCB

In [7] a new adaptive beamforming algorithm called Gaussian Robust Capon Beam-

former (GRCB) is proposed. It is based on a conventional Capon. The algorithm is

used in a communication environment, where there is a high angular spread (more
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than 2◦) on signal of interest. As was mentioned earlier, Capon is sensitive to variants

and inaccuracy in the signal. The proposed GRCB uses diagonal loading approach to

efficiently solve the problem of response errors and to improve the signal of interest

isolation.

In general, it recalculates a new response vector from the knowledge of area of

uncertainty and adds the optimal diagonal loading according to the angular spread.

The algorithm is as follows: A channel estimation algorithm determines the signal

of interest angular spread (α) and the Gaussian uncertainty area of the pdf (proba-

bility density function). A mean value, which is selected from the pdf, will be a new

estimation for the response vector a0. The data covariance matrix R is decomposed

by SVD to UAU ∗, where A is a diagonal matrix with data covariance eigen-values. A

new data covariance matrix Rd = R+ α ∗A is constructed and the beamformer w is
calculated: w = R−1∗a0

a∗0R
−1∗a0

. It should be noted that the execution time of the algorithm

is up to 8 times faster than the conventional case.



Chapter 3

Problem Statement

3.1 The beamforming problem

Figure 3.1: Diagram of the antenna array used.

3.2 Robust Min Variance Beamforming (RMVB)

In this section we describe the RMVB method of [1].

The minimum variance beamformer (MVB) is chosen as the optimal solution of:

minimize w∗Ryw , (3.1)

subject to w∗a(θ) = 1 .
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The RMVB beamformer deals with the uncertainty of a, presenting a more general

form of (3.1) would be:

min
w

w∗Ryw , (3.2)

subject to <{w∗a} ≥ 1 ∀a ∈ E .

E is an ellipsoid that covers the possible range of values of a. The use of E is due
to imprecise knowledge of the array manifold a, phase uncertainty at the receivers or

other factors. The optimal solution of (3.2) is called: the Robust Minimum Variance

Beamforming (RMVB).

The n-dimensional ellipsoid is defined as:

E = {Au+ c | ‖u‖2 6 1 } ,

where: A ∈ Rn×n and c ∈ Rn. E describes an ellipsoid whose center is c and whose
principle semiaxes are the vectors of A.

It is more convenient to convert w and a(∙) to their real representation

x =

[
<{w}
={w}

]

and z =

[
<{a}
={a}

]

.

The quadratic form w∗Ryw is expressed as x
TRx, where

R =

[
<{Ry} −={Ry}
={Ry} <{Ry}

]

.

The RMVB can then be expressed as

min
x

xTRx , (3.3)

subject to ‖ATx‖2 6 cTx− 1 .

By imposing of the additional constraint that cTx ≥ 1, RMVB becomes an optimal
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solution to

min
x

xTRx , (3.4)

subject to ‖ATx‖22 = (c
Tx− 1)2 .

The conforming Lagrangian is

L(x, λ) = xTRx+ λ(‖ATx‖22 − (c
Tx− 1)2) , (3.5)

where λ ≥ 0 is the Lagrange multiplier. For finding the optimality conditions we
compute the partial derivatives for x and λ

∂L(x, λ)

∂x
= (R + λQ)x+ λc = 0 , (3.6)

∂L(x, λ)

∂λ
= xTQx+ 2cTx− 1 = 0 , (3.7)

where Q = AAT − ccT . The equations are reduced to a secular equation:

f(λ) = λ2
n∑

i=1

ci
2γi

(1 + λγi)2
− 2λ

n∑

i=1

ci
2

1 + λγi
− 1 .

