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Abstract. When interpolating incomplete data, one can choose a parametric model, or opt for a more general
approach and use a non-parametric model which allows a very large class of interpolants. A popular non-parametric
model for interpolating various types of data is based on regularization, which looks for an interpolant that is both
close to the data and also “smooth” in some sense. Formally, this interpolant is obtained by minimizing an error
functional which is the weighted sum of a “fidelity term” and a “smoothness term”.

The classical approach to regularization is: select “optimal” weights (also called hyperparameters) that should
be assigned to these two terms, and minimize the resulting error functional.

However, using only the “optimal weights” does not guarantee that the chosen function will be optimal in some
sense, such as the maximum likelihood criterion, or the minimal square error criterion. For that, we have to consider
all possible weights.

The approach suggested here is to use the full probability distribution on the space of admissible functions, as
opposed to the probability induced by using a single combination of weights. The reason is as follows: the weight
actually determines the probability space in which we are working. For a given weitpietprobability of a function
f is proportional to exp-A [ f2,du) (for the case of a function with one variable). For each diffeketitere is a
different solution to the restoration problem; denote itfhy Now, if we had known, it would not be necessary to
use all the weights; however, all we are given are some noisy measurementanuf we do not know the correct
A. Therefore, the mathematically correct solution is to calculate, for evetlye probability thatf was sampled
from a space whose probability is determinedibynd average the differerf}’s weighted by these probabilities.

The same argument holds for the noise variance, which is also unknown.

Three basic problems are addressed is this work:

e Computing the MAP estimate, that s, the functibmaximizing Pt f /D) when the dat® is given. This problem
is reduced to a one-dimensional optimization problem.

e Computing the MSE estimate. This function is defined at each poarst/ f (x)Pr(f/D)D f. This problem is
reduced to computing a one-dimensional integral.
In the general setting, the MAP estimate is not equal to the MSE estimate.

e Computing the pointwise uncertainty associated with the MSE solution. This problem is reduced to computing
three one-dimensional integrals.
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1. Introduction term 2, + 22 + 2 over all the plane, but we are
interested in dealing with functions which are defined
In many areas of science and engineering, regulariza- only on a bounded subset, so we choose to compute the
tion [38, 40] is used to reconstruct objects from partial integral on the unitinterval/square. This is not a severe
data. In computer vision, some references are [3, 13, limitation for computer vision purposes.
14, 35, 36]. Reconstruction of surfaces from partial ~ The question is, how does one chodsand o?
data has been studied in many other fields, for exam- There are various methods for doing that, and some
ple petroleum exploration [29], geology [4], electron- are mentioned in the following section. Most regulari-
ics [2], estimation of the gravitational field of the earth  zation schemes we are familiar with choose one com-
[20], and medical imaging [21, 22]. Inthe field of max-  bination of weights and use them alone to interpolate
imum entropy, a similar idea is used for reconstruction the function.
of missing or corrupted data, as in image restoration  However, this approach finds the maximum likeli-
[6, 9, 30-32]. hood (MAP) estimate for the interpolariitonly for a
The dataD can be sparse, e.g., the height of a small givenx ando. Butthe MAP estimate should maximize
number of points on a surface, or dense butincomplete, the following:
e.g., the case of optical flow and shape from shading
[12] where data is available at many points but consists
of the function’s or its derivative’s value in a certain APr(f/D, w)Prw/D) dw
direction only. The first difficulty in solving this prob-
lem stems from the multitude of possible solutions, wherew varies over the set of all possible weights.
each satisfying the partial data; which one should be  The reason for this is as follows: wi not know
chosen? what the real weights are; all we know is the probabi-
Regularization overcomes these difficulties by lity of each set of weights. Therefore, the probability
choosing among the possible objects one which ap- of a certainf is the sum of its probability for every
proximates the given data and is also "smooth”. choice of weights, multiplied by the probability of the
This embodies an important assumption—that the weights. Let us give an analogy: suppose an (uneven)
“smoother” the object, the more probable it is. For- diceisgiven, and each ofits sides contains a list of prob-
mally, a cost functional M f) is defined for every abilities for ten tasks. The dice is tossed, and then one
object f by M(f) = D(f) + AS(f), whereD(f) proceeds to randomly choose atask, using the probabil-

measures the distance bffrom the given dataS(f) ity list on the side of the dice which turned up. In order
measures the smoothnessfofandi > 0 is a param-  to compute the probability that this experiment results
eter. Thef chosen is the one minimizingl ( ). in the undertaking of task number five, for instance, it

In the one-dimensional case, one can minimize is not correct to consider only the probability of task
M(f)= 1", % + A [01 f2,du. In the two- number five on the side of the dice which has the high-
dimensional case, one can minimizel(f) = est probability of turning up! Naturally, the probability
i, % Sy [ (F2+2f2 4+ f2)dudv. that the toss will lead to undertaking task number five

