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Abstract

We present a method for unsupervised content based classification of images. The
idea is to first segment the images using centroid models common to all the im-
ages in the set and then, through drawing an analogy between models/images and
words/documents, to apply algorithms from the field of unsupervised document
classification to cluster the images. The first step may be regarded as unsupervised
feature selection while the second may be regarded as unsupervised classification
of images based on the selected features.

We regard our image set as a mixture of textures. The centroid models of the
mixture representing the textures are based on histograms of marginal distribu-
tions of wavelet coefficients calculated on image subwindows. The models are
used in our algorithm (which is analogous to the work of Hofmann, Puzicha and
Buhmann [HPB98]) to jointly segment all the images in the input set. Such joint
segmentation enables us to link between multiple appearances of the same texture
in different images. We finally use the sequential Information Bottleneck algo-
rithm of Slonim, Friedman and Tishby [SFTO2] to cluster the images based on the
result of the segmentation. In general, due to the modularity of the approach each
of the three components of the presented method (local image modeling, segmen-
tation and classification) can be substituted by alternative algorithms satisfying
mild conditions.

The method is applied to nature views classification and painting categoriza-
tion by painter’s drawing style. The method is shown to be superior to image
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classification algorithms that regard each image as a single model. We see our
current work as opening a new perspective on high level unsupervised data anal-
VSis.

1. Introduction

Clustering a set of images into meaningful classes has many applications in the or-
ganization of image data bases and the design of their human interface. [RHC99,
MKO1, WWFW97, SMM, GGGO2] are only a few reviews and some of the recent
works in the field. Image clustering can also be used in order to segment a movie,
for example [GFT98], and to facilitate image data mining, for example searching
for interesting partitions of medical images [THIT00]. [BDF02] do unsupervised
clustering using extra information.

In this paper we treat the problem of unsupervised clustering of an image set
into clusters of similar images, where we are only given the images. We treat the
images as (soft) mixtures of textures. Since the same texture may be present in dif-
ferent images we build a common mixture model for the whole set. This is done
by joint segmentation of the images. The components of the mixture (centroid
models) are then regarded as a “dictionary” of image segments (segments with
similar textures are associated with the same component). Co-occurences of the
centroid models and images are finally used in order to cluster the images (analo-
gously to using word and document co-occurences in documents clustering). See
Fig. 1 for a schematic illustration of our algorithm.

As a common approach for texture modeling we choose our centroid model
to be a weighted set of histograms of wavelet subband coefficients of image sub-
windows. We have also tried using color histograms of the image sub-windows,
but texture approach based on wavelet statistics appear to be more powerful.

We use the deterministic annealing (DA) framework (see [Ros98]) to get a
top-down hierarchy of segmentations at increasing levels of resolution. We also
present a modification of the DA framework we call forced hierarchy to decrease
the computation time.

In the last step we treat centroids as words and images as documents and use
the sequential Information Bottleneck algorithm [SFT02] to obtain the classifica-
tion.

It should be noted that while the idea of drawing a parallel between word
counts in a document and model (feature) probability integral over the image al-
ready appeared in supervised classification literature [Ker], we see our current
work as a new point of view on unsupervised data classification. Namely we do
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Figure 1: General scheme of our algorithm. The algorithm is built up of two
steps. The first one is joint segmentation of the input images. As a result of
the segmentation we get a “class map” representation for each input image - the
“Segmented images” on the illustration. In this representation each image segment
is labeled with a corresponding label, while the labeling set is common to all the
images. On the illustration we express this idea by marking the image segments
belonging to one cluster with the same color and filling texture. (The segmentation
is soft - hard partition is shown for illustrative purposes only.) Then the second
step is to classify the images using co-occurrence statistics of the images and the
segment classes composing them.

an unsupervised feature selection and then perform unsupervised classification of
images based on the features found.

Two papers should be mentioned in the context of our work. [HPB98] give
a very similar image segmentation algorithm. The major difference which is im-
portant to us is that we segment all the images jointly while [HPB98] deal with
segmentation of a single image.

