
Robust Head Pose Estimation by Fusing Time-of-

Flight Depth and Color
Amit Bleiweiss

 1
, Michael Werman

 2

 School of Computer Science, Hebrew University of Jerusalem

Jerusalem 91904, Israel
1
amitbl@cs.huji.ac.il

2
werman@cs.huji.ac.il

Abstract—We present a new solution for real-time head pose

estimation. The key to our method is a model-based approach

based on the fusion of color and time-of-flight depth data. Our

method has several advantages over existing head-pose

estimation solutions. It requires no initial setup or knowledge of

a pre-built model or training data. The use of additional depth

data leads to a robust solution, while maintaining real-time

performance. The method outperforms the state-of-the art in

several experiments using extreme situations such as sudden

changes in lighting, large rotations, and fast motion.

I. INTRODUCTION

Head pose estimation is a widely researched problem in

computer vision. The accurate computation of a person's head

orientation and position is becoming increasingly important as

computing power increases, and as cameras are being

incorporated into new sectors. For example, head pose is

critical in driving applications, allowing the driver to receive

cues based on his or her awareness and visual attention. In

addition, head pose can be used as input to face recognition

systems, a new means of user interaction, or controlling

industrial machinery from a distance. Although many different

systems have been proposed, this problem still does not have a

robust solution which works in real-time. In addition, most of

the solutions require either a training phase, or a prepared 3D

model in order to provide correct results.

Recently, much research has been conducted using time-of-

flight (TOF) depth cameras. The use of their resultant depth

map has been used to solve hard problems in computer vision.

Furthermore, it has been shown that this depth data can be

used to complement other sensor data in order to improve

existing results. In this paper we show that the natural fusion

of color and depth data can yield much improved results for

head pose estimation. In section 2 we give an overview of

related work in the field. In section 3 we give a brief

description of the TOF sensor and its output. In section 4 we

describe our algorithm in detail. In section 5 we state our

results and compare to existing methods. In section 6 we

conclude and offer some future directions.

II. RELATED WORK

Head-pose estimation is an active research field with many

proposed solutions [15]. We classify existing solutions under

the following categories:

Statistical Learning Methods A popular method for

estimating head pose uses training data in order to classify

different poses. Lia et al. [20] used manifold learning to track

both head position and facial expressions. De la Torre et al.

[7] trained Hidden Markov Models to track different features

of the face. Fujimura et al [21] used unsupervised learning and

SVR to train a system for detecting different head pose states.

Vatahska et al. [29] trained Haar-like features using a neural

network scheme to estimate the head pose at each frame.

Lepetit et al. [19] trained feature point descriptors for general

object pose estimation, including faces, but required a

carefully designed classifier based on training images and a

3D face model. Wu et al. [34] used a probabilistic model for

each possible pose, and achieved the best results according to

a recent survey [6]. While these methods work in many cases,

they typically require extensive manual preprocessing in

preparing the training data, and large amounts of training data

in order to perform well.

Motion-Based Methods In these methods, feature points on

the face are tracked at each frame. Ohayon et al [25] detected

a number of 3D feature points on an initial model and used

those points to track subsequent head rotations. However, this

method reports performance of about 3 fps, and thus is not

suitable for real-time applications. Wang et al [33] use optical

flow to track facial feature points. Several other papers

[24,14,37,26] track feature points throughout a sequence. The

disadvantage of this method is that it depends on a set of

feature points which may be occluded as the head rotates. As

the number of tracked features decreases, so does the

performance of these algorithms. In addition, drifting typically

occurs in all motion-based tracking algorithms, causing

recovery to be quite difficult.

Model-Based Methods Another possible solution is using a

model-based approach [9,10,8,5] which requires an initial 3D

model similar to the person's face shape and texture. This

approach uses a synthesis-analysis loop which renders the 3D

model and tries to match the rendered result to the real image

by manipulating its vertices and texture coordinates. The

problem with this approach is that it requires a textured 3D

model of the person in the scene, making it hard to scale for

practical applications. The model either has to be created by

MMSP’10, October 4-6, 2010, Saint-Malo, France.

978-1-4244-8112-5/10/$26.00 ©2010 IEEE

an artist or generated automatically by an algorithm [2,17,35].

In addition, depending on the size of the model, these methods

may require a high-end GPU for rendering the textured

synthetic face model.

