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Abstract

An on-line agglomerative clustering algorithm for non-stationary data is described. Three

issues are addressed. The �rst regards the temporal aspects of the data. The clustering of

stationary data by the proposed algorithm is comparable to the other popular algorithms tested

(batch and on-line). The second issue addressed is the number of clusters required to represent

the data. The algorithm provides an e�cient framework to determine the natural number of

clusters given the scale of the problem. Finally, the proposed algorithm implicitly minimizes

the local distortion { a measure which takes into account clusters with relatively small mass.

In contrast, most existing on-line clustering methods assume stationarity of the data. When

used to cluster non-stationary data these methods fail to generate a good representation. More-

over, most current algorithms are computationally intensive when determining the correct num-

ber of clusters. These algorithms tend to neglect clusters of small mass due to their minimization

of the global distortion (Energy).

1 Introduction

1.1 Scale

Cluster Analysis is the process of �nding the intrinsic structure in a data set without relying

on a priori knowledge. Given a dataset and some measure of distance, or similarity, between

data points, the goal in most clustering algorithms is to assign each data point (pattern) to a

cluster \such that the patterns in a cluster are more similar to each other than to patterns in

di�erent clusters (Jain and Dubes, 1988)." However, the structure determined by the measure

of similarity is a function of scale. While, two data points at a high resolution may seem very

di�erent, when viewed at a lower resolution they appear similar.

Figure 1 is an example of a data set that has at least two apparent scales. If the data points

in the left corner are analyzed in isolation (at high resolution) they appear as three clusters.

However, the same data when viewed in the larger picture are part of a single larger cluster.

Hence, the answer to the question \How many clusters are there ?", in this data set, is twofold

0



(either three or nine). The \correct answer" is application dependent. Moreover, �nite resources

may limit the possible computable answers.

Clustering algorithms which minimize the global distortion 1 using a �xed number of cen-

troids (see (Jain and Dubes, 1988) and (Duda and Hart, 1973)) ignore scale dependent struc-

tures. Thus, in the previous example LBG (Linde et al., 1980) using twelve centroids, for

example, would �nd twelve clusters, which does not capture the structure of the data (3 or 9).

Many algorithms address this problem. Sebestyen (Sebestyen, 1962) utilized a threshold

based adaptive approach to determine the number of clusters. MacQueen's K-means algorithm

(MacQueen, 1967) solves this issue by utilizing two external parameters to de�ne the coarseness

and re�nement of the clustering. Similarly, ISODATA (Ball and Hall, 1967), a batch algorithm,

adjusts the number of clusters with an external threshold. A di�erent approach taken, follows the

Minimum Description Length criteria MDL (Rissanen, 1989). This approach tries to minimize

the total cost of the representation of the data, when the cost is a parametric function of the

distortion and of the model's complexity (Gath and Geva, 1989; Fritzke, 1994; Buhmann and

Kuhnel, 1993). However, although these methods �nd an \optimal" solution, the number of

centroids in the �nal representation depend on an external parameter. This parameter's a�ect

on the outcome of the clustering must be determined experimentally and small perturbations

in either the parameter or the data can result in drastically di�erent solutions.

Another approach, which stems from statistical mechanics, uses a pseudo-temperature to

escape local minima in the energy (distortion) function (Rose et al., 1990). This approach

presents a natural solution to the problem of scale dependent structures. The clustering process,

proposed by Rose et. al, consists of a cooling schedule in which the pseudo-temperature is

lowered and a solution at each temperature is found. During this process the energy function

undergoes something similar to phase transitions. Each such transition reects a scale dependent

solution.

1.2 Stationarity

Clustering algorithms can be divided into two classes, batch and on-line. Batch algorithms

process the data o�-line, hence, the temporal structure is ignored. Similarly, current on-line

algorithms assume the data is produced by a stationary process2 , i.e is randomly drawn. In this

situation the data can be sampled and clustered with a batch algorithm.