[GGGO2] suggest to cluster the images by first segmenting each image sepa-
rately into Gaussian mixture of pixel color and location values and use agglom-
erative Information Bottleneck to cluster the mixtures. Comparing our and their
approaches, our joint segmentation provides a much more general view on the
data. Also, wavelet based models used for segmentation are much more powerful
and location independent compared to Gaussian mixtures.

The approach suggested by us is very general and may be applied not only



to image classification, but also in unsupervised analysis of audio signals, protein
sequences, spike trains and many other types of data, while using appropriate
algorithms and data structures for their segmentation.

The paper is organized as follows: in Sec. 2 we describe how to build para-
metric models for image sub-windows using the wavelet coefficients statistics or
color features, and how to build the centroid models. In Sec. 3 we segment the
images using those models and obtain a (soft) segmentation of the images into a
small number of centroid models, common to all the images in the set. Finally,
in Sec. 4 we use the obtained segmentation for image classification analogously
to classification of documents based on the statistics of their words appearances.
Experimental results in Sec. 5.3 and discussion in Sec. 6 summarize our work.

2. Texture Based Image Modeling

We start with a description of our parametric probabilistic model for image sites.
Being the basic building-block of the algorithm, the correct choice of the model
is of crucial importance for the final success of the whole process. In the current
work we choose our image sites as square subimages - windows - of a predefined
size, and we use a texture approach to parametrically model them - we model
each window as if it was a homogeneous texture sampled i.i.d. from a single
distribution and an image as a collection of those textures.

To model a single window, we use a common approach that texture can be
identified by the energy distribution in its frequency domain, by modeling the
marginal densities of its wavelet subband coefficients. Such an approach was suc-
cessfully used by [DVO00] in image retrieval applications. In our algorithm, we
characterize a texture as a set of marginal histograms of its wavelet subband coef-
ficients. The number of bins in a histogram was chosen to be the square root of the
total number of coefficients at the corresponding subband, as an optimal compro-
mise between distribution resolution and statistical significance of the empirical
counts. In order to assign approximately the same number of samples to each bin
of the histogram, we make a coarse estimation of the distribution of coefficients
in this subband as a Gaussian function, by fitting the parameters on the whole
data set, and use the inverse Gaussian distribution to construct the histogram bins.
Although the distribution is more likely to be a Generalized Gaussian density (as
was shown by [DV00]), this coarse estimation by simple Gaussian is sufficient.
The conventional pyramid wavelet decomposition is then performed with L levels
(usually L = 3) with one of the known wavelet filters (we used Daubechies, re-
verse biorthogonal and symmetric wavelets), and one histogram for each subband
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is computed. We normalize the histograms to obtain probability distributions and
take the resulting set of the distributions to be our parametric model for the win-
dow. By moving to the space of wavelet histograms, the number of parameters
characterizing the texture image is reduced to about the square root of the image
area, and we also profit from the statistical nature of such model.

As a similarity measure between distributions p and ¢ we use Kullback-Leibler
divergence, which is a natural measure of distance between probability distribu-
tions and is defined as

p(z)
q()

(see [CTI91]). To compute the distance from a window model H to a centroid
model M we compute pairwise Dy (H,;||M;) for each subband [ and take a
weighted sum as the total distance. Since the number of coefficients decreases
by a factor of 4 from level to level and due to the fact that there is more variability
at higher resolutions, we give an accordingly decreasing weight to the distances
at lower resolutions.

To build a centroid for a weighted set of window models, we build an average
model as a weighted sum:

Drr(pllg) = Zp )log 222

Mtwerage _

S wy- Hy
k Wk k

where H},; is a histogram of subband [ of window model k£ and wy, is the weight
of the window. The average model computed this way minimizes the weighted
sum of distances of the windows to the centroid: miny; >, Dxr(Hg||M) (see
[HPB98]). The centroid model has exactly the same parametric structure as the
window models.

In the same manner we can use other features, such as image color, or a
weighted combination of two or more types of wavelet filters and color histograms.

In our experiments, when we used color model, we took a histogram of the
hue component of image color space.

