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ABSTRACT

In this paper we analyze this aspect of redundancy reduc-
tion as it appears in MPEG1-Layer 1 codec. Specifically,
we consider the mutual information that exists between fil-
ter bank coefficients and show that the normalization opera-
tion indeed reduces the amount of dependency between the
various channels. Next, the effect of masking normalization
is considered in terms of its compression performance and
is compared to linear, reduced rank short term ICA analysis.
Specifically we show that a local linear ICA representation
outperforms the traditional compression at low bit rates. A
comparison of MPEG1 Layer 1 and a new ICA based au-
dio compression method are reported in the paper. Certain
aspects of ICA quantization and its applicability for low-
bitrate compression are discussed.

1. INTRODUCTION

Perceptual coding algorithms belong to the class of lossy
compression algorithms. The performance of a lossy com-
pression for a given bitrate is often measured by the recon-
struction error, which should be minimal so that the recon-
structed data is as similar to the source as possible. In the
case of perceptual coders the similarity measure is defined
by the human ear, and accordingly the coder must exploit
psychoacoustic knowledge about human hearing to make
the reconstruction error inaudible.

Perceptual audio coders exploit a phenomenon known
as the ’masking effect’, which was discovered in psychoa-
coustics experiments. Extensive research has been conducted
over the last years which aims to understand how the audi-
tory sensors encode the information in our brain. Recent
results show that the signals are efficiently encoded by the
auditory sensors in terms of redundancy reduction along the
auditory pathway. Several models have been proposed to
describe the behavior of this efficient coding process [1, 2].

In this work we use investigate the redundancy reduc-
tion idea as it occurs in traditional psychoacoustic coder.

Specifically, we measure the amount of Mutual Information
(MI) between the different filter bank subbands on a natu-
ral sound. We show that the psychoacoustic model indeed
helps remove some redundancies between the coefficients.
Next, we use the idea of minimization of MI in order to de-
sign a new architecture for a low bit-rate audio coder. One
of the open research questions regarding ICA is whether it
can be used for data compression. It is well known that
PCA is optimal for data reduction in terms of reconstruc-
tion error. Further more if the source is gaussian then opti-
mal bit allocation can be achieved by using PCA. However,
for non-gaussian variables where PCA is not optimal, ICA
might give better resultsSpecifically, we consider the ques-
tion of low bit-rate quantization using a combined PCA and
low rank ICA representation.

In our method of low bit-rate quantization we use a com-
bined PCA and low rank ICA representation. This achieves
several advantages for the compression task: 1). Coarse
first step quantization by rank reduction gives a lower over-
all error compared to low bit-rate quantization of the com-
plete set of coefficients. 2) The reduced rank representa-
tion is very sparse and allows an adaptive transmission of
the transform coefficients without increasing the overall bi-
trate. 3). The bit allocation is performed on approximately
independent channels, a situation which is required by rate-
distortion theory. It should be noted that no psychoacoustic
model is employed since the ICA vectors do not correspond
to the masking properties of the human ear. The superior
performance of our method suggests that the the classical
psychoacoustical masking of pure tones could be a special
case of a more general redundancy reduction mechanism of
the auditory pathway [3].

2. PERCEPTUAL CODING

An important aspect of the human hearing is the masking
effect. The masking effect [4] states that the threshold of
hearing of the different frequencies arises in the presence of



a masking tone or noise. Masking curves depicts the thresh-
old of hearing neighboring frequencies in the presence of
the tone or noise masker. The masking effect is used by
perceptual audio coders to make the reconstruction error in-
audible.

Figure 1 depicts the structure of a basic perceptual coder.
The signal samples are first processed using a time to fre-
quency mapping. The output of the filters are called sub-
band samples or subband coefficients. The subband coeffi-
cients are then used to calculate the masking thresholds for
each band. The bit allocation algorithm assign bits to the
different bands so that the noise, which is introduced by the
quantization process will be below the masking threshold,
thus inaudible by the listener.
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Fig. 1. Basic perceptual audio coder architecture.

MPEG-1 Layer-1 audio coder is an example for a sim-
ple perceptual coder which implements such scheme. The
signal samples are first transformed to the time-frequency
domain using polyphase filter bank. The filter bank is a set
of 32 equally spaced band pass filters and the output of the
filter bank are 32 subbands {Si}

32

i=1
where Si corresponds

to the original signal filtered with band pass filter Hi.