The Bayesian interpretation of this approach is: we is the sum of the probabilities of each side, multiplied
are given the datd and want to find the function by the probability of task number five on that side.

f which maximizes Rrf/D) «Pr(D/f)Pr(f). As- For the restoration problem we wish to solve, the
suming a Gaussian noise model with variancg sides of the dice are analogous to the different weights,
Pr(D/f) x G—ln exp(—fl2 S[f(x%) — vi]?. Adopting and the functions are analogous to the different tasks.
a physical model, it is common to define(Py Clearly, it's incorrect to use only the weights with the
exp(—2 [ f2,du). Hence P¢f/D) oc exp(—M(f)), highest probability.

and the function minimizing/ ( ) maximizes the like- If Pr(w/D) has some nice properties—for in-
lihood. Since the modelis Gaussian, the MAP function stance, it is unimodal, symmetric, and concen-
is also the MSE function. trated around the pair of weightsmnax which maxi-

We will assume from now on that the functions mize PXw/D)—it may be reasonable to approximate
are defined on the interval [Q], or the unit square [ Pr(f/D, w)Pr(w/D)dw by approximating the in-
[0, 1] x [0, 1], and will usually omit those limits inthe  tegrand with arectangular function arounglax. How-
integrals. Itis also possible to integrate the smoothnessever, the distribution Pw /D) can be complicated and



A Full Bayesian Approach to Curve and Surface Reconstruction

this approximation will then fail [24, 33]; see also an
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the set{ys, y>... ¥}, there is a matriXA(1) satisfying

example of such a data set and the corresponding prob-

ability distribution it induces on the weights, in this
paper (Figs. 12, 13).

In this paper, it will be shown how to find the func-
tion f maximizing /, Pr(f/D, w)Pr(w/D) dw. Two

other problems which are addressed are computing the

expectation of a linear functional on the function space,
such as the value of the function at a point. This ex-
pectation is the minimal square error (MSE) function.
Another problem is to compute the pointwise uncer-
tainty associated with the MSE estimate.

These three quantities—the MAP, the MSE, and the

uncertainty—are perhaps the three most important es-

timators for a statistical entity, and it is therefore very
important to rigorously compute them.

These problems are addressed in Sections 3-5. The
technical details are described in the appendices. Some

examples are given, of 1 and 2D data and its inter-
polants.

In Appendix 1, we note that if one wants to find
the “optimal weights"—that is, the pair of weights
w = {A, o} which maximizes Rtw/D)—this can be
reduced to a one-dimensional optimization problem,
although the optimization is over a two-dimensional
hyperparameter space.

In the future, we hope to find efficient numerical

algorithms to speed up the algorithms described here.

2. Previous Work

A very popular method for determining the smooth-
ing parametek is Generalized Cross Validation, GCV
(bootstrapping) [5, 40]. The idea is to choosk such
that the data points will predict one another. Formally,
afunctionVp (1) is defined as follows: for each sample
point (X, Yk), 1 < k <, fi is defined to be the spline

minimizing
/ f2,du

i.e., the spline interpolating all the data points but the
kth. Vo(1) is then defined a¥",_,[ f(x) — yi]2, and
the A chosen is the one minimizingy( ). This algo-
rithm is called Ordinary Cross-Validation (OCV).

An improvement of this method is the GCV algo-
rithm [5] which proceeds as follows. Since ttiein-
terpolating thd data points is a linear combination of

|
Do) =yl + A
i £k

f(x1) Y1

= A(L) (1)

f(x) Yi

A(}) is used to define a modified version\&:

|
V) =) wi fx) — Wil
k=1

wk(A) = |:

(T; stands for Trace andfor thel x | identity matrix).
The A chosen is the one minimizing (). After this,
A is used to estimate. In [37], a few methods for
choosing the smoothing parameter are analyzed.

Bayesian model selectios another approach for
choosing an “optimal” smoothing parameter. To the
best of our knowledge, it was first suggested to apply
Bayesian model selection to regularization in the pio-
neering work of Szeliski [33]. There, the following
guestion is posedgiven the data Dwhat is the most
probable value of the smoothing parametér More
recent work in this direction was done by MacKay in
[24], and [23], which contains an extensive study on ap-
proximations to the ideal Bayesian approach, which, as
the author correctly notes, is difficult to implement.

Another method for choosing the smoothing param-
eter is presented in [10]. In [28], the behavior of the
smoothing spline over arange of smoothing parameters
is studied, and is then used to construct a confidence
interval for the smoothing parameter.

