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Abstract

Real-time tracking of human body motion is an important technology in biomedical

applications, robotics, and other human computer interaction applications. Inertial

sensors can overcome problems with jitter, latency interference, line-of-sight obscura-

tions and limited range but suffer from slow drift. RSSI based location estimation can

detect location without drifting but is slow, sensitive to shadowing effects and suffers

from large estimation errors. For these reasons, most research considered RSSI-based

estimation unsuitable for Body Area Network environment. Recent work in our lab,

demonstrated an RSSI-based setup able to perform well in close proximity, rendering

it useful for human motion tracking. This paper describes the design of a complemen-

tary kalman filter to integrate the data from these two types of sensors in order to

achieve the excellent dynamic response of an inertial system without drift and with-

out the shadowing sensitivity of RSSI-based estimations. Real-time implementation

and testing results of the complementary Kalman filter are presented. Experimental

results validate the filter design, and show the feasibility of using inertial/RSSI sensor

modules for real-time human body motion tracking.
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Chapter 1

Introduction

Recent advances in electrical, biological, chemical and mechanical sensor technologies

have led to a wide range of wearable sensors suitable for long autonomous opera-

tion and continuous monitoring [2]. Using small wearable wireless platforms that can

record and transmit physiological and kinematic data in real-time, human movement

can now be measured continuously outside a specialized laboratory [3]. Applications

in many medical fields such as gait analysis ([4],[5],[6]), functional electrical stimula-

tion ([7], [8], [9]) and monitoring activities of daily living (ADL) ([10],[11], [12]). Thus,

research is currently being carried out in many laboratories for designing systems for

better and accurate tracking of human body motion with the use of on-board MEMS

sensors. Beside the research efforts for high-grade, yet inexpensive sensors, advanced

signal processing methods are intensely investigated to improve the performance of

tracking algorithms [13].

Calculating orientation and location using these miniaturized inertial systems

has limited capabilities. The main problem is that location is computed by time-

integrating the signals from gyros and accelerometers, including any superimposed

sensor drift and noise. Hence, the estimation errors tend to grow unbounded.[refs]

Solutions for mitigating the drift problem usually consist of an external sensors such

as magnometers [14] or on problem-specific knowledge, for example gait cycle for drift

error correction [15].

This paper presents a new design for mitigating the drift errors by integrating RSSI

data into the estimation process. The main benefit of employing RSSI information is

that it comes with no added hardware costs as all existing wireless sensor platforms

support it. However, since RSSI estimation in these ranges is greatly affected by

multi-path phenomenon, advanced signal processing methods must be used. We
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present a complementary kalman filter model designed to optimally fuse the inertial

sensors data and the RSSI data. The basic idea behind complementary filtering

is that location and orientation drift errors resulting from accelerometer and gyro

output errors can be bounded by aiding the estimation with additional sensor data,

the information from which allows correcting the inertial sensors solution. Body

segment location estimation obtained with this system was compared with a location

estimation obtained using a laboratory bound camera system.

1.1 Motivation

Most of the research thus far has regarded the RSSI technology as unsuitable for

BAN ranges due to limited accuracy and sensitivity to changing conditions. Based

on Blumrozen et al. work [16] it has been shown that RSSI measurements can provide

useful data when using innovative calibration techniques. This work is aimed at fusing

the data from RSSI measurements with INS sensors data. Combining the sensor data

from INS and RSSI can potentially mitigate for unexpected RSSI bias on the one

hand and fix INS drift on the other hand. Sensor fusion is done using complementary

kalman filter .

1.2 Thesis Contribution

This work uses kalman filter to successfully combine INS and RSSI based sensors

to achieve good accuracy robust to environment changes and drift. The achieved

accuracy is in the scale of centimeters and improves previous results by 20-80 percent.

The whole system is still very low cost and is very light and small. Real world

experiments show that the sensor fusion achieves greater accuracy even in the face

of sensor bias and environment changes. Since almost all wireless devices can sample

RSSI data, this method can be utilized to improve many wireless INS systems used

for close range.

To our knowledge, this work is the first to combine RSSI and INS sensors data to

track human body motion. Further more we conducted thorough simulation testing

and real world experiments to verify results and robustness of the system.

The second contribution is presented in 4.1.2, an alternative derivation for the

orientation estimation kalman filter. The resulting model is simple and easier to
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implement.

1.3 Thesis Outline

The thesis is organized as the following.

Chapter 2 introduces the related work that was done in this area. The system

model is presented in Chapter 3. Chapter 4 presents the problem formally and de-

scribes the solution

Chapter 5 deals with the experimental methods and setup. The experiments

results and analysis are provided in chapter 6. Chapter 7 provides a through discussion

of the results and future work. Finally, Chapter 8 summarizes the presented work

and outlines the conclusions.



Chapter 2

Related Work

In recent years, technological advancements have made it possible to record human

movement continuously outside the boundaries of the laboratory [17]. Wearable wrist-

size sensor platform that can record inertial movement are now commercially avail-

able. The SHIMMER [3] and XSENS [18] platforms are small wireless sensor plat-

forms that can record and transmit physiological and kinematic data in real-time and

are widely used for medical research. The UP wristband by Jawbone [19] is a wireless

wristband aimed for the general public, collecting every day life statistics such as

sleep time and steps count. As these technologies are now widespread, the topic of

human motion tracking and gait analysis is of great interest in everyday applications

generating a large amount of research into systems that can provide this information

in real time at a low-cost and with the smallest intrusion level possible [20].

2.1 Inertial motion tracking

Inertial navigation systems (INSs) were widely used for ships, submarines, and air-

planes starting from the 1950s [21]. Over the course of the last 20 years, developments

in fields of electronics and micromachining, pushed by the needs of the automotive

and consumer industry have produced low-cost, small sized silicon sensors leading to

new applications [17]. Inertial sensors have been extensively used in the automotive

industry [22], robotics [23] and augmented reality [24]. In recent years, they have also

applied into the implementation of human motion tracking [20].

Inertial trackers are of prime importance in human motion tracking. They have

fewer costs, compact size, lightweight, and no motion constraint. They are com-

pletely self-contained, so they have no Line Of Sight (LOS) requirements, no emitters
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to install, and no sensitivity to interfering electromagnetic fields or multipath effects.

Also, they have very low latency and can be measured at relatively high rates (thou-

sands of samples per second) [25]. Sadly, they have a major drawback that is hard

to overcome, the drift problem. There are several causes of drift in a system which

obtains orientation by integrating the outputs of angular rate gyros [26]:

• Constant bias δω - when integrated causes a steadily growing angular error

θtδω · t

• Thermo-Mechanical White Noise vt - when integrated leads to a random walk

process θt =
∫ t

0
vtdt which has an expected value zero but a mean squared error

growing linearly with time.

• Calibration errors in the scale factors, alignments, and linearities of the sensors,

produce measurement errors leading to the accumulation of additional drift.

• Flicker Noise / Bias Stability - during operation the bias wanders away, pro-

ducing a residual bias that gets integrated to create second-order random walk.

Bias stability is usually modeled as a random walk or Gauss-Markov process,

and is often the critical parameter for drift performance, since constant bias can

usually be calibrated and compensated effectively.

For position estimation the drift problem is even more severe. First, there are ac-

celerometer errors corresponding to the 4 gyro errors listed above. However, since

the position is obtained by double integrating acceleration, a fixed accelerometer bias

error results in a position drift error that grows quadratically in time. But the critical

cause of error in position measurement is error in the orientation estimation. An error

of δθ in tilt angle will result in an error of g · sin(δθ) in the horizontal components of

the acceleration . For this reason, in practice, it is the gyroscopes, not the accelerom-

eters which limit the positional navigation accuracy of most INS systems. As seen

in fig 2.1, the simulation shows that commercial-grade inertial navigation systems

suffer from large position drift after just a few seconds [1]. Therefore, exploring new

techniques to reduce drift in inertial systems is a primary goal in the field of human

motion tracking.



2.2 Reducing drift in inertial systems 19

Figure 2.1: Comparison of position drift performance of commercial, tactical, nav-
igation, strategic-grade, and perfect pure inertial navigation systems [1]. Note that
commercial and tactical grade systems are rendered useless after just a few seconds.
Also, even the ”perfect” ins eventually drifts due to fluctuations in earth’s gravita-
tional field.

2.2 Reducing drift in inertial systems

Many studies of reducing drift in inertial systems for human motion tracking have

been performed. Different systems with varying number, type and configuration of

sensors used, some studies are limited to tracking two degrees of orientation in a

plane, while others track 3-D orientation [27]. Algorithms have also been designed

to track limb segment orientations relative to each other or calculate joint angles

[28]. Generally, the solutions for the drift reduction problem fall into one of the two

categories, sensor fusion and the application of domain specific assumptions.

2.2.1 sensor fusion

Sensor fusion is the process of combining sensory data from two or more types of sen-

sors to update the state of a system. In inertial systems, the state usually consists of
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position, velocity and orientation of the object. A sensor fusion algorithm calculates

the state using inertial sensors signals together with signals from additional sources

such as magnetometers [29]. Several mathematical and statistical tools are employed

in current research to fuse sensor data for tracking. The most prominent methods

are particle filter and various variants of the kalman filter ,mainly EKF, unsentenced

kalman and complementary kalman filter. Many types of complementing sensor tech-

nologies are found in the literature, among them optical [30], Ultra Wide Band [31],

GPS [32], magnetometer [28], and acoustical sensors [33].

The integration of visual and inertial sensors for human motion tracking has re-

ceived much attention lately, due to its robust performance and wide potential ap-

plication [34]. Most systems use an extended kalman filter for sensor fusion. The

most popular representant is the commercially available InterSense VIS-Tracker [35].

In [30] a real-time hybrid solution is presented to articulated 3D arm motion track-

ing for home-based rehabilitation by combining visual and inertial sensors. Data

fusion is also done using Extended Kalman Filter.In [36] the FlightTracker system

was presented to track a pilot’s head movement. They developed a differential inertial

measurement equation of the pilots head motion relative to the aircraft, which can

then have its drift corrected by periodic optical measurements of the head position

relative to the aircraft. Inertial sensors can provide cues about the observed scene

structure. This information can be used to simplify 3D reconstruction of the observed

world. Lobo and Dias [37] use inertial sensors to find a vertical reference and use it

to determine the image horizon line. Similar work has been described in these refs

[38],[39].

Another type of sensor commonly used to reduce drift is the vector magnetometer.

