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AbstractÐWe present a simple paradigm for fitting models, parametric and

nonparametric, to noisy data, which resolves some of the problems associated

with classical MSE algorithms. This is done by considering each point on the

model as a possible source for each data point. The paradigm can be used to

solve problems which are ill-posed in the classical MSE approach, such as fitting a

segment (as opposed to a line). It is shown to be nonbiased and to achieve

excellent results for general curves, even in the presence of strong discontinuities.

Results are shown for a number of fitting problems, including lines, circles, elliptic

arcs, segments, rectangles, and general curves, contaminated by Gaussian and

uniform noise.

Index TermsÐBayesian fitting, parametric models, nonparametric models.

æ

1 INTRODUCTION

IT is common practice to fit models (lines, circles, implicit

polynomials, etc.) to data points by minimizing the sum of squared

distances from the points to the model (the MSE or Mean Square

Error, approach). While the MSE algorithm may seem natural, in

fact it, implicitly assumes that each data point is the noised version

of the point on the model which is closest to it. This assumption is

clearly false and leads to bias, for instance, when fitting circles to

data contaminated by strong noise.

The MSE algorithm suffers from another drawback: It cannot

differentiate between a ªlargeº model and a ªsmallº one. For

instance, when fitting a line segment to image data, one would

often like to know not only the slope and location of the fitted

segment, but also its end points. The MSE criterion does not

differentiate between the ªcorrectº segment and a segment which

is too long because both have the same MSE error with respect to

the data.

We offer a simple paradigm for fitting parametric models

which solves these problems. This is done by considering each

point on the parametric model as a possible source for each data

point. The paradigm is also extended to nonparametric models and

gives good results even for data with strong discontinuities.

We show results of the method for lines, segments, circles,

elliptic arcs, rectangles, and general curves. Both Gaussian and

uniform noise models are considered.

1.1 Previous Work

There are many papers which describe least-square techniques to

fit parameters to noisy data and on using different numerical

techniques and linear approximations needed for the computa-

tions. See, for example, [11], [18] and their references and, also, [2],

where an ordinary least-squares estimate is shown to be consistent

for a regression problem.

There are also many papers with different solutions and

heuristics to fitting circles, ellipses, and other parametric curves

using different statistical or optimization techniques; see, for

example, [20], [14], [16], [4], [19]. There have been a few papers

related to Bayesian techniques for specific cases of parametric or

nonparametric curve and surface fitting, [7], [9], [8], [1], [5], [6]. The

idea of associating a ªcloud of influenceº with each data point is

used to compute a better straight line fitting in [10], [12] by using a

more general error criterion than the point-line distance.

In [3], a very interesting approximate solution to the traveling

salesman problem is offered, in which a (nonparametric) path is

pulled towards the cities, controlled by a term which tries to keep

it as short as possible. This work differs from ours in the Bayesian

formulation and, in that, no treatment of parametric models is

offered.

In general, this paper differs from previous work mainly in that

precisely the MAP estimate of the model is found, where usually

the MAP estimate of the model together with the denoised data

points is computed or approximated. Also, we extend the fitting to

the general, nonparametric case.

1.2 Suggested Algorithm

Given data points D � fpigni�1 and a parametric model

M�d1 . . . dm� defined by a set of parameters fdjgmj�1, a very

common fitting algorithm is to choose the instance of the model

M�d0
1 . . . d0

m� such that the so-called MSE (Mean Square Error)

function, defined by

Xn
i�1

dist2�M�d1 . . . dm�; pi�

attains its minimum at fd0
1 . . . d0

mg. dist2�M�d1 . . . dm�; pi� is the

squared distance between pi and the model.

The ªBayesian justificationº of minimizing the MSE function is

as follows: One wishes to maximize the probability of a certain

model instance, given the data. Using Bayes' formula and

assuming a uniform distribution over the different model instances

and independent data,

Pr�MjD� � Pr�DjM�Pr�M�
Pr�D� / Pr�DjM� �

Yn
i�1

Pr�pijM�

assuming isodirectional Gaussian measurement noise with a

variance of �2, it is common to approximate Pr�pijM� by

const

�n
exp ÿ dist

2�pMi ; pi�
2�2

� �
;

where pMi is the point on the model M closest to pi. Multiplying

over i, taking logarithms and ignoring constants, it is easy to see

that maximizing this approximate probability is equivalent to

minimizing the MSE function.