The problem with methods that use a single set of
weights is that the choice of the values)ofindo is
sometimes very sensitive to the data. Since these values
are crucial to the shape of the fitted curve or surface,
it turns out that sometimes a small change in the data
drastically changes the shape of the fitted curve or sur-
face (see Figs. 1, 2 for curve fitting and 4, 5 for sur-
face fitting). Another problem is that, although it can
be proved that GCV has some nice asymptotic prop-
erties, the choice of the “optimal” values afando
is heuristic in nature. Nonetheless, the algorithm per-
forms well in general and is widely used; there are very

1- Aa) |
1T (= AQ)
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sophisticated numerical methods for implementing the and, using the change of variablps= v/ f, it is easy
Work which proceeds in a direction somewhat sim-

i [ i i . - 1

ilar to the one given here is presented in [6, 32]. How \/—x/exp<—/ fuzudu)Df

the mathematical framework is rather different from _ N

ours; for instance, there is no analog to the concept of it is therefore necessary to multiply the probability by

tainty of the solution. Moreover, these works assume the probability, for everyt, does indeed define a prob-

an uninformative prior on the hyperparameter, while

ing an uninformative prior on the hyperparameter and

integrating it out using this prior may well have a bene-

procedure—itis inherently different from the Bayesian

approach presented here.

problem of computing the MAP solution, in a Bayesian

framework, by integrating over the space of smoothing

parameters, a uniform prior on themis assumed, which,

as noted, is very different from the prior used in this

GCV algorithm. to see that this equals
ever, this work is in the realm of entropy and therefore
the MSE estimate, neither to the concept of the uncer- /.. This normalization ensures that the structure of
we determine it according to the data. While assum-
ficial effect—for instance, in stabilizing the restoration
Finally, recentwork reported in [25, 26] concerns the
parameters and noise. For “integrating out” these two
work.

3. Computing the MAP Estimate

In order to compute the MAP estimate, we have to max-
imize Pi( f/D) over all functionsf . Using Bayes'rule,
Pr(f/D) o« Pr(D/f)Pr(f). In order to compute this,
one needs to integrate over all values.pé, resulting

in

/Oc «/Xexp(—x/ fuzudu> Prior(x) da
0
* 1 1 Nprioft
./o ﬁeXp_ﬁE [f(xi)—yi]>Pr|o (o)do

In this expression, the priors dn o are general, and
not unique to our problem. These are not the pri-
ors determined by the data (which are computed in
Section 10). In this work, we have used either log-
normal or flat priors; the choice of the prior had hardly
any effect on the results.

Note that a giverk corresponds to the probability
exp(—x [ f2,du) on the function space. The entire
probability, over the whole space, therefore equals

/Pr(f)Df =/exp(—k/ fuzudu>Df

ability space. This is the explanation for tké. in the
first integral in the equation for Pf/D).

The expression for Pf/D) has to be maximized
over the space of admissible functions. Let us write
it more compactly asFi([ f2,duyF(3[f(x) —
¥il®), where Fi(a)= [;° v exp(—ia)Prior(x) di
andF(8) = [5° & exp(—55)Prior (o) do.

Note that, obviouslyF;( ) andF,( ) are monotoni-
cally decreasing iv andg respectively.

It is possible to turn this optimization problem to a
one-dimensional optimization by settirfgf3,duto a
constantr, and then minimizing [ f (x;) — y;]2 over
all functions f such that/ f2,du = a.

Using Lagrange multipliers, this problem transforms
into one resembling “standard” regularization: find
a A such that the functiorf minimizing > [ f (%) —
yil2+x [ 2, dusatisfies/ f2,du= «, wherex is the
Lagrange multiplier.

In Section 10.1, it is proved that th& minimiz-
ing Y [f(x) — yi]?+ A [ f2,duis given by f (x) =
(Hy, (X) ... Hy, CO)Y(A+ A1) "2(y1 ..., yn)', where

(X — DEX2 — 2X + £2)

0<é= 6
Hx(§) = 2 g2
X<E<1: X(§ = D(X"+§°—2%)
6
and A j = Hy(Xj). Let us denote the data vector
(Y1, ..., Yn) by Y. After some manipulations,

/ f2,du= YA+ 1) TAA+ADHTIY!

so, we have to find for which this expression equals
«. DiagonalizingA by an orthonormal , UAU! = D,
and denotingZ' = UY!, the expression fof {2 du
reduces to

d; Ziz
(di +2)?

2

whered, are the diagonal elements &f. Finding a
A for which this equalsx is fast, as this function is
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monotonically decreasing ih, and we can solve the interpolant ofthe type we're studying which maximizes

problem by binary search. [ f2,du (it corresponds ta. = 0).
After finding A, we have to comput® [ f (X)) — This is a one-dimensional optimization problem,
yi]?, wheref minimizesy [ f (x) —yi]>+4 [ f3, du. which we solve numerically. The solution is reason-

As noted above (see also Section 10.1), thisquals ably fast, taking a few seconds on a workstation.
(Hy, (X) ... Hy, (X)) (A + A1)~1Y!, Therefore

4 4. Computing the MSE Estimate
f(i) = (Ho (%) ... Ho, D) (A+AD)71Y

= (A1... An(A+ Ay An estimator which for some purposes is more useful
' than the MAP estimate is the MSE estimate. Its value
and so atx is defined byEx = [ f (x)Pr(f/D)Df.