The magnetometers measure the strength and direction of the local magnetic field,

allowing the north direction to be found. Magnetometers are susceptible to interfer-

ence of ferromagnetic materials which distort the orientation measurement, therefor

they are not accurate enough to replace gyroscopes [ref]. However, they can be used

efficiently together with gyroscope data to improve the accuracy of the calculated

orientation. Foxlin [40] and Bachman [28] presented filters in which accelerometers

and magnetometers are used for low frequency components of the orientation and

gyroscopes to measure faster changes in orientation. In [29] a complementary kalman

filter was designed to overcome ferromagnetic disturbances by calculating a magnetic

disturbance vector. The main advantage of this approach is that the tracking system

remains self contained. The main disadvantage is that it only reduces the drift growth
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rate, rather than allowing absolute corrections to be applied.

2.2.2 Domain specific assumptions

In some applications, assumptions of the movement of the body can be made and

used to reduce drift. One of the best examples for using domain specific assumptions

is NavShoe [41] where a shoe mounted IMU is used for pedestrian tracking.When a

person walks, their feet alternate between a stationary stance phase and a moving

stride phase. The system uses the stance phase for zero velocity updates, allowing

drift in velocity to be corrected. By measuring the acceleration due to gravity during

the stationary phase, inclination errors can also be corrected. The work of Yun [42]

also uses the periodic nature of walking for precise drift error correction. In [43],

Luinge presented a complementary kalman filter for human body segment orientation

fusing gyroscope and accelerometer data. The system models the characteristic ac-

celeration of body segments as a first order low-pass filtered white noise process. In

similar work, Bachman [44] present a quaternoin based kalman filter for inertial track-

ing. The filter continuously corrects the drift based on the assumption that human

limb acceleration is bounded, and averages to zero over any extended period of time.

Another approach for domain specific assumptions is the use of kinematic constraints

model.Young [45] demonstrated a method for estimating the linear acceleration of

IMUs based on subject body model constraints. Zhou and Hu [46] developed a kine-

matic model for human upper limb movement which helps at removing undesirable

biases or noise. Using this model, they construct a kalman filter which fuses inertial

sensors data to track human movement.

The work in this research employs both techniques for drift reduction. First,

domain specific assumption is employed in the orientation estimation. The limb

acceleration is assumed to be small compared to the gravity which allows the filter to

continuously obtain an inclination estimate using the signal of the 3D acceleromter.

This estimate is then used by a complementary kalman filter to continuously reduce

the gyroscope drift [43]. Second, sensor fusion is employed to optimally combine the

inertial system estimations with RSSI-based position estimations. The sensor fusion

is also implemented using a complementary kalman filter.
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2.3 RSSI-based tracking

RSSI-based tracking systems are mainly used in the context of indoor localization.

In general, indoor localization algorithms are aimed at locating wirelessly an object

or a person inside a building [47]. They assume the presence of a limited number of

reference nodes, referred to as anchor nodes, which know their own coordinates and

are used as reference points for localizing the other nodes [48]. RSSI-based tracking

systems use Received Signal Strength Indication (RSSI) to get an estimate of the

distance between transmitter and receiver (ranging) [49]. Sadly, the indoor radio

channel is very unpredictable, since reflections of the signal from furniture, walls,

floor and ceiling may result in severe multipath interference at the receiving antenna.

This results in range estimation errors which translate to large positioning errors [50].

Nonetheless, RSSI-based algorithm are intensively studied for indoor tracking due to

many advantages over other physical layer measurements such as acoustic Time Of

Arrival systems [51]. Compared to other solutions, pure RSSI methods are low cost,

low energy and can be easily deployed in wireless sensor network platforms, since

RSSI data is natively supported by most of the existing transceiver chipsets, with no

extra hardware costs [48].

RSSI-based localization algorithms are mostly in one of two categories, range-

based and range-free algorithms. Range-based algorithms use the RSSI signal to

estimate the distance between nodes. Then, the object position is estimated using

several techniques such as triangulation and trilateration [52],[53]. This method is

susceptible to multipath and shadowing effects and thus has limited accuracy. Range-

free algorithms do not use the RSSI value to compute distance, but exploit it in

other ways. In RSSI mapping technique, the RSSI value is interpreted using a pre-

calculated RSSI map. Systems such as RADAR [54] require a preliminary accurate

mapping of RSSI values in each position on the map. Comparing the RSSI values

received from the different anchors with the pre-built RSSI map, a node can estimate

its own position in the area.

RSSI-based tracking systems accuracy is in the scale of a meter [55].Therefor RSSI

was not considered a viable solution for the human motion tracking problem which

requires a much better accuracy. In recent work, Blumrozen et al. [56] suggested that

under certain condition, RSSI can be a valid solution for the human motion tracking

problem. Using anchor nodes in close proximity, transmitting in high frequencies,

the RSSI-mapping based system achieved accuracy of several centimeters. In [16],
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the work is extended with a more elaborate calibration scheme, advanced processing

techniques and additional real life experiments. Since RSSI is readily deployable

with no extra hardware needed, it is a prime candidate to be used in sensor fusion

with an inertial system. This research uses a complementary kalman filter to fuse

the described RSSI system with inertial system’s data to solve the human tracking

problem.

Fusing RSSI and inertial sensors’ data has been previously done only in the context

of indoor localization. In [57] Klingbeil presents a modular framework for fusion of

many types of sensory input, among then RSSI and inertial tracking. The sensor

fusion is done using particle filter. In [58] Fink presents an RSSI-based system which

uses diversity and sensor fusion of RSSI and inertial sensors to achieve must better

precision. The diversity concept is using RSSI with redundant data transmission in

different frequency bands which can reduce the dropout probability. In another work,

Evennou et al. [59] presents a system for pedestrian localizations by means of sensor

fusion of WiFi signal strength measurments with inertial sensors signals. A structure

based on a Kalman filter and a particle filter is proposed.



Chapter 3

System Model

3.1 System description

The system components are illustrated in Figure 3.1. The system consists of a single

mobile node and N static nodes, referred to as anchor nodes. Each node is equipped

with wireless transceiver that can periodically transmit data. The mobile node trans-

mits a data packet with a known transmission power to the anchor nodes. The anchor

nodes, located in the transmission range of the mobile node, calculate the received

power values (RSSI). The mobile node is also equipped with inertial sensors (minia-

ture gyroscope and accelerometer) which record the node’s inertial data. The goal

of this work is to continuously estimate the mobile node’s location from the mobile

node inertial data and from the attenuation of the electromagnetic signal in space as

measured by the anchor nodes.

The research is aimed at solving the location estimation problem in the realm

of human body movement. Hence, the mobile node is assumed to be attached to a

human body part. This restriction is used to design a solution tailored for the BAN

environment, greatly improving results.

3.2 Inertial sensors modeling

The system is composed of a 3D accelerometer sensor and a 3D gyroscope sensor.

Other types of sensors, such as magnetic compass, can be possibly combined and

used in the future to further improve results [28]. Figure 3.2 depicts the inertial

sensors model as described in detail in the following sections.
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Mobile node 

Anchor node 

Anchor node 
Anchor node 

Anchor node 

Anchor node Anchor node 

Control station 

Figure 3.1: System description diagram. The diagram details the system’s compo-
nents , the mobile node, the anchor nodes and the control station and the relation-
ship between them. The mobile nodes periodically sends a data packet to the anchor
nodes, which compute the Recieved Signal Stregnth. The control station aggregates,
synchronizes and estimates location utilizing both inertial and RSS-based estimations

3.2.1 Rotations and Sensor co-ordinate system

Let us denote the location, velocity and acceleration of the object c in the global

co-ordinate system by G~pc,
G~vc,

G~ac , respectively. The superscripts G and S are used

to denote vectors that are expressed in the global and sensor co-ordinate systems,

respectively, i.e. S~ac is the object’s acceleration in the sensor frame.

The orientation of the sensor with respect to the global co-ordinate system is

expressed with a rotation matrix containing the three unit vectors of the global co-

ordinate system expressed in the sensor frame [43].

GSR =
[
SX SY SZ

]T
. (3.1)
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Figure 3.2: Sensor model diagram. The diagram details the components of each signal
(yG,t and yA,t) and the relationships between them. Gyroscope signal is modeled as
the angular velocity component ωt, a white noise component vG and a slowly varying
gyroscope bias wbg. The orientation GSR is computed from the gyroscope signal using
the box ’integration’. The acceleration signal yA,t is composed of the acceleration and
gravity vector relative to the sensor’s frame (Sa−S g), a white measurement noise vA

and a slowly varying accelerometer bias wba.

The rotation matrix is a linear transformation to the global co-ordinate system

G~ac =GS R · S~ac.

Transformations can also be expressed in terms of rotation vector ~θ. The rotation is

expressed as a single rotation along the axis of the vector.

~θ = θ · ê.

Where ê = [eX eY eZ ]T is a three dimensional unit vector representing the axis

of turn and θ is a scalar representing the angle of rotation. This representation is

very useful since it expresses a rotation in only 3 scalars, thus simplifying the kalman

state. Another useful property is that gyroscope sensor readings are easily expressed

in this form. If T is the time sample, and ωt is the angular velocity, the rotation
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can be represented as a rotation vector Tωt . Further more, for small rotations, the

relationship between the original vector and the rotated vector is given by [60]

Gv =S v
(
I +

[
GSθ×

])
. (3.2)

Where GSθ× is a small rotation vector from S to G. This equation also applies to

the orientation matrices, yielding the following property

newR =old R (I + [θ×]) . (3.3)

3.2.2 The Gyroscope sensor model

The gyroscope signal is modeled [61] as a combination of white measurement noise

vG,t, gyroscope bias bt and the angular velocity ωt

yG,t = ωt + bgt + vG,t. (3.4)

Where vG,t is a white noise process with covariance QvG [43].

vG,t ∼ N
(
0, σ2

g,t

)
(3.5)

The gyroscope bias is modeled as a slowly varying signal [62]. The bias fluctuations

are caused by changing properties of the sensor (such as temperature, mechanical wear

and battery power level). The model is a first order Markov process, driven by a small

white Gaussian noise.

bg,t = bg,t−1 + ∆twbg,t. (3.6)

Where ∆T is the time step and wbg,t is a white noise process with covariance Qwg.

wb,t ∼ N
(
0, σ2

wg,t

)
(3.7)

The equivalent formula in the continuous mode yields

ḃg,t = wbg,t. (3.8)

Where ḃ is the derivative of b.
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3.2.3 The Accelerometer sensor model

The accelerometer signal is modeled as the sum of the acceleration vector S~at,the

gravity vector, small sensor bias ba,t and white gaussian measurement noise vA,t [43].

