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Abstract

In this paper we present some results on carrying out
geometric computer vision tasks ignoring the (possibly
changing) internal parameters of the camera. We as-
sume absence of camera skew and derive new invari-
ants which are independent of the internal parameters
of the camera. These invariants can be used to address
several vision problems:

1) Unlike previous methods of camera pose determi-
nation, we localize the camera with respect to a land-
mark frame without the assumption that the internal
parameters are known, and, consequently, camera cal-
ibration is not required. Indices computed only from
images can be used for robot navigation.

2) Conversely, when the camera positions are
known, we show that is is possible to compute the Eu-
clidean structure from multiple views even with vary-
ing and unknown internal camera parameters. In gen-
eral the solutions are non-linear, though in some special
cases we propose linear methods.

3) For the problem of simultaneous computation of
Euclidean pose and structure using uncalibrated cam-
eras, few of the existing approaches to camera self-
calibration and 3-D reconstruction - neither the strati-
fied approach nor the method using Kruppa’s equations,
can be effectively used in the case of varying and un-
known internal parameters. We show that Euclidean
pose and 3-D structure can be simultaneously computed
directly using these inner camera invariants.

For each of the cases mentioned above, we de-
rive the necessary conditions under which a finite
number of (or unique) solutions can be found. Our ex-
periments demonstrate the applicability of the methods.

Index Terms: Image invariants, Euclidean 3-D recon-

struction, camera pose/localization, uncalibrated im-
ages.

1 Introduction

A commonly used basic perspective projection model
of a pin-hole camera [6], describing the relationship be-
tween a 3-D world point M and its corresponding image
point m is given as follows:

λm = PM = A [R | t]M (1)

in which R (3 × 3) and t (3 × 1) are the rotation and
translation aligning the world coordinate system with
the camera coordinate system (the External Parame-
ters of the camera), and A is the matrix of the Internal
Parameters of the camera, which takes the form of

A =




fx 0 u0

0 fy v0

0 0 1


 , (2)

where fx and fy are the effective focal lengths in the
x and y directions and (u0, v0) is the principal point.
(A more general model assumes the term A12 in A to
represent a camera skew term. However, such a term
may often be considered negligible [6, 21].) The exter-
nal parameters of a camera have six degrees of freedom,
whereas the internal parameters have four [6].

In this paper, we use this model to derive new con-
straints which are invariant to the internal parame-
ters of the camera. We show that these new con-
straints can be used for several visually guided tasks
such as pose estimation, robot navigation, and com-
putation of Euclidean structure even when the inter-
nal parameters of the camera are allowed to vary,



as may be the case with an auto-focus and auto-
aperture camera. Our approach is closely related to
conventional camera calibration [27, 24, 4, 6] and self-
calibration [15, 1, 10, 31, 17, 2, 13, 3].

Given the correspondence between 3-D control
points (landmarks) and the images of these control
points, the task of camera localization is to determine
the translation and orientation of the camera. This
problem is important for visually-guided robot naviga-
tion and hand-eye calibration, by which the accumula-
tive positioning error read from the odometer can be
corrected. Camera localization, or pose determination,
is closely related to conventional camera calibration.

In conventional camera calibration, given a stan-
dard regularly-patterned object, one computes both
the internal and the external camera parameters from
the corresponding constraints between the 3-D control
points and their images. In the absence of skew, five
control points are enough to solve for all the parame-
ters non-linearly from the basic perspective projection
Equation (Equation 1). In the case of redundant con-
trol points, for example n ≥ 6, linear methods can be
used to tackle this problem [4, 24].

The problem of pose determination can be viewed as
a special case of conventional camera calibration, with
the implicit assumption that the internals of the cam-
era are known. Therefore, they share a common theo-
retical basis and basic constraints. The orientation and
translation of the camera relative to the landmark have
six degrees of freedom. Thus, the minimal number of
control points for pose estimation is three [8]. In this
case, the approach to the solution is non-linear. Quan
and Lan[23] presented a linear method of pose deter-
mination using redundant control points. They take
advantage of the special form of the 4-degree polyno-
mial equation deduced from each triplet of the control
points, so that the method is quasi-linear.

Most of the approaches to pose-determination as-
sume that the internal parameters of the camera are
fixed and known. In this paper we address the cases
under which the internal parameters of the camera can
be changed, whether accidentally or voluntarily. We
show that it is theoretically possible to use the pro-
posed invariants for robot navigation even when the
3-D coordinates of the control points on the landmarks
are not explicitly given. In addition, we show that
our new invariants can be used to compute the Eu-
clidean structure of the landmark points with or with-
out knowledge of the camera positions. In each of these
cases we derive the necessary conditions regarding the
number of views and points required.

We first briefly review the existing methods for Eu-
clidean reconstruction using the techniques of camera

(self) calibration and bring out the fundamental dif-
ferences between these methods and our approach in
Section 2. In Section 3, we show how to derive the
constraints which are independent of the internal pa-
rameters. Two different methods are given. In Sec-
tion 4, we demonstrate how to use these constraints
for camera/robot localization and Section 5 describes
robot navigation using arbitrary landmarks. Section 6
gives the applications of these invariants in pose and
structure. We present experimental results both on
synthetic and real image sequences. In Section 8, we
discuss issues relating to the robustness and stability
of inner camera invariants. The last section is our con-
cluding remarks.

2 Pin-hole camera model and
Euclidean reconstruction

Recently, camera (self) calibration has attracted a lot
of attention as a popular method for upgrading a pro-
jective reconstruction to Euclidean. In this section, we
show the common thread between all existing meth-
ods of camera self-calibration, by providing a unified
description. While these methods attempt to actually
find the internal parameters of the camera, we investi-
gate cases where the internals of the camera are allowed
to vary, either intentionally or accidentally.

The classical pin-hole camera model is often as-
sumed when the camera is used as a measuring device
in vision tasks. A 3-D point not on the focal plane is
denoted as M = (X, Y, Z, W )T in the 3-D world coordi-
nate system. For points not on the plane at infinity we
can set W = 1. If m = (x, y, 1)T is the corresponding
image point, then the imaging process can be described
by Equation 1.

Conventional camera calibration methods assume
that the correspondences between the world points M
and the image points m are given via the imaging of a
known calibration object and estimate the parameters
of A, R and t either linearly or non-linearly by consid-
ering a sufficient number of points. See, for example,
[27, 24, 4, 6].

Many recent methods of carrying out Euclidean
measurements using computer vision have attempted
to get rid of the known calibration object required
for obtaining the camera internals using camera self-
calibration. Maybank and Faugeras [15] first intro-
duced a method of self-calibration using Kruppa’s
equation based on the absolute conic on the plane at
infinity [15]. Faugeras also proposed the projective re-
construction technique of two uncalibrated views [7]
and the projective-affine-metric stratification paradigm
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[5]. The problem of camera self-calibration is regarded
as a problem of refinement from the projective stratum,
or affine stratum to the metric or Euclidean stratum,
by eliminating the ambiguity [1, 10, 31, 17, 2, 13, 3].
In order to make the refinement process work, differ-
ent kinds of 3-D information have to be used, and some
restrictions need to be imposed on the motion of cam-
eras.

These approaches to self-calibration fall roughly into
two categories: stratified approaches and direct ap-
proaches. In the stratified approaches, the camera is
first calibrated in a projective sense, then the plane
at infinity must be identified so that the induced ho-
mography H∞ can be computed from which the in-
ternals of the camera are obtained using matrix ma-
nipulations such as the singular value decomposition
[1, 10, 31, 17, 2, 13, 3, 18]. Although some authors
addressed the case of varying internal parameters of
the camera[19, 20, 12, 21], often only the focal length
is allowed to vary. The key idea of these methods is
to undo the changes caused by the changing internal
parameters. The use of the absolute quadric for auto-
calibration of the camera falls into this category[26, 21],
because the invariance of the absolute quadric to sim-
ilarity transformations gives the constraint of the pro-
jective matrices and the internals of the camera, and
we can regard this as a refinement from projective to
metric. Actually this constraint is obtained by elimina-
tion of the rotation matrix from the basic perspective
projective equations.