There exist many real world problems in which the data is produced by a certain type of

non-stationary process. If a statistical sample of the data can be stored, then current algorithms

can be used to cluster the data utilizing either a batch method or on-line method. However,

1See (Linde et al., 1980) for an extensive discussion of di�erent measures of distortion.
2The process of clustering involves an exposure to data points, one at a time. This process can be viewed as a

Discrete Time Real-valued Stochastic Process. Let t = 1; 2; 3; : : : be the time steps of points arrival, and let xt be

a d-dimensional point. The sequence xt is a stochastic process. This process is a stationary process i� the joint

distribution function of (xt1+h; xt2+h; : : : ; xtn+h) and (xt1 ; xt2 ; : : : ; xtn) are the same for all h = 0; 1; 2; : : : and an

arbitrary selection of t1; t2; : : : ; tn.
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this may require computational resources that are not always available.

We address a set of problems which share the following property: on a short time scale

it is pseudo-stationary, while on the long time scale the process has a sequential property.

For example, in Figure 10, 9 clusters of data were produced sequentially. The points in each

cluster were generated in a stationary process. First, all the points from the �rst cluster arrived

randomly. This is followed by the random arrival of all the points in the second cluster etc. In

this example, the short time scale is the number of points in each cluster. The long time scale

is the whole process.

1.3 Small clusters

Given a set of data which includes a few small distinct clusters, how can the structure of the data

be encoded such that the small clusters are represented? Existing algorithms which minimize

the global distortion have the following dilemma: Either, the clustering is performed at a high

resolution, resulting in an over�tting, or a low resolution clustering misses the small clusters.

This is due to one of the following two reasons. If a batch method is used then the e�ect the

small clusters have on the global distortion is diluted by the larger clusters. Similarly, if the data

is generated by a stationary process, on-line methods will have the same problem of dilution.

Alternatively, if the data is produced by a non-stationary process, the problem becomes how

to recognize that a new process began (arrival of a data from a new cluster) and to allocate a

centroid to represent it3.

The ART1 algorithm presents a solution to this problem (Carpenter and Grossberg, 1990).

Recently, Buhmann an Kuhnel (Buhmann and Kuhnel, 1993) proposed batch and on-line

clustering algorithms which minimize a complexity term composed of the global distortion and

the scale (complexity) of the model. The complexity term helps to solve the previous dilemma

by increasing the e�ect distant points have on the system and minimizing the over�tting of the

larger clusters. Unfortunately, the tuning of the scale parameter is very di�cult. Moreover, the

on-line algorithm assumes the stationarity of the data.

1.4 Example

As an example of a real world application concerned with the issues mentioned, one can consider

the problem of quality control of fruit. The problem is how to classify a fruit into a quality class,

based on a series of feature vectors measured from the fruit. One solution, is to use a sample

of fruits, cluster their feature vectors, and correlates their features with the pre-de�ned quality

classes. Then use the relationship between the clusters and the classes to classify the fruits.

Due to the huge amount of data needed, an on-line method should be used, but stationarity of

the data cannot be assumed. Some features of the fruits (for example, weather damages) tend

to occur in bursts, for example, fruit that is damaged by a cold spell will appear at intervals

3In such situations, once the centroid is placed it will continue to represent the cluster even though it is relatively

small. This is due to its relatively distant location.
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determined by the weather. These features { which correlate with damages { are very meaningful

for classifying the fruit and although very distinct, they are infrequent. Thus, the problem of

quality control encapsulates the three issues raised: the data is non-stationary, there exist small

meaningful clusters and the structure is scale dependent.

The proposed algorithm uses a novel approach towards such cases. The basic idea is that

each point of data can belong to a new cluster. Thus, a new centroid is placed on each and

every new point. Due to the limitation of �nite memory this implies that a centroid must be

allocated at the cost of the existing representation (centroids). This is done by merging the two

closest centroids into one, at every step, minimizing the necessary loss of information.

The resulting algorithm, does not neglect small clusters, regardless if the data is produced

by a stationary process or not. Furthermore, if a small cluster is distinct enough, it will not

be lost by being merged into an existing cluster. Finally, if the data point was distinct but no

other points were close to it enough to be merged with it (e.g, distant noise), the centroid can

be removed at the end of the process (revealed by a very small weight).

