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ABSTRACT

We present an ellipse finding and fitting algorithm that uses
points and tangents, rather than just points, as the basic unit of
information. These units are analyzed in a hierarchy: points
with tangents are paired into triangles in the first layer and
pairs of triangles in the second layer vote for ellipse cen-
ters. The remaining parameters are estimated via robust lin-
ear algebra: eigen-decomposition and iteratively reweighed
least squares. Our method outperforms the state-of-the-art ap-
proach in synthetic images and microscopic images of cells.

Index Terms— ellipse detection, ellipse fitting, pattern
recognition, image analysis, cell counting

1. INTRODUCTION AND PREVIOUS WORK

Fitting multiple and overlapping ellipses on digital images
remains an open research area, despite the large number of
approaches that were published, from as far back as four
decades ago [1], up until as recently as 2012 [2].

There are three main classes of methods. Least squares
algorithms (e.g., [3, 4]) turn the ellipse-fitting problem into a
restricted-optimization problem. Hough transform techniques
(e.g., [5]) search for local maxima in a parameter histogram.
Edge contour following methods (e.g., [6, 2]) provide many
elliptical hypothesis from small “local” arcs before grouping
similar hypothesis and discarding ones with low “weight.”

All methods have limitations. The first is very sensitive
to outliers on the data, and thus only adequate in very low-
noise conditions. Furthermore, in its standard form it only
works for one ellipse. Hough transform techniques, although
robust to outliers and able to deal with multiple and overlap,
are computationally prohibitive due to the parameter space
dimension. Contour following methods are sensitive to the
grouping parameters and discarding of hypothesis, and thus
not very adequate for shapes that deviate slightly from a per-
fect ellipse.
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In this paper we introduce a new, hybrid technique, that
exploits some of the advantages form the first two classes of
methods. The centers of the ellipses are obtained in a Hough
transform fashion, but contrary to previous alternatives, vot-
ing is performed in two layers: first, pairs of points (with tan-
gents) define triangles, and pairs of triangles cast votes. The
estimation of the remaining parameters is based on the solu-
tion of a linear system that depends both on the points and the
tangents—typical least square methods work on points only.

Our method outperforms the best available method in our
databases of synthetic images and of mouse embryo cells.

2. THE ALGORITHM

The algorithm for ellipse finding has four steps, detailed in
the following subsections.

2.1. Points and Tangents (Step 1)

Most shape-fitting methods are based on edges, and those who
use tangent information usually compute the tangents from
the edge image. In our method, a point (pixel) with its tan-
gent is treated as the basic unit of information, and we cap-
ture them in one step from the image, using a bank of Morlet
wavelet filters [7], keeping maximum angle responses larger
than a threshold.

2.2. Location of Centers (Step 2)

The following property of points and tangents in ellipses (see
Figure 1) is used to find ellipse centers. Let p, q be points in
an ellipse, with tangents τp, τq . Let xpq be the intersection
of the lines passing through p with tangent τp and through
q with tangent τq . Let mpq be the midpoint of (p, q). The
line through xpq and mpq intersects the center of the ellipse.
To see why this is true, observe that this trivially holds for a
circle, and that an ellipse is a center-preserving linear trans-
formation of a circle. It follows that two such lines intersect
at the ellipse’s center.

This step is similar to what is performed in the Random-
ized Hough Transform [5], with the difference that we look
at pairs of pairs, instead of a triplet of points. This makes
the implementation easier, lets one chose more robust, close



Fig. 1. Properties of triangles defined by pairs of points in
an ellipse allow center recovery. In this figure, the triangles
have edges tangent to the ellipse at the specified points; the
dotted lines go through the midpoints of the edges defined by
the pairs (p, q), (r, s), and (t, u); intersecting at the center of
the ellipse.

to orthogonal, pairs of lines to intersect, and the approach is a
“layered” architecture (the first layer considers pairs of points,
the second considers pairs of triangles).

As in the RHT, we do not take into account all possible
triangles, only a subset of NT of them, chosen randomly. We
use NT = c · NP , where c is a small integer constant (2),
and NP is the number of pairs of points (for which the corre-
sponding tangents intersect).

To reduce noise and computational load in locating the
centers, we only accumulate votes when the distance between
the estimated center cpqrs and the boundary points p, q, r, s is
within a range of radii we are looking for. Further restrictions
can be applied: for instance, only accumulate centers that are
within image boundaries.

Local maxima in the accumulator matrix A correspond to
ellipse centers. Since A is sparse, we first convolve it with a
gaussian kernel before searching for local maxima. Further-
more, there are thresholds for the minimum value of a local
maxima, and how far from a stronger one they should be for
consideration.

Figure 3 (center column) shows examples of accumulator
images for real and synthetic images.

2.3. Clustering (Step 3)

Pairs of triangles (quadruples of points) vote for centers they
belong to.

