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Abstract averaging the invariants is not the way to average different
configurations, as the averaged invariants don’t necégsatri

This paper proposes a Riemannian geometric frameworkcorrespond to a configuration.

to compute averages and distributions of point configura-  One popular form of normalization, originating in statis-
tions so that different configurations up to affine transfor- tics, is whitening, in which an affine transformation is ap-
mations are considered to be the same. The algorithms areplied to set of points such that they have zero average
fast and proven to be robust both theoretically and empiri- and the identity covariance matrix. The problem with this
cally. The utility of this framework is shown in a number of method is that there are remaining degrees of freedom,
affine invariant clustering algorithms on image point data. that is, two affinely equivalent sets can have different nor-
mal forms. Another normalization, obtained by bringing
pivot points in the configuration to a standard location suf-
fers from being arbitrary and thus highly sensitive to noise
(Note that the non-pivot points after the transformatiom ar
invariants).

Objects are often known up to some ambiguity, depend-  Affine-invariant distance between sets of points in 2D
ing on the methods used to acquire them. The first-order ap-has been suggested i, but, as above, having a distance
proximation to any transformation is, by definition, affine, does notallow us to compute means and probabilities.
and the affine approximation to changes between images The study of the space of ordered configurations of n
has been used often in computer visiéh [Thus itis bene-  points inR* up to similarity transformations was pioneered
ficial to deal with objects known only up to an affine trans- by Kendall (see{]), who coined the namshape spaceFor
formation. For example, feature points on a planar trans- different groups of transformations (rigid, similaritinéar,
form projectively between different views, and the projec- affine, projective) one obtains different shape spacespé&ha
tive transformation can in many cases be approximated byspaces were considered i#],[ 14], although no attempts to
an affine transformation. Likewise, color values of pixels give a geometric structure on the shape space were made.
vary close to affinely with change of illuminatior]]. A Methods similar to ours were suggested][in order to
number of popular clustering algorithms, such as k-means,morph between affine shapes, although mistakenly only the
mean shift and EM use averaging on the data and probabildinear invariance was used (see Appendix).
ity distributions. In order to use these algorithms we need  Our approach is to define a canonic geometric structure
methods to measure distances between such sets, to conon the affine shape space and use general geometric meth-
pute means and to put probability distributions on them.  ods [L7] to compute averages and distributions of affine-

Previous work treating affine invariance in computer vi- invariant point configurations. Thus the clustering algo-
sion can be generally divided into two approaches: invari- rithms mentioned above can be implemented on the affine
ants and normalization. The first method consists in com-shape space.
puting different functions (invariants) of a set of poirtiat The paper is organized as follows: the next section pro-
are invariant to the relevant group of transformationd.[ vides the mathematical background in geometry and Sec-
The disadvantages of this approach is the difficulty of using tion 3 explains how to use the geometrical methods on the
invariants to define a meaningful distance between configu-affine shape space. We proceed with possible applications
rations of feature points, moreover, a full set of invargaet ~ of the approach and results therein, finishing with a discus-
needed in order to distinguish between different sets. ,Also sion and suggestions for future work.

1. Introduction



2. Mathematical Background Using the mean defined in the above paragraph we can
estimate the expectation of an empirical distribution on a

. V\I/e are ?9'”9 to tmap ever;y—&omt corrll_ﬂ?]uratmn 0a  anifold. We can go one step further and compute the
smtg Z.p?m ina cgr ain manl OT » on \é)vl '(; ;/;/]e c(zja_n COM- - ovariance matrix of the data. Let,...,z, € M and
pute distances and averages. To enable further discussion, _ Mean(z1, ..., z,). Fix a basisui, ..., v, of T, M.

we need_ fo take a small detour intq Riemannian geometry.The covariance matrix relative to the basisy, . .., v, is
Further information can be found in any textbook on the )
subject, such asi[. —— ) Y