In order to compute this integral, the following ap-
Z[f(xi) —ylP=lI(fo) ... fx) = Y2 proach is taken. Let us define a probability struc-
= JAA+ ALYt — v 2 ture M, , on the space of admissible functions. In this

space, we assume the measurement noige iand

= |AUYD + ) TUY' — Y2 the prior distribution of the functiorf is Prf)

exp(—A [ f2,du). Under this probability, which is
Gaussian, the MSE function, denotédyp);. -, iS
this expression can be computed fast since it involves €qual to the MAP function and there is a closed-form
inverting a diagonal matrix, and sinéeJt needstobe ~ €xpression for it (given in the previous section). In

= |AUYD + A=zt — Y2

Now, all that's left is to comput&, (@) F2(8). F1()

and F,( ) are one-dimensional integrals with rather Ex = / f(x)Pr(f/D)Df

simple integrands, and can be computed fast (or per-

haps stored ina table). = [ [ (Fonn 0PI /D) o
What remains is to maximiz&;(«)F2(8) over « 2 Jo

(recall thatg is not a free parameter, as it is determined
by «).

The algorithm therefore tries to maximize a function
C(a) which is defined as follows:

The idea is to decompose the complicated probability
structure over the function space to a weighed sum of
simple (Gaussian) probability structures, over each of
which we can easily calculate the desired integral.

In Section 10.1, RM, /D) is computed, and the

1. computer («) following expression foE is derived:

f%IAijI =02 (Hy (%) ... Hy, (00) (A4 v "LYY (A4 vl) 1Y Em12 gy
J 1A+l [Z@2[Y (A + o)7Ly @72 dy

whereA andH,, are the same as in Section 3.

2. comggge the (single) &, which satisfies This is a closed-form expression, but it involves a
> @7 = «. This is fast because, as noted, one-dimensional integral whose computation is non-
| 72 P . .
> (d.f,{)z is monotonically decreasing in (A is trivial due to the complicated form of the integrand.
positive definite, sai > 0). Currently, we are investigating ways to speed-up the
3. defineg = [|AUY(D 4 A, 1)~1Z — Y2 computation of this integral, which computationally is
4. computeFz(B) the bottleneck of the algorithm suggested here.

5. returnF (@) F2(8) = C(a)
5. Computing the Uncertainty Associated
and we have to maximiz&€(«x) for 0 < o < With the Interpolant
/ (finterpmate)ﬁudu, where finterpolate IS the interpolant
which passes through the data points. This range cov-In [5, 15, 19, 24, 27, 33, 34, 39, 40], the problem of
ers all the relevant functions, becauBgerpolateis the assigning a measure of uncertainty to the regularizing
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interpolant is addressed. This is very important, be-
cause usually one wants not only to know the curve
(surface) which is optimal in some sense, but also to
know how reliable this curve (surface) is. We chose
to extend the method suggested in [15], defining the
uncertainty of the interpolant at the poitas

/[f(x) — E,]?Pr(f/D)Df

the details are given in Appendix 2. As was the case
with Ey, we obtain a closed-form solution, but its com-
putation is non-trivial.

Just as the MSE is dependent on the hyperparam-
eters, so is the uncertainty. This is demonstrated in
Fig. 10. Two nearly identical data sets result in the
GCV algorithm choosing very different values of the
hyperparametex, and this results not only in a very
different MSE estimate, but also in very different un-
certainty intervals (more details in Section 7).

6. The 2D Case

All the results in the previous sections have been ex-
tended to the 2D case (surface reconstruction). There
is one technical difficulty to overcome: the computa-
tion of the two-dimensional functions which are the
equivalent of the functionsly (¢). That is, it is neces-
sary to find function&y y(u, v) (also calledeproduc-

ing kernel$ which satisfy, for every two-dimensional
function f, which satisfies some boundary conditions,
the equality(f, Gy y)op = f(X, y), where

7. Examples

A simple pattern—one cycle of a sinusoidal function—
was contaminated with Gaussian noise, with a variance
equal to five percent of the amplitude, and then the re-
sulting data was interpolated using the GCV algorithm
and the methods suggested in the previous sections.
The instability of the GCV is demonstrated by noting
that changing the value of the data at a single point
radically changes the shape of the fitted curve (Figs. 1
and 2). The MSE estimates for these two data sets are
presented in Fig. 3. They were calculated using Eq. (8)
of Appendix 1.

Figure 1 GCV chooses a “standard” value af to interpolate
sinusoidal data contaminated by Gaussian noise.

(f. 920 = / / (fuuGus + 2 funGuo + fuoGow) dU d.