3. Joint Image Segmentation Algorithm

Our primary goal is to represent each image in the input set as a soft mixture of a
small number of textures common to all the images in the set. Such a representa-
tion will help us later to link between appearences of the same textures in different
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Figure 2: Forced hierarchy framework illustration. We start from the all-data-
average model M. We then recursively choose the model having maximal score
from M and replace it with the two models obtained at its tentative split. The
models obtained at the tentative split are also used to calculate the score of their
parent model.

images. Segmentation of images is done in a top-down hierarchical manner, while
we work with all the input images simultaneously. The algorithm integrates the
ideas developed in [SBTO1] for sequence segmentation with texture segmenta-
tion algorithm of [HPB98]. We also present a novel approach to computations in
deterministic annealing (DA) framework (see [Ros98]) we call forced hierarchy.

Our segmentation works on a shifted grid. An image is divided by overlaping
grid windows into small patches which determine the resolution of our segmenta-
tion. The dependence between the overlapping grid windows {z,;} is introduced
through the definition of a distance measure between a window z; and a model
M, which is defined to be a weighted average of the D, distances over all the
windows overlapping with z;. The weight is taken to be proportional to the area
of the overlap.

The goal of the segmentation process is to find K segment models { M/, }szl =
M, so that the average in-segment distortion

(d) = % 35 P(M[20)-d(M, =)
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Forced Hierarchy Segmentation({ 7 (z;) }., Bos Ostep)

Initialize:

My = %5 H(z), M = { My}, Basy = Bo, P(Mp) = 1, P(My|z;) = 1
Find-Score(My, Bu,)

While the desired resolution of the segmentation is not reached:

1. Choose M having maximal score out of M

2. For {M;, M} - used for the calculation of the score of M:
Find-Score(M, By, ), Find-Score(Ms, Bar,).

3. Replace M in M with M; and M,.

Find-Score()M, (3)

L {My, My} = Split(M), P(My) = LP(M), P(My) = LP(M)
2. Soft-Clustering(M,, My, P(M,), P(Ms), B, P(M|z;))

3. if JS(M;, My) < 3 then

B =" Bstep return to 1.
else

B, = By Bu, = B, Score(M) = P(M) - JS(M,, Ms), exit function.

Figure 3: Forced Hierarchy image segmentation algorithm pseudo code. See
text for explanation.

will be minimal (/V is the total number of windows in all the images). We ap-
proach this problem in the DA framework (see [Ros98]) which essentially uses
EM to estimate the segmentation at increasing levels of resolution. This frame-
work allows us to avoid many local minima as well as to get a hierarchy of seg-
mentation solutions. We apply the forced hierarchy modification of the framework
to achieve better computational performance.

The algorithm starts from M consisting of a single average model M, (M, =



~ > H(z;), where H (z;) stays for the set of histograms of wavelet coefficients of
a window z;). We then repeatedly choose the largest and the most heterogeneous
model out of M and divide the corresponding segment (which is spread over
the input images) into two. We continue to refine our partition until a maximal
predefined number of models is reached.

To estimate the heterogeneity of a cluster corresponding to a centroid model
M we perform a tentative split. We create two copies of the cluster centroid M,
M, and M5 and add small antisymmetric perturbations to each copy. We then
run a Soft-Clustering procedure to softly divide the data of the cluster into two
new segments in a “good” way. The divergence between the centroids of the two
segments we get after the division is used for the estimation of the heterogeneity
of the parent cluster (segment).

The Soft-Clustering procedure is much like the EM algorithm with the only
difference being that resolution of the partition is introduced through the Lagrange
multiplier 3. This multiplier emerges from the solution of an optimization prob-
lem when we are trying to find the assignment probabilities P(M;|z;) and the
models {/;} that will minimize the mutual information

P(M;|z)
ZZPMM log ———— POV

with P(M;) = + X, P(M;|z;), while allowing for a limited permitted level of dis-
tortion (d) < D (see [CT91]). Note that the assignment probabilities P (M, |z;)
determine a soft partition of the data among M, and M,. The reason for min-
imizing the mutual information /(Z, M) is that under given constraints (distor-
tion in our case) the assignment minimizing it is the most probable one (see
[CT91, Ros98]).