3D Methods In the past few years, these techniques have been

extended to incorporate measured 3D data. Gokturk et al. [11]

described a top-view head-tracking system based on a training

set of time-of-flight depth images. Walder et al. [32] used a

complex dynamic 3D scanner setup to track the head's pose

and non-rigid shape, though the algorithm took over 20

seconds to compute per frame. Malassiotis et al. [22]

estimated head pose from CLA range data by tracking the

nose, but state their technique is highly dependent on the

person's face shape and does not perform well for large

rotations. Meers et al. [23] used a similar technique on TOF

data. Although these techniques have improved previous

results, they still lack the robustness necessary for practical

real-world applications, mostly due to the noisy nature and

low resolution of the recorded depth data.

Recently, research has been focused on fusing TOF depth with

color [3,27], stereo [36,13] and IR [16] in order to improve the

results. We propose a model-based approach which fuses

RGB and time-of-flight depth data in order to provide further

improvement. Our method is unique in that the model is based

on real 3D data rather than estimated values. In addition,

although we are using a model-based approach, there is no

need for a prepared model but rather the model is created on

the fly per frame.

III. SENSOR DESCRIPTION

For our data, we used 3DV Systems' ZCam camera, which

simultaneously captures both RGB and depth data using the

time-of-flight principle. This gives us a 4-channel image with

8 bits per channel. Although the data is recorded using 2

separate lenses, the RGB image is already warped to match

the depth image. The ZCam camera has several options for

resolution and frequency, and we used 320x240 resolution

captured at 30 fps. The camera has a range of 0.5-2.5m, a 60
o

diagonal field of view, a depth accuracy of a few centimeters,

and RGB data comparable to a standard webcam.

Unlike other TOF depth cameras (Canesta, PMDTec, Mesa),

which use the intensity modulation approach [18], the ZCam

has a unique fast optical shutter technology. This approach

gives the camera the ability to set the window limits freely,

selecting both the front and back limits of the sensor.

Intuitively, the process can be imagined as an optical signal

that is reflected by objects in the scene and generates a

distorted light wall [1]. Other TOF cameras only set the front

limit. This allows us to adjust the camera parameters in such a

way that we get maximum depth resolution, capturing a high

quality face located at 60-70cm (see Fig. 1). Another

advantage of the ZCam is that it has larger resolution and does

not exhibit the aliasing artifacts inherent in the intensity

modulation scheme. Furthermore, the noise in the depth data

at such a close distance was constant in space, thus removing

the need for a complex noise model. We verified this with

various clothing, people, and hairstyles.

Fig. 1. Example of face depth data resolution acquired by TOF sensor

IV. HEAD POSE ESTIMATION

We estimate the head pose using an iterative scheme

[10,12] which solves for the relative 3D transformation

between each pair of frames. First, we find an initial head

window w using a face classifier [31] and expand the window.

Then, for each image in the sequence, we perform the

following process (see Fig. 2):

1. Given RGB and depth data from two subsequent frames

1I and
2I , we estimate their relative translation t∆ and

rotation R∆ by solving the linear system of equations

presented in section 4B, using w as a region of interest for

deciding which pixels to use in the equations. The

resulting solution vector contains the translation and

rotation deltas for the current iteration.

2. Transform the 3D face mesh corresponding to 1I by

result translation t∆ and rotation R∆ and render a

synthetic 2D image
1Î .

3. Compute the residual of the synthetic 2D image 1Î and

actual video image
2I (as described in Section 4C). As

long as the residual error decreases, we continue to

iterate, going back to step 1 and swapping the original

image 1I with the latest transformed synthetic image 1Î .

Once the error starts to increase, we end the iteration and

apply the procedure to the next pair of frames in the

sequence.

Fig. 2. Algorithm flow chart

A. Face Model

The 3D face model is constructed based on the projected

world coordinates supplied from depth data in the rectangular

area of the face (see Fig. 3). The rest of the pixels are

discarded and treated as noise. The model consists of a set of

3D coordinates { 0p ,..., np } and a matching set of RGB pixel

values{ 0r , 0g , 0b ,... nr , ng , nb }. The 3D mesh is constructed

by creating a triangle for each set of neighboring pixels, and

using their respective color data as texture coordinates. A

typical generated model consists of an average of 1500-2000

vertices depending on the head's distance from the camera,

making it suitable for fast synthesis.

