
Journal of Mathematical Imaging and Vision 11, 27–43 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Full Bayesian Approach to Curve and Surface Reconstruction

DANIEL KEREN
Department of Computer Science, The University of Haifa, Haifa 31905, Israel

dkeren@cs.haifa.ac.il

MICHAEL WERMAN
Institute of Computer Science, The Hebrew University, Jerusalem 91904, Israel

werman@cs.huji.ac.il

Abstract. When interpolating incomplete data, one can choose a parametric model, or opt for a more general
approach and use a non-parametric model which allows a very large class of interpolants. A popular non-parametric
model for interpolating various types of data is based on regularization, which looks for an interpolant that is both
close to the data and also “smooth” in some sense. Formally, this interpolant is obtained by minimizing an error
functional which is the weighted sum of a “fidelity term” and a “smoothness term”.

The classical approach to regularization is: select “optimal” weights (also called hyperparameters) that should
be assigned to these two terms, and minimize the resulting error functional.

However, using only the “optimal weights” does not guarantee that the chosen function will be optimal in some
sense, such as the maximum likelihood criterion, or the minimal square error criterion. For that, we have to consider
all possible weights.

The approach suggested here is to use the full probability distribution on the space of admissible functions, as
opposed to the probability induced by using a single combination of weights. The reason is as follows: the weight
actually determines the probability space in which we are working. For a given weightλ, the probability of a function
f is proportional to exp(−λ ∫ f 2

uu du) (for the case of a function with one variable). For each differentλ, there is a
different solution to the restoration problem; denote it byfλ. Now, if we had knownλ, it would not be necessary to
use all the weights; however, all we are given are some noisy measurements off , and we do not know the correct
λ. Therefore, the mathematically correct solution is to calculate, for everyλ, the probability thatf was sampled
from a space whose probability is determined byλ, and average the differentfλ’s weighted by these probabilities.
The same argument holds for the noise variance, which is also unknown.

Three basic problems are addressed is this work:

• Computing the MAP estimate, that is, the functionf maximizing Pr( f/D)when the dataD is given. This problem
is reduced to a one-dimensional optimization problem.
• Computing the MSE estimate. This function is defined at each pointx as

∫
f (x)Pr( f/D)D f . This problem is

reduced to computing a one-dimensional integral.
In the general setting, the MAP estimate is not equal to the MSE estimate.
• Computing the pointwise uncertainty associated with the MSE solution. This problem is reduced to computing

three one-dimensional integrals.
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1. Introduction

In many areas of science and engineering, regulariza-
tion [38, 40] is used to reconstruct objects from partial
data. In computer vision, some references are [3, 13,
14, 35, 36]. Reconstruction of surfaces from partial
data has been studied in many other fields, for exam-
ple petroleum exploration [29], geology [4], electron-
ics [2], estimation of the gravitational field of the earth
[20], and medical imaging [21, 22]. In the field of max-
imum entropy, a similar idea is used for reconstruction
of missing or corrupted data, as in image restoration
[6, 9, 30–32].

The dataD can be sparse, e.g., the height of a small
number of points on a surface, or dense but incomplete,
e.g., the case of optical flow and shape from shading
[12] where data is available at many points but consists
of the function’s or its derivative’s value in a certain
direction only. The first difficulty in solving this prob-
lem stems from the multitude of possible solutions,
each satisfying the partial data; which one should be
chosen?

Regularization overcomes these difficulties by
choosing among the possible objects one which ap-
proximates the given data and is also “smooth”.
This embodies an important assumption—that the
“smoother” the object, the more probable it is. For-
mally, a cost functional M( f ) is defined for every
object f by M( f ) = D( f ) + λS( f ), where D( f )
measures the distance off from the given data,S( f )
measures the smoothness off , andλ > 0 is a param-
eter. Thef chosen is the one minimizingM( ).

In the one-dimensional case, one can minimize
M( f )= ∑n

i=1
[ f (xi )−yi ]2

2σ 2 + λ
∫ 1

0 f 2
uu du. In the two-

dimensional case, one can minimizeM( f ) =∑n
i=1

[ f (xi ,yi )−zi ]2

2σ 2 +λ ∫ 1
0

∫ 1
0 ( f 2

uu+2 f 2
uv + f 2

vv) du dv.
The Bayesian interpretation of this approach is: we

are given the dataD and want to find the function
f which maximizes Pr( f/D)∝Pr(D/ f )Pr( f ). As-
suming a Gaussian noise model with varianceσ 2,
Pr(D/ f )∝ 1

σ n exp(− 1
2σ 2

∑
[ f (xi ) − yi ]2). Adopting

a physical model, it is common to define Pr( f ) ∝
exp(−λ ∫ f 2

uu du). Hence Pr( f/D) ∝ exp(−M( f )),
and the function minimizingM( )maximizes the like-
lihood. Since the model is Gaussian, the MAP function
is also the MSE function.

We will assume from now on that the functions
are defined on the interval [0, 1], or the unit square
[0, 1]× [0, 1], and will usually omit those limits in the
integrals. It is also possible to integrate the smoothness

term f 2
uu + 2 f 2

uv + f 2
vv over all the plane, but we are

interested in dealing with functions which are defined
only on a bounded subset, so we choose to compute the
integral on the unit interval/square. This is not a severe
limitation for computer vision purposes.

The question is, how does one chooseλ and σ?
There are various methods for doing that, and some
are mentioned in the following section. Most regulari-
zation schemes we are familiar with choose one com-
bination of weights and use them alone to interpolate
the function.