2 Proposed on-line algorithm

The proposed algorithm is simple and fast. The algorithm can be summarized in the following

three steps: For each data point arriving;

1. Move the closest centroid towards the point.

2. Merge the two closest centroids. This results in the creation of a redundant centroid.

3. Set the redundant centroid equal to the data point.

The algorithm can be understood as follows: Three criteria are addressed at each time step,

minimization of the within cluster variance, maximization of the distances between the centroids

and adaptation to temporal changes in the distribution of the data. In the �rst step, the within

cluster variance is minimized by updating the representation in a manner similar to the K-means

algorithm (MacQueen, 1967). The second step maximizes the distances between the centroids

by merging the two centroids with the minimum distance (not considering their weight). The

merging is similar to most agglomerative methods (see (Sneath and Sokal, 1973) for a review

and (Wong, 1993) for a recent paper). Finally, temporal changes in the distribution of the data

are anticipated by treating each new point as an indication to a potential new cluster.

The detailed description of the proposed algorithm for on-line clustering follows below (note,

we follow the notation used by (Buhmann and Kuhnel, 1993)). For each centroid �, let y� be

the location and c� the counter (the number of points this centroid represents) of the centroid.

The scale of the desired solution is speci�ed by the maximumnumber of centroids available (i.e.,

size of memory). We denote this parameter as Kmax. The number of centroids participating in

the �nal solution may be less than Kmax due to the post processing described below. Thus, the

true structure of the data is revealed by the remaining centroids.

1. Initialize the system with zero centroids: K = 0.
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2. Get data point x.

3. The centroid which is closest to the data point is de�ned as the winner.

winner = � s:t: ky� � xk is minimal

4. Update the location of the closest centroid and its counter, i.e. compute the running

average.

ywinner  ywinner +
x � ywinner
cwinner + 1

cwinner  cwinner + 1

5. If there remains free memory allocate a new centroid, i.e., if K < Kmax then K  K + 1,

set �  K. Goto step 8.

6. Find the redundant pair of centroids, i.e., the two centroids whose representation of the

data is most similar (closest to each other).

f; �g = argmin
;�; 6=�

ky � y�k

7. Merge the two redundant centroids by computing their weighted average location and

cumulative number of points (counter).

y  
yc + y�c�

c + c�

c  c + c�

8. Initialize the new centroid with the last data point, it may indicate the start of a new

process (the arrival of a new cluster of data).

y� = x; c� = 0

9. While there remains data to be clustered, Goto step 2.

10. Post process: remove all clusters with a negligible weight.

8� if c� < � perform steps 6 and 7 (Kmax  Kmax � 1)

This algorithm can cluster the data in a single pass, with performance (minimization of the

global distortion) comparable to existing clustering algorithms run in batch mode. Moreover,

the proposed algorithm follows new data while preserving the existing structure, i.e., even small

clusters are represented.

The next section presents results of two di�erent sets of simulations. The �rst set of simu-

lations demonstrates the robustness of the algorithm and quantitatively compares the proposed

clustering algorithm to a popular batch algorithm (Deterministic Annealing) and two on-line

methods (K-means and EquiDistortion). The results indicate that the new algorithm's perfor-

mance in minimizing the global distortion (Energy) is comparable to the other methods. This
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is true even though the proposed algorithm clusters on-line non-stationary data (K-means fails

completely to cluster the non-stationary processes). Furthermore, we introduce a new measure

of performance, the local distortion. Results from these experiments demonstrate the supe-

rior performance of the new algorithm in minimizing the local distortion, i.e., representing the

smaller clusters.

The second set of experiments, is an example of how the proposed algorithm determines the

solution given an indication of the desired scale.

3 Results of simulations

3.1 Quantitative analysis. Random generated clusters

To quantitatively analyze the performance of the proposed algorithm a series of randomly gen-

erated Gaussian mixtures were generated. Four di�erent methods were compared: K-means

(MacQueen, 1967) (an on-line method), EquiDistortion (Ueda and Nakano, 1994) (modi�ed to

be on-line) Deterministic Annealing (Rose et al., 1990) (a batch method) and the proposed

algorithm (AddC).

The K-means and Deterministic Annealing method were chosen to represent baseline per-

formance of an on-line and batch method. These algorithms determine their representation of

the data by moving their K centroids, no merging or splitting is performed. The EquiDistortion

method merges and splits centroids as a function of their relative variance, i.e., centroids with

a relatively large variance are split and those with a relatively small variance are merged. The

EquiDistortion method was modi�ed to run in an on-line mode (Guedalia et al., 1995).