Let {ci : i = 1, ..., NC} be the set of ellipse centers found
as local maxima in A. Every quadruple p, q, r, s is associated
to the ellipse center cĩ, ĩ = arg min ‖cpqrs − ci‖, if ‖cpqrs −

(a) Before mapping. (b) After mapping.

Fig. 2. The triangle defined by p, q and their tangents becomes
isosceles once the ellipse is mapped into a circle.

cĩ‖ is less than a “proximity” threshold. (cpqrs is defined in
the previous subsection.)

Figure 4 (a,b) shows the output of this phase for a syn-
thetic image containing two ellipses.

2.4. Remaining Parameters (Step 4)

Once the center of an ellipse is known, by subtracting the
center from their boundary points (which are known from the
previous step), the ellipse is translated to be centered at the
origin, (0, 0). Three parameters remain to be found: the major
axis, the minor axis, and the angle between the major axis and
the horizontal line. We compute these parameters by estimat-
ing the linear transformation M that maps the ellipse points
and the tangents into a circle.

Let p and q be two points in the boundary of such an el-
lipse, and xpq,mpq as defined in Subsection 2.2. We define

v = q − p , w = xpq −mpq , (1)

and observe that Mv and Mw should be perpendicular, that
is, the corresponding mapped triangle should be isosceles, see
Figure 2.

Thus, M satisfies

0 = 〈Mv,Mw〉 = 〈v,M>Mw〉 . (2)

Let B = M>M . Since B is symmetric, it can be written as

B =

(
α β
β γ

)
. (3)

Now, writing v = (v1, v2) and w = (w1, w2), Equation 2
becomes



(
v1w1 v1w2 + v2w1 v2w2

) α
β
γ

 = 0 . (4)

At least 3 equations are needed to solve for α, β, γ. Since
there are many pairs of points in the boundary of the ellipse,
say (pi, qi), i = 1, ..., N , we build a system of equations,
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γ

 = 0 . (5)

Let P be the N × 3 matrix in the above equation, and x =
(α, β, γ), we are then left to find a non trivial solution for the
linear system Px = 0. This can be solved in the least squares
sense using the eigen-decomposition of P>P .

Once we have α, β, γ, and therefore B, we can find M
that satisfies B = M>M by computing the eigenvalues and
eigenvectors ofB. (Some of the remaining ellipse parameters
are obtained from B, other from M .)

M , we recall, takes points in the boundary of an ellipse
to points in the boundary of a circle. The solution found via
eigen-decomposition is a scaling of the plane in the direction
of the major axis of the ellipse (which is the direction of the
eigenvector or B corresponding to its largest eigenvalue—b,
satisfying ‖b‖ = 1). See Figure 4 (c) for an example. In
particular, the radius ρ of the transformed circle (the compu-
tation of which we describe in a moment) gives the length of
the semi-minor axis, and the rotation of the ellipse is the angle
that b makes with the horizontal line. The last parameter, the
length of the semi-major axis. is equal to

√
e2√
e1
ρ (where e1, e2

are the eigenvalues of B, with e1 ≤ e2). The norms of the
transformed points (by the mapping p → Mp) should be the
same (since they are on a circle centered at the origin), except
for outliers (boundary points that were not properly clustered
to the corresponding ellipse center—see Figure 4 (a,b)). ρ is
the radius of such circle. We estimate it via 1-dimensional
Robust Regression [8] (to cope with outliers).

Figure 3 shows examples of our method in real and syn-
thetic images.

3. EXPERIMENTS AND CONCLUSION

We compared our algorithm with the state-of-the-art method
an edge contour following technique by Prasad et al. [2]. The
authors report experiments with synthetic and real images (the
later a subset from the Caltech-256 database [9]—the speci-
fication of this subset is currently unavailable, according to
[2]’s project page). Their results outperform classical and
modern methods [10, 11, 12, 13, 5].

Fig. 3. Outputs of our method in synthetic and real images.
The central column shows the accumulator space, from which
the local maxima correspond to the ellipse centers.

We generated our own synthetic images: three sets of 100
images, containing one, two, or three ellipses per image (re-
spectively). Images are of 256 by 256 pixels, ellipses are en-
tirely contained in the images, the semi axis range from 20 to
60 pixels (uniformly distributed), orientation is random, and
the distance between centers is of at least 32 pixels (so that
the overlap os not arbitrarily high). For real world pictures
we chose two sets of microscopic images of mouse-embryo,
containing two or four cells per image (examples are shown
in Figure 3), from the database in [14]. These sets contain
421 and 332 images each, respectively.