The direct approaches are based on solving Kruppa’s
equations for the internal parameters of the camera,
which also fail to handle the case of varying internal
parameters.

Theoretically, different approaches to camera self-
calibration share common basic constraints. We first
briefly describe the different methods in a unified
framework. Both the stratified approach and the di-
rect approach can be deduced from the basic constraint
of Equation 1 by eliminating different entities. We
then point out the fundamental difference between our
method and the other methods.

Since the choice of the world coordinate system is
arbitrary, we can express the imaging process for the
first frame as:

λm = PM = A [I | 0]M (3)

in which I is the 3 × 3 identity matrix. This puts the
origin of the world coordinate system on the unknown
but fixed projection center of the first camera. Here, we
represent a 3-D world point as M = (X, Y, Z, W )T and
a 2-D image point as m = (x, y, 1)T . For the second

view, we write:

λ′m′ = P′M = A′ [R | t]M, (4)

where m′ = (x′, y′, 1)T , A′ the internal parameter ma-
trix for the second view, and R and t the rotation and
translation between the two camera frames. We use the
notation [t]× to denote the antisymmetric matrix of t.
[t]× has two independent parameters, if t is defined up
to a scale.

Now consider the relationship of the two views. The
image of a 3-D point in the second view is related to
the image of the same 3-D point in the first view by
the following relationship:

λ′m′ = λA′RA−1m + WA′t. (5)

In 3-D space, if the points at infinity are considered,
i.e., W = 0, Equation 5 can be rewritten as:

λ′m′ = λA′RA−1m = λH∞m, (6)

where H∞ = A′RA−1 is the homography induced by
the plane at infinity , which depends only on the rota-
tion between the two camera frames and the internal
parameters. The homography induced by the plane at
infinity H∞ describes the corresponding relationship of
two images of a point at infinity and is independent of
the translation of camera frames. There are methods
of self-calibration for computing the internal parame-
ters based on finding H∞ and then deriving the matrix
of internal parameters from it [1, 10, 31, 17, 2, 13, 3],
which is also regarded as an important stage in the
stratification paradigm of camera calibration and 3-D
reconstruction[5]. In order to identify H∞, either con-
strained motions must be imposed, or a priori infor-
mation must be given.

Consider the image of the optical center of the first
frame on the second image plane,

λ′m′ = WA′t, (7)

e′ ≡ A′t is the epipole on the second image plane. It
is easy to see that the epipole on the first image plane
is e ≡ −AR−1t. We rewrite Equation 5 as follows

λ′m′ = λH∞m + We′, (8)

which means that in the second image m′ is on a line
passing through H∞m and e′. This relationship can
be formalized as
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m′·(e′×(H∞m)) = m′T [e′]×H∞m = 0. (9)

The Fundamental Matrix [6] between the two views
is given as

F = [e′]×H∞ = [e′]×A′RA−1 (10)

and is equivalent to the following equation by some
algebraic manipulations [30]

F = det(A′)A′−1T
[t]×RA−1. (11)

For a moving camera, in the case of A = A′, we
can eliminate the rotation matrix R from Equation 10,
which means that the following relationship is indepen-
dent of the rotation between the two camera frames

FAAT FT = [e′]×AAT [e′]T×. (12)

Equation 12 is another form of Kruppa’s
equations[30], which is equivalent to the original
form that was first introduced by Maybank and
Faugeras[15] by using the absolute conic. Two
important results are:

1. If the camera internals remain fixed then at least
three views are needed for eliminating the projec-
tive ambiguity and finding a finite number of Eu-
clidean solutions.

2. If the internal parameters of the camera change
across views, in general at least 8 views are neces-
sary in the absence of camera skew [12],[21],[11].

The auto-calibration method using the absolute
quadric can also be considered as a method of eliminat-
ing the rotation matrix R directly from the perspective
projective equation (Equation 1).

Thus we see that the different methods of self-
calibration are all based on elimination of different enti-
ties from the basic equations. The constraint obtained
by elimination is independent of what has been elimi-
nated, therefore if we eliminate the internal parameters
of the camera from the basic constraint, the resulting
constraint is independent of the camera internals. In
such a case the change of the internal parameters of
the camera does not affect the constraint. This is the
key point of the proposed method in this paper. Most
approaches have attempted to explicitly find out the
internals of the camera, and used them for various vi-
sion tasks.

In this paper, we attempt to investigate the process
of working with functions which are invariant to the
internal parameters of a camera, and using them for
various applications.

3 Basic Constraints Indepen-
dent of the Camera Internals

In order to make the constraints independent of the
internal parameters of the camera, we eliminate the
internal parameters from the basic constraint between
the 3-D control points and the images [28]. In the
following sections, we present two different methods to
derive the above constraints.

3.1 Constraint Derivation: Method 1

Consider the case when the image projection m =
(u, v, 1)T of a world point M = (X,Y, Z, 1)T is de-
scribed by the perspective projection, which we write
as

λm = A[R | t]M. (13)

Here A is the matrix of camera internals and R
and t are the rotation and the translation between the
world and the camera frames, and [R | t] is the matrix
of camera externals given by

[R | t] =




r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


 =




r1

r2

r3


 (14)

Here, rij , i, j ∈ {1, 2, 3} are functions of Rx, Ry and
Rz – the rotations about the X-, Y - and Z- axes, re-
spectively.

Rewriting Equation 13, we have:
{

u = fx
r1M
r3M

+ u0

v = fy
r2M
r3M

+ v0
(15)

Suppose we know three 3-D points, Mp =
(Xp, Yp, Zp, 1)T , p ∈ {i, j, k}, and their images on the
image plane, mp = (up, vp, 1)T , p ∈ {i, j, k}, then by
eliminating the internals of the camera, we obtain





Jijk =
ui−uj

ui−uk
=

r1Mi
r3Mi

− r1Mj
r3Mj

r1Mi
r3Mi

− r1Mk
r3Mk

Kijk =
vi−vj

vi−vk
=

r2Mi
r3Mi

− r2Mj
r3Mj

r2Mi
r3Mi

− r2Mk
r3Mk

, (16)

in which Jijk and Kijk are image measurements that
are functions of R, t and Mp, p ∈ {i, j, k}, and are
independent of the internals of the camera. Thus the
above equations can be re-written as the following con-
straints

{
Jijk = fijk(R, t,Mi,Mj ,Mk)
Kijk = gijk(R, t,Mi,Mj ,Mk)

(17)
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The left hand sides of constraint Equation 17
represent image measurements based on three points
which are invariant to the camera internals. The
right hand sides are non-linear trigonometric expres-
sions which are functions of only the camera externals
and the structure (Euclidean coordinates) of the three
points. We refer to Jijk and Kijk as Inner Camera
Invariants. These parameters are indeed the invari-
ants of the homography A which represents the change
of the projective coordinate system between the cam-
era and image.

3.2 Constraint Derivation: Method 2

Another method of eliminating the internals of the
camera is as follows.

First let us rewrite Equation 13 as

{
λu = r1Mfx + r3Mu0

λv = r2Mfy + r3Mv0

λ = r3M
(18)

By eliminating the scaling factor λ, we have





�
r1M r3M −r3Mu

� 24 fx

u0

1

35 = 0

�
r2M r3M −r3Mv

� 24 fy

v0

1

35 = 0

(19)

Given three 3-D points, say Mp = (Xp, Yp, Zp, 1)T ,
p ∈ {i, j, k}, and their images on the image plane,
mp = (up, vp, 1)T , p ∈ {i, j, k}, we have the following
relationship





Pijk

24 fx

u0
1

35 =

24 r1Mi r3Mi −r3Miui

r1Mj r3Mj −r3Mjuj

r1Mk r3Mk −r3Mkuk

3524 fx

u0
1

35 = 0

Qijk

24 fy

v0
1

35 =

24 r2Mi r3Mi −r3Mivi

r2Mj r3Mj −r3Mjvj

r2Mk r3Mk −r3Mkvk

3524 fy

v0
1

35 = 0

(20)
Since they have non-trivial solutions, the determi-

nant of 3× 3 matrices Pijk and Qijk must be 0, which
gives 2 constraints independent of the internal param-
eters of the camera. It is easy to show that the con-
straints of Equation 20 are equivalent to those of Equa-
tion 17.