The data was presented to the on-line algorithms either in a stationary process or a non-

stationary fashion. The non-stationary process has the following feature: on a short time scale

it is random, while on the long time scale the process has a sequential property. For example,

the data in Figure 10 has 9 small clusters which were produced sequentially. The points in each

cluster were generated in a stationary process. Thus, all the points from the �rst cluster arrived

randomly followed by the points in the second cluster etc. The number of centroids was equal

to number of clusters.

Deterministic Annealing ran with � = 1 through � = 11357:8 incremented by 10%. At each

� step the system ran until convergence (maximum 30 Epochs). Experimentally, it was noted

that at most � steps convergence occurred relatively early. It is worth noting that � = 11357:8

was not large enough to be considered in�nity (we stopped at this value due to lack of computing

resources).

The number of Gaussian mixtures generated was systematically varied from �ve through

twenty four. Ten sets of data were generated for each of the di�erent cases. The data was

divided into a training set and test (generalization) set. All results were averaged over ten runs.

Each of the Gaussian mixtures had a randomly generated number of points and shape. After

the training data was clustered by the di�erent methods the global and local distortion was

5



measured on the test set. The global distortion was calculated as follows:

1

S

SX

i=1

min
�
ky� � xik

Where S is the size of the data set and the \distance" is computed as the sum of squares.

3.1.1 Global distortion

Figures 4 and 5 presents the global distortion as a function of the number of Gaussian mixtures

generated. The Deterministic Annealing energy would probably approach the K-means given

more time (� =1). An example of the results can be seen in Figure 3.

The proposed method succeeds in approaching batch results { in minimization of the global

distortion { even though it clustered the data in a single sequential pass. Moreover, it better

preserved the representation of the data by allocating centroids for the small distant clusters.

Figure 8 and 9 present the global distortion as a function of the dimension of the data with

non-stationary and stationary data respectively.

In this situation as well the proposed method succeeds in approaching batch results { in

minimization of the global distortion.

3.1.2 Local distortion

While, the global distortion provides a measure of the average performance, it is not a good

measure of the quality of the representation of each individual cluster. Hence, the local distortion

is determined as follows:
NX

n=1

1

Sn

SnX

x2Cn

min
�
ky� � xik

Where N is the number of clusters generated, Cn is the n'th cluster, Sn the number of points

in Cn and the distance ky� � xik is the sum of squares. The distortion of each point is the

distance between the point and its most representative centroid, normalized by the size of its

originating cluster. This ensures that the a�ect each cluster has on the performance measure is

relatively equal, even small clusters inuence the �nal result.

Figures 6 and 7 graphs the local distortion (averaged over ten runs) as a function of the

number of clusters. The K-means and Deterministic Annealing methods which minimize the

global distortion (� =1), perform relatively poorly. This is because they ignore small clusters

even if they are quite distinct. As the number of clusters increase the a�ect of missing a single

cluster is diminished. By preserving the small distant clusters, the proposed method, also

minimizes the local distortion.

3.1.3 Stationarity

The on-line methods were tested on data which was presented once in a pseudo-stationary

(random) mode and once in a non-stationary (sequential) mode. While, the K-means method
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successfully clustered the stationary data, it failed to capture the structure of the non-stationary

data. The reason for its poor performance is demonstrated in Figure 3. The K-means method

follows the arrival of the latest set of data. Hence, most of the centroids are located within the

central cluster. This is in contrast to the performance of the proposed method in clustering

both the stationary and non-stationary data.

3.2 Scale dependence

To demonstrate the algorithms ability to follow the structure as a function of scale the data

from Figure 1 was clustered with the new algorithm. Figure 10 depicts the clustering of the

data while constraining the memory to four centroids. Four stages in the process are presented,

after the presentation of the �rst 1000, 3000, 6000 and 10000 data points. In the �rst stage all

the centroids are placed on the existing data. Next, the centroids represent the 3 clusters that

exist in the bottom right corner. The introduction of data at a relatively large distance from the

previous data, modi�es the perspective. Hence, the previously subdivided clusters are merged

into a single large cluster. The �nal representation of the data with 4 centroids utilizes three

of the centroids, placing them in the center of mass of each group of data. The fourth centroid

represents the last data point and should be merged into the system.