As opposed to the one-dimensional reproducing ker-
nels, which have a simple form (cubic splines), there
is no known closed form expression for the 2D repro-
ducing kernels. In [15, 16] this problem is addressed,
and it is shown how to quickly compute the functions
Gy,y(u, v) to any desired accuracy using an approxi-
mation on a finite subspace. Due to the fact that the in-
ner product f, g),p is nearly orthogonal on subspaces
spanned by trigonometric functions, convergence is

very fast, and a subspace of reasonably low dimension

is good enough to compute the functions to a very high
accuracy. We have implemented this approximation,
and used it to restore 2D functions; see Figs. 4-7.

Figure 2 For a data set differing from that of Fig. 1 in only one
point, GCV chooses a very small value\gfesulting in a completely
different fit.
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Figure 3 The MSE estimate for the data sets of Figs. 1 and 2,

obtained using Eq. (8). Fits are almost identical.
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Figure4. GCVreconstruction for the function 1261 —x)y(1—y),
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by adding Gaussian noise with a variance of 0.1 to
the function 12%(1 — x)y(1 — y). Figures 4 and 5

and 2, this slight change caused GCV to choose a very

for the data of Fig. 4 (also using Eq. (8)). Applying

is almost identical to that of Fig. 6.
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Figure 6. The MSE estimate for the data set of Fig. 4, obtained
We have run some tests on 2D data which was created"si"9 Ed- (8)-

In Fig. 7, the result of restoring real data is given; the

demonstrate how the GCV returns radically different points were sampled from a depth image of a human

results for two data sets which differ only in one point— face, and Gaussian noise with a variance of 1 was added
this is because, just like in the case of the data in Figs. 1 to them.
In Fig. 8, the two MAP reconstructions for the data
different value ofs. Figure 6 shows the MSE estimate sets of Figs.1 and 2 are given, with the data.
In Fig. 9, the MSE estimate and confidence intervals
Eq. (8) to the data of Fig. 5 results in a surface which for a data set are given. The data is a sample of the

x-coordinates of a hand-written word.
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Figure 7. Data sampled from depth image of human face (left), and its reconstruction (right), obtained using Eq. (8)2& 28mple from
the 100x 100 data is shown).

101

-10+

Figure 8 The suggested method for computing the MAP estimate, for the data sets of Figs. 1 and 2.
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Figure 9 MSE function and confidence intervals for an evenly sampled data set. Thedittisigns are the data points, the middle curve
is the MSE interpolant, and the upper and lower curves consist of the upper and lower confidence intervals, with a width of (pointwise) one
standard deviation. The pointwise variance was computed using Eqg. (9).

In Fig. 10, the importance of integrating over the Finally, we give an example which explains why one
different weights when computing the uncertainty in- hastointegrate over allthe weights. In Fig. 12, two data
tervals is demonstrated. For the data sets of Figs. 1 sets are shown, superimposed. As one can see, they are
and 2, the GCV algorithm chose two very different almost identical. In Fig. 13, the (scaled) probability
values of, although the data sets are nearly identi- distribution for the weight$, o of one of the data sets
cal (they slightly differ in one point only). The lower isplotted. It has two distinct peaks, which are rather far
graph shows the value of the uncertainty, for theor- apart; the location of the peaks correspond to the loca-
responding to the restoration in Fig. 1; the upper graph tion of the most probable weights for the two data sets
shows the corresponding quantity for theorrespond- of Fig. 12. Therefore, the interpolants for the data sets
ing to the restoration in Fig. 2. Note the instability in  of Fig. 12 which use only the most probable weights are
the values of the uncertainty, which are caused by using drastically different, although the data sets are almost
only one hyperparameter. identical.

In Fig. 11, the interpolant and confidence intervals
are given for data unevenly sampled from a sinusoid 8. Conclusions and Further Research
with noise added to it. One can see that the uncertainty
is larger in areas which are far from the sample points. This work suggests a straightforward and mathe-
The uncertainty at the endpoints is zero, because wematically rigorous approach for solving three basic
constrain our functions to be zero at the endpoints (see problems in curve and surface reconstruction, which
Appendix 1). are very common in many areas: finding the MAP
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Figure 10 The height of the confidence intervals for the two different values cfiosen by the GCV algorithm for the data sets of Fig. 1

(lower thick line) and Fig. 2 (sinusoidal).

interpolant, finding the MSE interpolant, and comput-
ing the uncertainty associated with the interpolant.
In the future, we hope to present algorithms for

speeding up the computation of these three entities, as

well as to expand the model to handle discontinuities.
The problem of detecting and handling discontinuities
in the data is especially important in the area of com-
puter vision [7, 21, 22, 36]. For that, we plan to extend
the Sobolev space to include functions with disconti-
nuities.

