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ABSTRACT

Optical flow, the pixel level correspondences between a pair
of images is an important problem in computer vision. Stan-
dard optical flow computation algorithms assume constant
brightness and fail on specular surfaces. Earlier work to alle-
viate problems with specularity evaluate the illuminant chro-
maticity using a few correspondences in the images and then
jointly optimize flow and appearance under the dichromatic
model . We argue that the correspondences obtained by these
methods are mostly pairs of pixels that are Lambertian thus
giving a noisy estimate of the illuminant chromaticity. We
suggest a new approach to evaluate the illuminant chromatic-
ity which does not require exact correspondences and gives a
better estimate of illuminant chromaticity. We use the evalu-
ated chromaticity to project the input images on to a specular
invariant color space and show that standard optical flow al-
gorithms on this color space significantly improves the flow
results. The suggested approach is simple, efficient and more
importantly can utilize existing algorithms to compute optical
flow on non Lambertian surfaces.

Index Terms— Optical Flow, Specular Surfaces, Non
Lambertian Surfaces

1. INTRODUCTION

Finding optical flow is a crucial step for many computer vi-
sion problems. Many of these algorithms compare raw pixel
intensity or color and assume these are the same at corre-
sponding pixels. However, the constancy assumption is valid
only for Lambertian surfaces. Under the dichromatic model
for dielectric materials proposed by Shafer [1], light reflected
from an object is a linear combination of diffuse and specular
components. The diffuse component follows the Lambertian
model and has radiance invariant to the viewing angle. The
specular component expresses the directional reflection of the
incident light hitting the object. While the color of diffuse
component is the intrinsic property of the object’s surface, the
specular component is of the color of incident light, illumi-
nant chromaticity. For non Lambertian surfaces the presence
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Fig. 1: We consider the problem of estimating optical flow at highly
specular surfaces. Regular optical flow estimation algorithms such
as LK [2] assume constant brightness at corresponding pixels and
fail on such surfaces.

of a viewing angle dependent specular component can result
in large differences between the colors/intensities of corre-
sponding pixels (see Fig. 1). As a result standard optical
flow algorithms such as LK [2] relying on a error measure
based upon constant brightness assumption may give invalid
flow/correspondence. The flow algorithms working on inten-
sity gradient such as SIFT are also likely to suffer since in-
tensity gradients for a non Lambertian surfaces viewed from
different angles are not preserved.

Optical flow algorithms for non Lambertian scenes as-
sume pre-processing which can cancel the specular com-
ponent of the observed pixel color/intensity by estimating
and subtracting the illuminant chromaticity. Retinex theory
[3] provides a computational scheme for color constancy.
However the presence of various light sources, shadows and
curved surfaces makes its application difficult in practice
even for natural scenes. [4, 5] proposed methods to esti-
mate illuminant chromaticity with various assumptions on
the scene. These assumptions are problematic when dealing
with highly textured surfaces and are not consistent with our
requirements.

Yoon and Kweon [6] suggested a method to find corre-
spondence under a white illuminant by computing a specular
free two band image. Yang et al. [7] suggest to search for
correspondence by analyzing the chromaticity of the color
difference between two corresponding pixels in two images.
The suggestions implicitly assume correct correspondence



at some pixels to arrive at a valid chromaticity hypothesis.
We argue that most correspondences obtained by these meth-
ods are pixels/regions which are ‘almost’ Lambertian and
therefore the constant brightness assumption ‘approximately’
holds. The specular component at these pixels is small and
estimating the illuminant chromaticity from such pixels is
noisy. Ideally a good estimate of illuminant chromaticity can
be obtained from the region which are highly specular. But
these are precisely the places where optical flow algorithms
fail to find correspondence.

We observe that in many optical flow problems the two
input views are coarsely aligned or it is possible to coarsely
align them using correspondences at less specular points. The
failure of an optical flow algorithm in a region is in itself an
indication of specularity (or a no texture area which can also
be easily identified). Since the views are coarsely aligned
(due to the Lambertain pixels) the histogram of these regions
is expected to be close according to the Lambertian assump-
tion. Any divergence from an equal histogram observation is
therefore due to the specular component which in our case
expresses illuminant chromaticity. In this paper we suggest
an iterative algorithm which uses chromaticity estimates from
regions where the previous optical flow iteration fails. This
chromaticity estimate is then used to find a new color space
for the image with one of the color axis along the illuminant
chromaticity. The input images are projected to this new color
space for the next iteration of optical flow. We show that this
improves by upto 50%, the number of pixels with correct op-
tical flow in the experiments we conducted.