Fig. 3. Textured face mesh used as model for comparison with actual image

B. Proposed Algorithm

We define the 3D motion equations in the following manner:

2022

1011

tpRp

tpRp

+=

+=

where 0p is a 3D vertex located on the model,
1p is that

same vertex after a transformation (as seen in image
1I), and

2p is the same vertex after an additional transformation (as

seen in image 2I). As we know the intrinsic parameters of the

sensor, applying a perspective projection to the 3D vertex

][xyzpi = yields the 2D projected coordinate [XY]

z

y
fY

z

x
fX yx −=−= ,

where xf and yf are the horizontal and vertical focal lengths

of the sensor. Using these projected coordinates, we define a

2D displacement between each pixel by

22

22

ˆ

ˆ

YYd

XXd

Y

X

−=

−=

In order to combine all these into a single linear system of

equations, we include the pixel intensity values using the

optical flow equation

22
ˆ IId

Y

I
d

X

I
YX −=

∂

∂
+

∂

∂

In our case, the input data is 320x240 resolution, and thus

computing optical flow for the entire image would result in

slow runtime performance [30]. Since our goal was to achieve

real-time results, we did not compute the full optical flow, but

rather only computed the gradients for selected vertices. The

gradients
X

I

∂

∂
and

Y

I

∂

∂
are thus computed by using samples

from the neighboring pixel's synthetic and actual image value,

rather than computing an entire scene flow. Combining the

above equations, we end up with a linear system of equations

which can be solved in a least squares sense:

btttRRRA zyxzyx =∆∆∆∆∆∆][

Each pixel contributes 3 equations (one for each of RGB), and

z is taken from the depth image directly. Once we solve for

the deltas, the model is transformed and the next iteration is

initiated.

C. Computing the Residual

At each iteration we compute the residual of the input image

with the synthetic image. The sum of the result is checked

against a threshold value, and then a decision is made whether

to continue with an additional iteration, or go to the next

frame. We tried several possible options for computing the

residual, using different measures combining color and depth

sums. In practice, the sum of squared differences of all color

channels including z worked best. Thus, at each iteration we

compute the following:

() () () ()222

0

2 ˆˆˆˆˆ
iiiiii

n

i

ii bbggrrzz
w

−+−+−+−=∑
=

ε

Fig. 4. Examples of residuals computed in between several iterations. It is

clear that the right image is closer to convergence than the left image.

D. Outlier Removal

Since least squares is sensitive in terms of outliers, especially

for overdetermined systems with a large number of equations,

they must be removed in order to provide a robust solution.

The majority of outliers are removed automatically as only

pixels within the face's window w are used in the solution.

These outliers are either noisy pixels attributed to the inherent

noise in the depth sensor, or pixels related to non-face regions

of the image which do not obey our motion model. In

addition, during each iteration of least squares, we remove

equations for those pixels which exhibit large motion steps. A

rough motion estimation is computed using the following

)()(ˆ)(ˆ

)()(ˆ)(ˆ
22

pzpzpd

pIpIpd

z

c

−=

−=

When these displacements exceed a certain threshold, the

pixel's respective equation is removed from the system before

the least squares solution is executed.

E. Recovery

The residuals are also used to decide when tracking is lost,

and the algorithm needs to recover. When the residual sum is

larger than a certain threshold for several frames, it is clear

that the algorithm is not converging, and thus we can infer that

tracking is lost. In this case, we freeze the algorithm and run

the Viola and Jones frontal face classifier [31] until a valid

face is identified. The advantage of this approach is that it is

easy to identify when the face is looking straight at the

camera, at which point it is simple to restart the algorithm and

assume a valid state. We use the depth data to optimize

performance, as running the classifier on a 320x240 image is

slow and prone to false positives as well. Therefore, we use

the depth data as a mask and run the classifier only in the area

of the color channels corresponding to non-zero pixels in the

depth channel. This gives us performance which is 4 times

faster on average, and reduces the number of false positives.

V. EXPERIMENTS

It was somewhat difficult to compare with other methods, as

our data is unique in that it contains the TOF depth data as

well, and we focused on real-time performance. No other head

depth and RGB data is made publicly available as far as we

have seen, so that limited us to checking color-only trackers

and ignore the depth for other methods. The color tracker we

used is very similar to other real-time model-based systems

[10,12] papers. Also, stereo depth is quite different from the

nature of TOF depth data, and thus the same algorithms

cannot be compared (stereo had "holes" of unknown data,

depth has range problems, etc.). We tested our algorithm on a

set of challenging sequences, including extreme rotations,

abrupt lighting changes, and fast motion. The algorithm is

able to accurately track the head throughout these sequences.