However, this is only an approximation, which fails for some

cases (notably, for instance, for large values of �). The correct

expression is

Pr�pijM� � const
�n

Z
M

exp ÿ dist
2�p; pi�
2�2

� �
Pr�pjM�dp;
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where p is a point on M, or more generally, Bayes rule:

Pr�Mjpi� � Prob�pijM�Prob�M�
Prob�pi� ;

where

Pr�pijM� �
Z

p2M
Pr�pijp�Pr�pjM�;

where Pr�pijp� is the noise model and Pr�pjM� the a priori

distribution of points on M.
We will not show examples of using different priors on

parametric models other than the uniform prior, only because

we want to concentrate on the effect of the integration over the

choice of model. Also, experience has taught us that, if many data

points are available, the effect of the model prior on the optimal fit

is very small.

2 FITTING PARAMETRIC MODELS

We give some examples of applying the proposed method to

fitting lines, segments, circles, elliptic arcs, and rectangles.

2.1 Line

We proceed to apply the fitting paradigm described in the

introduction to lines, which by chance gives the classical

MSE result, under the following assumptions:

1. A priori all lines are equiprobable.
2. A priori all points on a line are equiprobable.
3. Noise is additive isodirectional Gaussian,

N

 
0;

� 0
0 �

� �!
;

the value of � is irrelevant.
4. Points are independent samples from the line.

Given the data D � f�xi; yi�gni�1 and denoting a line by L, we

have

Pr�LjD� � Pr�DjL�Pr�L�
Pr�D� /

Yn
i�1

Pr��xi; yi�jL�

and

Pr��xi; yi�jL� �
Z
L

Pr��xi; yi�jp�Pr�pjL�dp

/
Z
L

exp�ÿdist2��xi; yi�; p�Pr�pjL�dp

�
Z1
ÿ1

exp�ÿdist2��xi; yi�; L� � t2��dt

/ exp�ÿdist2��xi; yi�; L��;
so that,

Prob�LjD� �
Yn
i�1

Prob�Lj�xi; yi�� /
Yn
i�1

eÿdist
2��xi;yi�;L�:

Thus, ÿlog�Prob�Lj�x1; y1�; �x2; y2�; . . . ; �xn; yn��� is equal up to

an additive constant to:

Xn
i�1

dist2��xi; yi�; L�

and the MAP estimate is the line L such that this is minimum.
The same argument gives that the MAP estimate of a k-flat in

Rm is the k-flat whose sum of squared distances from the data is
the smallest.

Thus, in this case, the paradigm suggested here agrees with the
classical MSE paradigm; however, as we shall now show, this is
not the case for other models.

2.2 Circle

We proceed to apply the fitting paradigm to the circle. Given the

data D � f�xi; yi�gni�1, and denoting the parameters of a circle C by

�a; b� for the center and R for the radius, we have, assuming noise

is additive isodirectional Gaussian

N

 
0;

� 0
0 �

� �!
;

Pr�a; b; RjD� /
Yn
i�1

Pr��xi; yi�ja; b; R�;

and

Pr��xi; yi�ja; b; R� �
Z
C

Pr��xi; yi�jp�Pr�pjC�dp:

While there is no closed form expression for this integral, it can be

estimated quickly by expressing it as an infinite series which

swiftly converges (the proof is left out due to lack of space). In

general, the integral of a Gaussian over a circle can be expressed asZ
x2�y2�r2

exp
ÿÿ��xÿ a�2 � �yÿ b�2��ds �X

n�0

��a2 � b2�r2�n
r�n!�2 exp�r2 � a2 � b2� :

2.2.1 Comparison to MSE Algorithm

For a circle, the MSE algorithm is well-known to be biased under

noise (that is, it gives an estimate to the radius which, on the

average, is larger than the true radius). We have empirically

verified that the method suggested here is unbiased by adding

random noise and running the optimization process many times.