An iterative solution to the described optimization problem:

R(D) = min (Z, M) (1)

{P(M |Zz)}1]7{M }J (d <D Z P(M ‘Zz)

is given in the Soft-Clustering procedure (see Fig. 4). The procedure starts from
a pair of models My, My, a prior distribution P(M,) over them, current resolu-
tion 3 and a (normalization) vector P(M|z;) that stores for each window z; the
probability it belonged to the parent model M (thus we segment only the parent
segment and mask out the rest of the data). Soft-Clustering then iterates between
data partition (steps 1 and 2) and model reestimation (step 3) until convergence to
a local minimum.



SOft-Clustering(]\/[l, Mz, P(Ml), P(Mz), 5, p(M|ZZ))

Repeat until convergence:

P(M.)e—B4zi:Mj)
1 PO=) = o i POM1=)

2. P(M;) = =3 P(M;|z)

n

3. M] = Zt H(Zt) . P(M]|Zt)

Figure 4: Soft-Clustering procedure

The Soft-Clustering procedure has the following important property. When
working at low levels of resolution 3 (this corresponds to high levels of permitted
distortion D) only one model suffices to describe the data. In this case, after
the convergence of Soft-Clustering, the two models M; and M, either become
almost identical or one of them vanishes (P ()M, ) is close to zero). Using this fact
we start from low resolution parameter 3 and return on Soft-Clustering multiple
times, each time increasing 3 by a multiplicative constant until we reach a critical
value .. At this point two distinct non-trivial models are required to describe
the data at the corresponding resolution. (When returning on Soft-Clustering we
discard the result of the previous run and perform a new random split of M.)

The important point in this approach is that the lower the resolution is, the less
local optima our optimization functional (1) has. Thus by working at gradually
increasing levels of resolution we get to the point where our segmentation (Soft-
Clustering) procedure has the greatest potential to succeed (minimal chances to
fall into a local minima).

To determine whether we got a trivial or an interesting partition of the data we
calculate the Jensen-Shannon divergence between M; and M, after the conver-
gence of Soft-Clustering:

P(M,)
P(M)

P(Ms)
P(M)

JS(My, My) = Dy (Mi||M) + Dgr(Ms|| M)
This measure of distance between M, and M, answers the question of how prob-
able it is that samples corresponding to M and those corresponding to M, are

actually coming from the same statistical source (see [Slo02, Sec. 1.2.5] for a
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relevant discussion). We compare JS(M7, M,) to % If JS(My, M) > % we
consider the result of the partition as interesting. We further define Score(M) =
P(M) - JS(M;, Ms). Note that Score(M) equals the decrease in the distortion
(d) we will obtain if we replace M with M; and M, in the partition.

To summarize the algorithm: We start from M consisting of a single average
model M,. We then repeatedly choose the model having the maximal score from
M and replace it with the two child models used to calculate its score. This way
we always advance in the direction of maximal decrease in the distortion (d). To
calculate the score of a model M we divide the corresponding segment into two
and use the obtained models to estimate the heterogeneity of the parent segment.
While segmenting the segment corresponding to M, we gradually increase the
resolution parameter 3 in order to solve the problem at the optimal resolution,
where we have minimal chances to get trapped in a local minimum. For each
model M we remember the resolution parameter 3 at which it was created and
when its turn comes to be further segmented, we start the search for the optimal
resolution for this segment from that value. Initial resolution value, as well as
the multiplicative step for its increase are manually chosen, while “the rules of
thumb” are: (1) at the initial resolution the data should be best represented with
a single model and (2) no more than a single increment in the number of models
in M must occur between two subsequent increments in (3. See Fig. 2 for forced
hierarchy framework schematic illustration and Fig. 3 for the pseudo code.

Compared to the “classical” DA framework (as, e.g. in [Ros98, SelO1]), in
which the models produced by split “see” and compete on all the data, our new
framework, which we call forced hierarchy DA is more limited. This is because
each time child models “see” only the fraction of the data that was captured by
their parent. But due to this limitation our algorithm is much faster, since at every
moment we work with only two models. Thus we get the same segmentation
resolution in a much shorter time. The fact that we split each model at its optimal
resolution helps us to avoid many local minima. Therefore the algorithm almost
does not suffer from the hierarchical limitation on the partitions.

