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Abstract

The goal of this paper is to solve the following basic problem: given discrete

noisy samples from a continuous signal, compute the probability distribution of its

distance from a fixed template. As opposed to the typical restoration problem,

which considers a single optimal signal, the computation of the entire probability

distribution necessitates integrating over the entire signal space. To achieve this, we

apply path integration techniques. The problem is studied in one and two dimension,

and an accurate solution as well as an efficient approximation scheme are provided.

1 Introduction

A fundamental question in pattern matching is: given a fixed template y(t) and a signal

x(t) (usually, for the sake of notational simplicity, t will be suppressed, as will dt when

the integration is over t), we wish to compare x with y. Typically, the information on x is

sparse and noisy. Given this information, and for every threshold β, we wish to calculate

the probability that the distance between x and y is larger than β – that is, the cumulative

∗Corresponding author.
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distribution of the distance d(x, y) between x and y. Here we use the standard L2 norm,

so the distance is defined as

d(x, y) ,

∫

(x − y)2.

A special and very important case is y = 0; the question then reduces to computing the

distribution of
∫

x2, or the energy of x, which is arguably the most fundamental property

of a signal.

If the entire signal x can be measured with absolute accuracy, or is given in closed form,

one can exactly compute d(x, y). Alas, typically the information on the signal is sparse

and noisy, and d(x, y) cannot be computed. Since usually the ground truth signal cannot

be reconstructed, it is clear that the correct reply is probabilistic in nature, and allows to

answer questions such as: given some measurements of x, what is the probability that its

distance from y is larger than a certain threshold? Generally we would like to compute,

given the sparse and noisy measurements, the probability that d(x, y) lies within a certain

range. Stated otherwise, a probability on signals x induces a probability on d(x, y). We

propose a method for computing this probability. First, a probability distribution is

defined over the space of possible signals, and then the probability volume of all signals

x for which d(x, y) is larger than a given threshold is computed. To this end we adapt a

technique known as path integration or functional integration.

The paper proceeds as follows. First, the well-known regularization method is briefly

reviewed, as well as the probability measure it induces on the space of signals. In Section

2 the problem is formally defined and previous work reviewed. Section 3 reviews path

integration, which allows to integrate over the infinite-dimensional signal space. In Sec-

tions 4-6 we study three problems of increasing difficulty, where Sections 4 and 5 discuss

problems which are both important on their own right, and also include preparatory cal-

culations for their preceding sections: Section 4 discusses the distribution of the signal’s

value at a point, and in Section 5 the distribution of the signal’s energy is derived. In

Section 6 the distribution of d(x, y) is calculated. Section 7 discusses a very general solu-

tion to the problem, and extends it to handle functions in two variables. We show that

for functions with more than one variable a divergence problem occurs, and offer how to

remedy it. In Section 8 we present an approximation scheme and analyze its accuracy.

Conclusions are offered in Section 9, followed by two appendices in which some technical

issues are elaborated.
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1.1 Regularization and Priors on Functions

The problem of restoring a continuous signal x(t), given discrete samples x(ti), is one

of the most well-studied in signal processing. A very popular restoration technique is

regularization, which seeks a tradeoff between data fidelity and smoothness. Work on reg-

ularization abounds; some references are [25, 24, 5, 16, 12]. The regularization paradigm

proceeds as follows: first, a class of “admissible functions” is defined, the members of

which are the possible solutions (we shall abide here with the common terminology and

use “functions” instead of “signals”). In order to allow as much flexibility as possible,

typically the class of admissible functions is very large (e.g. an infinite-dimensional func-

tion space). Then, a cost functional M(x) is defined for every admissible function x by

M(x) = D(x) + λS(x), where D(x) measures the deviation of x from the samples, S(x)

measures the roughness of x, and λ is a positive parameter. The function x minimizing

M can be found by variational methods; denote it x0. D is defined as follows: if the

measured values of the function at a set of points {ti}l
i=1 (from now on called sampling

points) are denoted by {xi}l
i=1, then D(x) =

l
∑

i=1

1

2σ2
i

[x(ti)−xi]
2 where σi is the magnitude

of the measurement noise at ti (for simplicity it will be assumed hereafter that 2σ2
i = 1),

and S(x) =

∫

ẋ2 (the first order smoothness term), where ẋ denotes the derivative of x

by t1. The total variation smoothness term, which is also often used, is defined by
∫

|ẋ|
[2, 3].

It will be assumed hereafter that the functions are always defined on the unit interval,

so all the integrals on x, ẋ etc. are from 0 to 1. We shall assume so-called natural

(Dirichlet) boundary conditions, x(0) = x(1) = 0 (these conditions are not crucial to the

following derivations, although they make them a little simpler. In practice, the boundary

conditions can either be dropped, or imposed at the endpoints of a very long interval, thus

having negligible effect).

Quite a while after this variational approach was introduced in the context of regu-

larization [25], the seminal work [6] anchored it in a probabilistic setting. According to

Bayes’ rule –

Pr(x|Data) =
Pr(Data|x) Pr(x)

Pr(Data)

where x is the function in question and Data are the samples. When Gaussian error is

1Sometimes the second derivative ẍ is used instead of ẋ, leading to the so-called second order smooth-

ness term.
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assumed in the measurement process, the following holds (up to the obvious normaliza-

tion)

Pr(Data|x) = exp

(

−
l

∑

i=1

[x(ti) − xi]
2

)

. (1)

A crucial question is how to define the a-priori probability of a function (“prior on the

functions” in the Bayesian terminology). [10, 27] address this question for images, [19, 18]

for acoustic signals, and [13] for video. Here the following definition is used:

Pr(x) = exp

(

−λ

∫

ẋ2

)

(2)

where λ is a positive constant. This means that a-priori, the smoother the function, the

more probable it is. This probability distribution resembles the well-known Boltzmann

distribution in statistical physics, and its application to signals was rigorously justified

in [6]. In [7, 14, 15, 13, 18], an empirical analysis of such prior probabilities on signals

demonstrated a very good match between them and reality.

Combining Eqs. 1,2 yields

Pr(x|Data) ∝ exp(−M(x)), M(x) =
l

∑

i=1

[x(ti) − xi]
2 + λ

∫

ẋ2. (3)

This justifies – in hindsight – the choice of the solution x0 as the function which minimizes

M . This probabilistic approach will be adopted here, and the a-priori probability of x

will be assumed to equal exp(−M(x)).

The advantages of this Bayesian approach are far more important than justifying

previous work. Typically, one is not interested only in the value of the optimal solution,

but also in an estimate of how reliable it is – e.g. it is very desirable to place confidence

intervals around the solution’s values. Assigning a probability to every admissible function

enables a global view in which every function, not just the optimal one, plays a role, and

allows to assign a measure of uncertainty to various solution parameters. Conceptually,

the optimal solution x0 can be viewed as the expectation, and the uncertainty measure

as the variance, of the distribution of some signal characteristic.

The goal here is to compute the probability distribution of the signal’s distance from

a template. This problem is next rigorously defined and solved.
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2 The Problem

Given discrete and noisy measurements of a signal x, and a fixed signal y, we seek to

compute Pr(
∫

(x − y)2 ≥ β), for every β. Hereafter this probability will be denoted

Pr(y, β). This is equivalent to computing the probability density function (p.d.f) of
∫

(x−y)2. The case y = 0 is of considerable interest, as it measures the distribution of the

signal’s energy. With some minimal abuse of notation, we shall denote the probability in

this case by Pr(E, β).