All vectors are in the sensor’s reference frame.

yA,t =S at −S gt + ba,t + ∆tvA,t. (3.9)

Where vA,t is a white noise process with covariance QvA.

vA,t ∼ N
(
0, σ2

A,t

)
(3.10)

The accelerometer bias is modeled similarly to the gyroscope bias model [62]

ba,t = ba,t−1 + ∆twba,t. (3.11)

Where T is the time step and wba,t is a white noise process with covariance Qwa.

wba,t ∼ N
(
0, σ2

wa,t

)
(3.12)

The equivalent formula in the continuous mode yields

ḃa,t = wba,t. (3.13)

3.3 RSSI modeling

Received Signal Strength Indicator (denoted RSSI) is an indication of the power level

received by the antenna. In the context of this research, RSSI measurements are

performed between the mobile node and several anchor nodes (see Section 3.1). The

antennas are assumed to be omnidirectional. The RSSI signal is affected by the

changing properties of the signal dispersion due to reflections and other multi path

phenomenon. The received signal power at the anchor node is given by the formula

[63]

Lrti = Lt+ A− q10 log10 d
t
i + αt. (3.14)

Where Lt is the transmission power, Lrti is the received signal power at node i, dti is

the distance between the anchor node i and the mobile node, A is a constant power
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offset which is determined by several factors, like receiver and transmitter antenna

gains and transmitter wave length , q is the channel exponent which varies between

2 (free space) and 4 (indoor with many scatterers), and αt is a Gaussian distributed

random variable with zero mean and standard deviation σα that accounts for the

random effect of shadowing. Note that αt may be correlated between successive

measurements, due to temporal shadowing phenomenon.

Combining RSSI data from several anchor nodes, allows for exact location esti-

mation p̂t using triangulation or similar methods (see [16]).

p̂t = f

([
Lrti

]N
i=1

)
.

The RSSI based location estimation p̂t is affected by the changing properties of

the signal dispersion due to reflections and other multi path phenomenon. It can be

modeled as a sum of the actual position, slowly varying shadowing factor, and an

instantaneous white Gaussian noise:

p̂t = pt + br,t + vR,t. (3.15)

Where pt is the real location, br,t is the bias error and vR,t is a simple white noise

process with covariance QvR.

vR,t ∼ N
(
0, σ2

r,t

)
(3.16)

The bias br,t is related to shadowing phenomenon and to directionality of the

antenna. The bias is correlated between successive measurements, due to large scale

fading factor in the αt component from the Formula 3.14. The correlation caused by

deflections from objects can be modeled as a first order Gauss-Markov process [64]

with auto correlation function of

Rbr (t) = E (br,t′ ,br,t′+t) = σ2
bre
− |t|
τ .

Where σ2
br is the variance and τ is the correlation time of the interference that could

be due to a reflecting object and other multi path phenomenon. Notice that the corre-

lation time τ is dependent of the movement speed and path properties. Experiments

data shows that τ should be in the range of 0.5-1 seconds for most human motion

scenarios.

The Gauss-Markov process can be represented in state space representation ([65],[61])
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as follows

br,t = e−
|∆t|
τ br,t−1 + ∆twr,t. (3.17)

Where τ is the time constant, ∆t is the discrete time step and wr,t white noise process

with the covariance Qwr

wr,t ∼ N
(
0, σ2

br,t

)
(3.18)

For continuous time systems, the following formula is used [66]

ḃrt = −1

τ
brt +

√
2σ2u (t) .

The state space representation of the noise model is of significant importance

since kalman filter inputs must be in that form. More specifically, kalman filter can

be extended to work with colored noise, only if the noise can be represented in the

state space representation [67].



Chapter 4

Location estimation

This chapter explores the problem of optimal location estimation. Section 4.1 solves

the estimation problem when only inertial data is used. Then , section 4.2 solves the

estimation problem when only RSSI data is available. Finally, section 4.3 presents a

solution for estimating location using both data sources using advanced sensor fusion

methods. The sensor fusion is accomplished using a complementary kalman filter,

constantly estimating errors and sending feedback to the INS system.

4.1 Location estimation using inertial sensors
This section explores the problem of optimally estimating location using inertial sen-

sors data only. The IMU (Inertial Measurement Unit) is composed of 3D accelerom-

eter and gyroscope systems which are strapped to a human body part, constantly

recording the movement as presented in Section 3.1.

The system design is depicted in Figure 4.1. Section 4.1.1 details the operation of

the basic INS component, which integrates the sensors’ data to compute a location

estimate. As previously explained in Section 2.1, INS systems suffer greatly from

integration drift and sensor bias. These error factors are so acute that they render

the estimation useless after a short time. Section 4.1.2 derives a kalman filter for

orientation estimation that can improve the inertial system’s results. It uses domain-

specific assumption of human motion to estimate inclination using accelerometer data

and compares it to the INS estimation. The difference between the two inclination

estimations is then used to estimate orientation and gyroscope bias errors. The system

uses a feedback design, to constantly correct INS estimations according to the kalman

filter corrections.
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Figure 4.1: Top level design of the inertial sensors based estimation system. The
two inertial sensor systems, 3D accelerometer and 3D gyroscope send their data to
the INS component (yA,t and yG,t respectively). Integrating the data, the INS main

component estimates the location, velocity and orientation (p̂in, v̂in and θ̂in respec-
tively). An orientation kalman filter is used to improve robustness of the system the
face of gyroscope bias. The kalman filter uses orientation and acceleration data (θ̂in,t
and yA,t respectively) to estimate orientation and bias errors (θε,bg,ε). These errors
are used in a feedback loop by the INS component to correct future estimations. The
kalman filter uses the covariance matrices of the accelerometer white noise, gyroscope
white noise and gyroscope bias noise to optimally estimate errors (QvA, QvG, Qwg)

4.1.1 Strapdown inertial navigation

The basic algorithm for strap down inertial navigation system is displayed in Figure

4.2, this section describes the algorithm in detail. The first paragraph, explains

orientation tracking. Relying on these results, position estimation is outlined on the

second part of this section.

Tracking orientation The expression for the gyroscope bias estimation is trivially

derived from the bias model Equation (3.6), setting noise factors to 0, the estimation

is a constant

bin,gt = bin,g(t−1). (4.1)

The estimated angular velocity ωin,t is derived from Equation (3.4) by solving for
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Figure 4.2: Strapdown intertial navigation algorithm. The angular velocity ω̂in,t
is calculated from the gyroscope signal yG,t minus the estimated bias. Strapdown

integration is then used to produce the orientation estimate GSR̂t . Acceleration is
calculated from the accelerometer signal yA,t minus the estimated bias, rotated to the
global frame minus the gravity vector. Finally, the velocity Gv̂t is found by integrating
the acceleration Gât , and location Gp̂t is found by integrating the velocity.

the term ωin,t and setting the error factor to 0.

ωin,t = yG,t − bins,gt.

The orientation of an Inertial Measurement Unit (IMU) relative to the global co-

ordinate system is tracked by ’integrating’ the angular velocity signal ωin,t = (ωinX,t, ωinY,t, ωinZ,t)
T

obtained from the system’s rate-gyroscopes.

The body orientation can be described by an orientation matrix GSR as defined

in Equation (3.1). To track the orientation of an IMU we must track GSR through

time. It the orientation at time t is given by Rt then the rate of change of R at t is

given by [68]

Ṙt = lim
∆t→0

Rt+∆t −Rt

∆t
. (4.2)
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The matrix Rt+∆t can be rewritten using the Equation (3.2)

Rt+∆t = Rt (I + [ψ×]) .

Where the small angle approximation holds since ∆t is small. Substituting the ex-

pression for Rt+∆t in the Equation (4.2), yields

Ṙt = lim
∆t→0

Rt (I + [ψ×])−Rt

∆t

= Rt lim
∆t→0

[ψ×]

∆t
.

In the limit ∆t→ 0, the following property holds

lim
∆t→0

[ψ×]

∆t
= [ωt×] .

Where ωt is the angular velocity at time t. Hence, the orientation is given by the

solution to the differential equation

Ṙt = Rt [ωt×] ;

which has the solution

Rt = R0 · exp
(∫ t

0

[ωt×] dt

)
.

If the orientation is represented using rotation vectors, the solution is much simpler.

Let us denote θt as the rotation vector representing the orientation at time t.The

angular velocity can be defined as the derivative of the rotation vector

θ̇t = ωt. (4.3)

Thus, the expression for orientation is simply given by

θt =

∫ t

0

ωtdt. (4.4)
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The strap down algorithm, uses the last result to calculate the orientation estimation

θin,t = θin,0

∫ t

0

ωin,tdt

θ̇in,t = ωin,t. (4.5)

Tracking position To track the position of the INS, the acceleration estimation

in the global co-ordinate system is derived. The expression for the bias estimation is

trivially derived from the bias model Equation (3.11), setting noise factors to 0, the

estimation is a constant

bin,at = bin,a(t−1). (4.6)

Equation (3.9) yields the following property

yA,t − bin,at =S ain,t +S gt.

Using the resulting expression and projecting it into the global frame of reference,

yields
GSRt ·

(
SyA,t − bin,at

)
=G ain,t +G gt.

Subtracting the gravity vector Ggt from the above expression results with the accel-

eration estimation.
Gain,t =GS Rt ·

(
SyA,t − bin,at

)
−G gt. (4.7)

The acceleration is integrated once to obtain velocity, and again to obtain displace-

ment:

Gvin,t =

∫ t

0

Gain,tdt;

Gpin,t =

∫ t

0

Gvin,tdt.

Equivalently, these properties hold

Gv̇in,t =G ain,t; (4.8)
Gṗin,t =G vin,t. (4.9)
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4.1.2 Domain-specific assumptions - the orientation kalman

filter

In some applications it is possible to make assumptions about the movement of the

body to which the IMU is attached [41]. Such assumptions can be used to minimize

drift. The kalman filter presented in this section uses assumptions of human body

motion to detect orientation drift errors. The filter is based on the work of Luinge

et al. [43] which presents an optimum filter for measuring human body segments

orientation using INS sensors. The filter overcomes gyroscope drift problems by

correcting the estimation using the acceleration data.

This section contains a detailed overview of the kalman filter. We present a

different derivation than specified in [43], the resulting matrices are much simpler

while preserving performance. The following is a concise description of the derivation,

please refer to the original paper for more details.

Sensor fusion using kalman filter

Orientation is estimated using a complementary kalman filter, using 3D accelerometer

and 3D gyroscope systems. The structure of the kalman filter is shown in Figure

4.3. Each of the sensor systems is used to derive an independent estimation of the

inclination, with different accuracy and error sources( Ẑ−A for accelerometer and Ẑ−G
for gyroscope). The difference between the estimations ( Ẑ−A − Ẑ−G) is modeled as

a function of errors in the measurements, specifically gyroscope orientation error,

gyroscope bias error and measurements noise. This function is the error model which

,when converted to state space format, serves as the basis for the kalman filter.