Psychoacoustic model then measures the masking thresh-
old {Mi}

32

i=1
introduced in each subband. The masking

threshold is calculated by considering tonal and non tonal
components which appear both in the particular subband
and in adjacent subbands. The output of the psychoacous-
tic model is a measure of the signal to mask ratio (SMR)
measured in dB in each subband. The SMR will be high
in subbands where the masking threshold is small relative
to the signal power in that subband, and small for subbands
with relative high masking threshold.

The bit allocation algorithm uses the SMR to allocate
the available bits to the subbands such that the quantization
noise introduced by the quantizer will be inaudible. This is
done by minimizing the noise to mask ratio (NMR) which
is defined as SMR - SNR where SNR is the signal to noise
ratio. If a subband has high SMR then we would like to
assign more bits to the subband in order to get high SNR
and to make the noise introduced by the quantization below
the masking threshold in the band and thus inaudible.

It can be shown [5] that the optimal bit allocation which

minimize the noise to mask ratio is given by:

Rk = R +
1

2
log2(

Sk

Mk

)2 −
1

2
log2





(

N
∏

k=1

(

Sk

Mk

)2
)

1

N





(1)
Where R is the total number of bits available for all sub-
bands, N is the number of subbands and Mk is the masking
threshold in each subband. From this equation we can ob-
serve that the masking threshold in each subband is a nor-
malization factor for the subband coefficients. If we denote
Ŝi = Si

Mi

then the bit allocation becomes:
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Which is the optimal bit allocation without masking.
Normalizing the filter bank coefficients with the mask-

ing thresholds reduced the quantization noise to be inaudi-
ble. However, in addition this process also reduces infor-
mation redundancy within the coefficients. It is quite clear
that the different subbands are not statistically independent.
Almost every sound will exhibit some correlation between
the output of the band pass filters. For example for human
voiced speech, the subband which contains the pitch would
have high energy response and subbands which contains the
pitch partials would also have response. These subbands
would clearly have statistical dependency between their out-
puts. To measure the amount of redundancy within coef-
ficients we measured the Mutual Information between the
different filter bank subbands on a natural sound (sound of
a cat). The mutual information was calculated twice. First,
the mutual information between the filter bank coefficients
Si was calculated and then we calculated the mutual infor-
mation between the normalized coefficients Ŝi. Figure 2
shows both results. The top image shows the mutual infor-
mation between the filter bank subbands coefficients. It can
be seen that there exists some redundancy between the low
subbands (white boxes in the image). The bottom image
shows the mutual information of the coefficients normalized
with the masking threshold. The information redundancy
between the low subbands was almost completely removed.
We expect that ICA might be a better tool in removing this
information redundancy between the different subbands.

3. INDEPENDENT COMPONENT ANALYSIS

In this work Independent Component Analysis (ICA) is ap-
plied for extracting an efficient signal representation in terms
of statistically independent components [6]. Let x = (x1, x2 . . . xn)
be the observed data vector. ICA’s goal is to find the matrix
A such that:

x = As (3)
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Fig. 2. Mutual Information between different subbands. The top image
shows the mutual information between the filter bank different subbands
while the bottom image shows the mutual information of the subbands after
the masking normalization process. In both images if the subbands i and j

have no mutual information so I(i, j) = 0 and it is showed as black box.

where s = (s1, s2 . . . sn) are statistically independent com-
ponents. The columns of the matrix A can be thought of as
basis vectors and the vector s is the representation of x in
this basis. ICA analysis for feature extraction and data rep-
resentation was studied in [2, 1]. For natural audio signals
it was shown that ICA analysis results in a local vector basis
which resembles short waveforms in the original signal [2].

The ICA problem can be formalized as maximum like-
lihood estimation problem. We wish to find a matrix A and
set of sources s which best explains the empirical variables
x. From Information theory we know that

< log(p(x)) >q ∝ − KL(q ‖ p) (4)

where q is the empirical distribution of the sources, p is the
hypothesized distribution of the sources and KL stands for
the Kullback-Leibler divergence. One can show that

KL(q ‖ p) = KL(q ‖
∏

qi) + KL(
∏

qi ‖ p) (5)

∏

qi are the marginal product of the empirical distribution.
The second term is minimized when we choose p =

∏

qi.
This reduces the problem to minimize KL(q ‖

∏

qi). The
KL distance between a distribution vector and its marginal
probabilities is called the Mutual Information. Eventually,
we wish to find a matrix which will make the empirical
sources as independent as possible.