Given n ≥ 3 control points in the 3-D world, we can
get 2(n− 2) independent constraints (of the total pos-
sible 2

(
n
3

)
) from one view of the 3-D scene. Suppose

the number of views is N , then the total number of the
independent constraints is 2N(n− 2).

4 Camera/Robot Localization

In this section we address the problem of pose estima-
tion from known landmarks using the invariants de-
scribed above.

4.1 Pose estimation using Euclidean
landmarks: general case

Suppose that we know the Euclidean coordinates
(Xi, Yi, Zi, 1)T of 5 points in the world coordinate sys-
tem. We wish to compute the the pose of the cam-
era. Six independent invariant measurements give us
six equations in terms of the six unknowns in (R, t).
The six equations can be solved numerically (using con-
strained nonlinear optimization routines for systems of
nonlinear equations, for example) for pose estimation
using an uncalibrated camera and known landmarks.
We use a method similar to bundle adjustment, using
a Levenberg-Marquardt optimization scheme [22].

In the case of a constrained planar motion, R has
only one degree of freedom and t has two degrees of
freedom. The total number of unknowns thus is three,
and four control points are sufficient for pose estima-
tion.

It turns out that in some special cases it is possible
to obtain closed-form or linear solutions to the pose
estimation problem using the image invariants.

4.2 Special Case: Rotation only about
Z-axis

Let XwYwZw be the world coordinate system. Con-
sider restricted motion with rotation θ only about the
Zw-axis, shown in Figure 1(a). This would be the case
of a robot moving on the ground with a camera looking
vertically up at the landmarks on the ceiling to facili-
tate localization. The robot would like to know its pose
with respect to the world coordinate system.

Suppose that there are three 3-D control points
Mp, p ∈ {i, j, k} lying on the XwYw plane (ceil-
ing) of the 3-D world coordinate system, where Mp

= (Xp, Yp, 0, 1)T , and the corresponding image coor-
dinates are mp = (up, vp, 1)T . The image projection
is

up = fx
Xpcosθ−Ypsinθ+tx

tz
+ u0

vp = fy
Xpsinθ+Ypcosθ+ty

tz
+ v0

, p ∈ {i, j, k}. (21)

By eliminating the internals of the camera from
Equation 21, we obtain
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θ

θ

Z ( Z’)

X’

X

Y’

Y

Z’
Z

X’

X

Y ( Y’ )

θ

θ

(a) (b)

Figure 1: Illustrations of special cases: (a) constrained
camera rotation only about the Z-axis; and (b) con-
strained camera rotation only about the Y-axis. The
axes are transformed from OX, OY and OZ to OX ′,
OY ′ and OZ ′.

ui−uj

ui−uk
= (Xi−Xj)cosθ−(Yi−Yj)sinθ

(Xi−Xk)cosθ−(Yi−Yk)sinθ
vi−vj

vi−vk
= (Xi−Xj)sinθ+(Yi−Yj)cosθ

(Xi−Xk)sinθ+(Yi−Yk)cosθ

. (22)

Let Jijk = (ui − uj)/(ui − uk) and Kijk = (vi −
vj)/(vi − vk). Let Ppq stand for Pp − Pq. We obtain

tanθ =
Xij − JijkXik

Yij − JijkYik
=

Yij −KijkYik

KijkXik −Xij
. (23)

We can easily compute θ (the rotation about Z) from
Equation 23. Once θ is obtained, the translation vector
t can be computed as follows. Suppose we have another
3-D control point Ml = (Xl, Yl, Zl, 1)T which is not on
the plane XwYw(let us not stop at just painting the
ceiling, but hang a few sticks as well). We compute Jijl

and Kijl in the same way as in Equation 22. Then,

tz

Zl
= Jijl(ai+tx)−(ai−aj)

(ai−aj)−Jijl(ai−al)
tz

Zl
= Kijl(bi+ty)−(bi−bj)

(bi−bj)−Kijl(bi−bl)

(24)

where
ap = Xpcosθ − Ypsinθ, and

bp = Xpsinθ + Ypcosθ, for p ∈ {i, j, l}

By equating the two equations in Equation 24, and
rearranging the terms,

Aijl tx + Bijl ty = Cijl −Dijl (25)

where
Aijl = Jijl

(ai−aj)−Jijl(ai−al)
;

Bijl = −Kijl

(bi−bj)−Kijl(bi−bl)
;

Cijl = biKijl−(bi−bj)
(bi−bj)−Kijl(bi−bl)

;

Dijl = aiJijl−(ai−aj)
(ai−aj)−Jijl(ai−al)

.

If we know more 3-D control points which are not on
the XwYw plane, we can get more equations in the
form of Equation 25. In such a case, a linear least
squares technique can be used to solve for tx and ty.
These values can be substituted in Equations 24 to
compute tz:

tz = Zl (Dijl + Aijl tx) = Zl (Cijl −Bijl ty) (26)

Thus, in this special case, we obtain a closed-form
solution to the localization problem, given three Eu-
clidean landmarks on the XwYw plane and at least
two landmarks off the XwYw plane. If we have more
control points, we have a linear method to do the same,
as shown above.

4.3 Special Case: Planar motion and
rotation about Y-axis

Let XwYwZw be the world coordinate system. Con-
sider a restricted motion with rotation θ only about
the Yw-axis, shown in Figure 1(b). This would be the
case of a robot moving on the ground with a camera
mounted horizontally (we look normally, at last). Con-
sider three points in the world coordinate system Mp,
p ∈ {i, j, k}, where Mp = (Xp, Yp, Zp, 1)T and the cor-
responding image coordinates are mp = (up, vp, 1)T .

By projecting the 3-D control points on to the image
plane,

up = fx
Xpcosθ+Zpsinθ+tx

−Xpsinθ+Zpcosθ+tz
+ u0

vp = fy
Yp+ty

−Xpsinθ+Zpcosθ+tz
+ v0

, p ∈ {i, j, k}. (27)

Now, let the first two points i and j be on the Yw-
axis and the third point k be on the XwYw plane. By
eliminating the internal parameters of the camera from
the above equation we obtain

Jijk = ui−uj

ui−uk
= 0

Kijk = vi−vj

vi−vk
= Yi−Yj

(Yi+ty)− Yk+ty

1−Xk
sinθ

tz

. (28)

If we consider another point l on the XwYw plane,
we obtain, similarly,

Jijl = ui−uj

ui−ul
= 0

Kijl = vi−vj

vi−vl
= Yi−Yj

(Yi+ty)− Yl+ty

1−Xl
sinθ

tz

. (29)

Because Jijk and Jijl vanish, we can separate the
terms of sinθ and tz to obtain
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tz
sinθ

=
Xk((1−Kijk)Yi − Yj −Kijkty)

Yi − Yj + Kijk(Yk − Yi)

=
Xl((1−Kijl)Yi − Yj −Kijlty)

Yi − Yj + Kijl(Yl − Yi)
= Ts. (30)

Therefore ty can be easily found from Equation 30.
In order to find θ, we have to know another control
point lying on the plane YwZw, say m. Following ex-
actly the derivation process of Equation 30, we can
obtain a similar relationship as follows

tz
cosθ

= −Zm((1−Kijm)Yi − Yj −Kijmty)
Yi − Yj + Kijm(Ym − Yi)

= Tc.