An m-dimensional manifold is a space that locally looks ¥=5 2_ 1o (i) log, (¢5) *)
like R™. A differential manifold) enables us to talk about
derivatives of curves on the manifold, the derivative of a | gpAi) 1 K ,
curvey(t) ata point: € M being a vector’ (¢) lying in the norrr_1a| distribution N'(u, X3) on M fitting our data with
vector spacé, M which is called the tangent spaceltbat ~ Jensity ) B .
z. A Riemanniamanifold is a differential manifold with an B(a) oc e 2 108 (D)Z 7 lor (1) (5)
inner produck, >, uniquely defined on each tangent space The exponent of the density is the Mahalanobis distance be-
T, M. With the inner product, any differentiable curye tweenz and the mean of the distributia¥i(y, 3)
[a,b] — M has lengthL(~y) defined as d(x) = log, (2)5 " log, ()" ©)

b
o /
L(v) = /a 7' @Ol ydt (1) If My, M, are Riemannian manifolds then there is a nat-

. ural Riemannian structure on the product maniféid =
_ where [|v] = /<w,v>, is the norm onl, M de- My x My: if (z1,x5) is a pointinM andv, w € T, M then
rived from the inner product. The distander, y) between  _ (v1,v9) andw = (w1, ws). We define

two points on the manifold is the infimum of the lengths

of paths between them. A path that minimizes the distance <V, W >p=< U1, W1 >py + < V2, W2 >uy  (7)
between two nearby points is called a geodesic. While it o easily shows that geodesics i are product of
is not always true, in a generic situation for every paint geodesics inM; and M,: ~(t) is a geodesic i iff
in M _there_ls_, a unique geode5|_c starting framn every ~(t) = (71(t),12(t)) wherey, is a geodesic ;. In the
direction, giving us theexponentiaimap (the usual expo-  ¢5me way, means il can be computed coordinatewise.
nential is a special casekp, : 1.M — M such that

d(z,expz(v)) = |v|. for everyv in T, M. The inverse 3 Geometry of the affine shape space
map toexp,, the logarithm is defined only in a certain

2%

wherelog,,(z;) is written in the basigv; }. We then get a

neighborhood of and is denoted bipg,, . Our goal is to define a geometric structure on the set
The notion of the mean of a set of pointsii can be  of n-point configurations irR*, where two configurations
defined in different ways. One of them, called the Karcher (v1,...,v,) and(u,...,u,) are considered equivalent if

mean p](although it was originally defined and studied by there is an affine transformation from one to another:
Cartan) comes from noticing that the mean of a set of points w — Ave + b 8)
in the euclidean spad®* minimizes the sum of the squared ! !
distances to the points in the set. This still makes sense inTo achieve the goal, we need to assign a representative to
any Riemannian manifold, thus we define: every configuration such that equivalent configurations get
n the same representative. Given a configuration. ., v,
Mean(zy,...,z,) = arg min Zd(y’ )2 (2) we look at the subspadé spanned by the columns of the
yeM — following matrix:

The mean is not unique for a general set of points, con- i 1

sider two antipodal points on a sphere. Nevertheless, it is !
H . M(U17"')U7L)_ (9)

known [2] that for points lying close enough to each other e 1

the mean is unique and in addition the equation above has of 1

unique local minimum (See Appendix for further discus- |, oither words. V is the image of the operator

sion). By differentiating we get that is the mean if and M(vy,....v,). We show thal is invariant to any affine
only if S

n transformation applied toy, . . ., v,. If u; = Av; + bthen
> log, ;=0 €) VTAT 437 1
i=1 ol AT + 0T 1

This gives us a simple gradient descent algorithm for find- M(uy, ... un) = o 1| = (10)
ing the mean. oI AT 10T 1



ol 1
T T
- vy 1 A 0
I | ( bt ) (11)
’U,?; 1
AT 0 . .
As b is invertible, M (u1,...,u,) and

M (v1,...,v,) have the same image. On the other hand, if
the image ofM = M (vy,...,v,) is equal to the image of
M’ = M(uq,...,u,) thenthereis & + 1 x k + 1 matrix

B such thatM/’ = M B and thisB has to be affine, sév; }
and{u;} are affinely equivalent.