In order to consider the use of ICA for data compression,
we considered the following example (Figure 3). The non-
Gaussian distribution is quantized at low bit-rate using ICA

and PCA analysis. One can see that for the ICA case, all the
quantization points fall on the axes, thus giving a smaller re-
construction error. In the PCA case, the wrong orientation
of the principal axes results in quantization points that are
far from the true data points. It is interesting to note that in
the high bit-rate case, the PCA quantization might outper-
form ICA in the Mean Square Error (MSE) sense even for
non-Gaussain distribution. When many quantization points
are available (the PCA grid is very dense), PCA tends to
locate the quantization points more optimally in terms of
MSE compared to ICA.
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Fig. 3. Quantization of non-gaussian distribution with PCA and ICA.
A. Recovered sources as was found by PCA. B. Recovered sources found
by ICA which is the true original distribution. C. Quantizing PCA coeffi-
cients results in points far from the true data points. D. ICA reconstruction
of the data results in correct reconstruction of the data thus giving small
reconstruction error.

In order to see the utility of ICA for compression, one
must observe that rate-distortion theory requires to mini-
mize MI between the signal and a quantized version of the
signal for a given distortion constraint. This is different
from ICA that tries to minimize MI between linearly trans-
formed signal components without considering quantization.
Given an ICA decomposition x = As and a quantizer ŝ =
Q(s), one can show that the log-likelihood of the data x

given ŝ is given by L(p(x|ŝ)) =
∑

I(si, ŝ) − I(s), where
si are the components of the vector s. This is in contrast to
the original maximum likelihood ICA formulation, where in
addition to minimization of the MI of s, one must maximize
MI between the individual components and the quantized
variable.

Using this formulation, we approximately solve the ICA
compression problem by sub-optimal three step approach.
We first do a large reduction step by implicitly assuming a
Gaussian distribution of the original filter-bank coefficients.
Maximizing the capacity between the complete and a re-



duced rank set of coefficient is done by PCA. Next we min-
imize I(s) of the reduced rank coefficient set using tradi-
tional ICA methods, and finally we maximize the quantization-
related MI by applying a standard bit-allocation procedure.

4. LOW BIT-RATE ENCODING ALGORITHM
USING ICA

Our audio compression algorithm is comprised of several
building blocks (Figure 5). We use subband decomposi-
tion to perform an initial time to frequency mapping. The
subband coefficients are then grouped to blocks and ICA
analysis is computed on each block. The output of the ICA
analysis is both reduced rank ICA coefficients and ICA mix-
ing/demixing matrix. The ICA coefficients are then quan-
tized and packed in frames. The ICA transform matrix is
quantized and sent as side-information for each block.

4.1. Subband Decomposition

For subband decomposition we adopt the polyphase filter
bank used in the MPEG coding standard [8, 9]. This filter
bank is a pseudo-QMF, cosine modulated filter bank which
splits the PCM input audio samples into 32 equally spaced
bands. The filter bank gives good time resolution and rea-
sonable frequency resolution [9].

We denote by x[n] the input sample at time n and by
si[t] the output of the i’th filter bank band at time t. The
filter bank is critically sampled, which means that for every
32 input samples the filter bank outputs 32 samples. Since
the output of each band is sub-sampled by a factor of 32
then t is a multiple of 32 audio samples. The output of each
filter can be written [10]:

si[t] =

511
∑

n=0

x[t − n]Hi[n] (6)

where

Hi[n] = h[n]cos

[

(2i + 1)(n − 16)π

64

]

(7)

and h[n] corresponds to analysis window coefficients.

4.2. Reduced Rank ICA Coding

The filter bank output coefficients are grouped into blocks
for ICA processing. When choosing the block length we
have to consider two factors. On one hand, we want a true
realization of the redundancy reduction process in the audi-
tory pathway, which constrains us to short blocks. On the
other hand, the ICA matrix must be sent along with each
block of data as side information so using short blocks gives
us more overhead. We found that using blocks of approxi-
mately 1 second is a sufficient trade-off.