Appendix 1: Computing Pr(\, o/D) and Ex

Callthe model thatassumess a smoothing parameter
ando as the measurement noisg . In this model,
Pr(f) oc exp(—x [ f2,du). Given a data seb, we

compute Pg., /D). Using Bayes rule:
Pr(D/x, o)Prior(A, o)
Pr(D)
o Pr(D/A, o)Prior(x, o)
_ JPAD/f)Pr(f/x, 0)Df
[Pr(f/r,o)Df

Pr(:, /D)=

Prior(x, o)
2)

where the denominator is introduced to turn the distri-
bution on the functiong into a probability, by normal-
izing its integral on the whole space to 1.

Since the data is given, it is the same for all
models and can be eliminated from consideration.
We have used the prior Pri(dr,o):rg, for the
following reason. Intuitively, spaces with a prior
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The prior, PriofA), should therefore satisfy

b
d=3 —c % / Prior(A) da
a

d
/ Prior(2) dA
C

so, PriofA) = A~3. This agrees with intuition—since
the spaces for small values ofliffer much more than
those with large values of, the prior is much greater
whena is small.

Unless some information on the noise is given, no
prioris assumed ox. However, we have experimented
with different priors—such as log-normal—and the re-
sults seem to hardly depend on the specific prior.

Although the spachl; ., is infinite dimensional, itis
possible to reduce Eq. (2) to a quotient of two integrals

Sexp(= (1 [ f&du+ 7,

1

is defined, the natural space is t8ebolev space 3,
which consists of the functions having a second deriva-
tive which is square integrable (for an extensive treat-
ment of Sobolev spaces, see [1]).

For technical reasons, we restrict ourselves to the
subspace of 3 which is defined by f € L2/f(0) =
f (1) = 0}. The reason is that otherwise the denomi-
nator in Eq. (2) is not defined. We will keep denoting
the model/function space iy, ,. Note that this is not
really a restriction—any two numbeBy and B; can
be used for boundary conditions at 0 and 1, simply by
subtracting the linear function which obtains the values
Bp andB; at 0 and 1. One can use different constraints,
such as fixing the function’s and its derivative’s value
at some point.

It turns out that the calculations are a little sim-
pler if we make a change of variable,= +/20. The
expression for the probability df1; , given D is then

[f(Xip)z—Yi]2>)Df

(271)”/2(%)”

Jexp(—A [ f2,du)Df

exq_ll;_ilz) fexp(—(k ffuzudu—i— p—lz Zin:]_ fZ(Xi) — p_22 Zinzl Vi f(X|)))Df

nn/an

defined on a finite dimensional space. The rest of this
section is dedicated to this reduction, culminating in
the expression of Eq. (7).

The problem of computing such integrals as those
appearing in Eq. (2)—which are defined over infinite

dimensional domains—has been solved for some types

ofintegralsinthe realm of pure mathematics [8, 11, 17—
19, 41]. It was applied to the types of spaces used in
regularization in [15, 16]. The spadé, , is a “Hilbert
space” [42]. We will need to use the notion of an
orthogonal subspacdet us recall that iU is a sub-
space of a Hilbert spacH, its orthogonal subspace,
U+, is defined as—

Ut={heH/ueU = (u,h)=0}

Itis well known that for everh € H, there are unique
u; € U andu, € Ut such thatu; + u, = h. They
are called theprojectionsof u onU andU*, and are
denotechy andhy..

The Hilbert space used in this work is the space of
all functions which can serve as interpolants in the
framework of regularization. Since we have to use
functions f for which the smoothness terifi f2, du

J[exp(—xr [ f2,du)Df

whereY is the data vectoKys, V. .. ¥n).
Now, let us simplify the last expression by defining
two inner products oM, ,:

1 n
(11 = 233 100900+ [ T

=1
A/EMMU

Foreveryx;, letus denote biy, the function which sat-
isfies, for everyf € M, », [(Hy)uufoudu = f(x).
We can explicitly calculate this function, following the
same method as in [15]:

(fv g)Z

(X — DE(X2 — 2X + £2)

O0<éc< 6
Hx(é)z 2 2
x<E<1: X(§ —1)(X6+€ —2)

note that this expression depends only on the location
ofthe sample points, and not the value of the samples
yi. As it turns out, this saves a lot of computation.
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Finally, letus define for eadfthe functiorh,, = HT we see that the integrals ové¥ cancel out, and the

Obviously, (f, hy )2 = f(x) for every f e M, ,,, and expression in Eq. (3) is equal to

so, if we definefo = —2 Y7L, yihy =—% >, ,
Y
yiHy, then(f, foa=—2 37 yi f(x). exp(—75) fu exp(=[(F, D1+ (f, fo)o) D
After these definitions, the expression for the prob- 7h/2pn Jor €Xp(—(f, F)2)DF
ability reduces to
(4)
eXp(—”Z—llz) [exp(—[(f, )1+ (f, fo))Df This expression is computed by identifyiNg* with
Th/2pn [exp(—(f, f)p)Df (3) R". Then-dimensional vectoguy, Uz . . . uy) is identi-

fied with Zi”:l u;hy, . There is no need to worry about
the Jacobian of this transformation, as it appears both
in the numerator and denominator and hence cancels
rout. We are left with the following:

This integral can be computed using the fact that the
function space can be decomposed into a direct sum
where the two inner products); and(, ), differ from

each other only on one of the summands, which is finite

2
dimensional. Specifically, let us define a subspate exp(— 1) [ exp ([uAUT + (U, ug)]) du
of M;_, by aV2pn Jrn €XP=(UA2UT)) du
W= (feM,|fon)=foo) ©)
=...=f(x) =0} where(, ) denotes the usual scalar product/®h, and
yvhen restricted towV, (, )1 qnd(, ), define the same (Ao = (hxi, hxj)z = hy (X))
inner product. Moreover, iff € M, , andg € W,
then(f, g)1 = (f, 9).. (Aij = (hy. hy), = (hx. hy)2
Now, if f € W, then for every 1< i < 1, 1Q
(f,hy)1 = f(x) = 0, hencehy, € W*. Since the += thi (i) hy; (%)
hy's are linearly independent [15], we have from di- =
mension arguments the following important result and
W+ = spar{hy,, hy, ... hy} 5
[uoli = == > Wy, (%)
next, let us write the expression in the exponent of the P
g‘;ﬁg{g:?ngwea%vveféwr of Eq. (3) using the decom- defining am x n matrix Aby A; ; = Hy, (Xj), we have
A
(f. D1+ (f, T2 = (fuw, fw)z A2=
fwe, fwe fwe, f A A
+ (fwe, fwo)a + (fwe, fo)2 Al:I+AZ—p2
here, we have used the fact thiat € W+ (obvious, 2
since it is a linear combination of thg,’s), and also Up = _FYA
the fact that, restricted %/, the two inner products are P
the same. and so the expression of Eq. (5) equals
Similarly, the expression in the exponent of the in- v
tegrand in the denominator of Eq. (3)@i$w, fw)2 + exp(—7) 120« 1—(1/2) (1 . t)
o . ———"" | Ao Ay expl —UgA; U ) (6)
(fwe, fwi)2. Writing the appropriate exponents as T2 pn 4

products, e.g.,

now, Ay = 2+ 85 = A00A+ AY) =
exp(—[(f, )1+ (f, fo)2]) = exp(—(fw, fw)2) AZ_AZ()L/O2| + A), and SO|A;|~H2 = Anpn| A~/

x exp(—(fwe, fwe))exp(—(fwe, fo))2 [A02l + A|=®/2,
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Since|A,|Y2 = A~M/2| A|/2 we have that

2
vz n i~z _ AP ~1/2)
s |A21Y2| Ay = Zplho?l + AT

Next, we turn to calculate the exponent in Eq. (6): it
is equal tolup A ul) — ”Y” . Using the fact thatip =
2 Y A we get

1 u 172 2 2 2 “1yt
—UgAj = ALY Aol + ATTY
20 4<kp2> Aol + A)”

Y Ap2l + ALY
02

to get the total exponent we have to subtlﬁpéf from
this, which results in

Y A2l 4+ ALyt —
02
and, all in all, the probability is
n/2

Y 2
1Yl = —AY (A4 1p%1) 7yt

W|A + 1021 |~ Y2 exp(—AY (A + 1021 7YYH (7)

If one wishes to find the MAP weights—that is, the
ando maximizing Eg. (7)—this can be reduced to a
one-dimensional optimization problem as follows. Let
us substitutel for A andv for Ap2. Then,
An/2
n/2|A+xp2| |~2 exp(—1Y (A4 1p21) 7YY
1 un/2

72 Ka(v)

exp(—uKa(v))

where the definitions df 1 ( ) andK,( ) are the obvious
ones. Keeping constant, we can maximize ovar
(discarding for the moment quantities which depend
only onv):

0
E(“W exp(—uKy(v)))

n
= Eu”/@—” exp(—uKy(v))
— Ki(v)u™? exp(—uK1(v))
which is zero whem = 2|< Ok Substituting this back
into the expression for the probability yields

1 [ZKT(U)]n/Z ex( n ® )
7 Ko O T 2K KW
()"

~ KoKy ()]"72

If vmax Maximizes this expression, we can easily ex-
) e N
tract the optimal, which is equal oo andp,

which is «/2vK1(vmax) /N, hence the optimab is
V/VmaxK1(Vmax) /.

Again, it is important to emphasize that thesand
o are “optimal” only in the sense that they maximize
Pr(M; ), and that the MAP and MSE estimates can
be rather different from the estimatef opt) 1 axoma
obtained using only these “optimal’ando .

As noted before( fopt) i maoma May be a good ap-
proximation to the MSE estimate if @, ,) is uni-
modal, symmetric, and concentrated aroihd_, o....-

In that case, it will be very useful to finld. max, Omax}
because computingfopt) ma.oma 1S faster than com-
puting the MSE estimate using Eq. (8). The simple ob-
servation above shows that one can reduce the search
for {Amax, omax} from a two-dimensional minimization
problem to a one-dimensional one.