The results always converged to the true radius. See Fig. 1 for some

typical examples of the fitting method offered here compared to

the MSE fit.

2.2.2 Comparison to Outlier Sensitivity vs. the Method

of Moments

A nonbiased estimator to the center of a circle under uniform noise
is given by

C � 1

n

Xn
i�1

pi;

where pi are the measured (noisy) points. A nonbiased estimator to
the radius is then given by

1

n

Xn
i�1

jjpi ÿ Cjj2 ÿ 2�2:

We have compared the behavior of this estimator and the one

proposed in this work under the presence of outliers. First,

100 points were selected on a circle of radius 10 and Gaussian noise

with unit variance added to them. Then, 20 outliers were chosen

uniformly in the square �ÿA;A�, where A ranged from 15 to 30 and

the best fit circle was computed. This was repeated 1,000 times for
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each A. In Fig. 2, the average radius is plotted against A. Thus, for

these type of outliers, the method suggested here is more robust

than the method of moments. However, the method is not tailored

to handle outliers and better results can probably be achieved by

combining it with various methods from the realm of robust

statistics.

2.3 Elliptic Arc

An elliptic arc is determined by seven parameters (five for the

entire ellipse and two angles which define the arc). The algorithm

for finding the MAP arc proceeds in the same way as for the circle

the only difference being that the integration over the arc is more

complicated. In Fig. 3, we present an example of an arc, the noisy

data points sampled from it, and the reconstructed arc.

2.4 Line Segment

Another model that can be computed with the paradigm suggested

here is the best fit segment. This cannot be done with the classical

MSE methods, as they cannot distinguish between different length

segments which have the same MSE error (see Fig. 4).

The Bayesian paradigm offered here naturally solves the

problem of fits which are ªtoo big.º It is more rigorous than

heuristics which penalize the area or volume of the fit (as in, for
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Fig. 2. Average radius for the method in this work (green) and the method of moments (red) as a function of outlier size (outliers were randomly selected in the square

�ÿA;A�). The correct radius is 10.

Fig. 1. Examples of MSE and suggested fit for circle. In both cases, the true circle is in gold, the noised data points are red (Gaussian noise with unit variance), the MSE
fit is blue, and the suggested fit is green. These examples reflect the typical result that, when the noise is large with regard to the radius, the MSE fit is very biased, while
the suggested fit is not. The improvement of the suggested method is much more apparent for the right circle (radius 1) than for the left circle (radius 3). The average
optimal radius for the MSE method, computed over 100,000 noised circles (with unit radius and unit noise variance), was 1.49, indicating a very strong bias. The average
radius for the method suggested in this work was 1.01.



example, [6], [15]). Continuing as for the circle, the probability

Pr�pijS� of a point pi given a segment S is proportional toZ
S

exp ÿ dist
2�pi; p�
2�2

� �
dp: �1�

This integral can be easily expressed using the error function (erf).

As before, multiplying over the data points gives the overall

probability. See Fig. 5 for an example of segment fitting.

2.5 Axis Aligned Rectangle

Axis aligned rectangles are useful descriptions often used in

pattern recognition as they model Cartesian products of intervals

(here, as opposed to the case of the circle, the model is the

rectangle's interior).
Tenenbaum [17], considered the problem of learning concepts

from small numbers of positive examples, which turned out to be

an axis aligned rectangle fitting problem, which was solved using a

similar Bayseian model but without noise.
We proceed to apply the fitting paradigm to the rectangle.