However, this approach finds the maximum likeli-
hood (MAP) estimate for the interpolantf only for a
givenλ andσ . But the MAP estimate should maximize
the following:∫

w

Pr( f/D, w)Pr(w/D) dw

wherew varies over the set of all possible weights.
The reason for this is as follows: wedo not know

what the real weights are; all we know is the probabi-
lity of each set of weights. Therefore, the probability
of a certain f is the sum of its probability for every
choice of weights, multiplied by the probability of the
weights. Let us give an analogy: suppose an (uneven)
dice is given, and each of its sides contains a list of prob-
abilities for ten tasks. The dice is tossed, and then one
proceeds to randomly choose a task, using the probabil-
ity list on the side of the dice which turned up. In order
to compute the probability that this experiment results
in the undertaking of task number five, for instance, it
is not correct to consider only the probability of task
number five on the side of the dice which has the high-
est probability of turning up! Naturally, the probability
that the toss will lead to undertaking task number five
is the sum of the probabilities of each side, multiplied
by the probability of task number five on that side.

For the restoration problem we wish to solve, the
sides of the dice are analogous to the different weights,
and the functions are analogous to the different tasks.
Clearly, it’s incorrect to use only the weights with the
highest probability.

If Pr(w/D) has some nice properties—for in-
stance, it is unimodal, symmetric, and concen-
trated around the pair of weightswmax which maxi-
mize Pr(w/D)—it may be reasonable to approximate∫
w

Pr( f/D, w)Pr(w/D) dw by approximating the in-
tegrand with a rectangular function aroundwmax. How-
ever, the distribution Pr(w/D) can be complicated and
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this approximation will then fail [24, 33]; see also an
example of such a data set and the corresponding prob-
ability distribution it induces on the weights, in this
paper (Figs. 12, 13).

In this paper, it will be shown how to find the func-
tion f maximizing

∫
w

Pr( f/D, w)Pr(w/D) dw. Two
other problems which are addressed are computing the
expectation of a linear functional on the function space,
such as the value of the function at a point. This ex-
pectation is the minimal square error (MSE) function.
Another problem is to compute the pointwise uncer-
tainty associated with the MSE estimate.

These three quantities—the MAP, the MSE, and the
uncertainty—are perhaps the three most important es-
timators for a statistical entity, and it is therefore very
important to rigorously compute them.

These problems are addressed in Sections 3–5. The
technical details are described in the appendices. Some
examples are given, of 1 and 2D data and its inter-
polants.

In Appendix 1, we note that if one wants to find
the “optimal weights”—that is, the pair of weights
w = {λ, σ } which maximizes Pr(w/D)—this can be
reduced to a one-dimensional optimization problem,
although the optimization is over a two-dimensional
hyperparameter space.

In the future, we hope to find efficient numerical
algorithms to speed up the algorithms described here.

2. Previous Work

A very popular method for determining the smooth-
ing parameterλ is Generalized Cross Validation, GCV
(bootstrapping) [5, 40]. The idea is to choose aλ such
that the data points will predict one another. Formally,
a functionV0(λ) is defined as follows: for each sample
point (xk, yk), 1≤ k ≤ l , fk is defined to be the spline
minimizing

l∑
i 6=k

[ f (xi )− yi ]
2+ λ

∫
f 2
uu du

i.e., the spline interpolating all the data points but the
kth. V0(λ) is then defined as

∑l
k=1[ fk(xk)− yk]2, and

theλ chosen is the one minimizingV0( ). This algo-
rithm is called Ordinary Cross-Validation (OCV).

An improvement of this method is the GCV algo-
rithm [5] which proceeds as follows. Since thef in-
terpolating thel data points is a linear combination of

the set{y1, y2 . . . yl }, there is a matrixA(λ) satisfying


f (x1)

.

.

.

f (xl )

 = A(λ)


y1

.

.

.

yl

 (1)

A(λ) is used to define a modified version ofV0:

V(λ) =
l∑

k=1

wk(λ)[ fk(xk)− yk]2,

wk(λ) =
[

1− Akk(λ)
1
n Tr (I − A(λ))

]2

(Tr stands for Trace andI for thel × l identity matrix).
Theλ chosen is the one minimizingV( ). After this,
λ is used to estimateσ . In [37], a few methods for
choosing the smoothing parameter are analyzed.

Bayesian model selectionis another approach for
choosing an “optimal” smoothing parameter. To the
best of our knowledge, it was first suggested to apply
Bayesian model selection to regularization in the pio-
neering work of Szeliski [33]. There, the following
question is posed:given the data D, what is the most
probable value of the smoothing parameterλ? More
recent work in this direction was done by MacKay in
[24], and [23], which contains an extensive study on ap-
proximations to the ideal Bayesian approach, which, as
the author correctly notes, is difficult to implement.

Another method for choosing the smoothing param-
eter is presented in [10]. In [28], the behavior of the
smoothing spline over a range of smoothing parameters
is studied, and is then used to construct a confidence
interval for the smoothing parameter.

The problem with methods that use a single set of
weights is that the choice of the values ofλ andσ is
sometimes very sensitive to the data. Since these values
are crucial to the shape of the fitted curve or surface,
it turns out that sometimes a small change in the data
drastically changes the shape of the fitted curve or sur-
face (see Figs. 1, 2 for curve fitting and 4, 5 for sur-
face fitting). Another problem is that, although it can
be proved that GCV has some nice asymptotic prop-
erties, the choice of the “optimal” values ofλ andσ
is heuristic in nature. Nonetheless, the algorithm per-
forms well in general and is widely used; there are very
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sophisticated numerical methods for implementing the
GCV algorithm.

Work which proceeds in a direction somewhat sim-
ilar to the one given here is presented in [6, 32]. How-
ever, this work is in the realm of entropy and therefore
the mathematical framework is rather different from
ours; for instance, there is no analog to the concept of
the MSE estimate, neither to the concept of the uncer-
tainty of the solution. Moreover, these works assume
an uninformative prior on the hyperparameter, while
we determine it according to the data. While assum-
ing an uninformative prior on the hyperparameter and
integrating it out using this prior may well have a bene-
ficial effect—for instance, in stabilizing the restoration
procedure—it is inherently different from the Bayesian
approach presented here.