2.1 Previous Work

Previously the uncertainty of linear functionals was computed, given a prior on the func-

tion space [23, 26, 7]. It turns out [9, 11, 7] that under the assumption that Pr(x) =

exp(−Q(x)), where Q(x) is a positive definite quadratic functional, then for every linear

functional L defined on the space of admissible functions, f → L(f) is a normal random

variable, and therefore it is possible to compute Pr(L(f) ≥ β) (the Q’s used very much

resemble the cost functional M of Eq. 3). Typical L’s were the value of x or its derivative

at some point. Since L(f) is normal, its entire p.d.f is characterized by its average and

variance, which can be calculated as described in [7]. Here we propose to tackle the con-

siderably more difficult problem of the quadratic functional
∫

(x− y)2, whose distribution

is not normal. The method presented here can be applied to other quadratic functionals.

2.1.1 Computing the p.d.f vs. the Restoration Problem

There is a great deal of work on restoring signals from sparse, noisy samples (see Section

1.1). Restoration can be viewed as choosing the “best” (i.e. maximum likelihood) function

from the entire function space. Here, we seek to compute the p.d.f of a non-linear func-

tional on the function space, which necessitates considering the entire space. The restored

function is just one point in this immense space, and it is useless as far as computing the

p.d.f – or even only the expectation of the non-linear functional – is considered. To see

this, assume we want to estimate the expectation of
∫

x2, given sparse measurements of

x. Assume further that all these measurements are zero. Clearly, the restored function is

the zero function, and it satisfied
∫

x2 = 0. Alas, it is also clear that the expectation of
∫

x2 is non-zero (this expectation is explicitly computed in Section 7.1). Hence, even for

the simpler problem of computing only the expectation of the random variable
∫

x2, the
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restored function is useless – not to mention the far more general problem of computing

the entire p.d.f of this random variable.

2.1.2 Gaussian Processes

The theory of Gaussian processes [17] considers a family of random variables, such that

each sample of a finite number of them obeys a Gaussian distribution. Indeed, the point

values of a function with a Gaussian prior form a Gaussian process [7], but here we seek to

study the p.d.f of a functional which is 1) non-linear (and non-Gaussian), and 2) defined

by the entire set of the function’s values, not a finite sample.

3 A (very) Brief Review of Path Integrals

The tool we apply builds on the theory of path integrals, extensively used in theoretical

physics, for example statistical mechanics, quantum mechanics, and quantum field theory.

For an excellent introduction, see [20]. The probability we seek to compute is

Pr(y, β) = Pr

(
∫

(x − y)2 ≥ β

)

=

∫

Dx θ[
∫

(x − y)2 − β] Pr(x)
∫

Dx Pr(x)
(4)

where θ is the Heaviside step function, equal to 1 when the argument is positive and

zero otherwise. This will exactly capture the probability of the functions x for which
∫

(x − y)2 ≥ β. The functional measure Dx denotes that the integral is computed over

the entire space of admissible functions.

3.1 Why is the Path Integral Necessary?

Before proceeding with the introduction and calculation of path integrals, we offer some

motivation as to why their usage here is necessary. Let us look at the problem mentioned

in Section 2.1.1, which resembles the general one we seek to solve, but is quite simpler:

all the measured xi are equal to zero. This means that the probability of a function

x is, up to some normalizing factor, equal to exp
(

−λ
∫

ẋ2
)

. As in Section 2.1.1, we

restrict ourselves to the problem of computing the expectation of
∫

x2. Assume that our

function space consists only of second degree polynomials p2(t) (a linear function has to

be identically zero because of the boundary conditions). Since p2(0) = p2(1) = 0, we

must have p2(t) = αt(1 − t), which means that our function space is indexed by a single
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parameter α. Since for x = αt(1 − t) we have
∫

ẋ2 = α2

3
and

∫

x2 = α2

30
, the expectation

of
∫

x2 equals
∫

dα
(

α2

30

)

exp
(

−α2

3

)

∫

dα exp
(

−α2

3

)

which can be computed in closed form. Naturally, the space of parabolas is far too

restricted for real application; so let’s move on to cubics. The space of cubics which

satisfy the boundary conditions is of dimension two, and can be written as αc1(t)+βc2(t),

where c1(t), c2(t) span the space of cubics which satisfy the boundary conditions (e.g.

c1(t) = t(1 − t)2, c2(t) = t2(1 − t)). Proceeding as for the quadratic case, the expectation

of
∫

x2 can be written as the quotient of two double integrals over α and β. As we

continue to increase the class of allowable functions we are led to expressions which can

be written as a quotient of integrals over domains whose dimension tends to infinity – and

it is exactly this type of integrals which path integration techniques enable to compute.

3.2 Some Intuition

The path integral may appear formidable, as the domain of integration is infinite-dimensional.

Perhaps the easiest way to intuitively comprehend its meaning is to view it as an extension

of integrals over Rn, in which vectors are replaced by functions, and matrices by linear

operators. The similarity is especially evident if one considers a function as a vector of

infinite length, whose components are the function’s values at every point, and linear

operators as “∞×∞” matrices which can be “multiplied” – in the usual manner – with

the infinitely long vectors. In Section 3.3 this similarity will be further elucidated for the

case of Gaussian integrals.

3.3 Calculating Path Integrals

In most cases, it is not possible to exactly calculate the path integral (one famous exception

being the harmonic oscillator path integral [20]). One type of path integral which can in

some cases be explicitly evaluated is

∫

Dx exp

(

−
∫

L(x, ẋ)

)

=

∫

Dx exp

(

−
∫

(

λẋ2 + b(t)x2 + c(t)x
)

)

. (5)

The quadratic functional L(x, ẋ) = λẋ2+b(t)x2+c(t)x is known in physics as the Euclidean

time Lagrangian (hereafter simply the Lagrangian). To calculate this path integral, first
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the following Euler-Lagrange differential equation should be solved

d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= 2λẍ + 2b(t)x + c(t) = 0 (6)

call the solution xcl (in physics, this is the classical solution to the dynamics of the system,

or the “classical path”). The integral in Eq. 5 then equals

exp

(

−
∫

(

λẋ2
cl + b(t)x2

cl + c(t)xcl

)

)
∫

Dx exp

(

−
∫

(

λẋ2 + b(t)x2
)

)

(7)

This is best understood by making an analogy with the ordinary Gaussian integral, which

is computed by completing the square in the exponent (just as the ordinary quadratic form

is expanded around its minimum to obtain a pure quadratic, the quadratic functional is

expanded around its minimum (the classical solution) and the integral is reduced to a

simpler, purely quadratic functional). For a more formal derivation, see Chapter 6 in

[20]. This integral can sometimes be solved by applying the Gelfand-Yaglom method

[20], however that is not straightforward in our case, since (as will be shown later) the

Lagrangian contains both real and complex parts. Since to further discuss this here will

require a deviation from the paper’s main theme, the Gelfand-Yaglom method and its

adaptation to the integrals in this paper are discussed in the appendix.

