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Abstract—We present a new solution for real-time head pose 

estimation. The key to our method is a model-based approach 

based on the fusion of color and time-of-flight depth data. Our 

method has several advantages over existing head-pose 

estimation solutions. It requires no initial setup or knowledge of 

a pre-built model or training data. The use of additional depth 

data leads to a robust solution, while maintaining real-time 

performance. The method outperforms the state-of-the art in 

several experiments using extreme situations such as sudden 

changes in lighting, large rotations, and fast motion. 

I. INTRODUCTION 

Head pose estimation is a widely researched problem in 

computer vision. The accurate computation of a person's head 

orientation and position is becoming increasingly important as 

computing power increases, and as cameras are being 

incorporated into new sectors. For example, head pose is 

critical in driving applications, allowing the driver to receive 

cues based on his or her awareness and visual attention. In 

addition, head pose can be used as input to face recognition 

systems, a new means of user interaction, or controlling 

industrial machinery from a distance. Although many different 

systems have been proposed, this problem still does not have a 

robust solution which works in real-time. In addition, most of 

the solutions require either a training phase, or a prepared 3D 

model in order to provide correct results. 

 

Recently, much research has been conducted using time-of-

flight (TOF) depth cameras. The use of their resultant depth 

map has been used to solve hard problems in computer vision. 

Furthermore, it has been shown that this depth data can be 

used to complement other sensor data in order to improve 

existing results. In this paper we show that the natural fusion 

of color and depth data can yield much improved results for 

head pose estimation. In section 2 we give an overview of 

related work in the field. In section 3 we give a brief 

description of the TOF sensor and its output. In section 4 we 

describe our algorithm in detail. In section 5 we state our 

results and compare to existing methods. In section 6 we 

conclude and offer some future directions. 

II. RELATED WORK 

Head-pose estimation is an active research field with many 

proposed solutions [15]. We classify existing solutions under 

the following categories: 

 

Statistical Learning Methods A popular method for 

estimating head pose uses training data in order to classify 

different poses. Lia et al. [20] used manifold learning to track 

both head position and facial expressions. De la Torre et al. 

[7] trained Hidden Markov Models to track different features 

of the face. Fujimura et al [21] used unsupervised learning and 

SVR to train a system for detecting different head pose states. 

Vatahska et al. [29] trained Haar-like features using a neural 

network scheme to estimate the head pose at each frame.  

Lepetit et al. [19] trained feature point descriptors for general 

object pose estimation, including faces, but required a 

carefully designed classifier based on training images and a 

3D face model. Wu et al. [34] used a probabilistic model for 

each possible pose, and achieved the best results according to 

a recent survey [6]. While these methods work in many cases, 

they typically require extensive manual preprocessing in 

preparing the training data, and large amounts of training data 

in order to perform well. 

 

Motion-Based Methods In these methods, feature points on 

the face are tracked at each frame. Ohayon et al [25] detected 

a number of 3D feature points on an initial model and used 

those points to track subsequent head rotations. However, this 

method reports performance of about 3 fps, and thus is not 

suitable for real-time applications. Wang et al [33] use optical 

flow to track facial feature points. Several other papers 

[24,14,37,26] track feature points throughout a sequence. The 

disadvantage of this method is that it depends on a set of 

feature points which may be occluded as the head rotates. As 

the number of tracked features decreases, so does the 

performance of these algorithms. In addition, drifting typically 

occurs in all motion-based tracking algorithms, causing 

recovery to be quite difficult. 

 

Model-Based Methods Another possible solution is using a 

model-based approach [9,10,8,5] which requires an initial 3D 

model similar to the person's face shape and texture. This 

approach uses a synthesis-analysis loop which renders the 3D 

model and tries to match the rendered result to the real image 

by manipulating its vertices and texture coordinates. The 

problem with this approach is that it requires a textured 3D 

model of the person in the scene, making it hard to scale for 

practical applications. The model either has to be created by 
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an artist or generated automatically by an algorithm [2,17,35]. 