Model of sensor signals

The sensor unit is attached to a human body, hence the model is based on character-

istics of human motion. The main assumption states that the acceleration of a body

segment in the global reference frame can be described as a low pass filtered white

noise. It relies on the fact that the body segment can’t be going in the same direction

for too long, it will hit a wall after some time.

The gyroscope signal and bias are modeled as described in Equation (3.4) and

Equation (3.6). The accelerometer signal is modeled as the sum of the acceleration

vector S~at,the gravity vector and white gaussian measurement noise vA,t. All vectors
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Figure 4.3: Structure of the kalman filter. Two estimations of the inclination are
used, Ẑ−G and Ẑ−A. The difference between them is a function of the orientation and

bias errors (θ̂ε, b̂ε) which the kalman filter estimates. The uncertainties of the mea-
surements and model are expressed in terms of covariances, Qb for bias uncertainty,
Qθ for orientation uncertainty and QZG ,QZA for inclination uncertainties

Figure 4.4: Sensor model diagram. The diagram details the components of each
signal (yG and yA) and the relationships between them. Gyroscope signal is modeled
as the angular velocity component ω, a white noise component vG and a slowly
varying gyroscope bias wb. The orientation GSR is computed from the gyroscope
signal using the box ’strapdown integration’. Acceleration is modeled as a low passed
filtered white noise wa. The acceleration signal yA is composed of the acceleration
and gravity vector relative to the sensor’s frame (Sa−S g) plus a white measurement
noise vb

are in the sensor’s reference frame.

yA,t =S at −S gt + vA,t.
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The acceleration vector is modeled as a first order low-pass filtered white noise process.

The model is based on the assumption that during human motion, the acceleration

vector changes constantly and is much smaller than the gravity vector.

Gat = ca · Gat−1 + wa,t. (4.10)

Note this is a simplified model compared to Equation (3.9). Bias effects are neglected

and acceleration itself is modeled as a simple random process. Since this filter is only

aimed at improving orientation estimates, this simple model suffices.

Inclination estimation

Based on the sensor model, the inclination estimation process for both the gyroscope

and accelerometer systems can be described. Figure 4.5 shows the estimation process,

based on the sensor model previously described. The acceleration Gâ−t , gyroscope bias

b̂−t and angular velocity ω̂−t are calculated using equations 4.10, 3.6 and 3.4 respec-

tively while setting the noise factors to zero. The orientation estimation GSR̂−t is

calculated by strapdown integration of the previous orientation estimate GSR̂+
t−1, to-

gether with the current angular velocity ω̂−t . Inclination estimation SẐ−G,t can then be

extracted from the orientation matrix. For the accelerometer system, the acceleration

estimate is calculated in the sensor frame Sâ−G,t and subtracted from the sensor signal

yA,t to receive the gravity vector (according to Equation (3.9)). The gravity vector

is then normalized and negated to produce the estimation of inclination SẐ−A,t.

SẐ−A,t =
yA,t −S ât
|yA,t −S ât|

. (4.11)

Error model

A complementary kalman filter uses a state space model representation to model

the relationship between the model state variables Xε,t (the error sources) and the

inclination error predicted by the model [69].

Xε,t = A · xε,t−1 + wt

Zε,t = H · xε,t + vt. (4.12)
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Figure 4.5: Inclination estimation process. The angular velocity ω̂−t is calculated from
the gyroscope signal yG,t minus the estimated bias. Strapdown integration is then

used to produce the orientation estimate GSR̂−t and inclination GSẐ−G,t. Acceleration
Gâ−G,t is calculated from the previous estimation multiplied by a factor, and then

rotated to the sensor frame. Finally, the inclination estimation SẐ−A,t is calculated
from the accelerometer signal and accelerometer estimation using 4.11

Where Xε,t is the state, A is the state transition matrix, Zε,t is the measurement

vector, and H is the observation model matrix (maps the state to the measurements).

Both model and measurements exhibit uncertainties which are modeled as white noise

processes wt and vt respectively, with covariances Qw,t and Qv,t.

The measurement vector is the difference between the inclination estimations as

shown in Figure 4.3

Zε,t = SẐ−A −
SẐ−G.

The difference in estimations is caused by several error factors. The major error

sources compose the error state vector Xε,t which the kalman filter tries to predict.

Though real world system might be affected by a large number of error factors, it is

sufficient to explicitly model only the major ones and represent all others as part of

the model uncertainty matrix. For the inclination difference, the major error source

is the accumulating orientation error θε since inclination estimate is calculated by

integrating the gyroscope signal with the estimate from the previous time step. The

second error factor, the gyroscope bias error bε , is relatively small but has immense

effect over a period of time due to repeated integration [26].

Xε,t = [θε,t bε,t] .
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Error propagation The bias prediction error can be found by using the bias model

3.6 and the bias prediction equations.

b−ε,t = b̂−t − bt

= b̂−t−1 − bt−1 −wb,t

= b−ε,t−1 −wb,t. (4.13)

The orientation error propagation is given by

θ−ε,t = θ−ε,t−1 −Tb−ε,t−1 + TvG,t. (4.14)

Using these results 4.13 and 4.14, the state transition equations can be written in

matrix form: (
θε,t
bε,t

)
=

[
1 −T
0 1

]
·

(
θε,t−1

bε,t−1

)
+

(
TvG,t
−wb,t

)

Xε,t =

[
1 −T
0 1

]
·Xε,t−1 +

(
TvG,t
−wb,t

)
. (4.15)

Error covariance matrix Qw,t can be easily produced. The noise processes are inde-

pendent, so the covariance matrix becomes a simple diagonal matrix.

Qw,t =

[
T 2QvG 0

0 Qbg

]
. (4.16)

Where QvG is the gyroscope noise covariance matrix and Qbg is the very small co-

variance matrix of the bias noise.

Relationship between filter inputs and error states The error of the gyroscope

based inclination estimate can be obtained from the formula [60]

GSR̂ = GSR · (I + [θε×] (4.17)
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Since the inclination SẐ−G is simply one of the rows of the rotation matrix, the same

relationship holds (for small errors)

SẐ−G = SẐ−G · (I + [θε×]) (4.18)

The accelerometer-based inclination estimate SẐ−A depends on the error in esti-

mated acceleration and the accelerometer sensor noise. Since the acceleromter is

expressed in the sensor co-ordinate system, orientation error is also a possible error

factor. The error in predicted acceleration in the global co-ordinate system can be

found by using Equation (4.10)

Ga−ε,t =G â−t −G at

= ca · Gâ−t−1 − (ca · Gat−1 + wa,t)

= ca · Gaε,t−1 −wa,t. (4.19)

In order to calculate Sa−ε,t in the sensor frame, the Equation (4.17) is used to com-

pensate for orientation errors

Sa−ε,t = ca · Saε,t−1 − Swa,t +S â−t × θε,t. (4.20)

To obtain the accelerometer-based inclination estimate, Equation (3.9) is used to-

gether with Equation (4.20)

yA,t −S ât =S at −S gt + vA,t −S ât

=S aε,t −S gt + vA,t

= ca · Saε,t−1 − Swa,t +S â−t × θε,t −S gt + vA,t.

Putting it all together and using Equation (4.11) gives the following result

SẐ−A,t = Zt +
1

g

(
ca · Saε,t−1 +S â−t × θε,t − Swa,t + vA,t

)
. (4.21)

Where the magnitude of acceleration is approximated by g the gravitational force.

The difference between inclination estimates can be expressed using the error state
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variables using Equations 4.11 and 4.18.

SZε,t = SẐ−A,t −
SẐ−G,t

=

(
SẐt −

Sâ−t
g

)
× θε,t +

1

g

(
ca · Saε,t−1 − Swa,t + vA,t

)
=

[(SẐt −
S â−t
g

)
×
]  . . .

0

. . .


 ·(θε,t

bε,t

)
+ vt.

Where the noise term vt is described by

vt =
1

g

(
ca · Saε,t−1 − Swa,t + vA,t

)
. (4.22)

The matrix H is a 3× 6 matrix

H =

[(SẐt −
S â−t
g

)
×
] 0 0 0

0 0 0

0 0 0


 . (4.23)

Finally, the covariance matrix of the measurement noise can be derived from

Equation (4.22)

Qv,t =
1

g2

(
c2
a ·Q+

a,t−1 + Qwa + Qva

)
.

Where Q+
a,t−1 is the aposteriori acceleration error covariance matrix. Qwa is the

covariance matrix of wa,t and Qva is the covariance matrix of vA,t.

4.2 Location estimation using RSSI

RSSI-based tracking systems use Received Signal Strength Indication (RSSI) to get an

estimate of the distance between transmitter and receiver (ranging) [49]. Estimations

rely on a network of static anchor nodes, which measure the RSSI from the moving

object. The main challenge is inferring the distance from the signal strength. It is

not easy to model the radio propagation in the indoor environment because of severe

multipath, low probability for availability of line-of-sight (LOS) path, and specific site

parameters such as floor layout, moving objects, and numerous reflecting surfaces [70].

Using distance estimations from 2 or more anchor nodes (for 2D), the location can be
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determined using triangulation or scene analysis. Triangulation (also known as range-

based RSSI) directly estimates the distance from the signal strength measurements

and combines them to compute the object location. This method is more straight

forward but is prone to large errors due to shadowing effects. On the other hand, scene

analysis refers to algorithms that first collect features (fingerprints) of a scene and

then estimate the location of an object by matching online measurements with the

closest a priori location fingerprints [48]. The fingerprinting algorithms have usually

two stages, an offline calibration stage and the online stage. During the offline stage,

a site survey is performed. The location coordinates and respective signal strengths

from the anchor nodes are collected. During the online stage, the currently observed

signal strengths are used to locate the object according to the previously recorded

map.

The RSSI-based algorithm used in this research is a described in detail in previ-

ous work by Blumrozen et al. [16]. The algorithm uses an innovative fingerprinting

method to tune the channel model parameters. During the offline stage, the opti-

mal transmission power is determined. Maximizing the dynamic range of the RSSI

measurements can lead to significant improvement in estimation accuracy [71]. Insuf-

ficient transmission power may lead to high packet loss while high transmission power

can lead to saturation of the RSSI measurements and distort the distance estimation.

The dynamic range is adaptively determined using a new method described in [16].

The second part of the offline stage is the calibration process which is based on log

fitting of the RSSI measurements and approximating the power offset and the channel

exponent.