The integral of Eq. 7 is computed as follows. The integral of a Gaussian
∫

Rn

du exp (−uAut),

for a positive definite matrix A, equals (up to a normalizing factor) the inverse of the

square root of the product of A’s eigenvalues. Similarly, the infinite-dimensional integral

is the inverse of the (infinite) product of the square roots of the eigenvalues of the function

space operator T which satisfies (x, Tx) =
∫

(λẋ2 + b(t)x2), where the inner product is the

usual one in L2, (x, y) =
∫

xy (see summary in Section 3.4). For operators on functions

defined on a finite interval, which are constrained to be zero at the endpoints, the set of

eigenvalues in known to be discrete [21] (physically, this corresponds to the fact that a par-

ticle in a box has a discrete set of energy levels). In Feynman’s celebrated formulation of

quantum mechanics by means of path integrals [4], this infinite product converges due to

the presence of an (infinite) number of normalizing factors; here, convergence follows from

the normalization of the probability on the entire space to equal 1. This normalization

results in the quotient of two infinite products, which converges to a finite result.

3.4 Overview and Terminology

Following the physics nomenclature, we refer to xcl as the classical path and to
∫

(λẋ2
cl + b(t)x2

cl + c(t)xcl) as the classical action. The integrand λẋ2 + b(t)x2 + c(t)x will
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be referred to as the Lagrangian. Thus, to compute the path integral we need to:

1. Solve the differential equation (Eq. 6) defining xcl and evaluate the classical action,

denoted A(xcl), which equals
∫

(λẋ2
cl + b(t)x2

cl + c(t)xcl).

2. Compute the eigenvalues αk, k = 1 . . .∞, of the operator T which satisfies
∫

xT (x) =
∫

(λẋ2 + b(t)x2).

3. The path integral then equals exp (−A(xcl))

( ∞
∏

k=1

αk

)− 1

2

.

This paradigm and terminology will next be applied to our path integrals.

4 Warm-up: Path Integral for the Value at a Point

Let xi be the noisy samples at ti, i = 1 . . . n. A natural question is: given the samples,

what is the probability that x(t0) ≥ β? (note that t0 is independent of ti, i = 1 . . . n,

although it may equal one of them). We address this problem not only because it is

important in its own right, but also since its solution will serve to introduce some of the

methods and notations used later. Also, some of the calculations required for computing

the path integrals of Sections 5 and 6 will be carried out here.

Assuming for the while n = 1, that is, a single sample point (extension to more than

one point is discussed in Sections 5.3.1 and 7), then the probability, denoted

Pr(t0, β) , Pr(x(t0) ≥ β), equals
∫

Dx θ[x(t0) − β] Pr(x)
∫

Dx Pr(x)
=

∫

Dx θ[x(t0) − β] exp
(

−
(

λ
∫

ẋ2 + x2(t1) − 2x1x(t1)
))

∫

Dx exp
(

−
(

λ
∫

ẋ2 + x2(t1) − 2x1x(t1)
)) (8)

(the [x(t1) − x1]
2 term in the exponent of Pr(x) contains x2

1, but after exponentiation it

cancels out in the numerator and denominator).

The main difficulty is handling the Heaviside function θ, which is not linear or quadratic.

θ has many representations; aiming to tailor it into the Gaussian integrals in Eq. 8, we

choose the following one:

θ(u) =
1

2πi
lim

ǫ→0+

∞
∫

−∞

dω
exp(uωi)

ω − ǫi
(9)

The correctness of this formula for θ(u) follows from the identity

1

2πi

∞
∫

−∞

dω
exp(uωi)

ω − ǫi
=







0 if u < 0

exp(−ǫu) if u ≥ 0
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which can be derived by contour integration technique [22].

Next, we obtain (after interchanging the order of integration between Dx and dω):

Pr(t0, β) =
1

2πi
lim

ǫ→0+

∞
∫

−∞

dω
exp(−βωi)

ω − ǫi
F (ω),

F (ω) ,

∫

Dx exp
(

−
(

λ
∫

ẋ2 + x2(t1) − 2x1x(t1) − iωx(t0)
))

∫

Dx exp
(

−
(

λ
∫

ẋ2 + x2(t1) − 2x1x(t1)
)) =

∫

Dx exp
(

−
(∫

(λẋ2 + δt1x
2 − 2x1δt1x − iωδt0x)

))

∫

Dx exp
(

−
(∫

(λẋ2 + δt1x
2 − 2x1δt1x)

)) ,

∫

Dx exp
(

−
(∫

L2(x, ẋ)
))

∫

Dx exp
(

−
(∫

L1(x, ẋ)
)) (10)

Where in Eq. 10 all terms were collected into the integral over t, in order to apply the

method of computation summarized in Section 3.4. The delta functions are introduced to

incorporate the discrete terms, x2(t1)− 2x1x(t1), into the integrand. This introduces two

Lagrangians: one in the numerator, L2 = λẋ2 + δt1x
2 − 2x1δt1x − iωδt0x, and another in

the denominator, L1 = λẋ2 + δt1x
2 − 2x1δt1x. Note that L2 = L1 − iωδt0x; therefore, the

quadratic parts of L2, L1 are equal, hence the factor of the numerator and denominator

path integrals which corresponds to the eigenvalues cancels out, since the eigenvalues

depend only on the quadratic part (alas we will not be that fortunate with the path

integrals of Sections 5 and 6, as there the quadratic parts are different).

So, all that is left is to compute the classical action of L2, L1. We start with L1.

4.1 Calculating the Classical Action for L1

Computation of the classical action for L1 = λẋ2 +δt1x
2−2x1δt1x is straightforward. The

Euler-Lagrange equation for the classical path xcl is λẍ − δt1x + x1δt1 = 0. This means

that at every point but t1, xcl is linear. Since it has to satisfy the natural boundary

conditions, its values at t = 0, 1 are 0. Therefore, it is determined by three parameters: it

equals at in the interval [0, t1] and bt + c in the interval [t1, 1]. The equations which need

to be solved for these parameters are:

• Natural boundary condition at t = 1: b + c = 0.

• Continuity at t1: at1 = bt1 + c.

• Behavior of the first derivative at t1. To satisfy the Euler-Lagrange equation, the

λẍ term has to contain a delta function at t1. Since the first derivative from the

left equals a and from the right it equals b, the second derivative is λ(b−a)δt1 (here

we used the definition of the delta function as the derivative of the Heaviside step
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function), so the equation is λ(b− a)− at1 + x1 = 0. Incidentally, this explains why

xcl must be continuous at t1; if not, the first derivative will be a delta function, and

the second derivative the derivative of a delta function, which will not be canceled

out by δt1x + x1δt1
2.

Next, the equations are solved and substituted into the action λ
∫

ẋ2 + x2(t1)− 2x1x(t1),

yielding A1(xcl) = x1
2(1−t1)t1

−λ+t12−t1
.

4.2 Calculating the Classical Action for L2 and Pr(t0, β)

This proceeds very much as for L1, but here we have the extra term −iωδt0x. Clearly

the classical path is a linear spline with knots at t1, t0. Thus there are six parameters to

solve for (two for each linear segment), and six equations: two for the natural boundary

conditions, two for continuity at t1 and t0, and two for canceling out the delta function

terms. As before, the equations are solved and substituted into the classical action; the

resulting expression is a quadratic polynomial in ω, denote it A2(xcl) , a2ω
2 + a1ωi + a0.

a2, a1, a0 are real numbers which depend on λ, t0, t1, x1; also, since L2 = L1 − iωδt0x,

a0 = A1(xcl). From Eq. 10 we have

Pr(t0, β) =
1

2πi
lim

ǫ→0+

∞
∫

−∞

dω
exp(−βωi)

ω − ǫi

exp (−A2(xcl))

exp (−A1(xcl))
=

1

2πi
lim

ǫ→0+

∞
∫

−∞

dω
exp(−βωi)

ω − ǫi
exp

(

−(a2ω
2 + a1ωi)

)

(11)

which is real3 and can be computed in closed form involving the error function4.