In the cases when tracking is lost, a quick recovery is

accomplished within a few frames. The depth data is used as a

mask for running the face classifier on a smaller region of

interest rather than on the entire image, thus enabling us to

recover in real-time. These complex sequences exhibited the

advantage gained by fusion with time-of-flight depth. In

addition to running our tracker on each sequence, we

compared the results with model-based trackers using only

color or time-of-flight depth independently, which yielded

worse results in all cases. The color-only tracker used the

algorithm described in Section 4B, but used a pre-built model

based on the first frame, as we do not have any real z data for

generating the 3D face model on the fly per frame. In

addition, the ẑ in Equation (5) was estimated from the depth

buffer of the rendered result rather than real measured depth

data. The depth-only tracker used a simplified form of

Equation (5), as the scalar values of the depth data were used

instead of color data. This also led to a much smaller linear

system, as each pixel contributes a single equation.

Extreme rotations Most motion-based methods do not

perform well on extreme rotations, such as profile views of

the face. In this case, many important facial features are

occluded, and thus can no longer be tracked. In addition, the

side of the face is generally smooth, and thus is not suitable

for optical flow type tracking. Finally, as the face rotates, its

color changes based on diffuse reflection. Fusing color and

depth allows us to overcome these problems. Since the model

is updated at each frame, its depth and color reflect its current

orientation, and thus it always has the highest quality data

based on the camera's current view. We recorded a sequence

containing eight extreme head rotations in all directions, and

compared the residual errors of our method with tracker based

on color only and TOF depth only. Both of these trackers

yielded worse results, and lost tracking quickly as soon as the

face rotated to a profile view. Compared to our method, the

color tracker's error rate was five times higher and the depth

tracker's error rate was four times higher on average. This is

most likely due to lost features in the color tracker, and noisy

pixels in the depth tracker. By fusing color and depth, our

method was able to achieve a constant low error rate and

maintain tracking throughout the entire sequence (see Fig. 5).

Fig. 5. Comparison graphs of residual error for a sequence with extreme

rotations, during which the head is turned to a complete profile view. The top

graph shows our method, in which the tracking maintains a constant error rate

despite several rotations throughout the sequence. The second graph shows

the results of a color-only method, which has larger errors, and loses the

tracking at the first extreme rotation (frame 180). The third graph shows the

results of a depth-only tracker, which also loses the tracking at the first

extreme rotation, and exhibits significantly noisier results than our method.

Lighting changes We ran our algorithm on sequences where

a sudden extreme change in ambient lighting caused the entire

scene to change colors. Using a model-based method with

color only causes tracking to be lost as soon as the lighting

changes (see Fig. 6). This is due to the fact that the model is

created a priori and does not take into account future color

changes. In addition, tracking features by color only works

well if the color does not change throughout the scene, due to

the optical flow assumption. In our method, we generate a

new model for each frame, and thus it adjusts quickly to any

change in lighting. Once a significant change in lighting

occurs, we get a large residual error. We then recover the

tracking using the method described in Section 4E, and create

a new model based on the current lighting in the scene. The

change in lighting is reflected in the new model's texture, and

thus we are able to continue the estimation process as before.

In addition, the fusion of time-of-flight depth adds additional

information, increasing the overall robustness of the motion

tracking phase. The final residual error using the color-only

tracker was approximately 2-3 times higher than our method.

We did not test the depth-only tracker in these experiments, as

lighting changes do not affect the output of the time-of-flight

sensor.

Fig. 6. Comparison graphs of residual error for a sequence with sudden

change in lighting. The top graph shows our method, whereas the bottom

graph shows the results of model-based method using only RGB color. The

lighting change happens around frame 350. Note that our algorithm is able to

quickly recover, whereas the color-based method loses tracking. In addition,

the above graphs clearly show that the error is much higher throughout the

sequence in the case of color-only tracking.

Fast motion Fast motion sequences caused problems when

using the color only tracker, as the data appeared to be overly

smoothed due to motion blur at the camera's frequency of 30

Hz. This caused the tracking to get lost when the head made a

sudden quick rotation. This is due to the fact that color

gradients are degraded as the image is smoother (see Fig. 7).

When fusing the TOF depth data, the tracking worked fine as

the depth sensor does not exhibit the same blurring effects as

seen in the color camera (see Fig. 8).

