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Abstract

A meaningful affinity measure between pixels is essential

for many computer vision and image processing applica-

tions. We propose an algorithm that works in the features’

histogram to compute image specific affinity measures. We

use the observation that clusters in the feature space are

typically smooth, and search for a path in the feature space

between feature points that is both short and dense. Failing

to find such a path indicates that the points are separated by

a bottleneck in the histogram and therefore belong to differ-

ent clusters. We call this new affinity measure the “Bot-

tleneck Geodesic”. Empirically we demonstrate the supe-

rior results achieved by using our affinities as opposed to

those using the widely used Euclidean metric, traditional

geodesics and the simple bottleneck.

1. Introduction

Calculating an affinity measure between pixels is a fun-

damental problem in low level vision. Many computer vi-

sion and image processing algorithms rely on these mea-

sures. These affinities are either measured between different

pixels of the same image in applications such as segmenta-

tion, edge detection and noise reduction, or between pixels

from neighboring frames in motion segmentation or track-

ing.

In practice, most applications calculate pixels affinity as a

simple function of the Euclidean distance between the pix-

els’ features (usually e
−d2

σ2 where d is the Euclidean dis-

tance in some feature space and σ is a normalization fac-

tor). Common feature spaces are one-dimensional gray

scales, two or three dimensional color spaces and higher

dimensional (∼ 50D) texture feature spaces. Different re-

searchers suggest using different feature spaces for achiev-

ing optimal results in various applications, but no particular

feature space is considered optimal by the whole commu-

nity (a survey of the properties of different color spaces for

Figure 1. An RG histogram of an image (an RGB histogram, pro-

jected upon the RG axis). The histogram reveals that u and v

likely belong to the same cluster while u and w do not, although

the Euclidean distance between the points u and v is similar to the

distance between the points u and w. Using [robust] path based

similarity still won’t help since there is a very long, but dense path

between u and w (shown in dashed red line). Nevertheless there is

no short and dense path between u and w therefore both sources

of information should be used together for providing a meaningful

affinity

image segmentation can be found in [3], while [16] provides

a basic survey of different texture features). Although this

approach is efficient and simple, it does not utilize general

image properties (class properties) or image specific char-

acteristics. Approaches to the problem that try to use these

properties include learning pixels affinity [7], feature space

clustering [4, 11] and geodesic distances [14, 6, 8].

Model based algorithms for affinity (or distance) cal-

culation that use geodesics were previously suggested in

computer vision and several other fields of computer sci-

ence. These works usually store the data in a graph where

each data point (feature points) is represented by a vertex,

and neighboring data points are connected using an edge.



An example can be found in Magnus’s distance calcula-

tions algorithm [14]. His algorithm calculates model based

geodesic distances according to the data points (using a

graph - shortest paths algorithm) but doesn’t use the den-

sity information in the feature space. He demonstrates his

algorithm only for simple synthetic examples. In their work

“Path Based Clustering”, Fischer et al suggested a differ-

ent approach to the problem [6]. Their observation is that

many real world problems deal with non compact clusters,

and completely eliminate the path length from their mini-

mization term. Instead of calculating the similarity between

feature points according to the length of the shortest path

between the points, they consider two points as similar if

there exists a path without an edge with large cost between

the points (a max-min algorithm). The similarity sij be-

tween vertices i and j is expressed by the following term

sij = max
p∈Pij

{

min
1≤h<|p|

sp[h]p[h+1]

}

where sij is the similarity between nodes i and j, Pij de-

notes the set of all paths between i and j, p[h] is a node

along such path and sp[h]p[h+1] is the similarity score of an

edge along the path (edge length). Their minimization term

can be looked at as an approximation of the feature space

density. Recently, Chang et. al. suggested adding robust-

ness to the algorithm by multiplying the edge similarity es-

timator by a density estimator for the edge’s vertices [8].