In addition, depending on the size of the model, these methods 

may require a high-end GPU for rendering the textured 

synthetic face model. 

 

3D Methods In the past few years, these techniques have been 

extended to incorporate measured 3D data. Gokturk et al. [11] 

described a top-view head-tracking system based on a training 

set of time-of-flight depth images. Walder et al. [32] used a 

complex dynamic 3D scanner setup to track the head's pose 

and non-rigid shape, though the algorithm took over 20 

seconds to compute per frame. Malassiotis et al. [22] 

estimated head pose from CLA range data by tracking the 

nose, but state their technique is highly dependent on the 

person's face shape and does not perform well for large 

rotations. Meers et al. [23] used a similar technique on TOF 

data. Although these techniques have improved previous 

results, they still lack the robustness necessary for practical 

real-world applications, mostly due to the noisy nature and 

low resolution of the recorded depth data. 

 

Recently, research has been focused on fusing TOF depth with 

color [3,27], stereo [36,13] and IR [16] in order to improve the 

results. We propose a model-based approach which fuses 

RGB and time-of-flight depth data in order to provide further 

improvement. Our method is unique in that the model is based 

on real 3D data rather than estimated values. In addition, 

although we are using a model-based approach, there is no 

need for a prepared model but rather the model is created on 

the fly per frame. 

III. SENSOR DESCRIPTION 

For our data, we used 3DV Systems' ZCam camera, which 

simultaneously captures both RGB and depth data using the 

time-of-flight principle. This gives us a 4-channel image with 

8 bits per channel. Although the data is recorded using 2 

separate lenses, the RGB image is already warped to match 

the depth image. The ZCam camera has several options for 

resolution and frequency, and we used 320x240 resolution 

captured at 30 fps. The camera has a range of 0.5-2.5m, a 60
o
 

diagonal field of view, a depth accuracy of a few centimeters, 

and RGB data comparable to a standard webcam. 

 

Unlike other TOF depth cameras (Canesta, PMDTec, Mesa), 

which use the intensity modulation approach [18], the ZCam 

has a unique fast optical shutter technology. This approach 

gives the camera the ability to set the window limits freely, 

selecting both the front and back limits of the sensor. 

Intuitively, the process can be imagined as an optical signal 

that is reflected by objects in the scene and generates a 

distorted light wall [1]. Other TOF cameras only set the front 

limit. This allows us to adjust the camera parameters in such a 

way that we get maximum depth resolution, capturing a high 

quality face located at 60-70cm (see Fig. 1). Another 

advantage of the ZCam is that it has larger resolution and does 

not exhibit the aliasing artifacts inherent in the intensity 

modulation scheme. Furthermore, the noise in the depth data 

at such a close distance was constant in space, thus removing 

the need for a complex noise model. We verified this with 

various clothing, people, and hairstyles. 

 

Fig. 1. Example of face depth data resolution acquired by TOF sensor 

IV. HEAD POSE ESTIMATION 

We estimate the head pose using an iterative scheme 

[10,12] which solves for the relative 3D transformation 

between each pair of frames. First, we find an initial head 

window w using a face classifier [31] and expand the window. 

Then, for each image in the sequence, we perform the 

following process (see Fig. 2): 

1. Given RGB and depth data from two subsequent frames 

1I and 
2I , we estimate their relative translation t∆  and 

rotation R∆  by solving the linear system of equations 

presented in section 4B, using w as a region of interest for 

deciding which pixels to use in the equations. The 

resulting solution vector contains the translation and 

rotation deltas for the current iteration. 

2. Transform the 3D face mesh corresponding to 1I  by 

result translation t∆ and rotation R∆ and render a 

synthetic 2D image
1Î . 