(a)

(b)

Fig. 7. A frame from a fast motion sequence recorded with the ZCam. The

color data (a) appears blurred as a result of the 30 Hz frequency. The depth

data (b), however, does not exhibit the same effects, and therefore can be

fused with color to significantly improve tracking results in fast motion.

Fig. 8. Comparison graphs of residual error for a sequence with fast rotations.

The top graph shows our method, in which the tracking maintains a constant

error rate despite several fast rotations throughout the sequence. The second

graph shows the results of a color-only method, which has larger errors, and

loses the tracking at the beginning (frame 30). The third graph shows the

results of a depth-only tracker, which does not lose tracking but does have

significant noise compared to our method.

VI. CONCLUSION

We presented a robust system for real-time pose estimation by

using data from a single TOF sensor. The system provides a

better solution than previous methods by exploiting the depth

information and fusing it with matching color data. This

allows for improvement of current model-based methods in

that the model can be updated often, and that the tracking

actually occurs in 3D rather than 2D. Furthermore, the system

does not rely on specific feature points, such that tracking

works robustly from all angles of the head. By generating a

new model per frame, we avoid the drifting problem which is

common in all tracking applications, and also avoid problems

when lighting changes in the middle of a sequence. Our

method runs comfortably at 30fps on a single-core 2.4GHz PC

with an on-board GPU.

This method could be further improved by adding a weighing

scheme, such as to decide how much color and TOF depth to

use respectively per frame based on some heuristic. It would

also be of value to experiment with the fusion of TOF depth

and IR data. Unlike the ZCam, color is not available in other

TOF cameras whereas IR data is inherent in their

functionality.

ACKNOWLEDGMENT

This work was supported by the Israeli Ministry of Science

Grant 3-5795.

REFERENCES

[1] 3DV Systems, ZCam Practical Guide, edition 1.03, January 2008.

[2] V. Blanz and T. Vetter. "Face recognition based on fitting a 3d

morphable model. IEEE Trans, Pattern Anal. Mach. Intell.,
25(9):1063-1074, 2003.

[3] A. Bleiweiss and M. Werman. "Fusing time-of-flight depth and color

for real-time segmentation and tracking". In Dyn3D '09: Proceedings
of DAGM 2009 Workshop on Dynamic 3D Imaging, pages 58-69,

2009.

[4] C. Bregler and J. Malik, "Tracking People with Twists and Exponential

Maps", IEEE Conf. Computer Vision and Pattern Recognition, 1998,

pp. 8-15.

[5] C.M.J. Brolly and X.L.C. Stratelos. "Model-based head pose

estimation for air-traffic controllers". In ICIP 2003: Proceedings of the
International Conference on Image Processing, pages 113-116, 2003.

[6] L.M. Brown and Y.L. Tran. "Comparative study of coarse head pose

estimation. In MOTION '02: Proceedings of the Workshop on Motion
and Video Computing, page 125, 2002.

[7] F. de la Torre, Y. Yacoob, L. Davis. "A probabilistic framework for

rigid and non-rigid appearance based tracking recognition. IEEE
International Conference on Automatic Face and Gesture Recognition,

0:491-499,2000.

[8] D. Decarlo and D. Metaxas. "Optical flow constraints on deformable

models with applications to face tracking. Int. J. Comput. Vision,
38(2):99-127, 2000.

[9] F. Dornaika and J. Ahlberg. "Model-based head and facial motion

tracking", In ECCV Workshop on HCI, volume 3058 of Lecture Notes
in Computer Science, pages 221-232, 2004.

[10] P. Eisert, "Low Bit-Rate Video Coding using 3D Models". Phd thesis,

Friedrich-Alexander-University of Erlangen-Nuremberg, 2000.

[11] S.B. Gokturk and C. Tomasi. "3d head tracking based on recognition

and interpolation using a time-of-flight depth sensor". In CVPR, pages

211-217, 2004.

[12] S.B. Gokturk, J.Y Bouguet, C. Tomasi, B. Girod, "Model-Based Face

tracking for View-Independent Facial Expression Recognition", Face
and Gesture Recognition, 2002.

[13] U. Hahne and M. Alexa. "Depth Imaging by combining time-of-flight

and on-demand stereo". In Dyn3d '09: Proceedings of the DAGM 2009
Workshop on Dynamic 3D Imaging, pages 70-83, 2009.

[14] T. Horprasert, Y. Yacoob, L.S. Davis. "Computing 3d head orientation

from a monocular image sequence". In FG '96: Proceedings of the 2nd
International Conference on Automatic Face and Gesture Recognition,
page 242, 1996.