γ are the generalized eigenvalues of Q and R and are the roots of the equation det(Q−
λR) = 0. Then the optimal value λ∗, satisfying f(λ∗) = 0 is computed. Finally the

RMVB is computed according to

x = −λ∗(R + λ∗Q)−1c .
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Given R, strictly feasible A and c:

1. Calculate Q← AAT − ccT

2. Change coordinates

(a) compute Cholesky factorization LLT = R

(b) compute L−
1
2

(c) Q̃← L−
1
2Q(L−

1
2 )T

3. Eigenvalue/eigenvector computation.

(a) compute V ΓV T = Q̃

4. Change coordinates

(a) c← V TR−
1
2 c

5. Secular equation solution.

(a) compute initial feasible point λ̂

(b) find λ∗ > λ̂ for which f(λ) = 0

6. Compute x∗ ← (R + λ∗Q)−1c

Figure 3.2: Robust min variance beamforming algorithm



Chapter 4

Our Construction

We first describe a centralized solution to the RMVB problem, and then show how

to distribute it. We observe that the RMVB formulation (3.3) is a second order cone

program (SOCP), a convex optimization problem of the form

min
x
fTx

such that ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m ,

A ∈ Rn×n f, x, c ∈ Rn d ∈ R.

Now, unlike [1] we propose to use an interior point method (Newton method) for

solving the SOCP problem. The Newton method is given in Table 4.1.

Given feasible starting point z0 and tolerance ε > 0, k = 1
Repeat 1 Compute the Newton step and decrement

Δz = −f ′′(z)−1f ′(z), μ2 = f ′(z)TΔz
2 Stopping criterion. Quit if 1

2
μ2 ≤ ε

3 Line search. Choose step size t by backtracking line search.
4 Update. zk := zk−1 + tΔz, k = k + 1

Table 4.1: The Newton method [8, §9.5.2]
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We start by constructing the Lagrangian (3.5), and compute the first order opti-

mality conditions by differentiating it and setting the partial derivatives equal to zero

(3.6),(3.7). We define a new variable z , [xT λ]T . For computing the search direction

Δz we need to compute the gradient f ′(z) and Hessian f ′′(z) which are given below:

f ′(z) =

(
(R + λQ)x+ λc
1
2
xTQx+ cTx− 1

2

)

, f ′′(z) =

(
R + λQ Qx+ c

(Qx+ c)T 0

)

,

We start from the initial point z0 = c, which is the center of the ellipsoid E and thus
conforming to the constraints. In each Newton step we compute the search direction

z, we use a backtracking line search to compute a step size t ∈ (0, 1], and update the
current point to zk−1 + tΔz. We stop when

1
2
μ2 < ε.

The main computational bottleneck of the Newton method shown above is the

Newton step. In each Newton step, we solve the following linear system of equations.

f ′′(z)Δz = −f ′(z) , (4.1)

This can be done naively using Gaussian elimination in O((2n+1)3) operations since

z ∈ R2n+1. We propose the preconditioned conjugate gradient (PCG) method to speed
up this computation. The PCG method [9],[10, §6.6], [11, chap. 2], [12, chap. 5] is
given in figure [4.1]. The input to the PCG method is a matrix which is positive

definite. Since the matrix f ′′(z) is not positive definite, we have used the following

preconditioning (denoting H , f ′′(Δz), g , f ′(z))

HTHΔz = −HT g , (4.2)

Now we are able to use the PCG method. PCG makes all matrix and vector

arithmetics distributedly. It includes vector inner product, matrix by vector product,

matrix by scalar product, vector substraction, etc’. We can see that each step takes

O(n3) products or additions.
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Input: A, b, x0. A is a real, symmetric, positive-definite matrix.

1. r0 := b− Ax0

2. P0 := r0

3. k := 0

4. repeat:

(a) αk :=
rTk rk
PTk APk

(b) xk+1 := xk + αkPk

(c) rk+1 := rk − αkPk

(d) if rk+1 is sufficiently small then exit loop end if

(e) βk :=
rTk+1rk+1

rTk rk

(f) Pk+1 := rk+1 + βkPk

(g) k := k + 1

Output xk.

Figure 4.1: Conjugate Gradient algorithm for solving Ax = b. The input vector x0
can be an approximate initial solution or 0 ∈ Rn.



Chapter 5

Experimental results

In this Section we present experimental results to illustrate our extended model.