3. Compute the residual of the synthetic 2D image 1Î  and 

actual video image 
2I  (as described in Section 4C). As 

long as the residual error decreases, we continue to 

iterate, going back to step 1 and swapping the original 

image 1I  with the latest transformed synthetic image 1Î . 

Once the error starts to increase, we end the iteration and 

apply the procedure to the next pair of frames in the 

sequence. 

 

 
Fig. 2. Algorithm flow chart 



A. Face Model 

The 3D face model is constructed based on the projected 

world coordinates supplied from depth data in the rectangular 

area of the face (see Fig. 3). The rest of the pixels are 

discarded and treated as noise. The model consists of a set of 

3D coordinates { 0p ,..., np } and a matching set of RGB pixel 

values{ 0r , 0g , 0b ,... nr , ng , nb }. The 3D mesh is constructed 

by creating a triangle for each set of neighboring pixels, and 

using their respective color data as texture coordinates. A 

typical generated model consists of an average of 1500-2000 

vertices depending on the head's distance from the camera, 

making it suitable for fast synthesis. 

 
Fig. 3. Textured face mesh used as model for comparison with actual image 

 

B. Proposed Algorithm 

We define the 3D motion equations in the following manner: 
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where 0p is a 3D vertex located on the model,  
1p  is that 

same vertex after a transformation (as seen in image 
1I ), and  

2p   is the same vertex after an additional transformation (as 

seen in image 2I ). As we know the intrinsic parameters of the 

sensor, applying a perspective projection to the 3D vertex 

][xyzpi =  yields the 2D projected coordinate [XY] 

z

y
fY

z

x
fX yx −=−= ,  

where xf  and yf are the horizontal and vertical focal lengths 

of the sensor. Using these projected coordinates, we define a 

2D displacement between each pixel by  
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In order to combine all these into a single linear system of 

equations, we include the pixel intensity values using the 

optical flow equation 
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In our case, the input data is 320x240 resolution, and thus 

computing optical flow for the entire image would result in 

slow runtime performance [30]. Since our goal was to achieve 

real-time results, we did not compute the full optical flow, but 

rather only computed the gradients for selected vertices. The 

gradients 
X

I

∂

∂
and 

Y

I

∂

∂
are thus computed by using samples 

from the neighboring pixel's synthetic and actual image value, 

rather than computing an entire scene flow. Combining the 

above equations, we end up with a linear system of equations 

which can be solved in a least squares sense: 

btttRRRA zyxzyx =∆∆∆∆∆∆ ][  

Each pixel contributes 3 equations (one for each of RGB), and 

z is taken from the depth image directly. Once we solve for 

the deltas, the model is transformed and the next iteration is 

initiated. 

C. Computing the Residual 

At each iteration we compute the residual of the input image 

with the synthetic image. The sum of the result is checked 

against a threshold value, and then a decision is made whether  

to continue with an additional iteration, or go to the next 

frame. We tried several possible options for computing the 

residual, using different measures combining color and depth 

sums. In practice, the sum of squared differences of all color 

channels including z worked best. Thus, at each iteration we 

compute the following: 
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Fig. 4. Examples of residuals computed in between several iterations. It is 

clear that the right image is closer to convergence than the left image. 

D. Outlier Removal 

Since least squares is sensitive in terms of outliers, especially 

for overdetermined systems with a large number of equations, 

they must be removed in order to provide a robust solution. 

The majority of outliers are removed automatically as only 

pixels within the face's window w are used in the solution. 

These outliers are either noisy pixels attributed to the inherent 



noise in the depth sensor, or pixels related to non-face regions 

of the image which do not obey our motion model. In 

addition, during each iteration of least squares, we remove 

equations for those pixels which exhibit large motion steps. A 

rough motion estimation is computed using the following 
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When these displacements exceed a certain threshold, the 

pixel's respective equation is removed from the system before 

the least squares solution is executed. 