(31)
Since we know ty, Ts and Tc could be computed,

then tanθ = Tc/Ts and tz = Tssinθ = Tccosθ.
In Equation 27, Jijk vanishes because both 3-D

points i and j are on the Yw-axis. Jijk would not
be zero if we choose 3 points in general position. Let
us select a point Mn = (Xn, Yn, Zn)T in general po-
sition. Now that we know θ, ty and tz, solving for tx
is trivial. We use the two points Ml and Mk on the
XwYw plane we had selected above.

tx =
bn Nkl − Jkln al Dkn

Jkln al (bn − ak)− bn(al − ak)
, (32)

where
ap = −Xpsinθ + tz, p ∈ {k, l};
bn = −Xnsinθ + Zncosθ + tz;
Nkl = (alXk − akXl)cosθ;
Dnk = (bnXk − akXn)cosθ − akZnsinθ.

Thus, in this special case, we obtain a closed form solu-
tion to the localization problems with specially located
landmarks - two on the Yw-axis, two on the XwYw

plane, one on the ZwYw plane, and one in general con-
figuration.

5 Inner Camera Invariants and
Robot Navigation

In this section, we discuss the use of arbitrary land-
marks for robot navigation. By the term arbitrary
landmark, we mean that the coordinates of the control
points on the landmark are unknown or not initially
given. We consider a robot equipped with a camera,
whose internal parameters are not known. Further, the
internals may vary intentionally (the camera may have
the ability to zoom into an object of interest, for ex-
ample), or unintentionally.

We first show that if the pose of the camera is known
then it is possible to compute the Euclidean structure
of the landmark points using the invariants.

5.1 3-D Euclidean reconstruction from
known ego-motions (known pose)

Suppose we know the R and t (pose) at N locations
of the camera. The task at hand is to find out the
3-D Euclidean structure of unknown landmark points.
Such pose information can be obtained, for example,
by solving the pose estimation problem for the new
view using previously known landmarks. As before, we
assume that the internals of the camera are unknown,
and may vary. For Euclidean structure estimation of n
3-D control (landmark) points we have 3n unknowns.
With N views we have 2N(n − 2) independent con-
straint equations and the relationship 2N(n− 2) ≥ 3n
must be satisfied. Thus with 3 views (N = 3) of at
least 4 points (n ≥ 4) we can compute the 3-D Eu-
clidean structure provided the pose of each of the cam-
era stations are known 1.

If the relationship between the image invariants of
arbitrary landmarks and the pose of the camera/robot
is established, image invariants from five generically-
positioned points (with coordinates not given) are nec-
essary for general robot navigation, and this relation-
ship needs only to established once. In the special
cases, the number of points is less. In what follows
we show how a new landmark set can be established in
the environment and used for subsequent navigation.

We consider two cases.

1. First, we consider the case of a robot not knowing
the Euclidean structure of points of interest on
a landmark. Additionally, it does not know its
pose at a particular position (it knows its pose at
all other positions). It wishes to interpolate the
camera’s R and t corresponding to this position.

2. Next, we consider the case when the robot knows
its pose at different positions (from accurate odo-
metric information, for example), However, it
wishes to interpolate image measurement at a par-
ticular location.

These two cases may be applied to situations of virtual
navigation, or walkthroughs - A remote user may wish

1Taking N = 2 yields n ≥ 8. For two views and varying
camera internal parameters, we have 14 parameters. R and t
describe the rigid body transformaiton between the two camera
stations – this accounts for 6 parameters. 4 parameters each
come from the each of the camera internal parameter matrices
corresponding to these two positions. Thus, 7 points completely
describe the geometric relationship between the two cameras,
and the 8-th point does not give any extra information.
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to know his pose with respect to a particular view. For
the second case, a virtual navigation system may not
store image information for a large number of view-
points - it can interpolate information from different
viewpoints to generate a view.

5.2 Interpolation of camera pose: 3-D
Interpolation

Suppose we know R and t of N − 1 locations of the
camera, with the pose of the N -th view unknown. We
wish to interpolate the pose of the camera correspond-
ing the N -th view. We also assume that the 3n struc-
ture parameters of the n landmark points are initially
unknown. Then we have a total of 3n+6 unknown pa-
rameters in terms of the Euclidean structure of the n
points and the R and t of the N -th station. The rela-
tionship 2N(n−2) ≥ (3n+6) gives us that with 4 views
of at least 5 points we can compute all the unknowns
using a two stage process. First we can compute the
Euclidean structure of the landmark points using the
first 3 views (see Section 5.1) and then use the structure
information to solve for the pose estimation (localiza-
tion) problem for the last view. The newly-selected
5 points could be used as the new landmark. If the
3-D structure is not of interest then the coordinates
of the 3-D control points can be eliminated from the
constraints and we arrive at the equations for inter-
polation of camera pose. N and n must be chosen to
satisfy N ≥ 4 and n ≥ 5.

5.3 Interpolation of image measure-
ments: 2-D Interpolation

Suppose we know the R and t for all stations but
do not know the image measurements Jijk’s and
Kijk’s corresponding to one of the stations. Thus,
we want to interpolate image measurements at one of
the camera positions. Now we have the relationship
2N(n−2) ≥ 3n+2(n−2). Thus we can interpolate the
image measurements in any of the following situations
- i) N = 4 and n ≥ 4 ii) N = 6 and n ≥ 3. As in the
previous case we can eliminate the coordinates of the
3-D control points if the Euclidean structure is not of
interest.

6 Simultaneous computation of
Pose and 3-D Euclidean Struc-
ture

The proposed image invariants can also be used for
simultaneous computation of pose and structure even
when the internal of the camera are varying and un-
known.

6.1 Motion and Structure from planar
motion and rotation about Z

Consider planar motion on a plane parallel to the
XwYw plane and rotation only about Zw, shown in
Figure 1(a). For this special case, we wish to deter-
mine both the motion (rotation about the Z-axis), as
well as the 3-D Euclidean structure of the points of in-
terest. We denote the coordinates of 4 points on the
XwYw plane (the ceiling) as Mq (q ∈ {i, j, k, l}) . By
rearranging the terms in Equation 22 and letting Ppq

stand for Pp − Pq, we obtain

{
Xij − Yijtanθ − JijpXip + JijptanθYip = 0
Xijtanθ + Yij −KijptanθXip −KijpYip = 0 ,

(33)
where p ∈ {k, l}. We then have 2(4− 2) = 4 equations
as follows

M(θ)X = 0 (34)

where M is a 4 × 6 matrix whose entries depend on
tan(θ) and the image invariants,

X =
[

Xij Yij Xik Yik Xil Yil

]T
. (35)

If the camera undergoes rotation with another angle
θ′, and we know the matching points of the first view,
then we have a relationship similar to Equation 34

N(θ′)X = 0 (36)

Putting Equation 34 and Equation 36 together we
obtain

C(θ, θ′)X = 0,C(θ, θ′) =
[

M(θ)
N(θ′)

]
(37)

Equation 37 is a set of 8 non-linear equations in X,
tan(θ) and tan(θ′). Because X is a nonzero vector, we
have det(CT C) = 0, which is a polynomial equation
in tan(θ) and tan(θ′). Given a reference view with
θ′ = θ0, e.g., θ′ = 0, which we can take as the initial
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orientation of the 3-D world coordinate system, we can
easily get any other rotation angle θ by solving the
polynomial equation. If the initial orientation is not
set, the rotation angles can only be determined up to
a shift.

Moreover, X is the eigenvector of the smallest eigen-
value of CT C and the Euclidean coordinates can be
determined up to a scale assuming the first point to be
the origin. The scale can be set by knowing any single
length.

6.2 Simultaneous computation of pose
and structure: general case

Suppose that the 3-D world coordinate system coin-
cides with one of the camera frames, and we do not
know the position of the 3-D control points. The prob-
lem of localization then becomes the problem of struc-
ture and motion without calibration. In the most gen-
eral case, the relationship of constraints is 2N(n−2) ≥
(3n + 6(N − 1)). The term N − 1 in the relationship
means that the R and t are unknown for N − 1 frames
of the camera. The first can be fixed arbitrarily to
A [I | 0]. This amounts to setting the world origin
to the unknown but fixed camera centre of the first
camera. When the number of views and the number
of matching points satisfy the above relationship, the
problem of pose and structure can be solved up to scale.
The condition for the general case is N ≥ 8 and n ≥ 6.