Their algorithm, “Robust Path Based Clustering”, is similar

to that proposed in [6] and their similarity measure is given

by the formula:

sij = max
p∈Pij

{

min
1≤h<|p|

wp[h]wp[h+1]sp[h]p[h+1]

}

This work adopts the observation that stands at the heart

of the [robust] path based clustering and use density infor-

mation along the path between feature points in the feature

space, but unlike these two works, we claim that density in-

formation alone is insufficient. Our distances are therefore

calculated as a function of the geodsic distance between the

feature points and of the minimal density (Bottleneck) along

this path and is therefore called Bottleneck Geodesic. In a

previous work [12], we suggested calculating the distance

between RGB feature points by deviding the Euclidean dis-

tance between the points by the minimal histogram value

along the straight line (in the histogram domain) connect-

ing these points (the algorithm works with slight modifica-

tion for texture as well). This algorithm is simple and ef-

ficient but assumes that the feature points form convex (or

nearly convex) clusters in feature space. In this work we

relax our convexity assumptions and suggest an algorithm

that searches for a path in the features graph that is both

short and dense.

The motivation for our approach is made clear by look-

ing at the two-dimensional feature histogram in Figure 1.

Our main observation is that the histogram provides us with

additional knowledge, even though the Euclidean distance

between points u and v is equal to the distance between

points u and w, points u and v likely belong to the same

source and should be considered similar, u and w seem to

belong to two different sources and should be considered

dissimilar. Using [robust] path based similarity does not

help in this case, since there is a dense, but very long, path

between u and w (shown in a dashed line). There is no path

between u and w that is both short and dense.

This work suggests a straightforward approach to affinity

calculations which exploits image specific attributes while

not explicitly clustering the feature space. We do so by in-

troducing the Bottleneck Geodesic - a simple mechanism for

estimating the likelihood that two feature points belong to

the same cluster in the feature space. We use the histogram

density function as a tool for deciding bottlenecks values:

a low histogram value along the geodesic between two fea-

ture points indicates a narrow bottleneck that decreases our

affinity score. Our geodesic measure is therefore calculated

as a function of the length of the geodesic where the bot-

tleneck values add extra weight along the path. Given a

density function, this approach can be used directly in any

given feature space and requires no training stage.

Our algorithm is well adapted for pixels’ affinity calcu-

lations due to the smooth structure of clusters in the RGB

histogram of images. This structure is the result of scene

properties and the (digital) image acquisition process. We

discuss the structure of the clusters in the next section (sec-

tion 2). Section 3 describes our algorithm and discusses

implementation issues. The results are shown in section 4,

while section 5 summarizes and suggests possible exten-

sions to this work.

2. Histogram Clusters

This section discusses the physical properties that affect

cluster structure in an image feature space histogram.

Figure 1 shows a simple image, containing a small number

of dominant colors along with a two-dimensional projection

of its RGB histogram. The difficulty in modeling the clus-

ters in the histogram domain is evident from this example.

The clusters have no particular shape, and methods like the

Gaussian Mixture Model (GMM) are not suitable for this

kind of problem. The large amount of noise makes the task

of clustering a difficult one even for this simple scene. Nev-

ertheless, it is obvious that the histogram contains different

clusters. For most pairs of feature points, the problem of

estimating a likelihood measure for the points to belong to

the same cluster seems significantly easier than the actual

clustering problem. Our algorithm is aimed at utilizing this

observation.
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Figure 2. (a) An image of a simple scene containing two objects

and its GB histogram (b). (c) An image of a simple scene contain-

ing a texture (two texels) and its GB histogram (d).

For the sake of simplicity, this discussion refers to three-

dimensional color features (RGB values). We will address

the generalization of the discussion to other feature spaces

at the end of this section.

Our algorithm takes advantage of two well studied image

properties. The first property is the piecewise smooth world

assumption which has been used before in many computer

vision and image processing applications such as bound-

ary detection [10], image segmentation [17], noise reduc-

tion [15] and more. The second property is the image blur

due to the optics of the camera and the finite size of the pixel

[13].