Thus everyn-point configuration inR* gives rise to a
k + 1 dimensional subspace &", with equivalent con-

Algorithm 1. Distance=d(X,Y)
USVT =thintSVD(XTY)
O =cos™ !X

d(va) -V Zi 9L2

Algorithm 2. Gexp(X, H)
UxVT = thin SVD(H)
Gexp(X,H) = XV cos¥ +UsinX

Algorithm 3. Glog(X,Y)
ULVT =thin SVD(I — XXT)Y(XTY)™ 1)
O =tan" 'Y
Glog(X,Y)=UeVT

figurations giving the same subspace. Of course, the con-
figuration can be reconstructed from the subspace only up  Using the functions above, we can write down the al-

to affine equivalence. Note, however, that not every 1
dimensional subspace &" is the representation of an
point configuration, only those containing the vector
(1,1,...,1)T. Thus our representative will be the orthogo-
nal complementof in V. Summarizing: the space of affine
shapes is the space of &Hdimensional subspaces it

The space of-dimensional subspaces &f* is called
the Grassman manifold and denoted Gyk,n). It is
a generalization of the notion of projective space, which
is the space of all 1-dimensional subspace®R8f The
are different ways to define distances @(k,n), and
in particular, Riemannian structure. Nevertheless, there
is a unique (up to scale) Riemannian structure that is
invariant to the action of the orthogonal group on the
left (see Appendix), thus becoming invariant to permuta-
tions (of the points), so that((vy ... v,), (w1 ... wy,)) =
d((Vr(1y -+ Vr(n)), (Wr1) - - - wr(y) fOr any permutation
7. The geometry o&(k, n) with this metric has been stud-
ied [1€], [17] and algorithmic methods for solving prob-
lems on the Grassman manifolds have been suggestép in [
[71,[1]. For completeness we give the algorithms for com-

puting the distance, exponent and logarithm on Grassman

manifolds equipped with this metric.

We represent &-dimensional subspad& of R™ by any
n x k matrix A whose columns spaW. Clearly, for any
nonsingulark x k matrix P the subspace spanned Ay’
is identical to the one spanned bBly Thus, the dimension
of G(k,n)isk-n—k-k = k(n — k). Notice that we

are not using any canonical coordinates for the Grassmar’tation of Ty

manifold, such as Plucker coordinates, but work with any
matrix spanning the subspace.

Let XY be orthogonah x k& matrices representing sub-
spacedV andW’. Recall thatUxV7 = A is athin SVD
decomposition ofd if U isn x k orthogonaly is k x k diag-
onal andV is k x k orthogonal. Now the distance, exponent

gorithm for computing the mean of a set of configurations
My, ..., My where eachV; is the matrix built from the
points ofi—th configuration as described in the beginning
of the section.

Algorithm 4. Mean(A, ..
Choose any orthogonal basis, . .
w1

S AN)
., wp_1 for 1+,

P=
Wn—1

for j =1to N do
R; = PA;

w="U

repeat
6= % X501 Glog(p,Uj)
p = Gexp(u,d)

until ||0] < e

Mean= PTp

The convergence issues are handled in the Appendix,
here we show that the algorithm works in a very general
setting. In [] a different definition of a mean on the Grass-
man manifold is given together with a faster algorithm for
computing it. Unfortunately, nothing is known about the
algorithm’s convergence.

Atangentvector in the tangent spacgy is represented
by matrix H such thatA” H = 0. Notice that this represen-
doesn’t depend on the choice 4f as
ATH=0 <= (AP)TH=PTATH =0 (12)
for any nonsingulaP. To estimate the covariance matrix of
an empirical distribution:y, . . ., z,, with meanu we need
to pick a basiw, ..., v, -y for 7,,. If Y representg:

and logarithm on the Grassman manifold can be computedandY = UXV7 is the full SVD decomposition, then the

using standard mathematical tools:

first k£ columns ofU spanyu, while the lastn — k£ columns



are an orthogonal basis #),. For any matrix/ such that
YTH = 0 (that is, representing a vector i),) the matrix
UT H will have zeros in the tog rows. The rest o/” H,
rewritten in a vector fornay, (H ) is the representation df

in our basis ofl},. Summarizing we obtain the algorithm
for computing covariance:

Algorithm 5. Covariance= (A, . ..
uw=Mearn(4;,...,AN)
UDVT = SVD(u)
Vi v; = cu(Glog(u, A;))
2= % > vy

AN)

Now the computation of the Mahalanobis distance and
the density of the normal distribution is as in Sectibn

In some cases, as in some models for illumination in-
variance, we want to consider configurations up to linear
transformations, instead of affine. This case is even simple
and is treated in the Appendix.