In each of the above cases it is possible to use a larger
number of control points to robustly estimate the pa-
rameters using a suitable non-linear optimization tech-
nique.

Note that 8 views are necessary when camera in-
ternal parameters are unknown and may vary [12],
[21, 17, 29, 1, 10]. These computation may not be
feasible for certain critical motions [14, 25] and critical
configurations [9, 16], though this has been proved typ-
ically for the case of internal camera parameters which
do not vary.

7 Experiments

We carried out several experiments on both synthetic
and real image sequences and compared the results ob-
tained using our methods with standard calibration.
The advantage of having calibration as a benchmark is
two-fold:

1. Calibration provides the best bundle-adjustment
over both internal and external parameters (unlike
self-calibration, which does not consider external
parameters at all).

2. Calibration methods such as that of Tsai [27] for
example, consider radial distortion as well – going
beyond the conventional camera pin-hole model.

We assume that all correspondence information is
known (hand picked).

We have experimented with a calibration grid (Fig-
ure 3), and a model house. Figure 2 shows four views
of a model house, which we used for our experiments
on the general cases of pose estimation, structure es-
timation, and 3-D and 2-D interpolation. Across our
experiments, the calibration and 3-D reconstruction re-
sults from classical camera calibration are also listed for
comparison, all distances are in mm, all angles are in
degrees.

For all our experiments we used the con-
strained non-linear optimization routine of MAT-
LAB(constr/fmincon, using a Levenberg-Marquardt
optimization scheme). Inner camera invariants are
computed from 2-D image data:

Jijk =
ui − uj

ui − uk
; Kijk =

vi − vj

vi − vk

We compute the error between the left- and right-hand
sides of Equation 17 as below:

{
EJ = Jijk − fijk(R, t,Mi,Mj ,Mk)
Ek = Kijk − gijk(R, t,Mi,Mj ,Mk) (38)

We consider the function F to optimize, as the sum
of squares of EJ and EK for each of the n − 2 set of
points:

F =
∑

All sets of n−2 points

(EJ
2 + EK

2) (39)

Such a function is optimized with respect to suitable
constraints e.g., the allowable error (using Equation 38:
|EJ | ≤ limJ , |EK | ≤ limK), solution search neighbor-
hoods, etc.

7.1 General Pose Estimation

We carried out experiments on general pose estima-
tion (Section 4.1) on two landmarks, which we call
Landmark I (a calibration grid, shown in Figure 3) and
Landmark II (a model house, shown in Figure 2). In
Table 1 we present some sample results for two posi-
tions of the camera, using Landmark I (the calibration
grid) as the object, using 5 points.

In Table 2, we show some sample results for Land-
mark II (the model house) using 20 points at two cam-
era stations. As seen in Tables 1 and 2, the pose esti-
mation results using inner camera invariants are quite
close to the corresponding calibration values in most
cases, the maximum discrepancy being less than 2 de-
grees for angles, and 50 mm for distances.
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Figure 2: Images of Landmark II (a model house) used for pose estimation (general case), structure estimation
(general case), and 3-D and 2-D interpolation. Image points used in our experiments are marked with crosses.

7.2 Pose Estimation: Special Case 1

For the first special case (Section 4.2), we used two
camera stations, with two sets of 5 points each for each
camera station.

Figure 3 shows images from three such camera sta-
tions (constrained rotation about the Z-axis only: We
kept our camera horizontal and rotated our calibration
object).

Table 3 summarizes the results. The pose esti-
mated using inner camera invariants is off the calibra-
tion value by a maximum of about 3 degrees and 60
mm, for the angles and distances, respectively.

7.3 Pose Estimation: Special Case 2

We took two sets of six points each, for two camera
stations(shown in Figure 4).

In Table 4, we show results for special case 2 of pose
estimation (Section 4.3). As is seen from the table, the
results are off from the calibration values by a maxi-

Figure 3: Images of Landmark I (the calibration grid)
taken at three camera stations, which we have used for
1) pose estimation: special case 1 (constrained camera
rotation about the Z-axis only: Section 4.2, results in
Section 7.2); 2) computation of both pose and struc-
ture: planar camera motion (Section 6, results in Sec-
tion 7.7)

mum of about 9 degrees and 225 mm.
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Pose 1 Pose 2
Calib. ICI Calib. ICI

Rx 0.376 1.906 0.003 -0.252
Ry -4.795 -6.518 -28.727 -28.449
Rz 0.649 0.509 0.316 0.454
tx -694.802 -728.196 -434.520 -434.542
ty 24.189 17.798 18.000 17.971
tz 1041.215 1087.956 822.988 822.989

Table 1: Pose estimation experiments with Landmark I
(the calibration grid): Some sample results. We com-
pare the poses (R and t) computed using inner camera
invariants (‘ICI’) and standard calibration (‘Calib.’) at
two camera stations denoted by Pose 1 and Pose 2, re-
spectively. All angles are in degrees, and all distances
in mm.

Pose 1 Pose 2
Calib. ICI Calib. ICI

Rx -0.641 -0.052 0.311 -0.882
Ry -2.787 -2.830 -32.467 -27.754
Rz 6.753 6.704 -1.797 -2.681
tx -519.353 -516.074 -461.840 -450.918
ty -62.001 -63.691 487.470 -491.092
tz 855.277 833.717 183.907 168.206

Table 2: Pose estimation experiments (general case)
with Landmark II (the model house): Some sample
results at two camera stations (Pose 1 and Pose 2) using
inner camera invariants (‘ICI’), and comparison with
calibration results (‘Calib.’). All angles are in degrees,
and all distances in mm.

7.4 Robot Navigation: 3-D Interpola-
tion

Figure 5 shows the corresponding images taken from
the camera stations around Landmark I (the calibra-
tion grid).

Images in Figure 5 were used for the 3-D and 2-D
interpolation experiments with Landmark I (the cali-
bration grid).

Table 5 shows some results for Section 5.2, for N = 4
and n = 5. We have some extremely accurate results
here, with the maximum error being about a mm for
the structure, a fraction of a degree for the angles, and
about 60 mm for the distances.

Table 6 shows some results on Landmark II (the
model house, Figure 2), for the same values of N and
n. The estimated structure of the corresponding points
are shown in the second part of Table 10. The discrep-

Camera Station I: Calibration Results:
tx = -634.112, ty = 16.029, tz = 1057.223

Rx = 1.080, Ry = 0.837, Rz = -0.317

Results using Inner Camera Invariants:

Points Rz tx ty tz

5,10,15,40,48 -0.578 -654.555 15.526 934.162

8,12,19,39,44 -0.524 -648.851 39.923 1063.521

Camera Station II: Calibration Results:
tx = -633.105, ty = -35.049, tz = 1053.015

Rx = 0.831, Ry = 0.672, Rz = 4.701

Results using Inner Camera Invariants:

Points Rz tx ty tz

6,13,18,25,37 4.975 -634.835 -29.289 990.971

4,15,20,27,48 2.047 -575.648 -37.7681 1062.035

Table 3: Pose estimation results, Special Case 1 (Sec-
tion 4.2: the case of constrained camera rotation about
the Z-axis alone). We give the estimated values of Rz

and t for two camera stations for different choices of
5 points. We also indicate the results from standard
calibration for comparison. All angles are in degrees,
and all distances are in mm.

Figure 4: The sequence of images of Landmark I (the
calibration grid) used for special case 2 of pose esti-
mation (Section 4.3): constrained rotation about the
Y-axis only (Results in Section 7.3)

ancy between the values estimated using inner camera
invariants and calibration data, is a maximum of about
8 mm for the 3-D Euclidean structure, 6 degrees for the
angles, and 20 mm for the distances.