In comparison, Figure 11 presents the results when using 10 centroids. Similar to the previous

example, the �rst stage places all the centroids on the existing data. After 3000 data points

arrive, the local structure is revealed, the data is properly represented by three centroids with

the other 7 appearing as satellites around the extremities. These centroids are allocated in the

following stages. In the �nal stage (after the arrival of all 10,000 points) the local structure

is preserved due to the relatively large number of centroids. Here again the extra centroid is

needed to follow the last data point to arrive. Note that the non-stationarity in the �nal example

is not a necessary condition for the �nal solution.

Perhaps the most important aspect of the algorithm is its relative insensitivity to the exact

choice of Kmax. In other words one should only specify the order of magnitude of Kmax. This

is demonstrated in Figure 12. A single Gaussian centroid (stationary) was clustered with Kmax

equal 2 through 16. After the clustering process all centroids which represented less then 0.5%

of the number of points were merged. Figure 13 graphs the Energy (global distortion) as a

function Kmax. The a�ect of increasing Kmax is negligible until a \phase transition" occurs and

a split.

The reasoning behind this is as follows: assume a single Gaussian cluster of data which

arrives in a stationary process. Let us assume Kmax is equal to 3. Assume that it has been

correctly clustered and we will label the centroids �; � and �, where � is the actual center (mean).

When a new data point arrives it forces the merging of the two closest centroids. In order for

the centroids in the periphery to accumulate points they must merge with each other. However,

since the probability that the distance between � and � is smaller than the distance between �

and either � or � is small it is more likely that they will merge with the �. Hence, strengthening

the center and weakening the periphery. For the centroids on the periphery to have a large mass
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they must be closer to each other than to the center (an unlikely event) and this must occur for

many time steps consecutively (a very unlikely event). Figure 16 presents a measure of order

which quanti�es this process.

This process of \phase transitions" is similar to the one described by Rose et. al (Rose et al.,

1990). Figures 14 and 15 present the results of clustering the same data using the Deterministic

Annealing algorithm. Note the similarity of the behavior of the Energy function in graphs 13

and 15.

4 Summary and Conclusions

Yet another clustering classi�er (yacc)? The proposed algorithm is the �rst to explicitly address

the issue of on-line clustering non-stationary data.

The method can be seen as an extension of the work presented by Buhmann and Kuhnel

(Buhmann and Kuhnel, 1993) or an on-line version of the clustering by melting algorithm

presented by Wong (Wong, 1993) in which each data point is assigned a centroid.

Quantitative analysis of the new algorithm performance in clustering simulated data, demon-

strated its superior performance in minimizing the local distortion, and comparable performance

in minimizing the global distortion to existing clustering algorithms. This is even more pro-

nounced when clustering non-stationary data.

Unfortunately, the new algorithm is sensitive to data which includes drastically di�erent

scales. For example, if the data seen in Figure 1 is corrupted with noise (a very wide Gaussian

placed in the center of the data) the performance drops (see Figure 17). The proposed method

attaches equal importance to every point. Each new point is potentially a beginning of a new

cluster. The solution to this is to assume knowledge of the time scale of the smallest process

and further assume that the smallest process is larger than a certain threshold. Then after each

time step merge all centroids whose counter is below the threshold.

Currently the algorithm is being tested on the di�cult problem of quality control of agricul-

tural produce. Preliminary results indicate that the algorithm shows signi�cantly better results

than other on-line clustering algorithms.
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Figure 1: Example of scale dependent intrinsic structure. The data in this �gures is composed of

9 gaussian clusters. Each cluster contains 1000 points, except the top right cluster which contains

2000 points. Note, how the data can be grouped either into 3 or 9 clusters.
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Figure 2: Clustering of randomly generated stationary data by four di�erent methods, Proposed

method [Add constantly], K-means, EquiDistortion and Deterministic Annealing. Note, how the

K-means and EquiDistortion methods missed two small clusters in the center left section (the