E. Recovery 

The residuals are also used to decide when tracking is lost, 

and the algorithm needs to recover. When the residual sum is 

larger than a certain threshold for several frames, it is clear 

that the algorithm is not converging, and thus we can infer that 

tracking is lost. In this case, we freeze the algorithm and run 

the Viola and Jones frontal face classifier [31] until a valid 

face is identified. The advantage of this approach is that it is 

easy to identify when the face is looking straight at the 

camera, at which point it is simple to restart the algorithm and 

assume a valid state. We use the depth data to optimize 

performance, as running the classifier on a 320x240 image is 

slow and prone to false positives as well. Therefore, we use 

the depth data as a mask and run the classifier only in the area 

of the color channels corresponding to non-zero pixels in the 

depth channel. This gives us performance which is 4 times 

faster on average, and reduces the number of false positives. 

V. EXPERIMENTS 

It was somewhat difficult to compare with other methods, as 

our data is unique in that it contains the TOF depth data as 

well, and we focused on real-time performance. No other head 

depth and RGB data is made publicly available as far as we 

have seen, so that limited us to checking color-only trackers 

and ignore the depth for other methods. The color tracker we 

used is very similar to other real-time model-based systems 

[10,12] papers. Also, stereo depth is quite different from the 

nature of TOF depth data, and thus the same algorithms 

cannot be compared (stereo had "holes" of unknown data, 

depth has range problems, etc.). We tested our algorithm on a 

set of challenging sequences, including extreme rotations, 

abrupt lighting changes, and fast motion. The algorithm is 

able to accurately track the head throughout these sequences. 

In the cases when tracking is lost, a quick recovery is 

accomplished within a few frames. The depth data is used as a 

mask for running the face classifier on a smaller region of 

interest rather than on the entire image, thus enabling us to 

recover in real-time. These complex sequences exhibited the 

advantage gained by fusion with time-of-flight depth. In 

addition to running our tracker on each sequence, we 

compared the results with model-based trackers using only 

color or time-of-flight depth independently, which yielded 

worse results in all cases. The color-only tracker used the 

algorithm described in Section 4B, but used a pre-built model 

based on the first frame, as we do not have any real z data for 

generating the 3D face model on the fly per frame. In 

addition, the ẑ  in Equation (5) was estimated from the depth 

buffer of the rendered result rather than real measured depth 

data. The depth-only tracker used a simplified form of 

Equation (5), as the scalar values of the depth data were used 

instead of color data. This also led to a much smaller linear 

system, as each pixel contributes a single equation. 

 

Extreme rotations Most motion-based methods do not 

perform well on extreme rotations, such as profile views of 

the face. In this case, many important facial features are 

occluded, and thus can no longer be tracked. In addition, the 

side of the face is generally smooth, and thus is not suitable 

for optical flow type tracking. Finally, as the face rotates, its 

color changes based on diffuse reflection. Fusing color and 

depth allows us to overcome these problems. Since the model 

is updated at each frame, its depth and color reflect its current 

orientation, and thus it always has the highest quality data 

based on the camera's current view. We recorded a sequence 

containing eight extreme head rotations in all directions, and 

compared the residual errors of our method with tracker based 

on color only and TOF depth only. Both of these trackers 

yielded worse results, and lost tracking quickly as soon as the 

face rotated to a profile view. Compared to our method, the 

color tracker's error rate was five times higher and the depth 

tracker's error rate was four times higher on average. This is 

most likely due to lost features in the color tracker, and noisy 

pixels in the depth tracker. By fusing color and depth, our 

method was able to achieve a constant low error rate and 

maintain tracking throughout the entire sequence (see Fig. 5). 

 

 
Fig. 5. Comparison graphs of residual error for a sequence with extreme 

rotations, during which the head is turned to a complete profile view. The top 

graph shows our method, in which the tracking maintains a constant error rate 

despite several rotations throughout the sequence. The second graph shows 

the results of a color-only method, which has larger errors, and loses the 

tracking at the first extreme rotation (frame 180). The third graph shows the 

results of a depth-only tracker, which also loses the tracking at the first 

extreme rotation, and exhibits significantly noisier results than our method. 