2. ILLUMINANT CHROMATICITY ESTIMATION

Under the dichromatic reflection model proposed by Shafer
[1], the reflectance of a surface can be split into two com-
ponents, surface body reflectance (diffuse) and interface re-
flectance (specular). The diffuse component follows Lam-
bert’s law and has the same radiance when viewed from any
angle. The specular component is due to the illuminant chro-
maticity and captures incident light reflected at a surface. The
light from a surface is a linear combination of two compo-
nents and can be expressed as:

I(p) = D(p) + α(p)L,

where I(p) = (Ir(p), Ig(p), Ib(p)) is the observed color at
pixel p, D(p) = (Dr(p), Dg(p), Db(p)) is the diffuse and
L = (Lr, Lg, Lb) is the global illuminant color. Note that we
assume a global illuminant L irrespective of pixel location. α
is a scalar capturing surface properties, spatial position with
respect to illuminant and local geometry of the scene surface.

𝐼𝑎𝑣𝑔 𝐼𝑎𝑣𝑔
′L = 

𝐼𝑎𝑣𝑔−𝐼𝑎𝑣𝑔
′

𝐼𝑎𝑣𝑔−𝐼𝑎𝑣𝑔
′

1

Fig. 2: We estimate illuminant chromaticity by taking the normal-
ized difference of the averages of two corresponding regions. Re-
gions are at the sweet spot between two extreme positions repre-
sented by corresponding pixels and the difference of a global his-
togram. The suggested approach allows us to choose specular re-
gions yet use the similar histogram assumption without requiring
exact correspondence.

2.1. Chromaticity Estimation from Corresponding Points

Observed colors I(p) and I(p′) at a pair of corresponding pix-
els can be expressed as:

I(p) = D(p) + α(p)L

and I(p′) = D(p′) + α(p′)L.

Given that the corresponding pixels are images of the same
3d point, the diffuse component (D) is equal. The global illu-
minant can therefore be expressed as:

L =
I(p′)− I(p)

α(p′)− α(p)

L = β(p)
∆I(p)

‖∆I(p)‖1
, (1)

where ‖I‖1 = Ir+Ig+Ib and β is a scalar. Every pair of cor-
responding pixels gives an estimate of illuminant chromatic-
ity upto scale. Corresponding points at an ‘almost’ Lamber-
tian surface leads to a small specular component and therefore
a smaller difference between their observed colors. This leads
to a noisy estimate for the illuminant chromaticity due to the
denominator of Eq 1.

2.2. Chromaticity Estimation at Specular Regions

Assuming the images to be coarsely aligned, we expect their
histogram and therefore average color to match under the
Lambertian assumption. The difference in global average is
therefore also an estimate of illuminant chromaticity. The
global average is easy to compute without requiring pixel
level correspondence. However, we expect any real scene
to contain both surfaces which are highly diffuse as well
as highly specular. A global average will therefore over-
smooth the chromaticity estimate. On the other extreme of
this hypothesis is the corresponding pixel scenario where the



estimate will be precise but the histogram will be the same
only with exact correspondence, something which is hard to
get, especially at specular regions.

We suggest a middle approach, not averaging over the
whole image, but using regions that we can assume have
similar histograms even without exact correspondence (see
Fig. 2). The important question of which regions to choose
for illuminant chromaticity estimation is also straightforward
given that these will be the regions where standard optical
flow algorithms fail due to the mis-assumption of constant
brightness. Note that standard optical flow algorithms may
also fail in textureless regions. We filter these regions from
the selected ones based on the edge score in the region.

Once each region gives its estimate of illuminant chro-
maticity, we average (per color channel) all estimates to arrive
at a global illuminant chromaticity. More robust statistical de-
scriptors based upon median or clustering did not improve the
performance significantly and therefore were not used in the
experiments.

3. SPECULAR INVARIANT COLOR SPACE

One objective of this paper is to utilize existing optical flow
algorithms even for specular surfaces. Therefore we would
like to project the image to a color space where the constant
brightness assumption holds and then use existing flow al-
gorithms. Shafer [1] showed that reflection at a specular re-
gion is the sum of a view invariant diffuse component and
illuminant chromaticity. Therefore we subtract the illuminant
chromaticity component as follows to recover the viewpoint
invariant diffuse component:

Inew(p) = Iorig(p)− (Iorig(p) • L), (2)

where ‘•’ represents the dot product. We propose to use the
new color values computed as above in the optical flow algo-
rithm. Note that unlike original RGB space, components of
the new color vector may be negative. The standard imple-
mentation of optical flow algorithms such as LK available in
OpenCV [8] expect non negative RGB values (however this
is not required for the theoretical working of the flow algo-
rithm). We thus used our own implementation which can
handle negative valued chromaticity components in our ex-
periments.