During the online stage, RSSI measurements are collected and preprocessed. First,

measurements from the various nodes are synchronized. Second, the range is esti-

mated using the Equation (3.14)

Lrti = Lt+ A− q10 log10 d
t
i + αt. (4.24)

Finally, the location is estimated using trilateration, based on a method described in

[72]. Each range estimation forms a circle around the anchor node, these circles have

two intersection points. Choosing the closest point to the object location satisfies the

Maximum A Posteriori criterion. This is illustrated in Figure 4.6.
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Figure 4.6: Selecting the intersection point closest to the object location

4.3 Location estimation using sensor fusion

This section describes the design of an optimum filter for location estimation using

sensor data fusion as presented in Figure 4.7. The filter uses inertial sensors data and

estimates location using strap down integration as outlined in Section 4.1. RSSI data

is used as a second source of location information and an estimate is calculated as

detailed in Section 4.2. The process of optimally fusing the two location estimations

is performed using a kalman fitler.

A complementary kalman filter is designed to estimate positioning, velocity and

orientation errors. As illustrated in Figure 4.7 the filter uses two independent esti-

mations of location, each with different accuracies and error sources. The positioning

difference p̂−INS − p̂−RSSI is modeled as a function of errors in both measurement sys-

tems, particulary location,velocity and orientation errors in the gyroscope system.

The system uses a feedback design to constantly fix the inertial system estimations

according to the kalman filter corrections. Future work will also include feedback to

the RSSI system, enabling online-calibration.

Error model

As explained above in 4.1.2, a complementary kalman filter uses a state space model

representation to model the relationship between the model state variables Xε,t (the

error sources) and the error predicted by the model. The general state space model
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Figure 4.7: Top level design of the system. The system is composed of two indepen-
dent sub systems that estimate the location, the kalman filter estimates the errors
and corrects them using a feedback loop. Two estimations of the location are used,
p̂−INS and p̂−RSSI . The difference between them is a function of the location,velocity,

orientation and bias errors (p̂ε, v̂ε, θ̂ε, b̂a,ε, b̂g,ε) which the kalman filter estimates. The
uncertainties of the measurements and model are expressed in terms of covariances,
Qwa and Qwg for bias uncertainties, QvA and QvG for sensor white noise ,QvR for
RSSI estimation uncertainties and Qwr for RSSI shadowing uncertainties

representation was described in Equation (4.12).

The measurement vector is the difference between the location estimations as

depicted in Figure 4.7

Zε,t = p̂−in − p̂−rssi. (4.25)

The difference in location estimations is modeled as a function of several error sources.

These errors compose the error state vector Xε,t which the kalman filter tries to pre-

dict. For the location difference, the dominant error factors are the notorious inertial

navigation systems caveats - integration drift and sensor bias [26]. The inertial sys-

tem estimates location by integrating orientation, velocity and location, each integral

is a potential error source due to integration drift (θ̂ε, v̂ε, p̂ε respectively). The second

factor to consider is sensor bias error. Although the bias offset is very small, if not

mitigated it might cause large errors due to repeated integration of error each time

step [26]. b̂a,ε and b̂g,ε represent the accelerometer bias error and gyroscope bias
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error, respectively.

Xε,t =
[
p̂ε, v̂ε, θ̂ε, b̂a,ε, b̂g,ε

]
. (4.26)

The error state variables that compose Xε,t are defined as follows. p̂ε is the difference

in location between the real location and estimated location by the inertial system

p̂ε = pin,t − pt. (4.27)

Similarly, the variable v̂ε is the difference between velocity estimations

v̂ε = vin,t − vt. (4.28)

The orientation difference θ̂ε is defined to be the rotation vector between the

estimated rotation and the real rotation. Recall for small rotations, the relation

between orientations is given by Equation (3.3). Hence, the following formula can be

derived

RGS
in,t = RGS

t

(
I +

[
θ̂ε×

])
. (4.29)

Another form of this property can be written in terms of rotation vectors, where

θin,t,θt are the rotation vectors equivalent to RGS
in,t, R

GS
t respectively.

θ̂ε = θin,t − θt. (4.30)

Finally, the state variables corresponding to bias errors b̂a,ε, b̂g,ε are simply defined

as

b̂a,ε = ba,ins − ba

b̂g,ε = bg,ins − bg. (4.31)

Error propagation The error propagation equations are derived in continuous

time and are later transformed to discrete time. Using continuous time, the derivation

is simpler and more intuitive since human motion is a physical continuous process.

When using continuous terms, the error propagation equations express the derivative

of the variables.

First, the variable p̂ε is examined. By definition, it is simply the difference between

the estimated and real location [see Equation (4.27)]. Calculating the derivative is
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trivial and gives the following result

ṗε = ṗin,t − ṗt
= vin,t − vt

= v̂ε. (4.32)

Where the last result was derived according to Equation (4.28). The derivation for

v̂ε is similar

v̇ε = v̇in,t − v̇t
= ain,t − at

= âε. (4.33)

Where aε is defined to be the difference between acceleration estimations. This vari-

able is not a state variable, as it is expressed by θε as the following derivation shows.

Recall from Equation (4.7) that

Gain,t = GyA,t − GSRin,t
Sbin,at +G gin,t. (4.34)

Substituting SyA,t according to Equation (3.9) yields

GyA,t = RGS
in,t ·

(
Sat −S gt + ba,t + vA,t

)
.

Using Equation (4.29) for the variable RGS
in,t

GyA,t = RGS
t ·

(
I +

[
θ̂ε×

])
·
(
Sat −S gt

)
+RGS

in,t · ba,t +RGS
in,t · vA,t

= RGS
t · Sat −RGS

t · Sgt + θ̂ε × Sat − θ̂ε × Sgt +RGS
in,t · ba,t +RGS

in,t · vA,t
= Gat − Ggt + θ̂ε × Sat − θ̂ε × Sgt +RGS

in,t · ba,t +RGS
in,t · vA,t. (4.35)

Returning to the Equation (4.33) and substituting Gain,t according to Equation (4.34)

yields

âε = GyA,t − GSRin,t
Sbin,at +G gin,t − at.
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Using the result 4.35 from above , the following can be derived

âε = θ̂ε × Sat − θ̂ε × Sgt +RGS
in,t ·

(
ba,t − Sbin,at

)
+RGS

in,t · vA,t
= θ̂ε

([
Sat×

]
−
[
Sgt×

])
−RGS

in,t · ba,ε +RGS
in,t · vA,t. (4.36)

Where the last transition was according to the definition of ba,ε in Equation (4.31).

For the variable θε, using Equation (4.30) yields

θ̇ε = ˙θin,t − θ̇t. (4.37)

Recall Equations 4.3 and 4.5 for ˙θin,t and θ̇t

˙θin,t = yG,t − bin,gt

θ̇t = ωt.

Substituting these properties to Equation (4.37) yields

θ̇ε = yG,t − bin,gt − ωt.

yG,t can be replaced according to Equation (3.4)

θ̇ε = ωt + bgt + vG,t − bins,gt − ωt
= −bε + vG,t. (4.38)

Where the last result is derived using 4.31 Finally, for the bias error derivative, recall

Equations 3.13 and 3.8

ḃa,t = wba,t

ḃg,t = wbg,t. (4.39)

Using also Equations 4.1 and 4.6 we get

ḃin,at = 0

ḃin,gt = 0.

Where the derivative is zero since the estimation is a constant. Substituting these
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expressions in the bias error definition, yields -

ḃa,ε = ˙ba,ins − ḃa

= −wba,t

ḃg,ε = ˙bg,ins − ḃg

= −wbg,t.

Let us summarize the linear differential equations obtained so far,

ṗε = vε

v̇ε = θ̂ε
([
Sat×

]
−
[
Sgt×

])
−RGS

in,t · ba,ε +RGS
in,t · vA,t

θ̇ε = −bε + vG,t

ḃa,t = −wba,t

ḃg,t = −wbg,t.

According to Equations 4.32,4.36, 4.39,4.38 for location,velocity,bias and orientation

errors respectively. Writing these equations in matrix representation, yields
ṗε
v̇ε
θ̇ε

ḃg,t
ḃa,t

 = Acont


pε
vε
θε

bg,t
ba,t

+


0

vA,t
vG,t
−wbg,t

−wba,t

 . (4.40)

Where all variables are three dimensional vectors and Acont is a 15× 15 matrix.

Acont =


0 I 0 0 0

0 0
([
Sat×

]
−
[
Sgt×

])
0 −RGS

in,t

0 0 0 −I 0

0 0 0 0 0

0 0 0 0 0

 . (4.41)

Where 0 denotes a 3× 3 zero matrix and I is a 3× 3 unity matrix.

Since the sensors sample the process in discrete times, we shall transform the
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equations to discrete-time dynamics. Recall that [66] for a continuous time linear

system given by the dynamics

ẋ = Bx

y = Cx.

The transformation to discrete time dynamics is given by

xt = eB∆txt−1

yt = Cxt. (4.42)

Where eAcont∆t can be calculated using the formula [73]

eBt =
∞∑
j=0

(Bt)j

j!
.

For the state transition matrix Acont described in 4.41, the summation terms Ai
cont

can be easily computed as follows

A0
cont = I

A2
cont =


03 0

([
Sat×

]
−
[
Sgt×

])
0 −RGS

in,t

0 0 0 −
([
Sat×

]
−
[
Sgt×

])
0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



A3
cont =


0 0 0 −

([
Sat×

]
−
[
Sgt×

])
0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


A4
cont = 0.
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Thus, the formula for eAcont∆t is given by

eAcont∆t = A0
cont + A1

cont∆t+ A2
cont

∆t2

2
+ A3

cont

∆t3

6
I ∆t · I ∆t2

2

([
Sat×

]
−
[
Sgt×

])
−∆t3

6

([
Sat×

]
−
[
Sgt×

])
−∆t2

2
RGS
in,t

0 I ∆t
([
Sat×

]
−
[
Sgt×

])
−∆t2

2

([
Sat×

]
−
[
Sgt×

])
−∆tRGS

in,t

0 0 I ∆t3 0

0 0 0 I 0

0 0 0 0 I

 .
(4.43)

Using the discrete time transformation Eq.4.42 with the continuous time dynamics

system Eq.4.40 gives us the following discrete time dynamics system for error propa-

gation - 
pε,t
vε,t
θε,t
bg,t
ba,t

 = A


pε,t−1

vε,t−1

θε,t−1

bg,t−1

ba,t−1

+


0

vA,t
vG,t
−wbg,t

−wba,t

∆t. (4.44)

Where A is an 15× 15 matrix as described in Equation (4.43). Note that the matrix

A depends on current acceleration and orientation of the object, thus it is recomputed

each cycle of the filter.

The model noise covariance matrix can be easily computed, since it is composed

of independent white noise processes.

Qw,t =


0 0 0 0 0

0 ∆t2QvA 0 0 0

0 0 ∆t2QvG 0 0

0 0 0 ∆t2Qwg 0

0 0 0 0 ∆t2Qwa

 (4.45)

where QvG,QvA, Qwg,Qwa are white noise process covariance matrices as defined in

Eq. (3.5),Eq.3.10,Eq.3.7,Eq.3.12 respectively.