Finally, recent work reported in [25, 26] concerns the
problem of computing the MAP solution, in a Bayesian
framework, by integrating over the space of smoothing
parameters and noise. For “integrating out” these two
parameters, a uniform prior on them is assumed, which,
as noted, is very different from the prior used in this
work.

3. Computing the MAP Estimate

In order to compute the MAP estimate, we have to max-
imize Pr( f/D)over all functionsf . Using Bayes’ rule,
Pr( f/D) ∝ Pr(D/ f )Pr( f ). In order to compute this,
one needs to integrate over all values ofλ, σ , resulting
in∫ ∞

0

√
λ exp

(
−λ

∫
f 2
uu du

)
Prior(λ) dλ

·
∫ ∞

0

1

σ n
exp

(
− 1

2σ 2

∑
[ f (xi )− yi ]

2

)
Priorn(σ ) dσ

In this expression, the priors onλ, σ are general, and
not unique to our problem. These are not the pri-
ors determined by the data (which are computed in
Section 10). In this work, we have used either log-
normal or flat priors; the choice of the prior had hardly
any effect on the results.

Note that a givenλ corresponds to the probability
exp(−λ ∫ f 2

uu du) on the function space. The entire
probability, over the whole space, therefore equals∫

Pr( f )D f =
∫

exp

(
−λ

∫
f 2
uu du

)
D f

and, using the change of variablesg = √λ f , it is easy
to see that this equals

1√
λ

∫
exp

(
−
∫

f 2
uu du

)
D f

it is therefore necessary to multiply the probability by√
λ. This normalization ensures that the structure of

the probability, for everyλ, does indeed define a prob-
ability space. This is the explanation for the

√
λ in the

first integral in the equation for Pr( f/D).
The expression for Pr( f/D) has to be maximized

over the space of admissible functions. Let us write
it more compactly asF1(

∫
f 2
uu du)F2(

∑
[ f (xi ) −

yi ]2), where F1(α)=
∫∞

0

√
λ exp(−λα)Prior(λ) dλ

andF2(β) =
∫∞

0
1
σ n exp(− β

2σ 2 )Priorn(σ ) dσ .
Note that, obviously,F1( ) andF2( ) are monotoni-

cally decreasing inα andβ respectively.
It is possible to turn this optimization problem to a

one-dimensional optimization by setting
∫

f 2
uu du to a

constantα, and then minimizing
∑

[ f (xi )− yi ]2 over
all functions f such that

∫
f 2
uu du= α.

Using Lagrange multipliers, this problem transforms
into one resembling “standard” regularization: find
a λ such that the functionf minimizing

∑
[ f (xi ) −

yi ]2+λ ∫ f 2
uu du satisfies

∫
f 2
uu du= α, whereλ is the

Lagrange multiplier.
In Section 10.1, it is proved that thef minimiz-

ing
∑

[ f (xi ) − yi ]2 + λ ∫ f 2
uu du is given by f (x) =

(Hx1(x) . . . Hxn(x))(A+ λI )−1(y1 . . . , yn)
t , where

Hx(ξ) =


0≤ ξ ≤ x :

(x − 1)ξ(x2− 2x + ξ2)

6

x ≤ ξ ≤ 1 :
x(ξ − 1)(x2+ ξ2− 2ξ)

6

and Ai, j = Hxi (xj ). Let us denote the data vector
(y1, . . . , yn) by Y. After some manipulations,∫

f 2
uu du= Y(A+ λI )−1A(A+ λI )−1Yt

so, we have to find for whichλ this expression equals
α. DiagonalizingA by an orthonormalU , UAUt = D,
and denotingZt = UYt , the expression for

∫
f 2
uu du

reduces to ∑ di Z2
i

(di + λ)2

wheredi are the diagonal elements ofD. Finding a
λ for which this equalsα is fast, as this function is
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monotonically decreasing inλ, and we can solve the
problem by binary search.

After finding λ, we have to compute
∑

[ f (xi ) −
yi ]2, where f minimizes

∑
[ f (xi )− yi ]2+λ ∫ f 2

uu du.
As noted above (see also Section 10.1), thisf equals
(Hx1(x) . . . Hxn(x))(A+ λI )−1Yt . Therefore

f (xi ) =
(
Hx1(xi ) . . . Hxn(xi )

)
(A+ λI )−1Y

= (Ai,1 . . . Ai,n)(A+ λI )−1Yt

and so∑
[ f (xi )− yi ]

2 = ‖( f (x1) . . . f (xn))− Y‖2

= ‖A(A+ λI )−1Yt − Yt‖2

= ‖AUt (D + λI )−1UYt − Yt‖2

= ‖AUt (D + λI )−1Zt − Yt‖2

this expression can be computed fast since it involves
inverting a diagonal matrix, and sinceAUt needs to be
computed only once.

Now, all that’s left is to computeF1(α)F2(β). F1( )

and F2( ) are one-dimensional integrals with rather
simple integrands, and can be computed fast (or per-
haps stored in a table).

What remains is to maximizeF1(α)F2(β) over α
(recall thatβ is not a free parameter, as it is determined
by α).

The algorithm therefore tries to maximize a function
C(α) which is defined as follows:

1. computeF1(α)

∫
1√
v
|A+ v I |−(1/2)(Hx1(x) . . . Hxn(x)

)
(A+ v I )−1Yt [Y(A+ v I )−1Yt ](4−n)/2 dv∫

1√
v
|A+ v I |−(1/2)[Y(A+ v I )−1Yt ](4−n)/2 dv

2. compute the (single) λα which satisfies∑ di Z2
i

(di+λα)2 = α. This is fast because, as noted,∑ di Z2
i

(di+λ)2 is monotonically decreasing inλ (A is
positive definite, sodi > 0).