It is immediate to see that the cumulative distribution corresponds to a normal dis-

tribution, hence the point value x(t0) is a normal random variable, and the pointwise

standard deviation of this normal distribution can be interpreted as the width of confi-

dence intervals around the interpolant (this is in agreement with the results in [26, 7]).

For an example, see Fig. 1.

2This also follows from xcl being a member of the Sobolev space W
1,2 of functions with a square

integrable first derivative [1].
3Summing the integrand for ω and −ω yields a pure imaginary number, and since the integration is

from −∞ to ∞ the entire integral is pure imaginary; after division by i we’re left with a real number.

4Generally, 1
2πi

lim
ǫ→0+

∫

dω
exp(−(aω2+bωi))

ω−ǫi
= 1

2

[

1 − erf
(

b

2
√

a

)]

.
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Figure 1: The uncertainty of the value at a point. Left: an example of a restored function

is plotted (thicker line, center), as well as the upper and lower confidence intervals, of

width equal to one standard deviation [26, 7]. The ti values are 0.2, 0.4, 0.6, 0.8, λ = 1,

and the sample points are marked by dark solid circles. Right: same sample points, with

the point uncertainty plotted for λ = 1 (blue) and λ = 0.1 (black). A smaller λ means

a smaller penalty on “rough” (oscillating) functions, hence there is more freedom in the

space of possible solutions, which means that the uncertainty is higher. As λ further

decreases, the uncertainty at every point but the sample points will tend to infinity; see

also [7].

5 Calculating the Path Integral for the Energy

Next we turn to the more involved problem of computing the energy path integral (i.e.

the case in which the template y equals 0). This will be a natural preparation for the

general case, since the quadratic parts of L2 are equal for both cases. Again, assume for

the while a single sample point, t1, with the measured value denoted x1. Following as in

Section 4, we find:

Pr(E, β) =
1

2πi
lim

ǫ→0+

∞
∫

−∞

dω
exp(−βωi)

ω − ǫi
F (ω),

F (ω) ,

∫

Dx exp
(

−
(

λ
∫

ẋ2 + x2(t1) − 2x1x(t1) − i
∫

ωx2
))

∫

Dx exp
(

−
(

λ
∫

ẋ2 + x2(t1) − 2x1x(t1)
)) =

∫

Dx exp
(

−
(∫

(λẋ2 + δt1x
2 − 2x1δt1x − iωx2)

))

∫

Dx exp
(

−
(∫

(λẋ2 + δt1x
2 − 2x1δt1x)

)) ,

∫

Dx exp
(

−
(∫

L2(x, ẋ)
))

∫

Dx exp
(

−
(∫

L1(x, ẋ)
)) (12)

Again we have two Lagrangians: the one in the numerator, L2 = λẋ2 + δt1x
2 − 2x1δt1x−

iωx2, and the one in the denominator is equal to L1 of Section 4 (the denominator is

still the normalizing factor). Note that L2 = L1 − iωx2. It remains to compute the path
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integral for the numerator, but also the L1 and L2 eigenvalues (which no longer cancel

out, since now the quadratic components in L1 and L2 are different). The overall result

will still be a one-dimensional integral over ω, alas a more complicated one.

5.1 Calculating the Eigenvalues Corresponding to L1, L2

Next, we calculate the eigenvalues of the linear operator T which satisfies
∫

xT (x) =
∫

(λẋ2 + δt1x
2). It is readily seen that T (x) = −λẍ + δt1x (this follows immediately by

applying integration by parts and from the natural boundary conditions). For α to be an

eigenvalue, there must be a solution to the differential equation −λẍ+δt1x = αx. Since T

is obviously positive definite, only positive α’s should be sought. As before, in every point

but t1 we must have −λẍ = αx, so the solution is a “trigonometric spline”, fleft(t) ,

a cos
(√

α
λ
t
)

+ b sin
(√

α
λ
t
)

in the interval [0, t1] and fright , c cos
(√

α
λ
t
)

+ d sin
(√

α
λ
t
)

in the interval [t1, 1]. The resulting equations are fleft(0) = fright(1) = 0 (boundary

conditions), fleft(t1) = fright(t1) (continuity), and −λ(ḟright(t1)−ḟleft(t1))+fright(t1)) = 0

(the condition for the delta function terms to cancel out). These four equations define a

linear system, denoted S, which has a non-trivial solution iff det(S), viewed as a function

of α, is equal to 0; therefore the eigenvalues are the solutions of the equation

det(S) = λγ sin (γ)−cos (γ)+cos (γ) (cos (γt1))
2+sin (γt1) cos (γt1) sin (γ) = 0, γ ,

√

α

λ

This is a transcendental equation, which is solved numerically. For large values of γ (or

α), the term γ sin (γ) dominates, and therefore the solutions quickly approach

γ = kπ or α = λk2π2 for natural k. This is not surprising, since had it not been for

the δt1x term in the differential equation, the eigenvalues would have exactly equaled

λk2π2; but this perturbation term is small and does not change the asymptotic behavior

of the eigenvalues. As λ increases, the term λẍ in the differential equation becomes more

dominant, and the eigenvalues converge to λk2π2 faster (see Fig. 2). Starting with λk2π2

as an initial guess, it is very easy to solve for the eigenvalues. Fig. 2 depicts the location

of the k-th eigenvalues vs. λk2π2.

The discussion above concerns the L1 eigenvalues. Fortunately, since L2 = L1 − iωx2,

the L2 eigenvalues are simply the L1 ones, minus iω. Since we have to divide the L2

integral by the L1 integral, the two products of the square roots of the eigenvalues yield a

factor equal to
∞
∏

k=1

(

1 − iω

αk

)− 1

2

. For relatively small values of ω, the terms of the product

approach 1 very quickly and the infinite product can be truncated. It is easy to estimate

13



(a) (b)

(c) (d)

Figure 2: Plots of det(S). Roots correspond to eigenvalues of the function space operator

T (x) = −λẍ + δt1x. Dark dots on the horizontal axis depict the locations of λk2π2. (a)

t1 = 0.4, λ = 1. (b) Same as (a), smaller range of α. (c) and (d) are the same as (a) and

(b), with λ = 0.2. In both cases, the eigenvalues converge to λk2π2, with convergence

faster when λ is larger.

the residual when truncating at k = N : for small h, 1 − h ≈ exp(−h), so

∞
∏

k=N

(

1 − iω

αk

)− 1

2

≈
∞
∏

k=N

exp

(

ωi

2αk

)

≈
∞
∏

k=N

exp

(

ωi

2λk2π2

)

≈ exp

(

ωi

2λπ2N

)

(13)

So the infinite product can be truncated at a sufficiently large N (e.g. for which λπ2N2 >

10ω), with the truncated part replaced by the right-hand side of Eq. 13.
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5.2 L2 Classical Action for the Energy Path Integral

This proceeds almost exactly as in Section 4.2 – with the difference that the quadratic

term of the Lagrangian now contains an additional term, −iωx2. So, the Euler-Lagrange

equation is λẍ − δt1x + x1δt1 + iωx = 0. Hence, for all points but t1, the solution xcl

is no longer linear, but satisfies λẍ + iωx = 0. The solution of this differential equation

is a “complex trigonometric spline”, with the part in [0, t1] equal to a exp(st)[cos(st) −
i sin(st)] + b exp(−st)[cos(st) + i sin(st)], for s ,

√

ω
2λ

, and similarly in the [t1, 1] interval.