52 Location estimation

Relationship between filter input and error states The error of the RSSI

based location estimate is given by Equation (3.15)

p̂rssi,t = pt + br,t + vR,t. (4.46)

Where pt is the real location, br,t is a correlated noise process and vR,t a white noise

gaussian process. The expression for the location estimation difference was found by

substituting Eq.4.46 and Eq.4.27 into Eq.4.25

Zε,t = p̂−in − p̂−rssi

=
(
p̂−in − pt

)
−
(
p̂−rssi − pt

)
= p̂ε − (br,t + vR,t) .

Rewriting the last equation according to the kalman filter formulation, yields

Zε,t =
[
I 0 0 0 0

]
Xε,t − (br,t + vR,t) . (4.47)

Where I is a 3× 3 identity matrix, 0 is a 3× 3 zeros matrix and Xε,t is the error state

vector defined in Equation (4.26).

Kalman filter can be derived to work with colored measurement noise process by

augmenting the state vector with the noise process [67]. This derivation is needed

since the measurement noise expression (br,t + vR,t) in Equation (4.47) contains corre-

lated components and thus does not comply with the basic kalman filter assumptions

of white noise processes only. Recall from Equation (3.17) that the correlated noise

process model is

br,t = e−
|∆t|
τ br,t−1 + wr,t. (4.48)

Augmenting the state vector from Eq. (4.44) with the noise process given in Eq.

(4.48) yields the state space representation of the kalman filter

X′ε,t = A′X′ε,t−1 +



0

vA,t
vG,t
−wbg,t

−wba,t

wbr,t


∆t.
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Where X′ε,t is the augmented state vector

X′ε,t =



pε,t
vε,t
θε,t
bg,t
ba,t
br,t


.

A′ is the augmented state transition matrix of size 18× 18 given by

A′ =



I ∆t · I ∆t2

2

([
Sat×

]
−
[
Sgt×

])
−∆t3

6

([
Sat×

]
−
[
Sgt×

])
−∆t2

2
RGS
in,t 0

0 I ∆t
([
Sat×

]
−
[
Sgt×

])
−∆t2

2

([
Sat×

]
−
[
Sgt×

])
−∆tRGS

in,t 0

0 0 I ∆t3 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 e−
|∆t|
τ I


.

The relationship between filter inputs and error states was found be rewriting

Eq.4.47 with the augmented state vector

Zε,t =
[
I 0 0 0 0 −I

]
X′ε,t − vR,t.

The model noise covariance matrix was found by augmenting the covariance matrix

4.45 with the wbr,t noise process which is independent of the other noise processes,

yielding

Qw,t =



0 0 0 0 0 0

0 ∆t2QvA 0 0 0 0

0 0 ∆t2QvG 0 0 0

0 0 0 ∆t2Qwg 0 0

0 0 0 0 ∆t2Qwa 0

0 0 0 0 0 ∆t2Qwr


.
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Where Qwr is the covariance matrix of wbr,t as defined in Eq. (3.18). The measure-

ment noise covariance matrix is simply given by

Qv,t =
[
QvR

]
.

Where QvR is the covariance matrix of vR,t as defined in Eq. (3.16).
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Experimental methods

Experiments were conducted to verify the effectiveness and robustness of the track-

ing filter. The experiments were carried out on a 50 × 50 cm surface in an indoor

environment. The experiments aim was to track the position of a moving hand, along

the surface of the table, as depicted in Figure 5.1.Data was collected in real-time and

post-processed using a program written in Matlab. Sampling rate was approximately

50 Hz. The tracking results were tested by comparison of the location estimation to

the location information that was obtained by a laboratory-bound 3D optical tracking

system Polaris [74].

The experiment design is presented in Figure 5.2. The sensors data is acquired and

calibrated as explained in Section 5.4. The data is then synchronized and interpolated

to create a uniform time stamp and sampling rate, see Section 5.5 for more details.

Finally, location is estimated as explained in 4. The results are compared to the

reference tracking data provided by the polaris system.

5.1 Experiment setup

The experiment setup is depicted in Fig. 5.1. Inertial movement information was

acquired using a SHIMMER sensor attached to the moving hand [75]. For RSSI

measurements, two BSN sensor nodes [76] were used as anchor nodes, and the third

was used as a mobile node. Location estimation was accomplished by fusion of both

sensor systems.

The current implementation of the RSSI tracking system consists of only 2 anchor

nodes, thus providing only 2D tracking capability. Hence, the experiments were

limited to 2D movement across the experiment area. Intensive simulation testing was
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Figure 5.1: Experiment setup. Tracking of the hand movement across the 2D sur-
face is accomplished by attaching several sensors to the moving hand. For inertial
movement information, the SHIMMER sensor is used. For location estimation using
RSSI, two BSN nodes are used as anchor nodes and one BSN node is attached to
the hand. The system results are compared to reference information provided by the
optical tracking system Polaris. The Polaris system uses a passive marker mounted
on the moving hand.

performed to further explore 3D movement scenarios.

5.1.1 Inertial system setup

The sensor platform used for inertial navigation data is the Intels Digital Health

Groups platform for Sensing Health with Intelligence, Modularity, Mobility, and Ex-

perimental Re-usability, or SHIMMER. SHIMMER (Figure 5.4) consists of a TI

MSP430 microprocessor; a Chipcon CC2420 IEEE 802.15.4 2.4 GHz radio; a Mi-

croSD card slot; a triaxial MEMS accelerometer, and a Bluetooth radio which allows

streaming of sensor data at high rates. Internal and external connectors allow new

sensor boards to be interfaced to the device, expanding its capabilities. A triaxial gy-

roscope board using two InvenSense IDG-300 dual-axis gyroscope chips was designed

for internal expansion. One of these gyroscopes is mounted perpendicularly to the

main sensor board (see Figure 5.4).

The SHIMMER device combines computation, radio communication, high-fidelity
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Figure 5.2: Block diagram of the experiment data flow. Sensor data from the SHIM-
MER and BSN node is calibrated and pre-processed. All data sources are synchro-
nized, and a uniform time stamp is determined. The location estimation process is
composed of the INS and RSSI location estimations (p̂−INS and p̂−RSSI respectively).
The kalman filter uses both estimations to predict the errors p̂ε. The INS errors are
corrected in a feedback loop and the location estimation is computed p̂+

INS. Polaris
location estimation p̂polaris is then compared to results and the Mean Squared Error
is calculated.

triaxial sensors, and a large flash memory into a tiny, wearable rugged plastic enclo-

sure. It measures 1.75 x 0.8 x 0.5 and weighs just 10 g.

5.1.2 RSSI system setup

The RSSI tracking was performed by two anchor nodes placed at x and y axes and a

third node attached to the moving hand. The mobile node transmitted data packets.

The anchor nodes received the packets and calculated the RSSI measurements.

The wireless nodes are composed of a BSN node [76] and a dipole antenna. A BSN

node includes a processing unit (TI MSP430) and a wireless chip (Chipcon CC2420)

[77]. The wireless transceiver has a built-in RSSI that provides a digital value in the

range of −127 to 128 dBm. An omnidirectional antenna was added to each node

to increase the transmission range. The antenna was made by bending and winding

together a 10 cm wire and forming a dipole antenna of 5 cm, which is equivalent to

half the length of the 802.15.4a wave length.
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Figure 5.3: The mobile node attached to the hand. A SHIMMER sensor is used for
capturing INS information, a BSN node transmits data packets for RSSI measure-
ments and a Polaris passive marker is used by the Polaris system to track the moving
hand
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Figure 5.4: The SHIMMER wearable sensor platform. SHIMMER incorporates a TI
MSP430 processor, a CC2420 IEEE 802.15.4 radio, a triaxial accelerometer, and a
rechargeable Li-polymer battery. A triaxial gyroscope board is added as an internal
expansion with two dual-axis gyroscope chips. The platform also includes a MicroSD
slot supporting up to 2 GB of Flash memory
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5.2 Comparison with optical tracking system

The polaris system is an optical measurement system that measures the 3D position

and orientation of either passive or active markers [74]. The system is highly accurate,

providing sub-millimeter accuracy for a limited range of operation. It is manufactured

by Northern Digital Inc. (NDI) of Waterloo, Ontario, Canada and is the leading

system used for Image Guided Surgery (IGS). The programming interface for the

polaris system is provided by the IGSTK, a software toolkit for image-guided surgery

applications [78].

The polaris system can instantaneously track up to 15 markers. The experiment

setup uses two passive markers, as depicted in Figure 5.2. A static marker is placed

in the origin of axis, position and orientation conforming with the co-ordinate system

defined by the RSSI tracking system. The second marker is attached to the moving

hand, tracking its position and orientation. The polaris system outputs the relative

movement of the mobile marker in the co-ordinate system defined by the static marker.
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Y 

X 

Y 
Polaris  reference 
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Z 

Z 

Figure 5.5: The polaris tracking setup. Two passive markers are used. The first is a
static marker, placed in the origin of axis defined by the RSSI tracking system. The
second is a mobile marker attached to the moving hand.

5.3 Model parameters estimation

Before the Kalman filter was used, the model parameters were determined. The sensor

noise variances QvA and QvG were found by taking the variance of the sensor signal
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while the sensor was lying still on the laboratory floor. The bias instability parame-

ters Qwa and Qwg were found using a technique known as Allan Variance [79].Allan

Variance is a time domain analysis technique originally designed for characterizing

noise and stability in clock systems. The technique can be applied to any signal to

determine the character of the underlying noise processes.More specifically, the bias

instability is the minimum value of the Allan deviation curve. For a full description of

the Allan Variance technique see [80]. The noise parameter of the RSSI error model

Qwr was chosen to give reasonable results while the filter was tested

5.4 Sensor calibration

SHIMMER device calibration Shimmer devices use MEMs transducers for kine-

matic sensing. The current generation has a lower price point than previous genera-

tions but suffers from errors that may be insufficient for many applications [3]. Most

prominent errors are offset errors that are be caused by offset variations from trim

errors, mechanical stresses from the package and mounting, shifts due to temperature

and due to aging. These variables can all change the offset. The other source of

errors is scaling errors which affect the slope of the transfer function. The aim of the

calibration process is to eliminate these errors.

 

Figure 5.6: Transfer function of the accelerometer sensor. S is the slope of the transfer
function.VOFF is the offset error.

The calibration process is performed for both accelerometers and gyroscopes at

the beginning of each experiment session. Hence, it is required to be quick and
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simple. The calibration scheme presented in this research is composed of one combined

calibration sequence for calibrating all sensors (3 axis accelerometer, 3 axis gyroscope).