3. defineβ = ‖AUt (D + λα I )−1Z − Y‖2
4. computeF2(β)

5. returnF1(α)F2(β) = C(α)

and we have to maximizeC(α) for 0 ≤ α ≤∫
( finterpolate)

2
uu du, where finterpolate is the interpolant

which passes through the data points. This range cov-
ers all the relevant functions, becausefinterpolateis the

interpolant of the type we’re studying which maximizes∫
f 2
uu du (it corresponds toλ = 0).

This is a one-dimensional optimization problem,
which we solve numerically. The solution is reason-
ably fast, taking a few seconds on a workstation.

4. Computing the MSE Estimate

An estimator which for some purposes is more useful
than the MAP estimate is the MSE estimate. Its value
at x is defined byEx =

∫
f (x)Pr( f/D)D f .

In order to compute this integral, the following ap-
proach is taken. Let us define a probability struc-
ture Mλ,σ on the space of admissible functions. In this
space, we assume the measurement noise isσ , and
the prior distribution of the functionf is Pr( f ) ∝
exp(−λ ∫ f 2

uu du). Under this probability, which is
Gaussian, the MSE function, denoted( fopt)λ,σ , is
equal to the MAP function and there is a closed-form
expression for it (given in the previous section). In
Section 10.1, we show that

Ex =
∫

f (x)Pr( f/D)D f

=
∫
λ

∫
σ

( fopt)λ,σ (x)Pr(λ, σ/D) dλ dσ

The idea is to decompose the complicated probability
structure over the function space to a weighed sum of
simple (Gaussian) probability structures, over each of
which we can easily calculate the desired integral.

In Section 10.1, Pr(Mλ,σ /D) is computed, and the
following expression forEx is derived:

whereA andHxi are the same as in Section 3.
This is a closed-form expression, but it involves a

one-dimensional integral whose computation is non-
trivial due to the complicated form of the integrand.
Currently, we are investigating ways to speed-up the
computation of this integral, which computationally is
the bottleneck of the algorithm suggested here.

5. Computing the Uncertainty Associated
With the Interpolant

In [5, 15, 19, 24, 27, 33, 34, 39, 40], the problem of
assigning a measure of uncertainty to the regularizing
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interpolant is addressed. This is very important, be-
cause usually one wants not only to know the curve
(surface) which is optimal in some sense, but also to
know how reliable this curve (surface) is. We chose
to extend the method suggested in [15], defining the
uncertainty of the interpolant at the pointx as∫

[ f (x)− Ex]2Pr( f/D)D f

the details are given in Appendix 2. As was the case
with Ex, we obtain a closed-form solution, but its com-
putation is non-trivial.

Just as the MSE is dependent on the hyperparam-
eters, so is the uncertainty. This is demonstrated in
Fig. 10. Two nearly identical data sets result in the
GCV algorithm choosing very different values of the
hyperparameterλ, and this results not only in a very
different MSE estimate, but also in very different un-
certainty intervals (more details in Section 7).

6. The 2D Case

All the results in the previous sections have been ex-
tended to the 2D case (surface reconstruction). There
is one technical difficulty to overcome: the computa-
tion of the two-dimensional functions which are the
equivalent of the functionsHx(ξ). That is, it is neces-
sary to find functionsGx,y(u, v) (also calledreproduc-
ing kernels) which satisfy, for every two-dimensional
function f , which satisfies some boundary conditions,
the equality( f,Gx,y)2D = f (x, y), where

( f, g)2D =
∫ ∫

( fuuguu+ 2 fuvguv + fvvgvv) du dv.

As opposed to the one-dimensional reproducing ker-
nels, which have a simple form (cubic splines), there
is no known closed form expression for the 2D repro-
ducing kernels. In [15, 16] this problem is addressed,
and it is shown how to quickly compute the functions
Gx,y(u, v) to any desired accuracy using an approxi-
mation on a finite subspace. Due to the fact that the in-
ner product( f, g)2D is nearly orthogonal on subspaces
spanned by trigonometric functions, convergence is
very fast, and a subspace of reasonably low dimension
is good enough to compute the functions to a very high
accuracy. We have implemented this approximation,
and used it to restore 2D functions; see Figs. 4–7.

7. Examples

A simple pattern—one cycle of a sinusoidal function—
was contaminated with Gaussian noise, with a variance
equal to five percent of the amplitude, and then the re-
sulting data was interpolated using the GCV algorithm
and the methods suggested in the previous sections.
The instability of the GCV is demonstrated by noting
that changing the value of the data at a single point
radically changes the shape of the fitted curve (Figs. 1
and 2). The MSE estimates for these two data sets are
presented in Fig. 3. They were calculated using Eq. (8)
of Appendix 1.

Figure 1. GCV chooses a “standard” value ofλ, to interpolate
sinusoidal data contaminated by Gaussian noise.

Figure 2. For a data set differing from that of Fig. 1 in only one
point, GCV chooses a very small value ofλ, resulting in a completely
different fit.
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Figure 3. The MSE estimate for the data sets of Figs. 1 and 2,
obtained using Eq. (8). Fits are almost identical.

Figure 4. GCV reconstruction for the function 125x(1−x)y(1−y),
contaminated by Gaussian noise. This is a “typical” reconstruction
for such data.

We have run some tests on 2D data which was created
by adding Gaussian noise with a variance of 0.1 to
the function 125x(1− x)y(1− y). Figures 4 and 5
demonstrate how the GCV returns radically different
results for two data sets which differ only in one point—
this is because, just like in the case of the data in Figs. 1
and 2, this slight change caused GCV to choose a very
different value ofλ. Figure 6 shows the MSE estimate
for the data of Fig. 4 (also using Eq. (8)). Applying
Eq. (8) to the data of Fig. 5 results in a surface which
is almost identical to that of Fig. 6.