 



Lighting changes We ran our algorithm on sequences where 

a sudden extreme change in ambient lighting caused the entire 

scene to change colors. Using a model-based method with 

color only causes tracking to be lost as soon as the lighting 

changes (see Fig. 6). This is due to the fact that the model is 

created a priori and does not take into account future color 

changes. In addition, tracking features by color only works 

well if the color does not change throughout the scene, due to 

the optical flow assumption. In our method, we generate a 

new model for each frame, and thus it adjusts quickly to any 

change in lighting. Once a significant change in lighting 

occurs, we get a large residual error. We then recover the 

tracking using the method described in Section 4E, and create 

a new model based on the current lighting in the scene. The 

change in lighting is reflected in the new model's texture, and 

thus we are able to continue the estimation process as before. 

In addition, the fusion of time-of-flight depth adds additional 

information, increasing the overall robustness of the motion 

tracking phase. The final residual error using the color-only 

tracker was approximately 2-3 times higher than our method. 

We did not test the depth-only tracker in these experiments, as 

lighting changes do not affect the output of the time-of-flight 

sensor. 

 
Fig. 6. Comparison graphs of residual error for a sequence with sudden 

change in lighting. The top graph shows our method, whereas the bottom 

graph shows the results of model-based method using only RGB color. The 

lighting change happens around frame 350. Note that our algorithm is able to 

quickly recover, whereas the color-based method loses tracking. In addition, 

the above graphs clearly show that the error is much higher throughout the 

sequence in the case of color-only tracking. 

 

Fast motion Fast motion sequences caused problems when 

using the color only tracker, as the data appeared to be overly  

smoothed due to motion blur at the camera's frequency of 30 

Hz. This caused the tracking to get lost when the head made a 

sudden quick rotation. This is due to the fact that color 

gradients are degraded as the image is smoother (see Fig. 7). 

When fusing the TOF depth data, the tracking worked fine as 

the depth sensor does not exhibit the same blurring effects as 

seen in the color camera (see Fig. 8). 

 

 

(a) 

 
(b) 

Fig. 7. A frame from a fast motion sequence recorded with the ZCam. The 

color data (a) appears blurred as a result of the 30 Hz frequency. The depth 

data (b), however, does not exhibit the same effects, and therefore can be 

fused with color to significantly improve tracking results in fast motion. 

 

 
Fig. 8. Comparison graphs of residual error for a sequence with fast rotations. 

The top graph shows our method, in which the tracking maintains a constant 

error rate despite several fast rotations throughout the sequence. The second 

graph shows the results of a color-only method, which has larger errors, and 

loses the tracking at the beginning (frame 30). The third graph shows the 

results of a depth-only tracker, which does not lose tracking but does have 

significant noise compared to our method. 



VI. CONCLUSION 

We presented a robust system for real-time pose estimation by 

using data from a single TOF sensor. The system provides a 

better solution than previous methods by exploiting the depth 

information and fusing it with matching color data. This 

allows for improvement of current model-based methods in 

that the model can be updated often, and that the tracking 

actually occurs in 3D rather than 2D. Furthermore, the system 

does not rely on specific feature points, such that tracking 

works robustly from all angles of the head. By generating a 

new model per frame, we avoid the drifting problem which is 

common in all tracking applications, and also avoid problems 

when lighting changes in the middle of a sequence. Our 

method runs comfortably at 30fps on a single-core 2.4GHz PC 

with an on-board GPU. 

 

This method could be further improved by adding a weighing 

scheme, such as to decide how much color and TOF depth to 

use respectively per frame based on some heuristic. It would 

also be of value to experiment with the fusion of TOF depth 

and IR data. Unlike the ZCam, color is not available in other 

TOF cameras whereas IR data is inherent in their 

functionality.  
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