As remarked in the end of Sectié) a product of Rie-
mannian spaces is a Riemannian space. This can be used

Algorithm 7. Mean shift¢, . . .
for iter = 1 to IterNumdo
for i = 1to N do
Let A ber closest neighbors of;
x; = Mean(A)
Run average-link clustering

,TN)

Algorithm 8. Mixture of Gaussians, . . .
Choose randork pointsc; fromzy, . ..
ijJ =i
repeat

fori=1to N do

Find j minimizingd,, =, (z;) {w}ith d.; =, (x;) the

Mahalanobis distance fromy to ¢; with covariance

Zj
Cj = Cj U {l‘t}

for j=1tokdo

¢; = Mean(C5)
Y; = Covariance(C)
in until

L TN)
y TN

the case of colored points, where the points are transformed

affinely in the space, and the colors transform affinely in the
RGB space.

4. Applications and Results

malization of the configurations. On the other hand, G-k-

means, G-EM, G-Meanshift use the Grassman geometry. To
show the need for mean computing clustering algorithms,
we compare the results with the average link clustering of

Being able to compute means, we can now employ clus-yne gistance graph. This algorithm will be denotedin

tering algorithms that use averaging, such as k-means and, G_jink when using the euclidean distance after normal-
mean-shift. If the data is sufficient, Mixture of Gaussians ization or Grassman distance, accordingly.

with EM can be used as well, applying the methods above  aq the ground truth clustering’ 1,....N} —
to estimate the covariance of a cluster. A number of syn- {1,..., k} inthe experiments is known we use the misclas-

thetic and real examples follow. , sification ratio of clustering” to evaluate the performance.
We give a short dfascnptmn of the well-known algorithms  zq the order of the labels is meaningless, we define the mis-
used for clustering: k-means, mixture of Gaussians andg|assification ratio as the minimum of error percentage for

mean shift. all possible orderings of the labels.
. 1 .
Algorithm 6. k-Meansg, ..., zn) a(F) = — min |F_1(c) \ F—l(ﬂ(cm (13)
Pick k pointscy, . .., cg uniformly fromay, ..., xn N mesy XC:

repeat
Vi C;=10
for i =1to N do
Find j minimizing d(z;, ¢;)
Cj = Cj U {l‘t}
for j=1tokdo
¢; = Mean(C)
until there are no updates
Notice that these algorithms can be implemented in any

We begin with a synthetic example demonstrating the
usefulness of the proposed approach. Two schematic draw-
ings of a man defined by a set of points were perturbed by
random affine transformations and random noise, resulting
in a set of drawings in Figuré. The goal was to partition
the set of drawings into two clusters. The comparison of the
misclassification relative to ground truth is shown in tahle

data space as long as we can compute distance, mean Algorithm | linkage | k-means| meansift
and covariance (for EM) in that space. As we have seen Normalization 7 6 4
above, the affine shape space, which is effectively a Grass- Grassman 7 2 1

man manifold, has efficient algorithms for computing these Taple 1. Classification error for clustering of the dancitigisfig-
quantities. We shall denote by k-means, EM and Mean- ures. The smaller the number, the better the resuilt.
shift the algorithms above using euclidean space after nor-
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% /;\\ /ﬁ fJ% Figure 2. A set 11 points were labeled on each airplane image

Figure 1. Dancing men: Two “stick” drawings of a person were Appendix
randomly perturbed. The task is to cluster the images into tw
groups. The ground truth: the first and the third column are pe A. Linear shape space
turbations of one figure and second and fourth of the other.
The structure of the linear shape space is similar the
affine case, only simpler. Given a configuratian. .., v,
we look at the subspadé spanned by the columns of the
following matrix:

We now proceed to a systematic evaluation of the ap-
proach. 4 sets of 10 points in the plane were drawn from
N(0,1). Each one of the sets was cloned 25 times. A differ-
ent random affine transformation was applied to every one

of 100 sets, and normally distributed noise with standard de v
viationo was added. Our goal is to cluster the resulting 100 M(vy,...,v0) = v2 (14)
sets. Figures shows the average performance of different e
algorithms. Un

Real-life example. We took a set of images of f15 and ) .
In other words, V is the image of the operator

f18 airplanes from the web (FiguE and manually labeled o . )
11 points on each image (the nose, corners of the wings (V1 -+ vn). We show thal/ is invariant to any linear

and tail, etc.) as in Figure. The misclassification error of transformationappliedto, ..., v,. If u; = Av; then
different algorithms is shown in Tabk 4
U1
Table 2. Classification error for clustering f15/f18 images M(ui,. . up) = Avo _ (15)
Algorithm link | k-means| meansift
Normalization| 6 6 6 Avn
Grassman 4 3 0
U1
= " |47 (16)
5. Discussion and future work o
We showed that affine invariance can be treated robustly
and efficiently using a Riemannian framework. Using this As AT is invertible, M (u1,...,u,) and M(vy, ..., vy,)
framework we showed how classic clustering algorithms have the same image. On the other hand, if the image
can be adapted to the affine invariant case. We believe thadf M = M(v1,...,v,)) is equal to the image af/’ =
these methods will have many uses in computer vision andM (u1, . . ., u,) then there is & x & matrix A such that
image processing systems. M' = MA, so{v;} and{u,} are linearly equivalent.

We plan to map other computer vision problems, suchas In this way every configuration gives rise to /&
projective invariance and continuous shape deformatimns t dimensional subspace Bf*. As opposed to the affine case,
their relevant Riemannian manifolds in order to be able to there are no technical complications and the shape space is
carry out the analysis on the correct spaces. just the Grassman manifol@d(k, n).



B. Convergence of the mean
07

A set S in a Riemannian manifold is called convex
if for any two pointszy,z2 € S there is a unique short-
est geodesic betweery and xy lying in S. Following

0.6

[2], if the points on a manifold lie in a convex ball then 0.5
>t d(y,z;)* has only one local (thus global) minimum
ensuring the convergence of the mean finding algorithm. As 0.4

—}— Grassmann

the space is homogeneous, the convexity of a ball depends rallll
P 9 Y P —B— Normalization

only on its radius. The convexity radius ConRad (the maxi-
mal radius of convex balls) obeys

03

0.z

1 1
ConRad > rnin{EIanad7 EK} a7)

relative change of distance when noise is added

1
where InjRad is the injectivity radius (the radius of the °

biggest ball on whickexp,, is injective) andK is a upper
bound on the sectional curvature. According i@][any
geodesic irG(k, n) with min{k,n — k} > 2 that intersects
itself is closed, and the minimal length of a closed geodesic _
is 7. Thus the injectivity radius i%g_ By [17] the curva- Figure 3. A and B are two sets of 6_ points on the plane drawn from
ture of G(n, k) is bounded byt, thus the convexity radius ~ N(©:1)- A4 and AB represent ”O'Se‘gfmﬁgﬁ(g; Ug<-AL';$
is . The diameter, that is, the maximal distance betweenlfJlraph shows the average valuelof=

. . . or both the distance on the Grassman manlfold and the ezclid
two points, ofG(k,n) is equal tomin{v'k, vn —k}5 for  iciance after normalizing.
k,n —k # 1[16. In our applications: = 2 or 3, so we
see that the algorithm for computing the mean will converge

0.8

04 0.6
noise to signal ratio

even for relatively spread out sets. have the same distribution as the coefficient§’ofsO is
orthonormal, so we can assume tl?ia's( Vel
C. Noise sensitivity Let C' and D be the matrices whose columns are the or-

thogonal bases aofl and A + Y, accordingly. WriteD as
A substantial advantage of our affine shape representa- ( r

tion over normalization is its insensitivity to noise. Nain Iel

) whenF' is 2 x 2 matrix. It is easily seen that
ization suffers badly from noise, as a small change in one

of the pivot points can lead to a large error in the position of d(A, A+y) < V2cos ' [|[CTD|| (19)
the other points. The difference in the stability between th s
two methods is shown in Figute AsCisjust( | inourcaseC” D = F. To show that