Figure 5. For a data set differing from that of Fig. 4 in a single
point, GCV finds a radically different interpolation.

Figure 6. The MSE estimate for the data set of Fig. 4, obtained
using Eq. (8).

In Fig. 7, the result of restoring real data is given; the
points were sampled from a depth image of a human
face, and Gaussian noise with a variance of 1 was added
to them.

In Fig. 8, the two MAP reconstructions for the data
sets of Figs.1 and 2 are given, with the data.

In Fig. 9, the MSE estimate and confidence intervals
for a data set are given. The data is a sample of the
x-coordinates of a hand-written word.
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Figure 7. Data sampled from depth image of human face (left), and its reconstruction (right), obtained using Eq. (8) (a 25× 25 sample from
the 100× 100 data is shown).

Figure 8. The suggested method for computing the MAP estimate, for the data sets of Figs. 1 and 2.
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Figure 9. MSE function and confidence intervals for an evenly sampled data set. The little “+” signs are the data points, the middle curve
is the MSE interpolant, and the upper and lower curves consist of the upper and lower confidence intervals, with a width of (pointwise) one
standard deviation. The pointwise variance was computed using Eq. (9).

In Fig. 10, the importance of integrating over the
different weights when computing the uncertainty in-
tervals is demonstrated. For the data sets of Figs. 1
and 2, the GCV algorithm chose two very different
values ofλ, although the data sets are nearly identi-
cal (they slightly differ in one point only). The lower
graph shows the value of the uncertainty, for theλ cor-
responding to the restoration in Fig. 1; the upper graph
shows the corresponding quantity for theλ correspond-
ing to the restoration in Fig. 2. Note the instability in
the values of the uncertainty, which are caused by using
only one hyperparameter.

In Fig. 11, the interpolant and confidence intervals
are given for data unevenly sampled from a sinusoid
with noise added to it. One can see that the uncertainty
is larger in areas which are far from the sample points.
The uncertainty at the endpoints is zero, because we
constrain our functions to be zero at the endpoints (see
Appendix 1).

Finally, we give an example which explains why one
has to integrate over all the weights. In Fig. 12, two data
sets are shown, superimposed. As one can see, they are
almost identical. In Fig. 13, the (scaled) probability
distribution for the weightsλ, σ of one of the data sets
is plotted. It has two distinct peaks, which are rather far
apart; the location of the peaks correspond to the loca-
tion of the most probable weights for the two data sets
of Fig. 12. Therefore, the interpolants for the data sets
of Fig. 12 which use only the most probable weights are
drastically different, although the data sets are almost
identical.

8. Conclusions and Further Research

This work suggests a straightforward and mathe-
matically rigorous approach for solving three basic
problems in curve and surface reconstruction, which
are very common in many areas: finding the MAP
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Figure 10. The height of the confidence intervals for the two different values ofλ chosen by the GCV algorithm for the data sets of Fig. 1
(lower thick line) and Fig. 2 (sinusoidal).

interpolant, finding the MSE interpolant, and comput-
ing the uncertainty associated with the interpolant.

In the future, we hope to present algorithms for
speeding up the computation of these three entities, as
well as to expand the model to handle discontinuities.
The problem of detecting and handling discontinuities
in the data is especially important in the area of com-
puter vision [7, 21, 22, 36]. For that, we plan to extend
the Sobolev space to include functions with disconti-
nuities.

Appendix 1: Computing Pr(λ, σ/D) and Ex

Call the model that assumesλas a smoothing parameter
andσ as the measurement noiseMλ,σ . In this model,
Pr( f ) ∝ exp(−λ ∫ f 2

uu du). Given a data setD, we

compute Pr(λ, σ/D). Using Bayes rule:

Pr(λ, σ/D)= Pr(D/λ, σ )Prior(λ, σ )

Pr(D)

∝ Pr(D/λ, σ )Prior(λ, σ )

=
∫

Pr(D/ f )Pr( f/λ, σ )Df∫
Pr( f/λ, σ )D f

Prior(λ, σ )

(2)

where the denominator is introduced to turn the distri-
bution on the functionsf into a probability, by normal-
izing its integral on the whole space to 1.

Since the data is given, it is the same for all
models and can be eliminated from consideration.
We have used the prior Prior(λ, σ )= λ− 5

2 , for the
following reason. Intuitively, spaces with a prior
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Figure 11. MSE function and confidence intervals for an unevenly
sampled data set. The little triangles are the data points, the middle
curve is the MSE interpolant, and the upper (lower) curves consist of
the upper (lower) confidence intervals, with a width of (pointwise)
one standard deviation. The pointwise variance was computed using
Eq. (9).

Figure 12. Two nearly identical data sets superimposed.

Figure 13. The (scaled) probability distribution for one of the data
sets of Fig. 12.

distribution determined by a largeλ are “very much
alike”, in the sense that random samples from
these spaces are very similar [16]. It makes sense
therefore to use the average smoothness of the
functions to determine the prior. This average smooth-
ness is

∫
(
∫

f 2
uu du) exp(−λ ∫ f 2

uu du)D f . The one-
dimensional equivalent is

∫
x2 exp(−λx2) dx, which

equalsλ−
3
2 .
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The prior, Prior(λ), should therefore satisfy

b−
3
2 − a−

3
2 = d−

3
2 − c−

3
2 →

∫ b

a
Prior(λ) dλ

=
∫ d

c
Prior(λ) dλ

so, Prior(λ) = λ− 5
2 . This agrees with intuition—since

the spaces for small values ofλ differ much more than
those with large values ofλ, the prior is much greater
whenλ is small.

Unless some information on the noise is given, no
prior is assumed onσ . However, we have experimented
with different priors—such as log-normal—and the re-
sults seem to hardly depend on the specific prior.