The equations are therefore similar in principle to those of the L1 case: natural boundary

conditions (two equations), a continuity at t1 condition (one equation), and a condition

for the δt1 factors to cancel out (one equation). These equations are still linear in a, b, c, d,

but the solution, and the classical action, are more complicated than for L1 and, for the

sake of brevity, will not be reproduced here.

5.3 Computing Pr(E, β)

Putting it all together, denote the classical action of the L1 Lagrangian by A1(λ, t1, x1)

(note that it does not depend on ω), and same for L2 and A2(λ, t1, x1, ω). Denote the

eigenvalues by αk, k = 1 . . .∞. Then Pr(E, β) equals

exp(A1(λ, t1, x1))
1

2πi
lim

ǫ→0+

∞
∫

−∞

dω
exp(−βωi)

ω − ǫi
exp(−A2(λ, t1, x1, ω))

∞
∏

k=1

(

1 − iω

αk

)− 1

2

(14)

Fig. 3 depicts a plot of the integrand for λ = 3, t1 = 0.4, x1 = 1, β = 0.05 (the result

of the integration is real for the same reason as for Eq. 11, see footnote 3).

We have evaluated this one-dimensional integral numerically. The term
∞
∏

k=1

(

1 − iω

αk

)− 1

2

is handled as explained in Section 5.1. As ω increases, the factor exp(−βωi) oscillates

very rapidly, so the value of the integral is very small for regions with large ω.

The numerical computation of the integral can be further facilitated by noting that

for small ω (which constitute the “critical region” of integration, in which the integrand is

relatively large), the term containing the eigenvalues is very close to 1, hence only a very

small number of eigenvalues can be used to a good approximation. Moreover, it is possible

to explicitly calculate lim
ω→0

A1(λ, t1, x1) − A2(λ, t1, x1, ω)

ω
, l1 + l2i, which means that in

the critical region, the term exp(A1(λ,t1,x1))
exp(A2(λ,t1,x1ω))

is very well approximated by exp((l1 + l2i)ω).

Using the theory of exponential integrals, lim
ǫ→0+

ω0
∫

−ω0

dω
exp ((l1 + l2i)ω)

ω − ǫi
can be calculated

in closed form. Hence, we can divide the integration domain into two parts, for a small

15



(a) (b)

(c) (d)

Figure 3: The integrand of Eq. 14, in various ranges: in (a) from 0 to 10−3, (b) from 10−3

to 10−1, (c) from 10−1 to 101, (b) from 101 to 103. λ = 3, t1 = 0.4, x1 = 1, β = 0.05.

ω0: [−ω0, ω0] and [−∞,−ω0] ∪ [ω0,∞]. In the first domain, we can use a very accurate

approximation; in the second, the integrand behaves nicely and the integral can be very

efficiently computed using numerical methods. Also, since in the second domain ω is

bounded away from 0, we can discard the ǫ in the integrand (and, of course, the limit

over ǫ).

5.3.1 More than one Sample Point

For more than one sample point, the computation proceeds in very much the same fash-

ion. Assume e.g. two sample points, t1, t2 with sample values x1, x2. The Lagrangian
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L1 equals λẋ2 + δt1x
2 − 2x1δt1x + δt2x

2 − 2x2δt2x. The Euler-Lagrange equation is

λẍ − δt1x + x1δt1 − δt2x + x2δt2 = 0. Again, at any point but t1, t2 the solution is linear,

so the overall solution is a piecewise linear spline with knots at t1, t2. There are now

six parameters to recover – two at every linear segment – and six equations: two for the

natural boundary conditions, two for continuity (at t1 and t2), and two for canceling out

the coefficients of the delta functions at t1, t2. The calculation of the classical path for L2

and the computation of the eigenvalue proceed similarly. Fig 4. contains some plots of

Pr(E, β).

Figure 4: Some plots of Pr(E, β). Left: λ = 3, x1 = 1, t1 = 1/2. Center: λ = 0.1, x1 =

1, t1 = 1/2 (solid line), and λ = 0.1, x1 = 0.1, t1 = 1/2 (dotted line). Pr(E, β) increases

when λ decreases, since a smaller λ means that the penalty on roughness is smaller, hence

rough functions are more probable, allowing more freedom as t moves away from the

interval’s boundary and sampling points, so the energy is typically larger (see also Fig. 1

for the pointwise uncertainty with different λ’s). Pr(E, β) also increases when the sample

point is moved from t = 1
2

to t = 0.1, since here, too, the functions have more freedom in

the larger part of the interval which is far from the sampling locations. Loosely speaking,

“nailing” the function at {0, 1
2
, 1} is more restrictive than “nailing” it in {0, 0.1, 1}. Right:

example with more sample points: t1 = 0.2, t2 = 0.4, t3 = 0.6, t4 = 0.8, x1 = 1.1, x2 =

2.0, x3 = −1.3, x4 = 0.5, λ = 0.1.

6 The Distribution of d(x, y)

Almost everything required to solve the problem posed in the beginning of this paper

– computing the distribution of the distance from the signal to a fixed template – was

accomplished in the previous sections. All we need now is to compute the quotient
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of the path integrals in Eq. 12, with i
∫

ωx2 replaced by i
∫

ω(x − y)2, where y is the

fixed template. So, the denominator (with L1) does not change at all, and neither

does the quadratic term of the numerator (since y is a constant function). The only

change is in the differential equation defining the classical path, which now becomes

λẍ − δt1x + x1δt1 + iω(x − y) = 0. The solution is the same as before, except for a

non-homogeneous part accounting for y. This requires the solution of λẍ + iωx = iωy,

a simple differential equation whose solution is given by C1 sin(
√

αt) + C2 cos(
√

αt) +
√

α
(∫

cos(
√

αt)y(t)
)

sin(
√

αt) −
(∫

sin(
√

αt)y(t)
)

cos(
√

αt)) for α = ωi, and C1, C2 con-

stants determined by the boundary conditions. . For many important y’s, this solution

assumes a very simple form, e.g. for y = sin(kπt) it equals ωi sin(kπt)
ωi−λk2π2 . These functions, for

k = 1 . . .∞, form an orthogonal base for the functions with natural boundary conditions

considered here; further, most functions can be very well approximated with only a small

number of the sine functions. Thus one can either use the sine functions approximation or

solve directly using the solution provided above. All that remains is the straightforward

computation of the L2 classical action.

6.1 Compatibility of Model with Reality

To test the compatibility of the theoretic model with real signals (see also [14] for a

comparison of a similar prior with the distribution of real images), we took many samples

of such signals (specifically, rows of images sampled randomly from a large database of

background images5). Each row was normalized to satisfy the boundary conditions and

the x-coordinate scaled to the unit interval, and also normalized to unit length. The ti, xi

used were as in Fig. 3, and the rows chosen were those satisfying them up to an error of

0.1. A sample of template functions y was defined by a1sin(πt)+a2sin(2πt)+a3sin(3πt),

where ai were randomly chosen in the interval [−1, 1]. Values of β were randomly chosen

in the interval [0, 2]. For every choice of y and β, Pr(y, β) was computed analytically,

and its empirical analogue, defined as the percentage of the database signals x for which
∫

(x − y)2 ≥ β, was also computed. The analytic vs. empirical probabilities are depicted

in the scatter plot in Fig. 5, showing a good fit between the two probabilities.