Deterministic Annealing missed one). This contributes to the relatively high local distortion of

these methods as compared with the proposed method.
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Figure 3: Clustering of randomly generated non-stationary data by three on-line methods, Proposed

method [Add constantly], K-means, EquiDistortion. Note, how the proposed method successfully

clusters the data even though it is presented in a sequential fashion. Furthermore, the solution

found by the proposed method here is virtually identical with the solution obtained when the data

is processed randomly (see Figure 2).
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Figure 4: A comparison of the performance of the di�erent stationary methodologies tested. Plot

of the energy of the system (averaged over ten runs) as a function of the di�erent data sets, i.e.,

di�erent numbers of clusters. The solutions found for one instance of sixteen clusters are depicted

in Figure 2. The Rose, Gurewitz & Fox method would have reached a lower energy throughout

had the process not been stopped early.
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Figure 5: A comparison of the performance of the di�erent sequential methodologies tested. Plot

of the energy of the system (averaged over ten runs) as a function of the di�erent data sets, i.e.,

di�erent numbers of clusters. The solutions found for one instance of sixteen clusters are depicted

in Figure 3.
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Figure 6: A comparison of the performance of the di�erent sequential methodologies tested with

respect to small clusters. Plot of the local distortion of the system (averaged over ten runs)

as a function of the di�erent data sets, i.e., di�erent numbers of clusters. The solutions found

for one instance of sixteen clusters are depicted in Figure 3. The proposed algorithms succeeds

in preserving the representation of even the small clusters. This is due to their relatively large

distance from other clusters.
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Figure 7: A comparison of the performance of the di�erent stationary methodologies tested. Plot

of the local distortion of the system (averaged over ten runs) as a function of the di�erent data

sets, i.e., di�erent numbers of clusters. The solutions found for one instance of sixteen clusters are

depicted in Figure 2. The proposed algorithms succeeds in preserving the representation of even

the small clusters. This is due to their relatively large distance from other clusters.
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Figure 8: A comparison of the performance of the di�erent non-stationary methodologies tested.

Plot of the global distortion as a function of the dimensionality of the data. Ten gaussian clusters

were generated with dimensions 5 through 40 at increments of 5. The number of points in each

cluster was �xed.
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Figure 9: A comparison of the performance of the di�erent stationary methodologies tested. Plot

of the Energy (Global Distortion) of the system (averaged over ten runs) as a function of the

dimensionality of the data. Ten gaussian clusters were generated with dimensions 5 through 40 at

increments of 5. The number of points in each cluster was �xed.
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Figure 10: Sequential presentation of data from Figure 1. Four stages of the clustering by the

proposed algorithm are presented. Kmax = 4.
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Figure 11: Sequential presentation of data from Figure 1. Four stages of the clustering by the

proposed algorithm are presented. Kmax = 10.
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Figure 12: An example of the lack of sensitivity of the proposed algorithm to the choice of K
max

.

A single Gaussian centroid (stationary) was clustered with Kmax equal 2 through 16. After the

clustering process all centroids which represented less then 0.5% of the number of points were

merged.
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Figure 13: Plot of the Energy (Global Distortion) as a function of the addition of Kmax. A single

gaussian cluster was clustered with the proposed method at di�erent Kmax. Next, all centroids

which represented less then 0.5% of the total number of points where merged. This was averaged

over ten runs. The Energy (Global Distortion) function demonstrates that there is a clear plateau

in which there is no change in the solutions found. This is in contrast to methods which minimize

the Energy and would utilize all the centroids available.
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Figure 14: Clustering of data from Figure 1 by Deterministic Annealing. Four stages of the

clustering at di�erent � are presented.
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Figure 15: Energy as a function of time (decreasing temperature) during the Deterministic An-

nealing clustering of the data from Figure 1. The four stages of the clustering depicted in Figure

14 are noted by horizontal lines.
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Figure 16: Plot of order parameter as a function of Kmax. A single 2D or 3D gaussian with a

million data points was presented randomly and clustered with the proposed method at di�erent

K
max

's. The order parameter shows clear phase transitions indicating the methods robustness to

Kmax The phase transition indicates a sudden change in the number of non-redundant centroids.

Furthermore, as the dimensionality increases this occurs at a larger Kmax.
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Figure 17: Plot of the Energy (Global Distortion) as a function of the addition of noise. The data

from Figure 1 with the addition of noise was clustered with either Kmeans or AddC. Note, how

the AddC method immediately reacts to the addition of noise, while the Kmeans method slowly

degrades.
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Figure 18: Performance of Kmeans and AddC in clustering data from Figure 1 with the addition of

noise. Note, how the AddC method immediately reacts to the addition of noise, while the Kmeans

method slowly degrades.
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