Table 1 shows the results we obtained. Detection is con-
sidered correct if the computed parameters are at most Γ away
from the ground-truth parameters. If n > 2 ellipses are lo-
cated at a distance < Γ from a ground truth ellipse, n − 1
are considered false positives. False negatives correspond to
lack of detection at a distance < Γ from a true ellipse, and to
ellipses located more than Γ pixels away from any true true
ellipse. Since the ground truth values for embryo cels are
based on a circle fitting algorithm, the angles of the com-
puted ellipses were not considered during evaluation. We



(a) (b) (c)

Fig. 4. (a,b) Points clustered in different ellipses; notice the
outliers, which our method is able to cope with. (c) Points
are mapped into a circle for the computation of the ellipse
parameters other than its center.

used Γ = 20 for synthetic images, and Γ = 15 for images
of 2 cells.

NI NE Method Precision Recall
100 100 Ours 1.00 1.00

Prasad 0.98 0.98
Prasad (Or.) 0.86 0.50

100 200 Ours 0.96 0.96
Prasad 0.84 0.93

Prasad (Or.) 0.83 0.27
100 300 Ours 0.86 0.82

Prasad 0.74 0.86
Prasad (Or.) 0.74 0.21

421 842 Ours 0.93 0.92
Prasad 0.77 0.50

Prasad (Or.) 0.82 0.13

Table 1. Results of our method, in comparison with Prasad’s
[2]. NI and NE stand for number of images and ellipses
(cells, in the cases of the last block of rows), respectively. The
“Prasad (Or.)” rows correspond to the original implementa-
tion of salient elliptic hypotheses selection in [2].

Prasad’s method has a step to select “salient” ellipses from
an initial set of hypotheses. We also tested the method with
a modified selection step, which in general improved preci-
sion and recall rates: we discard ellipses whose centers are
less than 20 pixels from already existing ones. As input to
Prasad’s algorithm we used the binary images obtained us-
ing the Sobel edge detector (the built-in Matlab implemen-
tation). In all implementations (including our method), we
set the maximum number NC of ellipses to be found before
the experiment (for the number of ellipses in each image was
known), picking the NC most prominent outputs.

One might ask: why computing the remaining parameters
of the ellipse using the method of Subsection 2.4, and not a
simpler method, say [3]? The least squares methods, such as
[3], work on pixels only, whereas our method use points and
tangents. Theoretically, more information should provide bet-
ter results, we made an experiment to verify this comparing

our method with one replacing the last step (Subsection 2.4)
by Fitzgibbon’s least squares approach [3]. In 100 synthetic
images containing 2 ellipses each, our original method’s pre-
cision and recall rates are about 3 times those of the modified
method. The same holds in 100 synthetic images containing
3 ellipses each.

In light of the results reported in [2], our experiments
show that ellipse fitting methods are highly dependent on the
input dataset. Although [2] outperformed competitors in par-
ticular sets of images, that didn’t imply best performance in
our images.

Our new method not only gives the state of the art results
in ellipse finding, it contributes to the existing literature of
shape detection in three main ways. First, we use points and
tangents, rather than just points, as the basic unit of informa-
tion. Second, we analyze these units in a hierarchical pairwise
fashion: in the first layer, triangles (each pair of points with
respective tangents define a triangle), and in the second, pairs
of triangles. This provides further evidence on the reliability
of looking at pairs of data units for geometric data analysis,
which we have already seen in other contexts, such as cir-
cle detection (reference submitted for publication). Third, the
method we use to capture the ellipse parameters other than
the center is novel, and relies on robust techniques from lin-
ear algebra (eigen-decomposition) and statistics (iteratively
reweighed least squares).

4. ALGORITHM COMPLEXITY AND FINAL NOTES

Step 1 is wavelet filtering, thus O(n), where n is the num-
ber of pixels in the image. Step 2 is quadratic in the number
of outputs from Step 1, thus O(n2). Step 3 is of the order
of number of outputs from Step 2 times the number m of
ellipses found, thus O(m · n2). The time spent on eigen-
decompositions in Step 4 can be considered constant, since
all involved matrices are at most 3× 3. Assinptotic complex-
ity depends on the cost of building P>P , which is O(9 · rP ),
where rP is the number of rows of P (the number of columns
of P is constant, equal to 3). Since for each ellipse rP is of the
order of the number of triangles on its boundary (i.e., O(n2)),
we conclude that Step 4 is O(m · n2). Therefore, overall the
algorithm is O(m · n2).

Our algorithm was implemented in Matlab (R2011b, 64-
bit). It runs in less than 5 seconds on synthetic images con-
taining 3 ellipses, and 20 seconds on images containing 4
cells. Images are of size 240 × 240 pixels. All experiments
were performed on an iMac with 2.8 HGz Intel Core i7 pro-
cessor and 16 GB RAM, running Mac OS 10.9.

The lists of mouse-embryo images used in the experi-
ments are available at the project’s webpage [15].

Drawings in Figures 1 and 2 were made with the help of
GeoGebra. This open-source software allows, in particular, to
dynamically visualize the property described in Figure 1, by
moving the points on the ellipse.
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