The sequence is composed of steps, during each step the sensor is layed on one of its

faces, every step is at least 2 seconds long. Changing from one position to the other,

should be done by turning the sensor along one of its gyroscope axis. The calibration

code automatically computes the steps and turns, so all that is required from the user

is to traverse between all different faces and turns at least once, order doesn’t matter.

Accelerometer calibration is simple, given two points on the transfer function

(approximated as linear function), the slope and offset can be computed. As shown

in Figure 5.7 the calibration code locates the steps and finds for each step the earth-

facing sensor (only one axis measures g or −g at each time step). To reach an

approximation for −g all measurements from relevant steps are averaged (x̂accmin) .

The same process repeats for +g (x̂accmax ) for each axis. The two points on the slope

are (−g, x̂accmin) and (+g, x̂accmax) where g is the gravity force. The previously described

process is not accurate since the measured surface is never exactly aligned to the

ground, hence the measured force is not g , it is

gsurface = g cos (α) . (5.1)

Where α is the surface incline angle. The calibration process estimates the slope

incline (α) by calculating the acceleration measured by the two other sensors. The

following property holds (assuming z is earth facing)√
a2
x + a2

y = g sin (α) . (5.2)

Where ax and ay are the average values of the x and y sensors during one step. Solving

for α yields

α = arcsin

(√
a2
x + a2

y

g

)
. (5.3)

Substituting α in Equation (5.1) using 5.3 yields an estimation for gsurface which is

then used to run the calibration process again with the modified value.

The calibration results are validated using a validation sequence. The test se-

quence is composed of steps, on each step the sensor is placed in a static random

orientation in space. If the calibration is accurate, the total measured acceleration on
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Figure 5.7: Calibration sequence. The Shimmer is placed on a different face every
few seconds. (a) 3-axis accelerometer sensor recording of the calibration process.
The earth-facing(sky-facing) sensor is automatically detected for each position, and
the average value is computed, corresponding to g(−g).(b) 3-axis gyroscope sensor
recording of the calibration process. A moving average method was used to detect the
turns along each axis. Integrating the signal input over the complete turn corresponds
to a 90 degrees turn value.

each step is ĝ. The Mean Squared Error g − ĝ is the calibration sequence accuracy

score.

While the sensor is static, the gyroscope signal should be zero. Hence, the offset

for each gyroscope axis can simply be found by averaging over a static period. For

the scaling factor, signal processing techniques were applied to accurately identify the
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Figure 5.8: Validation sequence. The sensor placed in a different static 3-D position
every few seconds. The magnitude of the acceleration vector is expected to be the
gravity force g. (a) The 3-axis accelerometer output and the calculated norm. (b)
Comparison of the magnitude to the expected gravity. In the example there are
fluctuations of 0.5m/s2 which might cause considerable errors.

time periods where the change in position took place. Each position change is a 90

degrees turn for one of the gyroscope sensors. Using Equation (4.4), the following
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can be derived ∫ t

0

yg,tdt =

∫ t

0

aωtdt = a

∫ t

0

ωtdt = aθπ
2
. (5.4)

Where yg,t is the gyroscope signal,a is the scaling factor, ωt is the angular velocity

and θπ
2

represents a 90 degrees turn. Finally, the scaling factor a can be estimated by

integrating the gyroscope signal
∫ t

0
yg,tdt and extracting a from the previous formula.

RSSI calibration RSSI calibration process estimates the system parameters for

translating the power levels’ measurements between each pair of sensor nodes to

corresponding distance. RSSI measurements data is manually collected from a pre

determined set of points with known distances. The calibration scheme is based on log

fitting of the RSSI measurements and approximating the power offset and the channel

exponent using the a-priori knowledge of the environment physical dimensions and

the range of the channel exponent values. The calibration process is described in

detail in [16].

5.5 Data Synchronization

The measurements acquired from different sensor systems cannot be used together

without proper interpolation and synchronization.First, each data source has a dif-

ferent sampling frequency - the SHIMMER sensor operates in 208.4 Hrz, the mobile

BSN node transmits data packets in 52.1 Hrz and the polaris measurements are sam-

pled in 100 Hrz. Second, each data stream has a different time stamp, mandating the

use of an accurate synchronization algorithm to create a uniform time stamp.

The synchronization between the SHIMMER mote and the mobile BSN node was

accomplished by using the BSN’s on-board accelerometer sensor and comparing the

signal to the SHIMMER accelerometer sensor. The time delay estimation was found

by calculating the cross correlation function between the signals with varying offset

of one of them

c(k) = corr (absn (t) , ashimmer (t+ k)) . (5.5)

Where corr(a, b) is the cross correlation between a and b, absn (t) is the BSN ac-

celerometer signal and ashimmer (t+ k) is the SHIMMER accelerometer signal with a

k offset. The peak of the cross-correlation function is the time offset estimation.
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Figure 5.9: Shimmer and BSN mobile node synchronization. Shimmer accelerometer
and BSN accelerometer signals are shown after synchronization. Even though the
BSN signal is not properly calibrated, the sync operation performs well.

The polaris system measurements were synchronized with the SHIMMER gyro-

scope measurements. The polaris system tracks both location and orientation of the

moving body. Recall Equation (4.5)

θ̇in,t = ωin,t. (5.6)

The angular velocity is calculated from the orientation measurements by taking the

first derivative. Using the polaris estimation for angular velocity and the gyroscope

measurements by the SHIMMER the time offset can be found using the cross corre-

lation function as described in Equation (5.5).
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Figure 5.10: Shimmer and Polaris system synchronization. Shimmer gyroscope and
Polaris computed gyroscope signals are shown after synchronization. The polaris
gyroscope signal is very noisy due to the derivation process, yet the sync operation
works well. The shimmer gyroscope suffers from changing bias, most evident in the
first 10 seconds.

Finally, the polaris measurements and RSSI measurements are synchronized by

estimating the time offset between the location estimations from the RSSI and Polaris

systems. This synchronization is redundant and its aim is to verify correctness of prior

synchronizations.
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5.6 Analysis

The filter performance analysis was split into several parts. First, Section 6.2 deals

with the main goal of the filter, location estimation. A number of real-world exper-

iments were conducted and trajectory estimations of the proposed filter were found.

Comparing the results to the RSSI-based system estimations, reveals great improve-

ment in discovering movement pattern but only slight improvement in the RMS sense

(see Fig. 6.3). Second, Sections 6.3 and 6.4 analyze the filter’s ability to track addi-

tional quantities such as Gyroscope and Accelerometer bias which are included in the

kalman state vector. These values are not the filter’s primary goal, but are interesting

and valuable by themselves. Gyroscope and Accelerometer bias are artificially added

to the experimental data, and the filter successfully tracks their value and detects dy-

namic changes. Section 6.3 further investigates the relationship between the kalman

parameters, dynamic response to changes and overall filter performance. The results

affirm the fact that filter parameters must be carefully set, since setting a value too

low causes slow dynamic response to change, and setting a value too high degrades

filter performance.

Finally, the third part (Section 6.5) validates the filter robustness to initial pa-

rameters errors. This is a critical parameter for assessing the quality of a filter,

since initial errors are common in real-world scenarios. Both location,velocity and

orientation errors are tested and successfully corrected.



Chapter 6

Results

The following sub-sections describe preliminary experimental results demonstrating

the accuracy of position estimation using the inertial/RSSI tracking system.

6.1 Parameter identification

An example of a gyroscope and accelerometer recording is given in Figure 6.1. It

shows the output signal of the shimmer sensor attached to a hand while moving on a

surface. It can be seen that the gyroscope signal suffers greatly from changing bias,

notice the decreasing signal magnitude in the first 5 seconds before the hand starts

moving. Static measurements with the sensors laying still on the laboratory table,

to obtain gyroscope and accelerometer noise, resulted in an RMS of 0.005 rad
s

and

0.05m
s2

respectively. The time constant δt for the RSSI model as defined in Eq. (3.17)

was set to 5 s . It was determined by inspecting the change in RSSI bias during an

experiment as shown in Figure 6.2.

The filter initialization parameters are reported in Table 6.1. The values were

determined as explained above and extensively tested in simulation and experiments.

6.2 Typical results

Figure 6.3 shows results typical of the hand movement experiments for the kalman-

based filter and the RSSI-only system. The experiments varied in speed, length and

trajectory shape as can be seen. In each plot, both estimations are compared, with

the polaris output used as reference. The inertial system estimation is not shown
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Figure 6.1: Measured sensor signals during one hand movement experiment (2D move-
ment). (a) Accelerometer output vector, only x,y axis are shown since movement is
2D. (b) Gyroscope output vector. The gyroscope changing bias can be seen in the
first 10 seconds before the hand starts moving.

as it significantly diverges after just a few seconds. Figure 6.4 presents the filter

performance in a separate view for the x and y axis respectively. The three traces

in the upper plot represent the different estimations and the traces in the lower plot

represent the calculated error for each system. These plots reveal that, although both

systems are similar in MMSE sense, the proposed filter achieves far great accuracy in

estimating shape and pattern.

We use root mean squared error (RMSE) to compare a given trajectory {xn, yn, zn}
and it’s estimated trajectory {x̂n, ŷn, ẑn}

RMSE =

√
1

N
ΣN
n=1

[
(xn − x̂n)2 + (yn − ŷn)2 + (zn − ẑn)2] (6.1)
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Figure 6.2: RSSI location error. The graph shows a changing bias with time constant
of about 5 seconds. This constant is used to model the RSSI error.

Paramter value

QvG - Gyroscope sensor noise [defined in 3.5] 0.005 Rad
sec

Qwg - Gyroscope bias noise [defined in 3.7] 0.05 Rad/sec

QvA - Accelerometer sensor noise [defined in 3.10] 0.05 M
sec2

Qwa - Accelerometer bias noise [defined in 3.12] 0.05 M
sec2

Qwr - RSSI white noise [defined in 3.18] 0.1 M
sec

δt - RSSI Time Constant [defined in 3.17] 5 sec

Table 6.1: Kalman filter initialization parameters.

Each RMS value was calculated for the whole duration of the experiment, neglect-

ing the first few seconds. This was to prevent errors due to initial convergence of the

filter. One way to measure the convergence of the Kalman filter is through examina-

tion of the trace of the error covariance matrix. Fig 6.5 shows the trace for one of

the experiments. It is noted that the sum of squared errors reaches a steady state

after approximately 10 s. The table 6.2 summarizes the RMS values of the location

estimation error for the INS, RSSI and the kalman filter. Each value, represents the

mean of all experiments. As the table shows, the kalman filter outperforms the other

system estimations. As expected, the inertial system suffers severely from drift and

its location error grows indefinitely. On the other hand, the kalman filter improves

the RSSI estimation only by a factor of 10-20 percent, this is due to the inaccuracy

of the inertial sensors output.
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Figure 6.3: Typical results for location estimations. Each plot shows the kalman-
based,RSSI-based and reference estimations. Inertial-based estimation diverges
quickly and is not presented.