Choosing “the correct” number of segments.

While multiple segmentation solutions may emerge at different levels of resolu-
tion, some of them are more stable while others are less. This may be best demon-
strated by an example - see Fig. 5. To search for such stable solutions we look
at the distortion-rate function D(R) (which is the inverse of the R(D) function
defined by (1)). Each time a model out of M is split we obtain a new point on this
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o Data points

Stable partition at low resolution
Stable partition at high resolution
-------- Unstable partition

Figure 5: Stable clusters illustration example. This illustration example comes
to show the difference between stable and unstable clusters. Suppose that your
input is four “clouds” of points as shown here. Then the segmentation into two
clusters shown by the solid line is stable at low resolution and the segmentation
into four clusters shown by dashed line is stable at high resolution. At the same
time, the segmentation into three clusters shown by the dotted line is unstable
since small variations in the input may easily cause the algorithm first to split
the right pair of clouds and not the left. See [Ros98] for a deeper discussion on
clusters stability.

curve. The rate of the decrease in the distortion (d) with the increase in the mutual
information /(Z, M) changes while the number of clusters increases. As argued
in [Slo02, Sec. 6.2.2], points where this rate slows down (the points of minima
in the second derivative of D(R)) correspond to stable segments in the partition.
Thus we used the second derivative of D(R) to choose the appropriate number of
segments for the subsequent classification step.
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4. Images Classification According to Segmentation
Map

Now we come to the final and major algorithmic point of our paper. We use the
segmentation result we got in the previous section for unsupervised classification
of the input set of images. The idea is to regard each image /; as a document
and each model M; as a word, defining P(M;|];) = (75 Xzer P(M;|2) anal-
ogous to the normalized count of the number of appearances of M; in I (N(I;)
is the number of windows in ;). With this analogy we use the sequential Infor-
mation Bottleneck (sIB) clustering algorithm [SFTO02] to cluster by images the
co-occurrence matrix P(1;, M;).

The sIB clustering algorithm is based on the Information Bottleneck (IB) clus-
tering framework proposed in [TPB99]. Its goal is to represent input images {/;}
with a small number of clusters {C}} so that the distribution of models (features)
inside each cluster P(M;|Cy) = ﬁ > 1,ec, P(M;|1;) will be as close as possi-
ble to the original distributions P(/;|/;) of images constituting the clusters. In
[TPB99] it is argued that the correct measure for quality of the representation is
the mutual information fraction 5((?]]\\44 ).

In [SFT02] it was shown that the sIB algorithm has a superior performance
over a range of other clustering methods (agglomerative, K-means and more),
typically by a significant margin, and even comparable with standard Naive Bayes
(supervised) classifier on problems of document classification. The idea of the sIB
algorithm is to start from a random partition of the data into K clusters and se-
quentially take a random sample /; from its cluster and reassign it to a new cluster
C., so that the mutual information /(C'; M) (and thus the quality of the represen-
tation 5((?%) ) will be maximized. Due to the monotonic growth of I(C’; M) the
procedure is guaranteed to converge to a local optimum.

5. Results

5.1 Texture Segmentation Example

As a basic test for the segmentation step of our algorithm, we took synthetic com-
positions of gray-scaled textures from [HPB98]. Each of the compositions con-
sists of five different textures. We applied our segmentation algorithm with win-
dows of 32x32 pixels size, grid shift of 8 pixels, L = 3 wavelet decomposition
levels with rbio_3.3 and db4 wavelet filters. Both filters provided us with similar
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Figure 6: Texture Segmentation Example. Top left - the original image consist-
ing of 5 regions, each of different texture. The rest five images are the obtained
segmentation of the original image into 5 segments.

results. See an example of such segmentation in Fig. 6. The image is divided into
5 models, corresponding to each of the 5 textures.

5.2 Classification of Natural Views

In this section we demonstrate the classification ability of our algorithm on two
examples of natural views image sets!.