Following the numerical example [1, §1.4], we use a uniform linear antennas array
with 10 elements, centered at the origin. Matlab code of our example is available

on [13]. The spacing between the elements is half of a wavelength and the response

of each element is isotropic and has unit norm. The coupling between elements is

ignored. The response of the array a : R → C10 to a plane wave propagating at an

angle θ is given by

a(θ) = [ej
−9φ
2 , ej

−7φ
2 , ej

−5φ
2 , . . . , ej

5φ
2 , ej

7φ
2 , ej

9φ
2 ] ,

where φ = cos(θ) and θ is the angle of arrival. The array response is derived from

the array factor formula: AF =
∑N

i=1 e
j(i−1)ψ where ψ = kd cos(θ), d is the spacing

between the elements, θ is the angle of arrival and k = 2π

wavelength
.

Three signals impinge upon the array: a desired signal sd with SNR 20 dB at each

element and two uncorrelated interfering signals sint1 and sint2 with SNR 40 dB and

20 dB respectively. The angles of arrival of the interfering signals are θint1 = 30
◦ and

θint = 75
◦. The estimated covariance is then

ER = Eyy∗ = σ2dada
∗
d + σ

2
int1aint1a

∗
int1 + σ

2
int2aint2a

∗
int2 + σ

2
nI ,

where
σ2d
σ2n
= 102,

σ2int1
σ2n
= 104,

σ2int2
σ2n
= 102 and Evv∗ = σ2nI .
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We assume that the nominal angle of arrival θ is 45◦.

5.1 Angle of arrival uncertainty

We border the actual array response into an ellipsoid E(c, P ) whose center and con-
figuration matrix are computed from N = 64 equally spaced samples of the array

response at angles between 40◦ and 50◦. The ellipsoid is calculated the following way.

Given nominal angle of arrival θnom, array output a(∙) and number of equally-spaced
samples N , we first calculate the center c:

c = 1
N

N∑

i=1

a(θi) ,

and then the ellipsoid P itself

P = 1
N

N∑

i=1

(a(θi)− c)(a(θi)− c)
∗,

where

θi = θnom + (−12 +
i−1
N−1)Δθ .

and Δθ = 10
◦.

Figure 5.1 shows the beamformer response using three tested algorithms: Capon

method, RMVB using secular equations and RMVB our Newton method. As ex-

pected, the graph shows that Capon method has a good performance at the exact

angle of arrival, but small variation on the angle result in degraded performance.

In contrary, the RMVB beamformer has a very good performance under the uncer-

tainty of AOA (±5◦), which is the input the problem. Furthermore, in this region the
distributed beamformer has no visible performance loss.

5.2 Phase uncertainty

We use the following model to express phase uncertainty:

a(θ, ρ) = [ej(
−9φ
2
+ρ), ej(

−7φ
2
+ρ), ej(

−5φ
2
+ρ),j(

5φ
2
+ρ) , ej(

7φ
2
+ρ), ej(

9φ
2
+ρ)] ,
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Figure 5.1: Comparison of the different methods facing angle of arrival uncertainty.

where c is the weighting constant defined accordingly to the antenna position in

the array, φ = cos(θ) where θ is the assumed angle of arrival, and ρ is the phase

uncertainty. We border the actual array response into an ellipsoid E(c, P ) whose
center and configuration matrix are computed from N = 64 equally spaced samples of

phase uncertainty on the range [0, 0.2]. Figure 5.2 plots the array response to different

phases, where the x-axis represent the phase, and the y-axis the beamformer output.

Clearly the allowed phases gives the desired response which is close to one, on the

range [0, 0.2].
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Chapter 6

Conclusions and Future Work

Our research showed an alternative algorithm for the RMVB problem using a dis-

tributed system solution.We also showed, that the algorithm can be robust for angle

of arrival uncertainty and for phase uncertainty, which is usually the case in a real

life multi-transmitter system.

The distributed solution will improve the speed and decrease the gain of the beam-

former calculation and can contribute to embed such low gain systems in cell phone

hardware, sensor networks, etc’.

In the future, it may be valuable to investigate new synchronization techniques for

improving the phase synchronization step, which will let the beamforming system

be not centralized. In addition, we will work on robustness needed as a result of

combining several system uncertainties in a single setup.
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