ICA analysis is comprised of two steps. The first step
includes dimension reduction of the data, and the second
step consists of ICA analysis on the reduced rank coeffi-
cients. We denote the filter bank coefficients block by X.
X is a 32 × L matrix where 32×L

SR
= 1 second. If we

consider X
T we can view the columns as variables and the

rows as time instants of these variables. Each row is a vector
of dimension 32 which is a time instance of the filter bank
output. These variables are highly correlated and we would
like to represent them in a basis on which there will be no
correlation between the variables.

The first step is to reduce the dimension of the data. We
do it by reducing the dimension of the row space of X

T by
using the singular value decomposition (SVD) method. X

T

can be decomposed to :

X
T = USV

T (8)

where U is an m ∗ m matrix and V is an n ∗ n matrix and
S is a diagonal matrix which contains the singular values of
X

T. In our scheme, m = L and n = 32. To reduce the
dimension of the row space of X

T to a lower dimension r,
we project XT on the first r column vectors of V

Y
T = X

T
Vr (9)

where Vr is a matrix which contains the first r column vec-
tors from V.

The reduced dimension r is chosen adaptively in each
block. This is done by inspecting the singular values λ1 . . . λn

(diagonal of S) and choosing the first r basis vectors in V

such that the corresponding r eigenvalues λ1 . . . λr satisfies:
∑n

i=r+1
λi

∑n
i=1

λi

≤ E (10)

where E is the error introduced by the dimension reduction
procedure. Figure 4 shows the singular values calculated
for 1 second of Pop music. It can be seen that the singular
values decay rapidly to zero. The value of E can be chosen
during the encoding process to adjust the reconstruction er-
ror. In our experiments we chose E = 0.2. We emphasis
that the dimension reduction process is not inaudible. How-
ever, at low bit-rates the error introduced by the dimension
reduction is perceptually better perceived than an error in-
troduced by a quantization procedure.

Y now is an r ∗m matrix in which the rows contain the
representation of the filter bank coefficients in the reduced
rank basis. The rows of Y are not statistically independent.
To achieve independence we apply ICA analysis on the rows
of Y:

Ŷ = WV
T
r X (11)

W is the unmixing matrix obtained by ICA. Ŷ is the re-
duced rank independent component representation of the
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Fig. 4. The singular values decay rapidly. For each ICA block we con-
sider the first r basis vectors which correspond to the first r singular values

subband coefficients. The matrix B = (VT
r W)] is encoded

as side information for each block and used by the decoder
to decode the samples by

X
T
rec = Ŷ

T
q B = Ŷ

T
q (VT

r W)] (12)

The sign ] stands for the pseudo-inverse matrix.

4.3. Bit Allocation and Quantization

Rate distortion theory shows that a signal can be compressed,
for a given distortion D, in a rate that is lower-bounded by
the minimal mutual information between the original sig-
nal and the quantized signal. In order to obtain an optimal
quantizer Q, knowledge of the complete multi-variate prob-
ability distribution of the source vector is necessary. This re-
quires exponentially large codebooks. Due to practical con-
siderations, the quantization is performed componentwise,
a situation which is optimal only if the variables are mutu-
ally independent. In case of Gaussian variables, statistical
independence is achieved by PCA. In case of non-Gaussian
signal statistics, this is approximately achieved using ICA.

The output of the ICA analysis step is a set of r statisti-
cally independent bands. Our hypothesis is that in our rep-
resentation the different bands closely resemble the coding
information sent by the auditory sensors to code audio sig-
nals. Thus, we do not introduce any other perceptual mea-
sure in the bit allocation process as was done in the legacy
audio coder. The quantization of the different bands here
should be optimal in term of minimum reconstruction error
of the coefficients.

If we denote by Ravg the average number of bits used
to encode samples in the block, Rk the average bit rate used
to encode samples in the k’th band and by σk the variance
of the coefficients on the k’th band. Then the optimal bit

allocation for the different bands is given by [11]:

Rk = Ravg +
1

2
log2

σ2
k

∏r
k=1

(σ2
k)

1

r

(13)

The bit allocation according to equation 13 is optimal in
terms of the reconstruction error. The problem is that Rk

might be negative or not an integer number. To solve this
problem we use an iterative algorithm for bit allocation with
positive integer constraint similar to the one described in
[11].