Sea Views

As a first example, we took 29 color pictures (640x480 pixels) of natural sea views
and ran the algorithm with window size of 64x64, grid shift of 32, L = 3 wavelet
decomposition levels, with rbi03.3 and db4 wavelet filters. Both filters provided
us with similar results. The partition into 5 clusters is shown in Fig. 7. The first
obtained cluster consists of panoramic views of a sandy shore. In the second the
shore is more rocky. The third cluster contains close-up photos of water-plants,
the fourth consists of the sea with a beach of plowed sand, and the fifth are close
up photos of the sea waves.

'The results of sections 5.2 and 5.3 may be also viewed in a better quality at
http:/fwww.cs.huji.ac.il/~seldin/SCTV2003
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The Hebrew University of Jerusalem Campus Views

The second set consists of 55 color pictures (640x480 pixels) taken on the Hebrew
University campus. We divided the images into 2,3,4,5 and 6 clusters (see the
partitions into 4 and 6 clusters in Fig. 8 and Fig. 9 respectively). It is encouraging
to see almost hierarchical splitting of the clusters as their number increases.

The division into 4 clusters is as following: The first cluster contains perspec-
tive views including mixtures of trees, trails, sky etc., the second consists of indoor
scenes (which can be easily identified by their smooth textures), the third are tree
branches on the sky background (detailed texture on a smooth background), and
the last is close up views of flowers and bushes (very detailed textures).

In further divisions, the first cluster splits into two, separating out flowers with
a large portion of asphalt background, and cluster 5 selects images, containing
very few details on a smooth background.

In Fig. 10 we show some examples of the segmentation of the images into 3
segments, which was used for the classification. One representative image from
each cluster is taken.

As we may see, the algorithm was successful in classifying input images of
nature views by their content. The obtained results were stable (as was explained
in Fig. 5). That is, we converged to the same classification results in different
algorithm runs and with different wavelet filters.

5.3 Classification of Painting styles

To try our algorithm on another possible application, we took 35 pictures (about
600x800 pixels size) drawn by 5 different painters, trying to identify the painters
by their drawing style. In the experiments we have carried out, each of the painters
was classified correctly, and the obtained clusters were stable. We used windows
of 128x128 and 64x64, overlapping and not overlapping, with different wavelet
filters, and always converged to the same result, shown in Fig. 11.

The obtained clusters differentiate between impressionism style of Van Gogh,
characterized by a large amount of bold brush-strokes, classic style of Rembrandt,
with its soft lines and smooth textures, landscape reproductions of Shishkin, rich
of small scrupulous details, cubism of Picasso and marine landscapes of Aiva-
zovsky.

It should be noted that in this example the correct classification was obtained
only when we took sufficiently fine segmentation of the input images (into about
20-25 segments). In order to choose a segmentation with an appropriate number of
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segments for the subsequent classification step, we looked at the inverse rate dis-
tortion function D(R), as described in Sec. 3. See a graph of this function and its
two derivatives on the painters classification example in Fig. 12. The points where
the decrease of the distortion slows down relative to the increase in the mutual in-
formation correspond to stable segmentation solutions. The vertical grid lines in
the graph correspond to the increments of the number of segments in the partition
by one. By looking at the minima of the second derivative of the function, we
identify stabilization points in the segmentation solution. In the example shown,
one of the evident (actually most evident) local minima corresponds to segmenta-
tion into 24 segments, which is actually the point where the classification results
become correct and stabilize. When taking segmentations with a greater number
of segments we always converged to the same correct classification of the input
images. At the same time, when classifying images using segmentation into less
than 24 segments, a small number of misclassifications were present.

When using large (256x256 and more) windows, at all the segmentation res-
olutions in subsequent classification some of the pictures were misclassified (for
example, some of the Picasso paintings were mixed up with those of Aivazovsky).
As well, we got poor results when used one big window of the whole image size,
which is equivalent to classifying the images without segmenting them first. These
results justify the advantage of image segmentation as a preprocessing step for
classification.