5http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
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Figure 5: Left: scatter plot of analytic probability (the probability that
∫

(x − y)2 < β)

vs. the empirical probability (percentage of sampled functions x for which
∫

(x−y)2 < β)

scatter plot. Right: plot of absolute difference (∆) between analytic and empirical as a

function of beta.

7 The General Case: Arbitrarily many Sample Points

and Higher Dimensions

In this section we study a general method for computing the probability defined in Eq. 4,

for any number of points and in any dimension (number of variables). Here we compute

not the c.d.f of
∫

(x−y)2, but that p.d.f (from which the c.d.f can be obtained by integra-

tion). The main difference between the approach in this section and the one in Sections

4-6 is the generality of the formulation and the application of the Green’s functions of the

relevant differential operators, which easily extends to more than one variable. For func-

tions in one variable, and a modest number of points, the method described in Sections

4-6 is simpler and more direct.

To simplify the presentation, we assume that λ = 1 and y = 0 (i.e. we compute

the p.d.f of the energy). From the calculations in Section 6 it follows that the case of a

general y differs from that of y = 0 only in the linear term of the Lagrangian, hence the

derivations in both cases are similar.

We start with the 1D case and then point out the modifications required for higher

dimensions. Especially, we will prove that in dimensions higher than 1 the expectation

of the energy diverges to infinity, and this has to be remedied either by introducing a

“cutoff” or using a different prior.

Proceeding as before, the p.d.f for a fixed value β equals
∫

Dx exp
(

−
(∫

ẋ2 +
∑

(x2(ti) − 2
∑

xix(ti))
))

δ(
∫

x2 − β)
∫

Dx exp
(

−
(∫

ẋ2 +
∑

(x2(ti) − 2
∑

xi x(ti))
)) (15)

after denoting V (t) =
∑

δti and J(t) =
∑

xiδti , and using the well-known expansion for
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the delta function δ(t) =
∫

dω exp(ωti), Eq. 15 becomes

∫

dω exp(−βωi)

∫

Dx exp
(

−x (−∇2 + V − ωi) xT − xJ
)

∫

Dx exp (−x (−∇2 + V ) xT )
(16)

Where we have used the Laplacian notation as a hint for the general treatment in higher

dimensions. Denoting −∇2 +V −ωi , Gω, Eq. 16 (sans the integral over ω) assumes the

compact form
∫

Dx exp
(

−xGωxT − xJ
)

∫

Dx exp (−xG0xT − xJ)
(17)

which equals
√

|G0|
|Gω|

exp
(

J(G−1
ω − G−1

0 )JT
)

(18)

since J(t) =
∑

xiδti , it follows that JG−1
ω JT =

∑

i,j

xixjG
(ω)(ti, tj), where G(ω) is the

Green’s function of Gω; we discuss its computation in Appendix II.

Next, we compute the ratio of the functional determinants, |G0|
|Gω | . It equals

|G0|
|Gω|

=
| − ∇2 + V |

| − ∇2 + V − ωi| =
| − ∇2|

| − ∇2 − ωi|
|I + (∇2)−1V |

|I + (∇2 − ωi)−1V | (19)

Due to the presence of V , which is a sum of delta functions at the sample points,
|I+(∇2)−1V |

|I+(∇2−ωi)−1V | can be computed over the finite-dimensional subspace spanned by these

delta functions (see for example [8]). The computation of |−∇2|
|−∇2−ωi| cannot be reduced to

a finite-dimensional subspace; further, it is the root of the divergence problem in higher

dimensions, to be discussed in Section 7.1. For our problem, the natural boundary condi-

tions make it easy to define a basis consisting of eigenfunctions of minus the Laplacian –

sin(kπt), k = 1 . . .∞, with the k-th eigenvalue equal to π2k2. Therefore, the ratio of the

functional determinants, |−∇2|
|−∇2−ωi| , is equal to

∞
∏

k=1

π2k2

∞
∏

k=1

(π2k2 − ωi)
=

[ ∞
∏

k=1

(

1 − ωi

π2k2

)

]−1

=

√
ωi

sin(
√

ωi)
(20)

(where the last equality follows from the well-known infinite product expansion for the

sine function). However, for the two-dimensional case, the eigenfunctions of the Laplacian

are sin(kπt) sin(lπs), k, l = 1 . . .∞ with eigenvalues π2(k2 + l2), k, l = 1 . . .∞. Therefore,

the ratio of determinants equals

[

∞
∏

k,l=1

(

1 − ωi
π2(k2+l2)

)

]−1

= 0 (since
∞
∑

k,l=1

1
k2+l2

diverges).

Next we look more closely at why the p.d.f in the two-dimensional case is zero, and suggest

two methods to overcome this problem.
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7.1 Divergence in Dimensions Larger than 1

To understand why the computation of the p.d.f of
∫

x2 becomes a problem in dimensions

two and higher, let us start with a simple exercise in one dimension: compute the expec-

tation of
∫

x2, given only the boundary conditions (no measurements; see also Section

3.1). This expectation is equal to

∫

Dx(
∫

x2) Pr(x)
∫

Dx Pr(x)
=

∫

Dx(
∫

x2) exp
(

−
∫

ẋ2
)

∫

Dx exp
(

−
∫

ẋ2
) (21)

The expression in Eq. 21 is most easily computed in the Fourier basis (the boundary

conditions imply that sin(kπt), k = 1 . . .∞, is an orthogonal basis for the inner products

on the unit interval defined by
∫

xy and
∫

ẋẏ). Denoting x(t) =
∑

uk sin(kπt), the

expression in Eq. 21 becomes

∫

du1du2 . . . (
∑

u2
k) exp

(

−∑ π2k2u2
k

2

)

∫

du1du2 . . . exp
(

−∑ π2k2u2
k

2

) (22)

which, after some straightforward manipulations and using the identity
R

duku2
k

exp(−a2u2
k)

R

duk exp(−a2u2
k)

=

1
2a2 , turns out to equal (up to some multiplicative constant)

∑

k

1
k2 , which is known to

converge.

In two-dimensions, however, the situation is different. Denoting the variables t, s, an

orthonormal basis is provide by sin(kπt) sin(lπs), k, l = 1 . . .∞, and a calculation very

similar to the one-dimensional case yields that the expectation of the energy is
∑

k,l

1
k2+l2

,

which diverges to infinity – not surprisingly, this is exactly the reason for which, as

demonstrated before, the p.d.f is identically zero. Intuitively, the first-order smoothness

term is strong enough to enforce convergence in one dimension, but not in two and above.

The fact that the expectation in these dimensions diverges explains why the p.d.f at any

finite value is equal to 0.