7.5 Robot Navigation: 2-D Interpola-
tion

In Table 7, we show results for 2-D interpolation (Sec-
tion 5.3) for N = 4 and n = 5, for Landmark I (the
calibration grid). In this case, the results are extremely
accurate. The 3-D Euclidean structure is within a mm
of calibration data, while the discrepancy values of the
inner camera invariants are less than 1 in each case.

Table 8 shows some results for the same values of
N and n for Landmark II (the model house). The re-
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Camera Station I: Calibration Results:
tx = 21.948, ty=31.988, tz=1034.709

Rx = -0.931, Ry = -39.155, Rz = 1.314

Results using Inner Camera Invariants:

Points Ry tx ty tz

7,19,6,21,31,42 -30.843 138.861 14.758 883.234

7,13,4,22,37,47 -33.573 133.137 20.163 957.999

Camera Station II: Calibration Results:
tx = -210.449, ty = 18.132, tz = 1195.758

Rx = 0.345, Ry = 23.262, Rz = 0.504

Results using Inner Camera Invariants:

Points Ry tx ty tz

7,19,8,22,37,44 28.266 -99.024 47.190 1420.395

13,19,15,20,43,47 27.275 -153.946 45.356 1311.451

Table 4: Pose estimation results, Special Case 2(Sec-
tion 4.3: the case of constrained camera rotation about
the Y-axis alone). We give the estimated values of Rz

and t for two camera stations for different choices of
6 points. We also indicate the results from standard
calibration for comparison. All angles are in degrees,
and all distances are in mm.

sults of the structure computation for the correspond-
ing points are shown in the second part of Table 10. In
this case again, the estimated 3-D Euclidean structure
is off by at most about 4 mm. The maximum discrep-
ancy between the estimated values of the inner camera
invariants and the values from calibration data, is a
small fraction.

7.6 Structure from known Ego-Motions
(known pose)

Figure 5 shows images taken from the 4 viewpoints
around Landmark I (the calibration grid), which are
used for experiments in this case. In Table 9, we show
some results for recovering the 3-D structure of points
from known ego-motions (Section 5.1). We considered
N = 3 and n = 4.

Table 10, we show some results for Landmark II (the
model house). We considered two cases here, i) N = 3
and n = 3, and ii) N = 4, n = 5. Results for these
are shown in the two parts of the table. In both these
cases, we observe that the estimated values of the 3-D
structure correspond very closely with the correspond-
ing values using calibration data – the maximum dis-
crepancy is about 7 mm.

Figure 5: The 4 viewpoints used for the 3-D and 2-D
interpolation experiments (Sections 7.4 and 7.5), re-
spectively) with Landmark I (the calibration object).

7.7 Pose and Structure: Planar Cam-
era Motion

The special case of planar camera motion, computa-
tion of pose and structure (Section 6.1) were tested on
the image sequences shown in Figure 3, we show some
results in Table 11. Again, there is a very good corre-
spondence between parameters estimated using inner
camera invariants, and those computed from calibra-
tion data. The angle is off by less than a degree for
the angles, and a small fraction, for the 3-D structure
ratio.

Here, the first image of Figure 3 was taken as the
reference camera station, while the other two are the
stations numbered I and II.

7.8 Simultaneous Pose and Structure

We obtained a sequence of synthetic images using a
theoretical pin-hole camera model. The 3-D scene con-
sists of a set of 3-D points randomly generated. We
consider 8 images of the same 3-D scene from different
points of view, with all the internal parameters of the
camera varying across views. In this case, because we
know the actual values of the 3-D points in the first
camera frame, and the relative rotation and the trans-
lation of the camera with respect to the first frame, say
Xtrue, the initial guess X0 for optimization is given by
N(Xtrue, δ

2), δ2 = 0.10|(Xtrue)|. We got exact results,
though each time the starting point was different.

Table 12, Table 13 and Table 14 show the results
of recovering simultaneously both pose and structure
(Section 6.2) from a synthetic sequence, for N = 8 and
n = 6.
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Calibration Data ICI Results

X Y Z X Y Z

500 0 200 500.089 -0.012 200.039

700 70 0 701.062 70.362 -1.036

500 100 200 500.0873 99.849 200.039

670 0 200 670.978 0.0388 199.963

700 0 200 700.663 0.020 199.989

Calibration Results ICI Results

R T R T

-0.083 676.421 -0.083 606.801

0.046 14.203 0.0172 3.559

0.079 -1076.164 0.072 -1061.471

Table 5: 3-D Interpolation results for Landmark I (the
calibration grid): results with N = 4, n = 5. We
show results for the structure computation using inner
camera invariants (‘ICI Results’), and well as the pose
(R and T values) at the required camera station. All
angles (for R) are in degrees, and all coordinates (X,
Y and Z) and distances (for T) are in mm.

Calibration Results ICI Results

R T R T

-4.829 -425.031 -8.864 -429.434

-35.014 -64.124 -29.633 -45.181

7.938 343.221 10.537 -337.075

Table 6: 3-D Interpolation results for the model house:
we consider N = 4, n = 5. The results of 3-D struc-
ture computations using inner camera invariants (‘ICI
Results’) are shown in the second part of Table 10. All
angles (for R) are in degrees, and all distances (for T)
are in mm.

The real image sequence on which we tested our
method of simultaneous pose and structure is given in
Fig. 6.

Table 15, Table 16 and Table 17, show the results
of recovering simultaneously both pose and structure
(Section 6.2) on the real image sequence, N = 8 and
n = 6. Even for the real image sequence, the estimated
parameters are in agreement with those computed from
calibration values, the values being less than a fraction,
in each case. Here, we mention that if we star far away
from the solution, the computations may converge to
a non-optimal local minimum.

Calibration Data ICI Results

X Y Z X Y Z

500 0 200 500.089 -0.012 200.039

700 70 0 701.062 70.362 -1.036

500 100 200 500.087 99.849 200.039

670 0 200 670.979 0.039 199.963

700 0 200 700.663 0.020 199.989

Calibration Data ICI Results

J123 29.001 28.984

K123 0.664 0.676

J124 1.315 1.309

K124 5.187 4.988

J125 1.114 1.109

K125 4.536 4.363

Table 7: 2-D Interpolation results for Landmark I (the
calibration grid): We show a comparison of the results
with inner camera invariants (‘ICI Results’) with cali-
bration results We have considered N = 4 and n = 5.
All coordinates (X, Y and Z) are in mm.

Calibration Data ICI Results

J123 -0.029 -0.023

K123 2.000 2.051

J124 -0.017 -0.014

K124 -0.214 -0.210

J125 0.051 0.041

K125 -0.305 -0.300

Table 8: 2-D Interpolation results for Landmark II (the
model house): We compare results with inner camera
invariants (‘ICI Results’) with calibration data. We
consider N = 4, n = 5. The results of 3-D structure
computations for the points used are shown in the sec-
ond part of Table 10.

8 Robustness and Stability of
Inner Camera Invariants

In this section, we present an experimental analysis of
the effect of noise on the computations based on inner
camera invariants.

Let us recall that the computation of inner camera
invariants Jijk and Kijk involves the ratio of differences
of pixel coordinates (details in Section 3, Equation 16):

Jijk =
ui − uj

ui − uk
; Kijk =

vi − vj

vi − vk

It is obvious that to reduce the effect of pixel noise
on the computation of Jijk’s and Kijk’s, the triplets
of points should be so chosen that the numerator and
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 6: The sequence of 8 images for used in our experiments for simultaneous computation of pose and structure.

Calibration Data ICI Results

X Y Z X Y Z

500 0 200 495.884 3.501 197.995

700 70 0 704.152 69.4679 -1.348

500 100 200 507.501 98.997 203.334

670 0 200 669.324 0.190 199.888

Table 9: Structure estimation from known ego-motions
(Section 5.1): Some sample results for Landmark I (the
calibration grid). We compare results using inner cam-
era invariants (‘ICI Results’) with calibration data. All
coordinates (X, Y and Z) are in mm.

denominator are of comparable order and neither is too
small.