6.3 Gyroscope bias estimation

The time required for the filter to estimate the offset was tested by off-line processing

of the sensor signals using an initial offset error, artificially added to the gyroscope

signals prior to application of the Kalman filter. The offset error at the end of the

measurement was then used as a measure for the ability of the filter to estimate the

offset.

An example of gyroscope bias estimation during an experiment is given in Fig.

6.6 The system successfully estimates the bias error and handles changes in bias

effectively. Fig 6.7 shows the performance of the kalman filter with a simpler model

for the gyroscope, without the bias. It is clearly shown that the full kalman filter

significantly outperforms the simple model. For the simple model, since the Gyroscope

bias is not compensated, the orientation error grows constantly, severely degrading

the filter performance.

The gyroscope bias instability value Qwg [defined in 3.7] has critical importance
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Estimation method Location error RMS (M)

Pure inertial system 34.8 [for 50 seconds experiment]. Unbounded.
Pure RSSI-based system 0.0927
Proposed filter (inertial and RSSI) 0.0808

Table 6.2: RMSE values for each estimation method. The kalman filter achieves
greater accuracy, improving the RSSI estimates by 10-20%

5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3

Time(sec)

X
 (

M
)

(a) Location estimation of X axis

 

 

Kalman−based
Real location
RSSI−only

10 15 20 25 30

−0.05

0

0.05

0.1

0.15

Time(sec)

LE
E

X
 (

M
)

(b) Location error estimation of X axis

 

 

Kalman−based
RSSI−only

Figure 6.4: Typical results for location and location estimation error (LEE) decom-
posed for X and Y axis. Plot (a) compares the location estimation of the proposed
filter with the RSSI-based estimation. The kalman filter tracks the movement and
shape much better but overall RMS sense is quite similar as shown in plot (b).

for successfully handling changing bias values. Fig 6.9 shows filter behavior with

several different Qwg values. The value determines how quickly the filter can adapt

to changes in the bias, setting the value too low causes poor performance during a

rapid change. Unfortunately, setting the value too high comes with a price too, table

6.3 shows the RMS values for filter with different bias values. High bias value degrades

overall filter performance, even if no bias is present. Hence, for optimal performance

the Qwg value must be carefully set. Similar treatment to the other parameters of

the filter can be done but is not presented here due to shortage of space. In general,

for optimal filter performance, intricate tuning is needed.

The gyroscope bias estimation is limited. During static periods, the bias cannot



6.3 Gyroscope bias estimation 73

0 5 10 15 20 25 30 35
10

−2

10
−1

10
0

Time (sec)

T
ra

ce
 o

f k
al

m
an

 g
ai

n 
(lo

g 
sc

al
e)

Kalman gain convergence

Steady
state

Figure 6.5: Trace of the kalman gain matrix. The graph shows that the gain converges
after 10 seconds.

be determined. Figure 6.8 shows the Gyrosocpe bias estimation error remains unin-

terrupted until the 8th seconds, when the movement starts. Only then, the gyroscope

bias is discovered and estimated correctly and the orientation is corrected. The reason

for this is inherent in the inner workings of the filter. The orientation error causes

the estimated acceleration to be projected to the real world axis with a small error,

causing a wrong velocity calculation. Hence, in a static zero-acceleration state, the

orientation error doesn’t cause any velocity errors and so cannot be discovered.

Qwg value Location error RMS (M)

0.02 (very low value) 0.088
0.08 (average value) 0.0808
0.3 (high value) 0.092
1 (very high value) 0.11

Table 6.3: RMSE values for each Qwg value for a typical experiment with little bias.
Filter performance is affected if an inappropriate value is used.
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Figure 6.6: Filter tracking of gyroscope bias drift. Plot (a) compares the estimated
Gyroscope bias with the actual changing bias. Plot (b) shows the Bias Estimation
Error as a function of time.

6.4 Accelerometer bias estimation

The kalman filter models and successfully tracks the accelerometer bias. An example

for accelerometer bias estimation is found in Fig. 6.10. The figure clearly shows the

filter ability to track the changing accelerometer bias for both X and Y axis.

6.5 Sensitivity to initial condition errors

The system handles well initial errors for the location, velocity and orientation as

seen in Figures 6.11,6.12 and 6.13 respectively. For each plot, the filter was initiated

with bad initial conditions and was tested for convergence to the correct value. The

values used were several scale larger than any real-world initial error might be, thus

the filter is expected to recover from inaccurate initial parameters. Note, convergence
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Figure 6.7: Comparison of filter performance compared to simpler model without
gyroscope bias model. The top plot shows the Location Estimation Error of X
axis(LEEx) for the two filters. The LEE. The LEEx for the simple model grows
due to growing error in the orientation estimation (OOE) as shown in the lower plot.
The plots clearly demonstrate that the simpler model performance is inferior in face
of constant Gyroscope bias

times may vary for the different variables, Fig. 6.13 shows the orientation estimation

was the slowest to converge.
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Figure 6.11: Location estimation for the X axis with wrong initial conditions. The
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the filter converges after at most 20 seconds even for large errors.
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Chapter 7

Discussion and Future Work

The filter parameter initialization reported in Table 6.1 is found to work well after

running an extensive number of tests in the presence of the simulated disturbances.

Of course, for different trajectories and time-varying disturbances, different sets of

filter parameters would be better. The discussion in Section 6.3 outlines the major

implications on overall filter performance caused by setting an inappropriate gyro-

scope bias instability value. The same treatment can be done to the other 15 variables

in the kalman state vector, hence finding the optimal filter parameters is an intricate

and constant task. Not only sensor noise parameters are taken into considerations,

but also the shape of the path and velocity of the movement (which affect RSSI bias

modeling), even SHIMMER’s battery depletion might increase the bias instability

factor.

The proposed filter outperforms the RSSI-based system but not significantly. This

is due to a number of reasons :

• The Root Mean Square criterion does not tell the whole story. As shown in

Figure 6.4, the filter tracks the movement pattern and shape much better then

the RSSI-based algorithm, a different criterion might reward this behavior more

significantly.

• The use of noisy and bias unstable sensors in the real-world experiments. As

Figure 6.1 shows, that SHIMMER sensors suffer from severe bias drift which

degrades filter performance. In future work, these experiments will be repeated

with the newer generation sensors, e.g. SHIMMER2, possibly integrating the

inertial sensors with more drift-free sensors such as magnetometers. Simulation

results using improved inertial sensors achieve far better results, as seen in this
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table 7.1 compared to the initial table 6.2.

• RSSI-based estimations errors are slow changing and are not optimally modeled

with a gaussian white noise process as the kalman filter requires. A possible

solution, is to further investigate in the future other types of filters, such as the

particle filter which are more capable with handling such errors.

• Sampling rate considerations are not taken into account. Any real-world system

will restrict the RSSI sampling rate due to energy consumption considerations.

Lower sampling rates will greatly degrade the RSSI-based estimation accuracy,

becoming more dependent of the successful fusion with inertial sensors. Fu-

ture work will investigate the filter performance under different sampling rates

constraints.

There are a number of ways the current sensor setup can be improved. First,

incorporating newer inertial sensors such as the SHIMMER2 motes and integrating

them with aiding sensors such as magnometers will greatly improve results [28]. Sec-

ond, the presented kalman filter successfully combines inertial data with RSSI-based

estimations, but handles each system in a black box manner. Borrowing terms from

the GPS/INS world, the presented filter is a closed-loop design with no feedback

[81]. The future work will be addressed to apply the ideas presented here with an

open-loop design, using the RSSI bias estimation as a feedback to the RSSI-based

estimator. As in the realm of GPS/INS, where open-loop designs allow for intimate

cooperation between the systems, it applies here too. The RSSI-based system can

use the information to detect in real-time shadowing effects and learn how to better

compensate for them.

Although the prototype system works under lab conditions, the path to a useful

tracking system for Body Sensor Networks is long and hard. Lets review some of the

major milestones left for future research:

From 2D to 3D The RSSI-based system is currently only implemented in 2D. De-

veloping the system to work with more anchor nodes and supply 3D estimations

is critical.

BSN implementation The system should be able to run in real-time on-board the

moving object. This requires implementing the whole system on a single wireless

mote, including hardware (current setup uses two different platforms for INS

and RSSI) and software (code in TinyOs and not matlab).



81

Dynamic anchor nodes RSSI-based algorithms assume the anchor nodes are static,

whereas in the realm of human motion tracking, the body moves and so the an-

chor nodes move too. This has two major implications, first the RSSI-based

algorithm must be verified to work in a dynamic environment and second the

inertial system must implement algorithms for deferential inertial tracking be-

tween the limbs and the body. The required system is similar to the work

of Foxlin et al. [36] which implemented differential inertial tracking between

helmet-mounted and aircraft-mounted inertial sensors as part of the develop-

ment of FlightTracker, a system for cockpit enhanced vision.

Estimation method Location error RMS (M)

Pure inertial system 3.76 [for 50 seconds experiment]. Unbounded.
Pure RSSI-based system 0.058
Proposed filter (inertial and RSSI) 0.042

Table 7.1: RMSE values for each estimation method from simulation results
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Conclusions

This thesis presents the design, implementation, simulations and real-world exper-

imental results of a sensor-fusion Kalman filter for real-time human body motion

tracking using inertial/RSSI sensors. The complete design of the filter was pre-

sented,detailing the inner workings of each sub system and the full derivation of

the complementary kalman filter used for sensor fusion. Also, a new and simple

derivation for the orientation estimation kalman filter based on Luinge et at. work

[43] was presented (see Section 4.1.2). A real-world experimental setup was built,

including a state-of-the-art optical tracking device used as reference. Finally, real-

world experiments of hand movement were performed but only in a controlled, 2D

environment and with a custom made RSSI-based setup. Implementation of the filter

on existing BSNs with full human motion testing in real-life environment is left for

future research.

The Kalman filter design presented in this work is the result of two years of effort

into close-proximity RSSI-based tracking systems. Continuing the work of Blumrozen

et al. in [56] and [16], this research expands their work to the realm of Inertial

Body Sensor Networks. Although this system is merely an oversimplified prototype

(as discussed in Section 7), this filter holds great potential to be implemented by

numerous existing and future Body Sensor Networks (BSNs) with inertial sensors

and wireless capability, as aiding the tracking algorithm with RSSI data comes with

no added hardware costs.
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