Although the spaceMλ,σ is infinite dimensional, it is
possible to reduce Eq. (2) to a quotient of two integrals

1

(2π)n/2
(
ρ√
2

)n
∫

exp
(
−
(
λ
∫

f 2
uu du+∑n

i=1
[ f (xi )−yi ]2

ρ2

))
D f∫

exp
(−λ ∫ f 2

uu du
)
D f

=
exp

(−‖Y‖2
ρ2

)
πn/2ρn

∫
exp

(
−
(
λ
∫

f 2
uu du+ 1

ρ2

∑n
i=1 f 2(xi )− 2

ρ2

∑n
i=1 yi f (xi )

))
D f∫

exp
(−λ ∫ f 2

uu du
)
D f

defined on a finite dimensional space. The rest of this
section is dedicated to this reduction, culminating in
the expression of Eq. (7).

The problem of computing such integrals as those
appearing in Eq. (2)—which are defined over infinite
dimensional domains—has been solved for some types
of integrals in the realm of pure mathematics [8, 11, 17–
19, 41]. It was applied to the types of spaces used in
regularization in [15, 16]. The spaceMλ,σ is a “Hilbert
space” [42]. We will need to use the notion of an
orthogonal subspace; let us recall that ifU is a sub-
space of a Hilbert spaceH , its orthogonal subspace,
U⊥, is defined as—

U⊥ = {h ∈ H/u ∈ U H⇒ (u, h) = 0}

It is well known that for everyh ∈ H , there are unique
u1 ∈ U andu2 ∈ U⊥ such thatu1 + u2 = h. They
are called theprojectionsof u on U andU⊥, and are
denotedhU andhU⊥ .

The Hilbert space used in this work is the space of
all functions which can serve as interpolants in the
framework of regularization. Since we have to use
functions f for which the smoothness term

∫
f 2
uu du

is defined, the natural space is theSobolev space L22,
which consists of the functions having a second deriva-
tive which is square integrable (for an extensive treat-
ment of Sobolev spaces, see [1]).

For technical reasons, we restrict ourselves to the
subspace ofL2

2 which is defined by{ f ∈ L2
2/ f (0) =

f (1) = 0}. The reason is that otherwise the denomi-
nator in Eq. (2) is not defined. We will keep denoting
the model/function space byMλ,σ . Note that this is not
really a restriction—any two numbersB0 and B1 can
be used for boundary conditions at 0 and 1, simply by
subtracting the linear function which obtains the values
B0 andB1 at 0 and 1. One can use different constraints,
such as fixing the function’s and its derivative’s value
at some point.

It turns out that the calculations are a little sim-
pler if we make a change of variable,ρ = √2σ . The
expression for the probability ofMλ,σ given D is then

whereY is the data vector,(y1, y2 . . . yn).
Now, let us simplify the last expression by defining

two inner products onMλ,σ :

( f, g)1 = 1

ρ2

n∑
i=1

f (xi )g(xi )+ λ
∫

fuuguu du

( f, g)2 = λ

∫
fuuguu du

For everyxi , let us denote byHxi the function which sat-
isfies, for everyf ∈ Mλ,σ ,

∫
(Hxi )uu fuu du = f (xi ).

We can explicitly calculate this function, following the
same method as in [15]:

Hx(ξ) =


0≤ ξ ≤ x :

(x − 1)ξ(x2− 2x + ξ2)

6

x ≤ ξ ≤ 1 :
x(ξ − 1)(x2+ ξ2− 2ξ)

6

note that this expression depends only on the location
of the sample pointsxi , and not the value of the samples
yi . As it turns out, this saves a lot of computation.
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Finally, let us define for eachi the functionhxi = Hxi
λ

.
Obviously,( f, hxi )2= f (xi ) for every f ∈Mλ,σ , and
so, if we define f0 = − 2

ρ2

∑n
i=1 yi hxi =− 2

λρ2

∑n
i=1

yi Hxi , then( f, f0)2=− 2
ρ2

∑n
i=1 yi f (xi ).

After these definitions, the expression for the prob-
ability reduces to

exp
(−‖Y‖2

ρ2

)
πn/2ρn

∫
exp(−[( f, f )1+ ( f, f0)2])D f∫

exp(−( f, f )2)D f
(3)

This integral can be computed using the fact that the
function space can be decomposed into a direct sum,
where the two inner products(, )1 and(, )2 differ from
each other only on one of the summands, which is finite
dimensional. Specifically, let us define a subspaceW
of Mλ,σ by

W = { f ∈ Mλ,σ | f (x1) = f (x2)

= . . . = f (xn) = 0}
when restricted toW, (, )1 and (, )2 define the same
inner product. Moreover, iff ∈ Mλ,σ and g ∈ W,
then( f, g)1 = ( f, g)2.

Now, if f ∈ W, then for every 1≤ i ≤ 1,
( f, hxi )1 = f (xi ) = 0, hencehxi ∈ W⊥. Since the
hxi ’s are linearly independent [15], we have from di-
mension arguments the following important result

W⊥ = span
{
hx1, hx2 . . . hxn

}
next, let us write the expression in the exponent of the
integrand in the numerator of Eq. (3) using the decom-
position intoW andW⊥:

( f, f )1+ ( f, f0)2 = ( fW, fW)2

+ ( fW⊥ , fW⊥)1+ ( fW⊥ , f0)2

here, we have used the fact thatf0 ∈ W⊥ (obvious,
since it is a linear combination of thehxi ’s), and also
the fact that, restricted toW, the two inner products are
the same.