Given the data D � f�xi; yi�gni�1 and denoting the parameters of a

rectangle R by �a; b; c; d� (for the lower left hand and upper right

hand corners) we have, assuming noise is additive isodirectional

Gaussian

N

 
0;

� 0
0 �

� �!
:

Pr�a; b; c; djD� /
Yn
i�1

Pr��xi; yi�ja; b; c; d�

Pr��xi; yi�ja; b; c; d� �
Z
R

Z
Pr��xi; yi�jp�Pr�pjR�dp /

1

2�cÿ a��dÿ b� erf
�aÿ xi���

2
p

�

�
ÿ erf

� cÿ xi���
2
p

�

�� �
erf

�bÿ yi���
2
p

�

�
ÿ erf

�dÿ yi���
2
p

�

�� �
:

2.6 Two Axis Aligned Rectangles

We proceed to apply the fitting paradigm to two axis aligned

rectangles. Given the data D � f�xi; yi�gni�1 and denoting the two

rectangles R1; R2 by �a1; b1; c1; d1; a2; b2; c2; d2�:

Pr�a1; b1; c1; d1; a2; b2; c2; d2jD� /Yn
i�1

Pr��xi; yi�ja1; b1; c1; d1; a2; b2; c2; d2�

and Pr��xi; yi�ja1; b1; c1; d1; a2; b2; c2; d2� is equal to

1

2
�Pr��xi; yi�ja1; b1; c1; d1� � Pr��xi; yi�ja2; b2; c2; d2��:

This is just the sum of the probabilities of the two rectangles, each

computed as in the one rectangle case. See Fig. 6 for an example.

2.7 Line with Uniform Noise

Uniform noise with shape S (S can be a circle, square, etc.) is

defined as follows:

Pr�pijp� �
1

Area�S� if pi 2 p� S
0 otherwise

�
so that the probability Pr�pijp� is positive iff p 2 pi � �ÿS� .
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Fig. 3. Elliptic arc (dark), noised data points (red), and elliptic arc fitted using the suggested method (blue).

Fig. 4. The MSE paradigm for fitting a segment is inherently ill-posed because
there is no increase in the error function for a segment that is too long. There is no
penalty for the red portions of the segment above since they do not change the
MSE function. The method suggested in this work does penalize such portions;
since they are far from the data, the value of the integrand in (1) on them is small,
but they increase the segment's length L, thus decreasing the integration element
dp � 1

L , the overall effect being a smaller value of the integral.



For example, let us fit a line to n noisy points where the noise is

uniform in unit size circles around the data; it is easy to see that the

integral defining the probability for a data point pi is proportional

to the length of the line's intersection with the unit circle around pi.

Hence, finding the optimal line is equivalent to finding the line that

pierces all the n circles centered at the data points, such that the

product of its lengths of intersections with the circles is maximal.

See Fig. 7 for an example.
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Fig. 5. Straight line segment (dark), noised segment points (red), and line segment fitted using the suggested method (blue). It is not a portion of the best MSE fit line.

Fig. 6. Example of fitting two axis aligned rectangles to a set of points. (a) Noisy data points with fitted rectangles. Red and blue points are noised interior points of the

lower and upper rectangle, respectively. (b) Original rectangles superimposed with the fit.



It is interesting to note that, in the standard fitting paradigm

(under uniform noise), the probability for every line which pierces

the circles around the data points, is identical. The method

described here, therefore, yields a ªsharperº result (albeit not

necessarily unique).

3 EXTENDING THE PARADIGM TO NONPARAMETRIC

MODELS: CURVE DATA

The algorithms described and implemented in Section 2 to

parametric models, can be extended to general, nonparametric

curves. Following the previous derivations, it is easy to see that the

probability of a curveC, given sparse data fpigni�1, is proportional to

Yn
i�1

Z
C

Pr�pijp�Pr�pjC�dp

when the curve is represented by discrete points which are close

enough, fcjgmj�1, this probability may be approximated by the

following expression:

1

Ln�C�
Yn
i�1

Xmÿ1

j�1

exp

 
ÿkcj ÿ pik

2

2�2

!
kcj�1 ÿ cjk

 !
; �2�

where L�C� is the curve's length (as in the parametric models, we

define Pr�pjC� as 1
L�C� ). The factor kcj�1 ÿ cjk stands for the length

element of the curve.
In this work, we combined this term with a standard

ªsmoothness term,º such asZ
C

�C2
xx � 2C2

xy � C2
yy�dC;

to arrive at an optimal solution. Thus, the paradigm may be viewed

as standard regularization, with the ªdata termº replaced by (2).