4. PROPOSED ALGORITHM

We run Algorithm 1 iteratively, re-estimating the illumi-
nant chromaticity at each step, and finding optical flow in the
projected color space. In each iteration we progressively com-
pute an improved optical flow, since the projected color space
cancels out more accurate illuminant color. The better align-
ment allows us to do an improved average color matching in
specular regions and thus improve the accuracy of illuminant

Algorithm 1 SpecularFlow Algorithm

1: while Optical flow improves do
2: If not first iteration project image to color space per-

pendicular to estimated illuminant.
3: Find optical flow using a standard optical flow algo-

rithm (e.g. LK [2]).
4: For regions where optical flow fails, assume zero (or

neighbor average) flow.
5: Find regions with significant difference in average

color using the current optical flow estimation.
6: Reject smooth regions.
7: Evaluate estimated illuminant chromaticity using the

difference of average colors in corresponding regions.
8: Average the estimates obtained from the different re-

gions to get a single global illuminant chromaticity.
9: end while

color estimation. The process is repeated until there is no
change in optical flow.

5. EXPERIMENTS

We conducted experiments on the images available from the
Middlebury 2006 stereo dataset [9]. There were images avail-
able with multiple illuminations and exposures and we used
view0 and view1 with random illumination and exposure. 870
points (shown in red) were sampled uniformly on the image
and optical flow found on each of these points using LK [2]
based on color difference. As described above, we used our
implementation of LK which can work with negatively valued
chromaticity components. We find the difference of average
color in each of the regions (64 × 64) around the sampled
and tracked point. We do not average saturated (>250) or
dark (<5) pixels and reject regions where the L1 norm of the
difference is less than 20. The rest of the regions are used
for finding illuminant chromaticity. Table 1 gives the results.
There is an improvement in flow in most of the examples we
tested even though this database did not have much specular-
ity in most images.

We also conducted experiments on our sequence where
we controlled the illuminant chromaticity by illuminating a
specular object with a green lamp. Fig. 3 shows the result.
900 points were chosen uniformly for finding optical flow.
In the first iteration LK finds flow on only 102 of the 900
points. Many of the regions where optical flow was successful
were not chosen for finding illuminant. With the remaining
regions, the algorithm correctly identifies the illuminant as a
mix of green and blue. While the lamp was green, blue can be
attributed to ambient light. There is a 4 times improvement in
optical flow after cancelling the illuminant chromaticity.

Fig. 4 shows the difference in projected input images (af-
ter aligning and warping one to the other) after iterations 1
and 2. Higher green values in the first image shows the extent
of specularity in the images.



Input Flow Success Num
Iters Estimated Illuminant ChromaticityDataset Illum Exp Without Proposed Using

Correction Method Valid Tracked
Cloth2 3 2 837 845 837 5 (0.364430, 0.304564, 0.331006)
Cloth4 3 2 783 812 783 6 (0.247378, 0.296470, 0.456152)
Baby2 3 2 771 800 771 7 (0.260307, 0.346704, 0.392989)
Rocks1 2 2 856 857 856 3 (0.371439, 0.337341, 0.291220)

Table 1: Experiments on images from Middlebury 2006 stereo dataset [9]. Images were randomly chosen from available illuminations and
exposures. Num Iters and Estimated Illuminant chromaticity is from proposed method. Note that, we are not aware of the ground truth
illuminant in these cases. The algorithm chooses a chromaticity which makes the corresponding regions most similar. As is our thesis,
finding illuminant chromaticity using tracked regions fails to find any significant change and does not help improving flow in any of the tested
samples.

(a) (b) (c) (d) (e)

Fig. 3: Optical flow of coffee jar illuminated with green light. (a),(b) Input images. Shiny label exhibits significant specularities. (c) Optical
flow computed at regularly spaced grid points using LK [2]. Specularities create problems and flow computation succeeds only on 109 grid
points out of 900. Blue dots indicate regions where the flow computation is successful. (d) Estimated illuminant chromaticity from each
region with significant change in average color. We reject regions with saturated colors, dark regions and non textured regions which can give
noisy estimates of the illuminant chromaticity. The global illuminant estimated is (0.090247, 0.539450, 0.370303). This is plausable since
we illuminated the scene with a green light bulb. The high blue component can be attributed to ambient light. (e) Optical flow computed after
projecting the image to a new color space. Flow computation is now successful at 361 points.

(a) (b)

Fig. 4: (a) Difference in two input images (after ground truth align-
ment) for experiment corresponding to Fig. 3. The large difference
in green channel shows the extent of specularity. Small differences at
edges is inaccuracy in ground truth warping and should be ignored.
(b) Difference after projecting to color space invariant to illuminant
chromaticity.

6. CONCLUSION

We presented a method to improve optical flow computation
for non Lambertian surfaces. Most existing methods rely on
estimating illuminant chromaticity from regions where the
optical flow algorithms succeed and use the change in ob-
served color to estimate the illuminant. We showed that such
regions often do not have significant changes in observed

color and are therefore not much help in estimating illumi-
nant chromaticity. Instead using the difference of average of
colors in sufficiently large windows gives a better estimate of
chromaticity which can be progressively improved as we cor-
rect the illumination estimation and find optical flow in more
regions. Experiments conducted on our as well as publicly
availably images validates the proposal.
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