A example calibration data set has parameters: Rx

= -0.375o, Ry = -4.795o, Rz = 0.649o, tx = -694.802
mm, ty = -24.189 mm, and tz = 1041.215 mm. We use
typical triplets of 3-D world points such that their 2-D
image coordinates fulfil the above criterion: the im-
ages of the second and third points are not too close to
the image of the first. Let us consider cross-sections of
the signed difference between the left- and right-hand
sides of Equation 17, while varying the external param-
eters. We refer to this signed difference as EJ and EK

for inner camera invariants Jijk and Kijk, respectively
(Equation 38). We show the zero line, the intersection
of which with the curve(s) would indicate the position
of the minimum of the corresponding component of the
optimization function (EJ

2 and EK
2). In these exam-

ples, we consider EJ alone; the treatment of EK fol-
lows on exactly the same lines. For all these graphs,
we plot the varying quantity (Ry, tx or tz) on the hor-
izontal axis, and EJ on the vertical axis. Figures 7(a),

Calibration Data ICI Results

X Y Z X Y Z

515.875 19.05 0.0 515.884 19.088 0.0532

515.875 28.575 0.0 515.871 28.584 -0.140

563.5 19.05 0.0 563.504 19.085 -0.005

563.5 -31.75 -31.75 563.489 -31.897 -31.662

515.875 19.05 0.0 515.971 11.889 3.267

515.875 28.575 0.0 515.591 20.120 -3.854

563.5 19.05 0.0 559.544 11.644 -3.282

563.5 -31.75 -31.75 560.507 -33.378 -28.832

507.938 -12.7 31.75 508.842 -17.897 34.472

Table 10: Structure estimation from known ego-
motions (Section 5.1): Some sample results for Land-
mark II (the model house). We compare reconstruction
results using inner camera invariants (‘ICI Results’)
with calibration data. All coordinates (X, Y and Z)
are in mm.

(b) and (c) show the variation in the cross-section of
EJ with the variation in one external parameter (Ry,
tx and tz, respectively). In each of these cases, the
slope of the EJ cross-section with respect to the vari-
ation in the external parameter, is such that we can
easily locate its zero-crossing using a non-linear opti-
mization scheme (Levenberg-Marquardt, for example).
Figures 7(a) and (b) consider the above calibration set.
Figure 7(a) shows the variation of the EJ plot with Ry

varying between −10o and 10o. In Figure 7(b) consid-
ers tx varying between -800 mm and -600 mm. The
corresponding set for Figure 7(c) has the following pa-
rameters: Rx = 0.003o, Ry = -28.727o, Rz = 0.316o,
tx = -434.520 mm, ty = 18.000 mm, and tz = 822.988
mm. (Let us refer to the above two calibration sets as
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Reference Camera Station:
Calibration Results:

Rx = 1.080, Ry = 0.837, Rz = -0.317

Camera Station I: Calibration Results:
Rx = 0.831, Ry = 0.672, Rz = 4.701

Results with Inner Camera Invariants:
Observation Set A: Points 9, 17, 19, 22

Parameter Calib. ICI

Rz 4.701 5.005

X12 / Y14 1.0 0.956

Y12 / Y14 0.3 0.302

X13 / Y14 -1.0 -0.942

Y13 / Y14 1.0 0.998

X14 / Y14 0.7 0.683

Camera Station II: Calibration Data:
Rx = 1.146, Ry = 0.624, Rz = 21.009

Results with Inner Camera Invariants:
Observation Set B: Points 11, 14, 18, 20

Parameter Calib. ICI

Rz 21.009 22.191

X12 / Y14 -1.3 -1.239

Y12 / Y14 0.3 0.309

X13 / Y14 0.7 0.679

Y13 / Y14 0.3 0.304

X14 / Y14 -1.3 -1.234

Table 11: Simultaneous computation of pose and struc-
ture from planar motion, and constrained rotation
about the Z-axis (Section 6.1): We have compared re-
sults using inner camera invariants (‘ICI’) with cali-
bration results (‘Calib.’). All angles are in degrees.

Calibration Set I and Calibraiton Set II, respectively.)
Here, we vary ty from 800 mm to 900 mm.

Let us now consider the effect of pixel noise on com-
putations involving inner camera invariants. We illus-
trate the fact that such pixel errors do not result in un-
bounded errors in the constraint equations for the op-
timization process (used in pose computation or struc-
ture estimation, for example). We have successively ex-
perimented with injecting an increasing amount of zero
mean Gaussian noise in the pixel measurements (ui, uj ,
uk etc.). For the zero-noise case, the zero-crossing of
the EJ surface cross-section indicates the solution, the
calibration value of the external parameter. For the
cases of noise, we plot histograms of the distribution of
zero-crossings of the EJ surface cross-section. For each
of these cases, we have taken the number of histogram
bins as 10. We have experimented with pixel noise of
the order of σ = 1 and 2.5 pixels.

For the graphs of Figure 8, we consider the variation
of Ry from −10o to 10o (the calibration value is Ry =

3-D point X/Z Y/Z Z/Z
1 -0.1222 0.0850 1.0000
2 -0.1676 -0.0147 1.0000

Calib. 3 0.0816 -0.0269 1.0000
Values 4 0.0730 0.1745 1.0000

5 0.1918 0.0402 1.0000
6 -0.0324 -0.0213 1.0000
1 -0.1222 0.0850 1.0000
2 -0.1676 -0.0147 1.0000

ICI 3 0.0816 -0.0269 1.0000
Results 4 0.0730 0.1745 1.0000

5 0.1918 0.0402 1.0000
6 -0.0324 -0.0213 1.0000

Table 12: Simultaneous pose and structure from the
image invariants: Section 6 (We consider N = 8 and
n = 6 for this example). Results for the 3-D points in
the synthetic image sequence. We show a comparison
of values obtained using inner camera invariants (‘ICI
Results’) with calibration values (‘Calib. Values’)

Rotation a b c
R2 -0.0198 0.4184 0.0052
R3 0.6336 0.4153 0.1418

Calib. R4 -0.6775 0.4214 -0.1323
Results R5 -0.6266 -0.5241 0.2451

R6 0.6846 -0.5724 -0.1136
R7 0.6757 -0.4010 -0.0693
R8 0.6588 -0.0729 0.0156
R2 -0.0198 0.4184 0.0052
R3 0.6336 0.4153 0.1418

ICI R4 -0.6775 0.4214 -0.1323
Results R5 -0.6266 -0.5241 0.2451

R6 0.6846 -0.5724 -0.1136
R7 0.6757 -0.4010 -0.0693
R8 0.6588 -0.0729 0.0156

Table 13: Simultaneous pose and structure from the in-
ner camera invariants (Section 6): Results for the syn-
thetic sequence. (We have considered N = 8 and n = 6
for our experiments). We show results for the rotations
Ri, i = 2, ..., 8 relative to the first camera frame. The
rotation matrices are expressed in the from of the Ro-
driques matrix [24, 4]. a, b and c are 3 independent pa-
rameters of the Rodriques matrix. We compare values
obtained using inner camera invariants (‘ICI Results’)
with calibration results (‘Calib. Results’).
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Trans. tx/tz ty/tz tz/tz
t2 -1.9292 -0.0592 1.0000
t3 -0.7082 0.9681 1.0000

Calib. t4 -0.5570 -0.6902 1.0000
Results t5 0.9171 -0.5141 1.0000

t6 0.8079 0.7223 1.0000
t7 0.7202 1.0682 1.0000
t8 0.0614 1.5600 1.0000
t2 -1.9292 -0.0592 1.0000
t3 -0.7082 0.9681 1.0000

ICI t4 -0.5570 -0.6902 1.0000
Results t5 0.9171 -0.5141 1.0000

t6 0.8079 0.7223 1.0000
t7 0.7202 1.0682 1.0000
t8 0.0614 1.5600 1.0000

Table 14: Simultaneous pose and structure from the
inner camera invariants: Section 6. (We consider the
case of N = 8 and n = 6). Results for the transla-
tional vectors ti, i = 2, ..., 8, with respect to the first
camera frame, for the synthetic image sequence. We
compare results using inner camera invariants (‘ICI Re-
sults’) with calibration results (‘Calib. Results’).