The first property implies that for two feature points be-

longing to the same monochromatic object, there is a path

of histogram bins connecting the points (in the histogram

domain) that is well populated with points from the same

monochromatic object. Due to the second property, the

same holds for textured objects as well. The justification

for the last claim lies in the following fact: While locally,

in the image plane, there is no difference between the blur-

ring of edges due to texture and due to boundaries, globally

- in the histogram domain there is a big difference between

these phenomena. Boundaries between objects are sparse

and therefore produce a small number of interpolated val-

ues. The line in the histogram between pixels from neigh-

boring objects is therefore sparseely populated. In textured

regions the same texture components (texels) are blurred re-

peatedly. The line between pixels from two different texels

(of the same texture) in the histogram is well populated.

Figure 2 demonstrates the difference in the histogram

domain between edges due to object boundaries and edges

due to texture. In the figure we show real images of a sim-

(a) (b) (c)
Figure 3. (a) An image (b) the square root of its Euclidean edge

map (c) the square root of its edge map as computed according

to the bottleneck geodesics (the differences are more easily seen

with square root). The values in both maps are normalized to the

range of [0..1]. Notice how the bottleneck edge map maintains

edges between objects while the edge values inside the sculptures

are significantly lowered.

ple scene along with their GB histogram (a projection of

their RGB histogram upon the GB axis). There are only

a few pixels with interpolated values in figure (a) and the

two clusters are well separated in the histogram domain (b).

In figure (c) many of the pixels have interpolated values and

the region between the two clusters in the histogram domain

(d) is densely populated.

Figure 3 shows an image along with the edge map ac-

cording to the Euclidean metric (b) and to our bottleneck

distance measure (c). Notice how the bottleneck edge map

maintains edges between objects while the edge values in-

side the sculptures are significantly lowered.

Although in the entire section we referred to RGB fea-

tures, we would like to point out that our main argument,

smoothness due to scene and camera properties, is a fun-

damental property of natural images and is not related to a

specific set of features. Our experiments support this obser-

vation as we clearly show in the results section.

3. Defining & Computing Bottleneck Geodesics

The first step in computing the bottleneck geodesic is

representing the feature space using a graph. A feature

point is represented as a node in the graph. Each node

stores its neighborhood’s density estimation (a bottleneck

value). For a feature point xi and a neighborhood Ni

around it, we calculate xi’s density using the formula
∑

xj∈Ni

1
‖xi−xj‖2 . We connect each node in the graph to

a fixed number of its nearest neighbors (usually 5) using

edges, the edge length is set to the Euclidean distance

between the nodes (feature points).

For computing the bottleneck geodesic between two graph

nodes (two feature points) we need to find a path connect-

ing the nodes in the graph, that minimizes the length of

the path (geodesic distance), while avoiding low density

(narrow bottleneck) regions. Although finding an optimal



path according to each one of the two requirements is a

simple problem and can be computed using a shortest path

algorithm, finding a path that is optimal according to both

requirements is a difficult problem (NP hard). Using a

greedy algorithm (Dijkstra) does not guarantee to find the

optimal path.

One possible solution is coupling the density and distance

information in the edges themselves. We do so by dividing

the edge length by the minimal bottleneck value of the edge

end nodes, creating Local Bottleneck Geodesic (LBG).

This way we get rid of the information stored in the graph

nodes and are left with a standard graph (with modified

edge weights) for which we calculate the shortest paths

using Dijkstra’s shortest paths algorithm [5]. Although

this guarantees that the path we find is optimal for our

minimization term (path length), moving the bottleneck

information from the nodes to the edges means that the

density information has only a local effect. Instead of

dividing the length of the whole path by the bottleneck

value, we only divide the length of a single edge by that

value.

A different approach is to use Dijkstra’s algorithm for

finding paths that are optimized according to both the

length and global density (bottleneck) terms. Although

the algorithm does not guarantee to provide the optimal

paths, in practice it yields good results. An example for a

situation were the algorithm will not find an optimal path is

when the algorithm searches for the shortest path between

a dense node u and a sparse node v. Let us assume that the

path goes through a node w which is denser than v. The

algorithm might prefer a longer path between u and w to

avoid sparse regions, but since v is in itself a sparse node,

the algorithm will later pay more for its greedy decisions.