Using the bit allocation information we quantize the ICA
coefficients with a uniform quantizer. We assign 8 bits to
quantize the ICA mixing matrix samples. We compensate
the overhead of the ICA matrix transmission with the di-
mension reduction of the filter bank coefficients. The scale-
factors which are used by the decoder for re-quantization
are quantized with 6 bits.

4.4. Coding delay

Computing the ICA matrix for each block is a time consum-
ing task which adds coding delay to the scheme. The coding
delay depends on the implementation of ICA. With fast ICA
implementation the coding delay can reduce to the coding
delay introduced by coders using psychoacoustic models.
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Fig. 5. Architecture of the proposed encoder.
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Fig. 6. Encoders mean ranking value with 95% confidence
interval. The left figure corresponds to encoding in 32kbps
and 44.1khz sampling rate. The right figure corresponds to
encoding in 32kbps and 32khz sampling rate.

5. EXPERIMENTS RESULTS

We compared our algorithm with two perceptual audio coders.
MPEG-1 layer 1 and MPEG-1 layer 3 (MP3) [8]. Layer 1



Layer-1 ICA
Country 0.332263 0.217462
Pop 0.333203 0.322581
New Age 0.322254 0.190823
Classical 0.304873 0.166340
Percussion 0.382145 0.172121

Table 1. Empirical entropy for the quantized filter bank coefficients in
the audio files used in the experiment

algorithm is simple yet uses perceptual measures such as the
masking effect to encode audio signals efficiently. Layer
3 contains several enhancements such as improved hybrid
filter bank, noise shaping procedure, and huffman coding.
Since we compared our encoding algorithm to perceptual
coding algorithms, the test was carried out using a psycho-
physical experiment.We performed two sets of tests. In both
tests the encoder bit-rate was 32kbps. In the first test the
sampling rate was 44.1Khz which results in 0.7256 bits per
sample, and in the second test we used sampling rate of
32Khz which results in 1 bit per sample. The participants
were asked to rate the encoder given a reference source with
a 1 to 5 scale where 5 stands for imperceptible encoding
and 1 stands for a very annoying encoding. We carefully
selected the music test files to cover wide range of audio
data. The number of participants in the experiment was 10.
Figure 6 depicts the mean rating value for each of the en-
coders. It can be seen that for both sampling rates the ICA
coder was rated higher than Layer-1 and less than Layer-3.
Moreover, as we go up with sampling ratio ICA encoder is
significantly better than Layer-1.

Another measure that we tested was the empirical en-
tropy of the quantized filter bank coefficients. This measure
gives indication whether the coefficients can be further com-
pressed using lossless compression to achieve the entropy
lower bound. Table 5 shows the empirical entropies. It can
be seen that for all sounds the entropy measured for the ICA
quantized coefficients is lower than the one measured in
Layer-1 which is based on the psychoacoustic model. This
implies that the coefficients can be further compressed us-
ing lossless coding scheme, thus we can further reduce the
bitrate for the ICA encoder.

The test files, which were used in the experiment can
be downloaded from http://www.cs.huji.ac.il/∼chopin/ica-
encoder/index.html

6. CONCLUSION

We showed that the psychoacoustic model which is used
in perceptual audio coding can be interpreted in terms of
reducing information redundancy in the signal by reducing
the mutual information between the filter bank subbands.
We argued that ICA is more appropriate for removing this
redundancy. We showed that for low-bitrates an audio com-

pression algorithm based on ICA is superior than legacy
perceptual coding algorithm. Our results show that repre-
senting audio data as independent components can reduce
the audible noise in audio compression. The superior re-
sults of MP3 over our algorithm can be argued to be be-
cause of the advanced coding algorithms used in MP3. MP3
adds very efficient noise shaping algorithm, which together
with huffman coding gives superior results. We have im-
plemented the same coding blocks as in Layer-1. Thus,
comparison with Layer 1 is more appropriate. The ICA en-
coder had superior results than Layer-1 for different sound
files. This leads us to the conclusion that using ICA in low
bit-rates might be equivalent or better than psychoacoustic
modeling.
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