[15] A.K. Jain and S.Z. Li. Handbook of Face Recognition. 2005.

[16] O. Kahler, E. Rodner, J. Denzler. "On fusion of range and intensity

information using graph-cut for planar patch segmentation. Int. J.
Intell. Syst. Technol. Appl., 5(3/4):365-373, 2008.

[17] I. Kemelmacher and R. Basri. "Molding face shapes by example". In

ECCV 2006: Proceedings of the European Conference in Computer
Vision, pages 277-288, 2006.

[18] A. Kolb, E. Barth, R. Koch, and R. Larsen. "Time-of-Flight Sensors in

Computer Graphics". In Proc. Eurographics (State-of-the-Art Report),
2009.

[19] V. Lepetit, J. Pilet, and P. Fua. "Point matching as classification

problem for fast and robust object pose estimation". In CVPR, pages

244-250, 2004.

[20] W.K. Liao and G.G. Medioni. "3d face tracking and expression

inference from a 2d sequence using manifold learning". In CVPR,
pages 1-8, 2008.

[21] X. Liu, Y. Zhu, and K. Fujimura. "Real-time pose classification for

driver monitoring". In The IEEE 5th International Conference on
Intelligent Transportation Systems, pages 174-178, 2002.

[22] S. Malassiotis and M.G. Strintzis. "Robust real-time 3D head pose

estimation from range data", Pattern Recognition, 38(8):1153-1165,

2005.

[23] S. Meers and K. Ward. "Head pose tracking with a time-of-flight

camera". In Proceedings of the Australian Conference on Robotics and
Automation, pages 113-116, 2008.

[24] E. Murphy-Chutorian, A. Doshi, and M.M. Trivedi. "Head pose

estimation for driver assistance systems: A robust algorithm and

experimental evaluation. In 2007 IEEE Intelligent Transportation
Systems Conference, pages 709-714, 2007.

[25] S. Ohayon and E. Rivlin. "Robust 3d head tracking using camera pose

estimation. In ICPR '06: Proceedings of the 18th International
Conference on Pattern Recognition, pages 1063-1066, 2006.

[26] R. Ruddarraju,A. Haro, and I.A. Essa. "Fast multiple camera head pose

tracking". In Proceedings of Vision Interface 2003, 2003.

[27] I. Schiller and R. Koch. "Data structures for capturing dynamic scenes

with a time-of-flight camera. ". In Dyn3D '09: Proceedings of DAGM
2009 Workshop on Dynamic 3D Imaging, pages 42-57, 2009.

[28] H. Spies and J.L. Barron. "Evaluating the range flow motion

constraint". ICPR, Vol. 3, pages 517-520, 2002.

[29] T. Vatahska, M. Bennewitz, and S. Behnke. "Feature-based head pose

estimation from images. In Proceedings of the IEEE-RAS 7th
International Conference on Humanoid Robots (Humanoids), 2007.

[30] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. "Three-

dimensional scene flow". PAMI, 27(3):4, 2005.

[31] P. Viola and M. Jones. "Robust real-time face detection. In ICCV
2001: Proceedings of the 8th IEEE International Conference on
Computer Vision, volume 2, page 747, 2001.

[32] C. Walder, M. Breidt, H. Bulthoff, B. Scholkopf, and C. Curio.

"Markerless 3d face tracking". In Proceedings of the 31st DAGM
Symposium on Pattern Recognition, pages 41-50, 2009.

[33] S.B. Wang, D. Demirdjian, T. Darrell, and H. Kjellstrom. "Multimodal

communication error detection for driver-car interaction". In ICINCO-
RA, pages 365-371, 2007.

[34] Y. Wu and K. Toyama. "Wide-range, person-and-illumination-

insensitive head orientation estimation". In FG '00: Proceedings of the
4th IEEE International Conference on Automatic Face and Gesture
Recognition, page 183, 2000.

[35] Z. Zhang, Z. Liu, C. Jacobs, and M. Cohen. "Rapid modeling of

animated faces from video". Technical report, Journal of Visualization

and Computer Animation, 2000.

[36] J. Zhu, L. Wang, R. Yang, and J. Davis. "Fusion of time-of-flight depth

and stereo for high accuracy depth maps". In CVPR, 2008.

[37] Y. Zhu and K. Fujimura. "Head pose estimation for driver monitoring".

In Intelligent Vehicles Symposium, 2004, pages 501-506, 2004.