6. Discussion and Future Work

The presented work combines several ideas from different areas of machine learn-
ing and image processing into one coherent procedure for unsupervised content
based image classification. The major contribution of our work is the idea of us-
ing joint segmentation of a set of images for its clustering using image/document,
segment/word analogy. Our framework may be viewed as two-levels unsupervised
approach to data analysis - on the first level we do unsupervised feature extraction
from the data and on the second we perform an unsupervised classification of the
data based on the extracted features.

In our experiments the suggested method is successfully applied to two types
of visual data: natural scenes classification and classification of painters by their
drawing styles. As we show there, the classification based on segmented images
gives better results compared to classifying unsegmented images. This confirms
the superiority of our algorithm.

The suggested approach of two-levels unsupervised data analysis is general
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and may be applied to essentially any type of data, including but not limited to bio-
molecular sequences, audio signals, spike trains and handwriting data analysis.
Of course, in each of those fields appropriate models for local data modeling and
algorithms for segmentation must be used.

Various directions for further research may be suggested. We may naturally
categorize them into four categories. One is applying our approach to other types
of data. For example, it would be interesting to combine it with our previous work
[BSMTO1] on feature extraction in proteins (there we called them signatures).
Another is improving the results we got in this paper by using better algorithms
for image modeling and segmentation. Here we thought about using beamlets
[DHO1] instead of wavelets for local image modeling. This may provide results
which are closer to human perception of visual data. A third direction focuses on
the classification step of our algorithm. Here, by using more sophisticated algo-
rithms for classification we may achieve such interesting things as classification
of the input set by multiple parameters (as in the work of [CTO02], where they
cluster the input set of human faces once by the person on the image and once by
the illumination of the person - persons illuminated from the left, from the right,
homogeneously, etc.). Finally, the most attractive direction seems to find a way of
“getting feedback” from the classification step during the segmentation to develop
a new algorithm for unsupervised discriminative feature selection.
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(a) Cluster 1 of 5: Sandy shore.

(c) Cluster 3 of 5: Water-plants. (d) Cluster 4 of 5: Plowed sand and
sea.

(e) Cluster 5 of 5: Close view of sea
waves.

Figure 7: Sea views classification.
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(b) Cluster 2 of 4: Indoor scenes.

(c) Cluster 3 of 4: Tree branches on the sky back- (d) Cluster 4 of 4: Bushes and flowers, close view.
ground.

Figure 8: The Hebrew University Campus views classification into four clus-
ters.
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(b) Cluster 2 of 6: Indoor scenes.

14
4 4

(c) Cluster 3 of 6: Tree branches on the sky (d) Cluster 4 of 6: Bushes and flowers, close
background. view.

(e) Cluster 5 of 6: Flowers with asphalt. 21 (f) Cluster 6 of 6: Smooth background with
few details.

Figure 9: The Hebrew University Campus views classification into six clus-
ters.



(a) Original Image (b) Segment 1 (c) Segment 2 (d) Segment 3

Figure 10: The Hebrew University Campus views segmentation into three
segments. The above are examples of image segmentations into 3 segments be-
fore their classification. Each row contains an image from a different cluster (see
Fig. 9): The original image - column (a), and its segmentation into the 3 segments
- columns (b)-(d). Segment 1 corresponds to smooth textures like sky and walls in
all the input images. Segment 3 corresppnds to very detailed textures like bushes
and tree branches. Finally, Segment 2 corresponds to textures with middle level
of details like asphalt roads and trails.



(a) Van Gogh, impressionism. (b) Aivazovsky, marine landscapes.

(c) Rembrandt, classic style. (d) Picasso, cubism.

(e) Shishkin, landscape reproductions.

Figure 11: Classification of drawings by painting style.
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(a) D(R) function (b) The first derivative of (c) The second derivative
D(R) of D(R)

Figure 12: Inverse Rate Distortion Function Graph for Painters Classification
Example. The numbers below the R (R = I(Z, M)) axis and vertical grid lines
correspond to the number of segments in the segmentation at which the point on
the graph was measured. We see a clear minimum in the second derivative of
the D(R) function at the solution with 24 segments. This solution is a stable
segmentation. (The numbers below the axis are not clearly seen. Please, refer our
web site for higher resolution graphs.)
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