Al.1 Computing the Expectation of the Value at x

If L is a functional onf, its expectation givem is

E[L(f)/D] =/L(f)Pr(f/D)Df

if we want to compute the value of a function at a
point x, thenL (f) is simply the evaluation at, and

the expectation can be computed, according to Fubini’'s
theorem, by first evaluating it for ea¢h, o} pair, and
then integrating over all such pairs, weighing each one
by its probability conditioned by the dafa:

= E[f(x)/D]

_ ff E[f (x)/D, &, o]Pr(i, /D) dA dor

First, we have to computg[ f (x)/D, A, ¢]. How-
ever, the probability distribution oM, , is Gaussian,
so it is enough to find the MAP estimate. As shown in
Eq. (5), the probability ofiin M;_, is exp(—[uAiuT +
(u, ug)]) (using the same notations as those in this ap-
pendix). Therefore, tha maximizing the probability
has to minimizeuA.u™ + (u, ug), sou = %Azluo.
Substituting the expressions previously derived in the
appendix,

[Uli = —— Z Yichy (%)
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and
A a2 //[/[fz(x)—zExf(x)JrEf]
M=tz
L x Pr(f/D,A,o)Df}Pr(A,o/D)d/\da =
2
Uo —k—szA

(recalling the definition oEy)
it is easy to verify that

E[f(x)/D, 2, 0] /f[f fz(x)Pr(f/D,A,a)Df]

= (Hy (X) ... Hg, 00) (A+ 2021 1Y! Pk, o/D) i dor — E2
X , O ol =
And soE[ f (x)/D] equals

3 (n=5)/2
[ (H () ... Hy, (5O) (A + 2p%1) 7Y 2| A 1021 |~ Y2 exp(—1Y (A + 2p21) 1YY dr do
T

(572
ST i 1A+ 20"l TP exp=aY (A+ 2p%1) YY) dido

using the change of variables= 1, v = 1p?, the integral transforms to

un-6/2

[ %(Hxl(x) o HGOO)(A+ D) T A+ vl |2 exp(—uY(A+ v1) 7YY dudv
I+ WS 1A+ vl |-W2 exp(—uY(A+ v1)-tYY) du dv

the inner integral is a Gamma function, hence the last expression reduces to

LA+ vl THD(Hy (X) ... Hy, 0O) (A4 v IYY (A4 vl) 1Y @-m/2 gy
Vv 1 n
JEIA+ ol |-GR[Y (A+ o]) 1Y Em/2dy

This integral is computed numerically. As in

Section 3,A is diagonalized to save time when com- - > . )
puting the integrand. appendix, the inner integral is equal to

Appendix 2: Computing the Pointwise Uncertainty £2(0)Pr(f/D. 1. 0)D
The computation of the uncertainty at a pointresembles 5
the one carried out in [15], but is somewhat more com- = J PPeo exp—[(f, f) — 2(f, f))DF
plicated, because in that work it was assumed that the JSexp=[(f, ) =2(f, f))Df
probability of a function depended on a single pair of

weights,{, o'}. Let us proceed with the computation: \yhere(f, g) = p_lz > f()9()+A [ fuuguudu, and

5 ) fo = >_ yihy, whereh,, are the reproducing kernels
/[f(x) — EJP(f/D)Df = /[f(x) - Ed satisfying( f, hy ) = f (x) (note thatthese are different
than theHy,).
X [// Pr(f/D, x, o)Pr(x, o/D) dA do}Df = By a change of variables this turns out to be

(due to Fubini’s theorem) [Tae0 + fo(X)]2 eXp(— (g, 9))Dg

2 —(9,9)D
//[/[f(X)— Ex]zPr(f/D,A,a)Df:| J 92(x) exp(—(g, 9)Dg
x P1:, o/D) drdo = = / [f500 +g°(0]u(Dg)

41

Proceeding as with the computation in the previous
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whereu(Dg) is the Gaussian measure induced by the 3.

inner product( ) [8, 15, 19]. We need to compute
[ g?(x)u(Dg). In [15] it is shown that this integral
equals
p?Vx(By + 10?B2) V]

where, if we denotex = Xn11, Vx = (Hy,(X) ... 6
Hx,.. (X)), and By is the (n + 1) x (n + 1) matrix
defined by(By);;; = Hi(x;) (so, By containsA as
a sub-matrix).

Now we have to incorporate the exterior integrals,

over ando. We use the same substitution we used
before to reduce this integral to a one-dimensional in-

tegral. Adding the other summands—thatis2 and 8.

the integral of the squared expectation (the term corre-
sponding to the integral of$(x))—we finally get the
following expression for the uncertainty, or variance,
atx:
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