In practice, as revealed by our empiric experiments, this is

usually not the case and the algorithm computes meaningful

affinities that achieve excellent segmentation benchmark

results. This is probably mainly due to smoothness of

the data, but we believe a more thorough study of the

criteria for correctness of the greedy algorithm should be

performed and leave it for future work.

There are several ways for coupling the length and (global)

density of the path. We have tried two such approaches.

In the first approach we define the “price” of the path

puv, connecting the nodes u and v as puv .length

puv .bottleneck
where

puv.length is the length of the path, and puv.bottleneck

is the minimal bottleneck (density) along the path, we will

call this approach Bottleneck Geodesic Ratio (BGR). In the

second approach, Interpolated Bottleneck Geodesic (IBG),

the price is defined as q

puv .bottleneck
+ (1 − q) · puv.length

where q is a parameter (choosing q to be in the range of

[ 12 , 3
4 ] gave good results). We have evaluated the three

approaches using the Berkeley segmentation benchmark

and as shown in the results section, they all gave good re-

sults, although the global bottleneck approach (GBR/IBG)

performed better.

Computationally, calculating the bottleneck affinities

between one pixel and the rest of the image (single source

shortest path) requires θ(|V |log(|V |) + |E|). Since we

only have edges between neighboring bins, |E| = O(|V |)
hence the computational cost is θ(|V |log(|V |)) (|V | is

bounded from above by the number of image pixels).

Computing the affinities between all pairs of pixels requires

θ(|V |2log(|V |)) operations (instead of θ(|V |2) operations

for a naive Euclidean computation). We have implemented

our algorithm in C++, but our code is far from being

optimal. In practice, producing affinity measures in a

11*11 neighberhood around each pixel in the dataset took

15 minutes on average for a 300*200 image (on a Pentium

IV, 2.4GH). For comparison, segmenting the images to

9 segments given the affinities took around 5 minutes

per image (segmenting the images to a larger number of

segments takes more time). Fischer et al [6] suggest in their

paper, various ways for speeding the algorithm up including

building a multi scale graph, but we didn’t implement any

of these methods since our software was only developed

for a concept demonstration. In our previous work ([12]),

when calculating affinities between high dimensional

features (texture features) we had to reduce the features

dimensionality. Without the dimensionality reductions,

the feature space histogram becomes meaningless since

the chance for two pixels to be mapped to the same bin

approaches zero. For calculating affinity between high

dimensional texture features we therefore first projected

the features unto their first three principal components

using PCA and calculated the affinities between the

projected features. Our results show that in spite of the

dimensionality reduction, our affinities using the projected

features perform better than the Euclidean metric in the full

dimensional space. Although the graph representation frees

us from having to reduce the features dimensionality, we

still projected the texture features to 3D dimensions. The

main reason for doing so was computational efficiency, not

projecting the texture features leads to very large graphs

where the running time grows dramatically due to memory

management (disk access).

4. Results

A natural way to evaluate a pixel affinity measure is by

using these measures in a segmentation algorithm and eval-

uate the segmentation performance. We chose the Ncut al-

gorithm for our experiments since it is a well known image

segmentation algorithm that is easily adopted to use with

various affinity measures. Pixels affinities were computed

in an 9*9 neighborhoods around each pixel and the images

were segmented automatically using the Ncut algorithm
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Figure 4. Precision/Recall and F −measure scores for the Ncut