7.1.1 Resolving the Divergence

The simplest solution to the divergence in dimensions greater than one is to apply a fre-

quency cutoff, that is, not to allow elements sin(kπt) sin(lπs) for which
√

k2 + l2 > Λ,

where Λ is the cutoff. In practical problems this typically makes sense, as the sam-

pled signal is assumed to be band-limited. Another option is to use the second-order

smoothness term, in which the
∫ ∫

(x2
t + x2

s) roughness measure in the prior is replaced

by
∫ ∫

(x2
tt + 2x2

ts + x2
ss). A calculation quite similar to the one for the first-order smooth-

ness term yields that the expectation is equal to
∑

k,l

1
(k2+l2)2

, which converges to a finite
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sum. Save for this, the treatment of the two-dimensional case follows exactly as in the

one-dimensional one; in Appendix II the Green’s function in two dimensions is described.

Similar considerations to those here prove that the second-order smoothness term

guarantees convergence up to three dimensions. For functions with more than variables,

higher-order terms are required.

8 Finite-Dimensional Approximation

Computing a Gaussian integral with the term exp(−xAxt) is much easier when the matrix

A is diagonal. For the integrals that need to be computed in this work, A is replaced by

an operator L, which consists of a derivative operator (−∇2 when using the first order

smoothness term and ∇4 for the second order smoothness term), plus a sum of discrete

terms represented by delta functions. The derivative component, which is the dominant

one, can be easily diagonalized by going to the trigonometric basis. Using this basis

presents another advantage: the eigenvalues of L increase very rapidly as a function of the

frequency k of the basis elements (they equal k2 for −∇ and k4 for ∇4, for eigenfunctions

with frequency k). While, due to the delta functions, the trigonometric functions are no

longer eigenfunctions of the operator L, they still make its matrix very strongly diagonally

dominant, in a sense to be now made precise. This means that very good approximations

can be obtained using a finite-dimensional subspace of modest dimension; we now proceed

to define these subspaces and bound the error between the p.d.f computed on them to

that computed over the entire space. This section is rather technical, so we have tried to

make the presentation short; some small details are therefore omitted from the proofs.

While the following analysis holds for any characteristic of the p.d.f we seek to com-

pute, it is especially convenient to carry out for the moment generating function, M(s)6.

We now describe how to approximate M(s) for the energy p.d.f. Assuming a second-order

smoothness term:

M(s) =

∫

Dx exp

(

−
(

λ
∫

ẍ2 − s
∫

x2 +
N
∑

k=1

x2(tk) − 2
N
∑

k=1

xkx(tk)

))

∫

Dx exp

(

−
(

λ
∫

ẍ2 +
N
∑

k=1

x2(tk) − 2
N
∑

k=1

xkx(tk)

)) (23)

Replacing the entire function space with the finite-dimensional subspace

6For a random variable X, M(s) is defined as the expectation of exp(sX). The derivatives of M at

s = 0 are equal to the moments of X.
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Sn = Span{sin(πt) . . . sin(nπt)}. M(s) then assumes the form

∫

Rn

dx exp (−x(An − (s/2)I)xt + (bn, x))

∫

Rn

dx exp (−xAnxt + (bn, x))
=

√

|An|
|An − (s/2)I| exp

(

bn((An − (s/2)I)−1 − A−1
n )bt

n

4

)

(24)

where

(An)u,v =















λπ4u4

2
+

N
∑

k=1

sin2(πutk) u = v

N
∑

k=1

sin(πutk) sin(πvtk) u 6= v

bn(u) = 2
N

∑

k=1

xk sin(πutk)

Since the constant π4

2
frequently appears in the forthcoming analysis, we will hereafter

denote it by c.

Next we proceed to analyze some simple properties of the matrix An, which determines

the rate at which the integral over Sn approximates the integral over the entire space.

Since it depends only on the locations of the sample points, we treat two cases – uniformly

distributed and random sample points.

8.1 Uniformly distributed sample points

Often, the locations of the sample points are uniformly distributed, tk = k
N+1

. In this

case An becomes

(An)u,v =



























λπ4u4

2
+ N+1

2
u = v, u 6= 0 mod (N + 1)

λπ4u4

2
u = v, u = 0 mod (N + 1)

N+1
2

u 6= v, |u − v| = 2(N + 1)m, m ∈ N

−N+1
2

u 6= v, u + v = 2(N + 1)m, m ∈ N

Two additional computational shortcuts are:

• In the uniformly distributed case the eigenvalues of An can be computed offline,

hence computing the determinants and other expressions in M(s) can be done very

quickly, since only the vector bn is data-dependent.

• In the uniformly distributed case, if n < N (that is, many sample points) then An

is diagonal, making the computation very fast.
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8.2 Non-uniformly distributed sample points

The diagonal of An is similar to the one for the uniformly distributed case, with N+1
2

replaced by an expression whose average is very close to N
2
, and the off-diagonal elements

have an absolute value with an average of about
√

N
2

. To see this, recall that the off-

diagonal elements equal
N
∑

k=1

sin(πutk) sin(πvtk). If the tk are random, so is sin(πutk) sin(πvtk),

which makes it a random variable with zero expectation and variance equal to
1
∫

0

dt sin2(πut) sin( πvt) =

1
4
. So in this case too, An is very strongly diagonally dominant.

8.3 Convergence with increasing n

The question is at what rate do the expressions

Dn ,
|An|

|An − (s/2)I|
En , exp

(

bn((An − (s/2)I)−1 − A−1
n )bt

n

)

which determine M(s) (Eq. 24) converge to a limit as n → ∞. This depends on the rate

of increase of An’s eigenvalues and on the size of bn’s components. Next we analyze the

behavior of the determinant |An| in the more difficult case of non-uniform sample points.

8.4 Approximating the Determinant: Non-Uniform Sample Points

Since An is strongly diagonally dominant, it is reasonable that for n > m, |Am|
n
∏

k=m+1

An(k, k)

is a good approximation to An. We now evaluate the quality of this approximation and

offer a heuristic improvement which performs very well in practice. Let us start with the

case n = m + 1. To keep notations simple, A(k, l) will denote the (k, l) element of all

matrices (there are no grounds for confusion as all matrices are identical on their common

range). We have |Am+1,m+1| = A(m+1,m+1)|Am,m|+
m
∑

k=1

A(m+1, k)M(m+1, k), where

M(m+1, k) is the k’th minor. The following simple estimate for M(m+1, k) turns out to

be very accurate: since it contains all the diagonal elements of Am,m except A(k, k), and

since the absolute value of the element which appears there instead of A(k, k) is roughly

equal to
√

N
2

(Section 8.2), M(m + 1, k) can be approximated by
√

N
2A(m,m)

|Am|. Summing

over the minors and dividing by |Am,m| yields that |Am+1,m+1|
|Am,m| is roughly equal to Am,m

multiplied by an error factor of 1 + ǫ(m), where ǫ(m) is a random variable with zero

expectation and standard deviations equal to
√

N
4λcm4

√

m
∑

k=1

1
c2λ2k8 . The error in estimating

|An| from |Am| is bounded by summing up ǫ(k) for m < k ≤ n (this follows since the ǫ(k)

factors are very small and
∏

[1 + ǫ(k)] can be approximated by 1 +
∑

ǫ(k)).
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8.5 Summary of Results

Proceeding in a similar fashion as in Section 8.4, bounds on the quality of approximation

over a finite-dimensional subspace can be derived for the exponential term En (Section 8.3)

and for the two-dimensional case. Summarizing, we obtain that when using the second-

order smoothness term, then for one variable the value of M(s) on an appropriately chosen

subspace of dimension n differs from the exact value by a factor bounded by O
( √

N
cλn3

)

,

and for two variables the factor is O
( √

N
cλn2

)

(the difference in the power of n is due to

the fact that in the two-dimensional case, O(n2) basis functions are required to cover the

frequencies lower than n).