Similarly, the expression in the exponent of the in-
tegrand in the denominator of Eq. (3) is( fW, fW)2 +
( fW⊥ , fW⊥)2. Writing the appropriate exponents as
products, e.g.,

exp(−[( f, f )1+ ( f, f0)2]) = exp(−( fW, fW)2)

× exp(−( fW⊥ , fW⊥))1 exp(−( fW⊥ , f0))2

we see that the integrals overW cancel out, and the
expression in Eq. (3) is equal to

exp
(−‖Y‖2

ρ2

)
πn/2ρn

∫
W⊥ exp(−[( f, f )1+ ( f, f0)2])D f∫

W⊥ exp(−( f, f )2)D f

(4)

This expression is computed by identifyingW⊥ with
Rn. Then-dimensional vector(u1, u2 . . .un) is identi-
fied with

∑n
i=1 ui hxi . There is no need to worry about

the Jacobian of this transformation, as it appears both
in the numerator and denominator and hence cancels
out. We are left with the following:

exp
(−‖Y‖2

ρ2

)
πn/2ρn

∫
Rn exp (−[u31uT + (u, u0)]) du∫

Rn exp(−(u32uT )) du

(5)

where(, ) denotes the usual scalar product onRn, and

(32)i, j =
(
hxi , hxj

)
2 = hxi (xj )

(31)i, j =
(
hxi , hxj

)
1 = (hxi , hxj )2

+ 1

ρ2

n∑
k=1

hxi (xk)hxj (xk)

and

[u0] i = − 2

ρ2

n∑
k=1

ykhxk(xi )

defining ann×n matrix A by Ai, j = Hxi (xj ), we have

32 = A

λ

31 = A

λ
+ A2

λ2ρ2

u0 = − 2

λρ2
Y A

and so the expression of Eq. (5) equals

exp
(−‖Y‖2

ρ2

)
πn/2ρn

|32|1/2|31|−(1/2) exp

(
1

4
u03

−1
1 ut

0

)
(6)

now, 31 = A
λ
+ A2

λ2ρ2 = 1
λ2ρ2 (λρ

2A + A2) =
A

λ2ρ2 (λρ
2I + A), and so|31|−(1/2) = λnρn|A|−(1/2)

|λρ2I + A|−(1/2).
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Since|32|1/2 = λ−(n/2)|A|1/2, we have that

1

πn/2ρn
|32|1/2|31|−(1/2) = λn/2

πn/2
|λρ2I + A|−(1/2).

Next, we turn to calculate the exponent in Eq. (6): it
is equal to1

4u03
−1
1 ut

0− ‖Y‖
2

ρ2 . Using the fact thatu0 =
− 2
λρ2 Y A, we get

1

4
u03

−1
1 ut

0 =
1

4

(
2

λρ2

)2

λ2ρ2Y A(λρ2I + A)−1Yt

= Y A(λρ2I + A)−1Yt

ρ2

to get the total exponent we have to subtract‖Y‖2
ρ2 from

this, which results in

Y A(λρ2I + A)−1Yt − ‖Y‖2
ρ2

= −λY(A+ λρ2I )−1Yt

and, all in all, the probability is

λn/2

πn/2
|A+ λρ2I |−(1/2) exp(−λY(A+ λρ2I )−1Yt ) (7)

If one wishes to find the MAP weights—that is, theλ
andσ maximizing Eq. (7)—this can be reduced to a
one-dimensional optimization problem as follows. Let
us substituteu for λ andv for λρ2. Then,

λn/2

πn/2
|A+ λρ2I |−(1/2) exp(−λY(A+ λρ2I )−1Yt )

= 1

πn/2

un/2

K2(v)
exp(−uK1(v))

where the definitions ofK1( )andK2( )are the obvious
ones. Keepingv constant, we can maximize overu
(discarding for the moment quantities which depend
only onv):

∂

∂u
(un/2 exp(−uK1(v)))

= n

2
un/(2−1) exp(−uK1(v))

− K1(v)u
n/2 exp(−uK1(v))

which is zero whenu = n
2K1(v)

. Substituting this back
into the expression for the probability yields

1

πn/2

[
n

2K1(v)

]n/2
K2(v)

exp

(
− n

2K1(v)
K1(v)

)

=
(

n
2πe

)n/2
K2(v)[K1(v)]n/2

If vmax maximizes this expression, we can easily ex-
tract the optimalλ, which is equal to n

2K1(vmax)
, andρ,

which is
√

2vK1(vmax)/n, hence the optimalσ is√
vmaxK1(vmax)/n.
Again, it is important to emphasize that theseλ and

σ are “optimal” only in the sense that they maximize
Pr(Mλ,σ ), and that the MAP and MSE estimates can
be rather different from the estimate( fopt)λmax,σmax

obtained using only these “optimal”λ andσ .
As noted before,( fopt)λmax,σmax may be a good ap-

proximation to the MSE estimate if Pr(Mλ,σ ) is uni-
modal, symmetric, and concentrated aroundMλmax,σmax.
In that case, it will be very useful to find{λmax, σmax},
because computing( fopt)λmax,σmax is faster than com-
puting the MSE estimate using Eq. (8). The simple ob-
servation above shows that one can reduce the search
for {λmax, σmax} from a two-dimensional minimization
problem to a one-dimensional one.

A1.1 Computing the Expectation of the Value at x

If L is a functional onf , its expectation givenD is

E[L( f )/D] =
∫

L( f )Pr( f/D)D f

if we want to compute the value of a function at a
point x, thenL( f ) is simply the evaluation atx, and
the expectation can be computed, according to Fubini’s
theorem, by first evaluating it for each{λ, σ } pair, and
then integrating over all such pairs, weighing each one
by its probability conditioned by the dataD:

Ex = E[ f (x)/D]

=
∫ ∫

E[ f (x)/D, λ, σ ]Pr(λ, σ/D) dλ dσ

First, we have to computeE[ f (x)/D, λ, σ ]. How-
ever, the probability distribution onMλ,σ is Gaussian,
so it is enough to find the MAP estimate. As shown in
Eq. (5), the probability ofu in Mλ,σ is exp(−[u31uT+
(u, u0)]) (using the same notations as those in this ap-
pendix). Therefore, theu maximizing the probability
has to minimizeu31uT + (u, u0), so u = 1

23
−1
1 u0.