3-D point X/Z Y/Z Z/Z
1 -0.1614 -0.1342 1.0000
2 -0.0941 -0.1648 1.0000

Calib. 3 -0.0316 -0.1932 1.0000
Values 4 0.0264 -0.2196 1.0000

5 0.0806 -0.2443 1.0000
6 -0.1362 -0.0597 1.0000
1 -0.1593 -0.1327 1.0000
2 -0.0938 -0.1647 1.0000

ICI 3 -0.0315 -0.1926 1.0000
Results 4 0.0271 -0.2255 1.0000

5 0.0795 -0.2350 1.0000
6 -0.1354 -0.0591 1.0000

Table 15: Simultaneous pose and structure from the
inner camera invariants (Section 6). This example con-
siders N = 8 and n = 6) on the real image sequence:
results for the 3-D points. We compare results using
inner camera invariants (‘ICI Results’) with calibration
values (‘Calib. Values’).

Rotation a b c
R2 -0.0107 -0.0018 0.0017
R3 -0.0186 -0.0220 0.0008

Calib. R4 0.0171 -0.0260 0.0038
Results R5 -0.0110 -0.0667 0.0067

R6 -0.0138 -0.0747 0.0050
R7 0.0216 -0.1278 0.0065
R8 0.0200 -0.1379 0.0155
R2 -0.0107 -0.0018 0.0017

ICI R3 -0.0184 -0.0222 0.0008
Results R4 0.0174 -0.0260 0.0038

R5 -0.0110 -0.0677 0.0065
R6 -0.0137 -0.0749 0.0050
R7 0.0216 -0.1284 0.0065
R8 0.0201 -0.1370 0.0159

Table 16: Simultaneous pose and structure from the in-
ner camera invariants (Section 6). We consider N = 8
and n = 6 here, for the real image sequence. Results
for the rotations Ri, i = 2, ..., 8 are relative to the first
camera frame. We compare our results with inner cam-
era invariants (‘ICI Results’) with calibration results
(‘Calib. Results’). The rotation matrices are expressed
in the from of the Rodriques matrix [24, 4]. a, b and c
are 3 independent parameters of the Rodriques matrix

Trans. tx/tz ty/tz tz/tz
t2 0.7895 -0.0642 1.0000
t3 0.8717 0.0854 1.0000

Calib. t4 0.8944 0.0410 1.0000
Results t5 0.6587 0.0195 1.0000

t6 0.6430 0.0395 1.0000
t7 0.5757 -0.0076 1.0000
t8 0.6144 0.0251 1.0000
t2 0.7879 -0.0642 1.0000
t3 0.8853 0.0851 1.0000

ICI t4 0.8806 0.0403 1.0000
Results t5 0.6693 0.0193 1.0000

t6 0.6410 0.0392 1.0000
t7 0.5658 -0.0077 1.0000
t8 0.6089 0.0244 1.0000

Table 17: Simultaneous pose and structure from the
inner camera invariants (Section 6) using N = 8 and
n = 6, for the real image sequence: results for the
translational vectors ti, i = 2, ..., 8 with respect to the
first camera frame. We compare results using inner
camera invariants (‘ICI Results’) with calibration re-
sults (‘Calib. Results’).
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(a)

(b)

(c)

Figure 7: A plot of a cross-section of EJ for varying
values of external parameters (a) Ry, (b) tx, and (c)
tz: the zero-noise case.

(a)

(b)

Figure 8: A plot of a 10-bin histogram of the distri-
bution of the zero-crossings of the corresponding cross-
section of the EJ surface. The varying external param-
eter is Ry. (a) and (b) consider the noise to be of the
order of σ pixels, σ = 1 and 2.5, respectively.

-4.795o) holding the other external parameters at their
calibration values (Calibration Set I). We have exper-
imented with zero mean Gaussian noise added to the
image points with the standard deviation σ = 1 and 2.5
pixels. In Figures 8(a) and (b), we plot a distribution
of the relative frequencies of occurrence of the zero-
crossings of the EJ surface cross section for the case
of noise: σ = 1 and 2.5, respectively. It is to be noted
that due to the addition of noise, the value of Ry which
satisfies the constraint equation does not shift appre-
ciably. The range of these values varies from−5.425o to
−4.178o for the σ = 1 case, to −6.404o to −2.999o for
σ = 2.5. In both cases, the distribution peaks around
the actual calibration value.

We now show results with varying the translation
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(a)

(b)

Figure 9: A 10-bin histogram of the distribution of
the zero-crossings of the EJ surface cross-section, cor-
responding to possible solutions, for varying values of
external parameter tx. σ = 1 and 2.5 in plots (a) and
(b), respectively.

parameters. We vary tx between -800 mm and -600
mm, and tz between 1000 mm and 1100 mm, respec-
tively (the calibration values are -694.802 mm and
1041.215 mm, respectively: Calibration Set I). Fig-
ures 9(a) and (b) show a distribution of the zero-
crossings of the EJ surface cross-section for the case
of noise: σ = 1 and 2.5, respectively. We see similar
noise resilience as in the case of Ry.

We now show an interesting case when the use of in-
ner camera invariants may fail. This is for a variation
in tz for world points. The above calibration set (Cali-
bration Set I) presents such an example. For the plots
in Figure 10, we have again considered a 10-bin his-
togram of the distribution of the EJ zero-crossings, for
varying values of tz. The two plots correspond to noise

Figure 10: A plot of the distribution of the zero-
crossings of the EJ surface cross-section, for noise of
the order of σ = 1 and 2.5, respectively. The vary-
ing external parameter is tz, and the parameters cor-
respond to Calibration Set I. These plots illustrate the
fact that for variation in tz, good results with inner
camera invariants are not guaranteed (details in text).

of the order of 1 and 2.5 pixels, respectively. For these
plots, we observe that we do not have a well defined
solution of the constraint equation.

In Figure 11, we show the cross-section of the EJ

surface, corresponding to the distribution plots in Fig-
ure 10. Note that for a small translation of 3-D points
along the view direction the corresponding 2-D image
points may not change appreciably. As a consequence
the variation of tz does not change the value of Jijk and
EJ significantly and the slope of the constraint equa-
tion in this case is one order of magnitude less than the
other cases (Ry and tx). Hence the effect of pixel noise
is more pronounced in this case.

We show results for a set of calibration data where
we get good results for tz (Calibration Set II). Fig-
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(a)

(b)

Figure 11: A plot of a cross-section of the EJ surface,
for varying values of tz: the noise is of the order of σ
pixels, σ = 1 and 2.5 in plots (a) and (b), respectively.
These correspond to the distribution plots in Figure 10.

(a)

(b)

Figure 12: A plot of a 10-bin histogram of the distri-
bution of the zero-crossings of the corresponding cross-
section of the EJ surface, for varying external param-
eter tz (Calibration Set II). σ = 1 and 2.5 in plots (a)
and (b), respectively.

ure 12 shows the distributions of the EJ zero-crossings
corresponding to the two cases of noise, respectively. In
general, compuation of tz with inner camera invariants
may be problematic for situations with a small field of
view.

In this section, we have examined the stability of in-
ner camera invariants. First, we have shown above that
the variation in the EJ values due to pixel noise does
not cause the solution of the constraint equation for EJ

to vary appreciably. We consider noise of the order of
σ = 1 and 2.5 pixels, respectively. These graphs help
us to find out the experimental upper bound on how
far away from the calibration values, an optimization
routine can converge, in the presence of pixel noise.
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9 Conclusion

The constraints that we proposed in this paper are in-
dependent of the internal parameters of the camera.
Changes of the internals of the camera does not affect
the results of localization, motion or structure. The
proposed approaches based on these constraints are
totally different from the previous methods and give
promising results. We show experimental results of
the robustness and stability of inner camera invariants.
We believe that these invariants are suitable for a wide
range of computer vision applications.
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