We analyze the robustness of the Grassman metric un-

der Gaussian noise on the coordinates of the points. Let!(4;A+Y)is smallwe need to show that the nofih|| is
u1,...u, be a configuration of points in the plane with close tol. We know thatD is orthogonal, thus maps every

zero mean and unit covariance. We shall assume additive-nit vector to a unit vector.
independent Gaussian noigg of zero mean and variance

e. Our goal is to compute the average distance between the 1= D) = \/||F($)||2 +IGG)? (20)
configuration{u; } and{v; = u; +y;}. Let A be the matrix ~ As the first column ofD is obtained from the first column
uy of A+ Y divided by /n and they;; are independent, on
“2 | Asthe{u;} have zero mean and unit covariance, aVe€rage|G( ; )< 6\/\/7? = ¢. We have
2
U, N o o INTCVE
there is a orthogonal matri® such that 12 FGI = 1 = IGGI? =1 2 (1)
N and finally
0 Vn
oa=| 0 0 (18) d(A,A+Y) <V2c0s /1 —[|GE)II? ~ V2e  (22)
00 D. Uniqueness of metric
As argued before, the metric is invariant undgy(RR), thus DenoteG = SO, (R) andH = SOx(R) x SO, _;(R).

d(A,A+Y) =d(OA,0OA+ OY). The coefficients 0OY We wish to show that there is a unique (up to scdle)



invariant Riemannian metric o (k,n) = G/H. Any in-
variant metric onG/ H is uniquely determined by an inner
product<, > on the tangent spacg,, whenz = eH €
G/H. In our casey is the subspace spanneddy. . ., e

andT, can be represented as the set of all matrices of size

(n— k) x k. Necessary and sufficient condition for the met-
ric to be invariant is:

Vhe H YW, Z T, <w,z>=<hW,hZ > (23)
Ifh(% 3>then
hw%h<ﬂ§/>%<tVUw>
% ( tVI/IfU‘l > =VWwUTh o (24)

Thus<, > must be invariant to the action 610,,_,(R) on
the right andSOy(R) in the left. Denote by;; the natural
basis forT,, the set of allln — k) x k matrices. Assume
< e11,e11 >= 1. To show that, > is the standard inner
product and thus unique we need:

Vi, j
v(i,j) # (k1)

For everyi, j there exist/, V such thal/e;;V = e;1, thus
< ejj, ey >= 1. For everyi # k there is & (rotation by
m/4) such that for every

< €4j,€45 >= 1

< ejj,ep >=0 (25)

2
—(€ij — exj)
(26)
In the same way, for every # [ there is &/ such that for
everys

2
_(eij + ekj) and Uekj =

Ueij = 5

2 2
eijV = %(eij +eil> and e;V = %(eiijl) (27)

Finally, fori # k andj # 1

1
< ejj, ey >= 3 <ej +ey, e —eyg >=0 (28)
1
< €5, Crj >= 5 < eij tej, e —eg >=0 (29)
and 1
< Cijs Chl > 5 < €ij +€it, Ckj — € >=
1
§(< €ij, Ckj > + < €y epj > — < €5, €kl > —
1
<ei,en >) = §(< €il, erj— < €ij, €pl >) =
1
§(< ij ek > — < e;j.e >) =0 (30)
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Figure 4. Comparison of the average classification erroixadlgorithms: link, G-link, k-means, G-k-means, meanishifd G-meanshift
as a function of noise amplitude. As there were 4 clusterfiéneixperiment, a misclassification ratio of 0.75 correspdondhe worst
result possible. The plot clearly shows the advantage o$sBnan based algorithms Notice that for small enough noeseavarage link
algorithm using the Grassman distance performs well, afh@s the noise grows it gives way to the algorithms that veeaging.

Figure 5. A set of images of airplanes downloaded from the wWéter labeling feature points, the images were succeggbalrtitioned by
the G-meanshift algorithm in 2 clusters, correspondindLfodnd f18. Algorithms using normalization failed to accdistpthe task.