Substituting the expressions previously derived in the
appendix,

[u0] i = − 2

ρ2

n∑
k=1

ykhxk(xi )
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and

31 = A

λ
+ A2

λ2ρ2

u0 = − 2

λρ2
Y A

it is easy to verify that

E[ f (x)/D, λ, σ ]

= (Hx1(x) . . . Hxn(x)
)
(A+ λρ2I )−1Yt

And soE[ f (x)/D] equals

∫ ∫
(Hx1(x) . . . Hxn(x))(A+ λρ2I )−1Yt λ

(n−5)/2

πn/2
|A+ λρ2I |−(1/2) exp(−λY(A+ λρ2I )−1Yt ) dλ dσ∫ ∫ λ(n−5)/2

πn/2
|A+ λρ2I |−(1/2) exp(−λY(A+ λρ2I )−1Yt ) dλ dσ

using the change of variablesu = λ, v = λρ2, the integral transforms to∫ ∫
1√
v
(Hx1(x) . . . Hxn(x))(A+ v I )−1Yt u(n−6)/2

πn/2 |A+ v I |−(1/2) exp(−uY(A+ v I )−1Yt ) du dv∫ ∫
1√
v

u(n−6)/2

πn/2 |A+ v I |−(1/2) exp(−uY(A+ v I )−1Yt ) du dv

the inner integral is a Gamma function, hence the last expression reduces to∫
1√
v
|A+ v I |−(1/2)(Hx1(x) . . . Hxn(x)

)
(A+ v I )−1Yt [Y(A+ v I )−1Yt ](4−n)/2 dv∫

1√
v
|A+ v I |−(1/2)[Y(A+ v I )−1Yt ](4−n)/2 dv

(8)

This integral is computed numerically. As in
Section 3,A is diagonalized to save time when com-
puting the integrand.

Appendix 2: Computing the Pointwise Uncertainty

The computation of the uncertainty at a point resembles
the one carried out in [15], but is somewhat more com-
plicated, because in that work it was assumed that the
probability of a function depended on a single pair of
weights,{λ, σ }. Let us proceed with the computation:∫

[ f (x)− Ex]2Pr( f/D)D f =
∫

[ f (x)− Ex]2

×
[ ∫ ∫

Pr( f/D, λ, σ )Pr(λ, σ/D) dλ dσ

]
D f =

(due to Fubini’s theorem)∫ ∫ [ ∫
[ f (x)− Ex]2Pr( f/D, λ, σ )D f

]
×Pr(λ, σ/D) dλ dσ =

∫ ∫ [ ∫ [
f 2(x)− 2Ex f (x)+ E2

x

]
×Pr( f/D, λ, σ )D f

]
Pr(λ, σ/D) dλ dσ =

(recalling the definition ofEx)

∫ ∫ [ ∫
f 2(x)Pr( f/D, λ, σ )D f

]
×Pr(λ, σ/D) dλ dσ − E2

x

Proceeding as with the computation in the previous
appendix, the inner integral is equal to

∫
f 2(x)Pr( f/D, λ, σ )D f

=
∫

f 2(x) exp(−[( f, f )− 2( f, f0)])D f∫
exp(−[( f, f )− 2( f, f0)])D f

where( f, g) = 1
ρ2

∑
f (xi )g(xi )+λ

∫
fuu guu du, and

f0 =
∑

yi hxi , wherehxi are the reproducing kernels
satisfying( f, hxi ) = f (xi ) (note that these are different
than theHxi ).

By a change of variables this turns out to be

∫
[g(x)+ f0(x)]2 exp(−(g, g))Dg∫

g2(x) exp(−(g, g))Dg

=
∫ [

f 2
0 (x)+ g2(x)

]
µ(Dg)
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whereµ(Dg) is the Gaussian measure induced by the
inner product( ) [8, 15, 19]. We need to compute∫

g2(x)µ(Dg). In [15] it is shown that this integral
equals

ρ2Vx
(
B1+ λρ2B2

1

)−1
VT

x

where, if we denotex = xn+1, Vx = (Hx1(x) . . .
Hxn+1(x)), and B1 is the (n + 1) × (n + 1) matrix
defined by(B1)i, j = Hi (xj ) (so, B1 containsA as
a sub-matrix).

Now we have to incorporate the exterior integrals,
overλ andσ . We use the same substitution we used
before to reduce this integral to a one-dimensional in-
tegral. Adding the other summands—that is,−E2

x and
the integral of the squared expectation (the term corre-
sponding to the integral off 2

0 (x))—we finally get the
following expression for the uncertainty, or variance,
at x:

2
∫ √

v|A+ v I |−(1/2)(Hx1(x) . . . Hxn(x)), Hx(x))(B1 + vB2
1)
−1(Hx1(x) . . . Hxn(x)), Hx(x))t [Y(A+ v I )−1Yt ](6−n)/2 dv

(n− 6)
∫

1√
v
|A+ v I |−(1/2)[Y(A+ v I )−1Yt ](4−n)/2 dv

+
∫

1√
v
|A+ v I |−(1/2)[(Hx1(x) . . . Hxn(x))(A+ v I )−1Yt ]2

[Y(A+ v I )−1Yt ](4−n)/2 dv∫
1√
v
|A+ v I |−(1/2)[Y(A+ v I )−1Yt ](4−n)/2 dv

−
[∫

1√
v
|A+ v I |−(1/2)(Hx1(x) . . . Hxn(x))(A+ v I )−1Yt [Y(A+ v I )−1Yt ](4−n)/2 dv∫

1√
v
|A+ v I |−(1/2)[Y(A+ v I )−1Yt ](4−n)/2 dv

]2
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