algorithm using color features and various affinity measures

into 9 segments (the segments are not necessarily continu-

ous). For providing a quantitative evaluating of the segmen-

tation results we used the Berkeley segmentation bench-

mark mechanism [1]. The Berkeley segmentation dataset

contains 100 test images. For each of these images several

human segmentations are provided (usually 5). These man-

ual segmentations are considered ground truth for evaluat-

ing the segmentation results. The evaluation is performed

by computing precision and recall. Precision is the proba-

bility that a boundary pixel produced by the algorithm is a

true boundary pixel, while recall is the probability that a true

boundary pixel is detected. These measures are combined

to form an F-measure which is the harmonic mean of the

precision and recall measures. We evaluated our different

Bottleneck Geodesics affinities calculations for RGB color

features and provide both their benchmark results and a few

qualitative results. We also provide a limited evaluation of

our algorithm for calculating affinities between texture fea-

tures. The texture features used are the Leung-Malik filter

bank [9] (a total of 48 filters). The filter banks code was

obtained from [2]. We compared the segmentation results

achieved using Bottleneck Geodesics with those achieved

using Bottleneck Affinities ([12]), simple geodesic distances

([14]), path based affinities ([8]) and Euclidean distances.

When using texture features we provide benchmark results

for both the full dimensional Euclidean space (48D) and for

the projected Euclidean space (3D). We demonstrate how

the Bottleneck Affinities achieves results that are superior to

those achieved by its competitors for both color and tex-

ture features. Figure 4 shows the average precision and re-

call achieved by the Ncut algorithm using the various affini-

ties and color features. The average precision and recall

achieved using texture features is shown in Figure 5. A few

qualitative examples (using color features) are provided in

Figure 6.
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Figure 5. Precision/Recall and F −measure scores for the Ncut

algorithm using texture features and various affinity measures

5. Discussion

We introduced the bottleneck geodesic, a novel image

specific approach for calculating similarity measures be-

tween pixel features. Our algorithm decreases the affinity

(relative to the Euclidean or geodesic distances) between

two feature points when it estimates that they belong to two

different clusters, while increasing their affinity when esti-

mating they belong to the same cluster. We do so without

explicitly clustering the data and with only weak assump-

tions on the structure of these clusters. Unlike other algo-

rithms that use density information, our algorithm not relies

on density alone, rather it combines it with distance (path

length) information. We suggested three methods for com-

bining distance and density information. The density infor-

mation can be used for adjusting the length of the edges in

the features graph (dividing the edge length by the minimal

density of its two end nodes). This way, all the information

is stored in the edges and any shortest paths algorithm is

guaranteed to provide correct results. In the two other meth-

ods, length information is stored in the graph edges while

density information (bottleneck) is stored in the nodes. In

these methods we search for a path that is, as short as possi-

ble while avoiding sparsely populated regions (narrow bot-

tlenecks) whenever possible. We have suggested two dif-

ferent minimization terms for this approach, puv .length
puv .bottleneck

and q

puv .bottleneck
+(1− q) · puv.length where puv.length

is the length of the path, and puv.bottleneck is the mini-

mal bottleneck along the path (q is a parameter). Although

there is no algorithm we know of that is guaranteed to ef-

ficiently finds the optimal path according to these terms, in

practice, running Dijkstra with these terms gave good re-

sults. Our algorithm requires no learning stage. It can be

easily applied for calculating distances or affinities between

feature vectors in any feature space given a density function

on the features. Our implementation uses a histogram as



a density function, but the algorithm is not limited to any

particular such function. Although computationally, the al-

gorithm is more time consuming than calculating Euclidean

distances, our non optimized implementation achieved run-

ning time that is comparable with that of the segmentation

algorithm we used. We believe that a better implementation

will achieve running times that are acceptable for many ap-

plications.

The information in the histogram has not received enough

attention and we intend to continue to exploit this infor-

mation for various computer vision tasks. Our algorithm

fills an important gap between two different approaches,

one that uses distance information alone (Euclidean dis-

tance and traditional geodesic distance) and the other that

relies only on density information (path based similarity).

We demonstrated that better benchmark results and more

visually appealing segmentations where achieved by com-

bining these two cues.

We further intend to apply this method to the analysis of

different kinds of data.
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Figure 6. Segmentation to 9 segments using the Ncut algorithm with color features and various affinities: (a) Input image (b) Euclidean

affinities (c) Geodesics (d) Local Bottleneck Geodesic (LBG), and (e) Global Bottleneck Geodesics (IBG)