It is worthwhile to look at (2) and see how it leads to a curve which

ªsticks to the data.º Portions of the curve which are far away from the

data contribute little to the integrand, due to the presence of the

exp ÿkcj ÿ pik
2

2�2

 !
term, which becomes smaller as we move away from the data.

However, these portions result in a larger value of L�C�, which

leads to a smaller value for the entire expression. This is amply

demonstrated for data which consists of a noised version of a step

function, note that the fitted curve does not suffer from the well-

known ªGibbs phenomena,º which yields spurious curve parts

away from the data; see Fig. 8.
In order to force the resulting curve to be continuous, we

parameterized it by the initial point, the distance between every

two consecutive points (which is different for different curves, but

fixed for every specific curve), and the angles between consecutive
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Fig. 7. Fitting a line to points with uniform noise in the shape of a circle. The

resulting line has a nice intuitive interpretation. It is the line which maximizes the

product of lengths of its intersections with the circles around the data points.

Fig. 8. Regularized fit to a sampled step function, demonstrating the well-known Gibbs phenomena (a) and (b) a fit to same data obtained using the method suggested in

this paper.



points. Keeping the distance between consecutive points fixed
during every iteration helps to avoid ªtearsº in the restored curve.

3.1 Can We Forego Regularization?

A question that suggests itself is whether, in the case of fitting a
general, nonparametric curve, we can drop the regularization term
and use the purely Bayesian approach outlined in this paper. As
will now be demonstrated, the answer is noÐat least, if we expect
to obtain ªreasonableº results.

Let us look at a trivial case: only two data points (p and q) and
measurement noise with an arbitrarily small standard deviation �.
Let us denote by Bp;Bq small circles around p; q, respectively. For a
curve C connecting p and q, let us denote by Lp; Lq the lengths of
C \Bp and C \Bq , respectively, and, by L1, the length of the
portion of C which does not lie in Bp [Bq . The total length of the
curve will be denoted by L�C� � Lp � L1 � Lq .

Now, recall that the probability of the curve C, assuming a
measurement noise �, is proportional to

1

L2�C�
Z
C

exp ÿkcÿ pk
2

2�2

 !
dc

Z
C

exp ÿkcÿ qk
2

2�2

 !
dc: �3�

By making � small enough relative to the radii of Bp;Bq, the
integrand in each of the integrals can be made arbitrarily small on
the portion of the curve with length L1, hence, in the limit, the
expression in (3) is bounded by

�Lp � Lq�2
�Lp � L1 � Lq�2

:

Therefore, it is clear that, in order for the probability to be large, L1

should be as small as possible relative to Lp and Lq . Thus, a curve,

such as the one on the left in Fig. 9, will have a smaller probability

than the one on the right in Fig. 9.
It is easy to see that, in the limit, the optimal curve ªwanders

aboutº an unbounded amount of time as close as possible to p and
q, while taking the shortest route between them. This is hardly
surprising; as in the aforementioned case of a segment, the model
tries to ªstickº to the data. Thus, regularization has to be applied,
else an ªunreasonableº curve will result.

4 A NOTE ON CONVERGENCE

The fitting paradigm offered here usually leads to the optimization
of nonconvex functions. We have found that when an arbitrary
starting point is used, the optimization sometimes converges to a
local minimum. This problem was solved by initializing the
optimization at the MSE fit.

We have used either the Powell or Nedler-Mead methods [13];
convergence was very fast for the parametric models. For the
nonparametric fitting of general curves (Section 3), it took up to a
minute on an XP1000 Digital workstation.

5 CONCLUSIONS AND FURTHER RESEARCH

We presented a Bayesian paradigm for fitting parametric and
nonparametric models, which is natural, mathematically rigorous,

and superior to the classical MSE method, albeit with a higher
computational cost, mostly required in optimizing nontrivial cost
functions for the fitted model. In the future, we hope to try and
alleviate this problem, as well as to extend the paradigm to other
models, such as splines.
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Fig. 9. Without regularization, the right curve has a higher probablility than the left one.