Note that as λ decreases, more basis functions are required to achieve a fixed accuracy.

This is because a smaller λ means that higher frequencies (which increase the signal’s

roughness and thus decrease its prior probability) are penalized to a smaller extent than

for a larger λ. Also, note that the number of required basis functions increases with the

number of sample points N , but only at a rate of
√

N .

In Fig. 6, the quality of the finite-dimensional approximation is demonstrated for

calculating the first four moments of the p.d.f, using the value and derivatives of the

moment generating function at zero.

Figure 6: Left: example of the quality of finite-dimensional approximation. Horizon-

tal axis is the dimension, vertical the value of the first four moments (black for first,

blue for second, green for third, red for fourth). The moments were computed by differ-

entiating M(s) at s = 0 by finite differences. Data consisted of 50 sample points from

x(t) = sin(4πt) with noise uniformly sampled in [−0.05, 0.05], λ = 0.0001. Right: moment

generating function for the same data (red), super-imposed with exp(M(1)t) (green).
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9 Conclusions and Future Work

A rigorous method for computing the distribution of a signal’s distance from a template,

given discrete noisy samples, was provided. Important sub-cases which are also solved are

the distribution of the pointwise values and the energy. The presented method can handle

any linear or quadratic functional on signals. Future work will address other functionals

and probability measures, and questions such as where to sample in order to optimally

reduce the functional’s uncertainty.
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Appendix I: the Gelfand-Yaglom Solution and

its Application to the Path Integrals in this

Paper

In a famous paper [2, 1], Gelfand and Yaglom expressed the solution of the

path integral
∫

Dx exp

(

−
∫

(

λẋ2 + b(t)x2
)

)

as
√

1

2πf(1)
(1)

where f is the solution of the differential equation f̈ − 2b(t)f = 0, with

boundary conditions f(0) = 0, ḟ(0) = 1.

The Gelfand-Yaglom solution thus allows to compute the determinant of

the operator in the exponent, or the infinite product of the eigenvalues. In

our case, solving their differential equation will allow to compute the value

of
∞
∏

k=1

(

1 − iω

αk

)

(2)

There is, however, a delicate problem in applying this solution method to

our path integrals. This problem is due to the square root term in the so-

lution (Eq. 25). In typical quantum mechanics and statistical mechanics

applications, the Lagrangian is either real or purely imaginary, and all the

eigenvalues (and hence their product) are positive; hence, there is no ambi-

guity in computing the square root. Our path integrals, on the other hand,

contain both real and imaginary parts in the exponent, hence the infinite

1



product in Eq. 26 has a non-zero phase. It is well-known that it is impossi-

ble to define a single square root branch for which

√
z1z2 . . . zn =

√
z1

√
z2 . . .

√
zn

for every set of complex numbers z1, z2 . . . zn. Therefore, it is not possible to

directly evaluate the square root of the solution of the differential equation.

For example, if the determinant’s phase is π
3
, we cannot tell whether the phase

of its square root is π
6

or 7π
6

. To overcome this problem, one can, for example,

compute the total phase of the solution, i.e
∞
∑

k=1

arctan
(

ω
αk

)

, and divide it by

2. Clearly this total phase equals 0 for ω = 0 (there is no imaginary part),

and it has to be tracked from there. This method of solution uses the fact

that the total phase is a continuous function of ω. The process can be made

simpler by using the asymptotic properties of the eigenvalues αk, as discussed

in Section 5.1.

Appendix II: the Green’s Functions Used in

this Paper

The derivations in Section 7 make use of the Green’s function of an operator

which is the sum of a derivative term and a finite number of delta functions.

Next we offer a brief overview of the Green’s function for the derivative in

one and two dimensions, and describe a general method for calculating the

Green’s function of the sum of a linear operator L and a finite number of

delta functions, given the Green’s function of L.

2



0.1 Green’s Function of a Linear Operator

Given an operator L on a function space F , where as before the functions

are denoted x(t), the Green’s function of L is a function G(t1, t2) which

satisfies LG(t1, t2) = δ(t1 − t2). It is perhaps easier to think about G as a

parametric family of functions, indexed by t1 (that is, G(t1, t2) , Gt1(t2)),

which satisfies LGt1 = δt1 . For example, in the function space dealt with

in this paper (functions x(t) on the unit interval, with boundary conditions

x(0) = x(1) = 0), the Green’s function of the operator −∇2, which is used

in Section 7, is the piecewise linear function

G(t1, t2) =







(1 − t1)t2 if t2 ≥ t1

(1 − t2)t1 if t1 ≥ t2

it can easily be checked that, for a fixed t1, Gt1 satisfies the boundary con-

dition and that minus its second derivative is indeed a delta function at

t1, hence it satisfies the requirement for the Green’s functions of minus the

second derivative.

0.2 Green’s Function for Higher-Order Smoothness Terms

and Dimensions Higher than 1

It is easy to verify that if a linear operator L admits a set of eigenfunctions

Φk with eigenvalues λk, which also satisfy the so-called completeness relation
∑

k

Φk(t1)Φk(t2) = δ(t1 − t2), then L’s Green’s function equals
∑

k

Φk(t1)Φk(t2)
λk

.

Hence if we’re using a second order smoothness term in one dimension (yield-

ing L(x) = d4x
dt4

) then G(t1, t2) =
∑

k

sin(kt1) sin(kt2)
π4k4 . Similarly, in two di-

mensions, the second-order smoothness term yields L = ∇4, or L(x) =

3



∂4x
∂4t

+ 2 ∂4x
∂2t∂2s

+ ∂4x
∂4s

, and G((t1, s1), (t2, s2)) =
∑

k,l

sin(kπt1) sin(lπs1) sin(kπt2) sin(lπs2)
(k2+l2)2

.

0.3 Adding Delta Functions

In Section 7 the general solution of computing the p.d.f (in any dimension)

necessitated the computation of the Green’s function of an operator which is

the sum of −∇2 or ∇4 and delta functions at the sample points. Generally,

assume G is the Green’s function of an operator L, and we need to compute

the Green’s function of L plus delta functions. For simplicity, assume only

two deltas are present (the general case is solvable in exactly the same man-

ner). Denote L = L + δt1 + δt2 , and define Gt = Gt + α1Gt1 + α2Gt2 . We will

now show that for a correct choice of α1 and α2, G is a Green’s function for

L. We must have LGt = δt. Applying the definition of L and Gt:

LGt = (L + δt1 + δt2)(Gt + α1Gt1 + α2Gt2) =

LGt + α1LGt1 + α2LGt2 + Gt(t1)δt1 + α1Gt1(t1)δt1 + α2Gt2(t1)δt1 +

Gt(t2)δt2 + α1Gt1(t2)δt2 + α2Gt2(t2)δt2 =

δt + (α1 + Gt(t1) + α1Gt1(t1) + α2Gt2(t1))δt1 + (α2 + Gt(t2) + α1Gt1(t2) + α2Gt2(t2))δt2

all that remains now is to choose α1, α2 which solve the set of equations

α1+Gt(t1)+α1Gt1(t1)+α2Gt2(t1) = 0, α2+Gt(t2)+α1Gt1(t2)+α2Gt2(t2) = 0

this method works for any dimension and choice of smoothness term.
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