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ABSTRACT
We describe a statistical approach to the problem of estimat-
ing the times of cell-division cycles in time-lapse movies of
early mouse embryos. Our method is based on the likelihoods
for cells of certain radii ranges to be in each frame—without
actually locating or counting the cells. Computing the like-
lihoods consists of a voting scheme where votes come form
quadruples of points in a way similar to the first step of the
Randomized Hough Transform for ellipse detection. To lo-
cate divisions, we search for points of abrupt change in the
matrix of likelihoods (built for all frames), and pick the two
optimal division points using a dynamic programming algo-
rithm. Our results for the first and second cell division cycles
differ less than two frames from the medians of the annotated
times in a database of 100 annotated videos, and outperform
two other recent methods in the same set.

Index Terms— shape statistics, division detection, time
lapse, video analysis, mouse embryo

1. INTRODUCTION

Several papers have been published in recent years on the
topic of time-lapse imaging of early embryos [1, 2, 3, 4, 5, 6,
7, 8]. In the case in vitro fertilized (IVF) human embryos, cer-
tain measurements relating to cell division timing have been
shown to correlate with embryonic viability in a clinical set-
ting [2, 4, 7, 8]. For model organisms, such as mouse, statis-
tics of cell duration are relevant in the study of the role of
certain genes in the initial phases of life. The contribution
of different genes to early developmental events can be stud-
ied by silencing gene activity using RNA interference (RNAi)
and analyzing any resulting changes in cellular behavior (in-
cluding cell cycle timing) in early embryos.

Two main approaches to cell division detection are found
in the literature. In [4], the sum of absolute pixel-to-pixel dif-
ferences between consecutive frames generates a curve whose
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peaks ideally highlight cell divisions. The drawback is that it
is agnostic to other events, such as abrupt cell movements.
The second approach, as used in [2, 5, 9], consists of tracking
each cell individually, and detect when they divide by observ-
ing their boundary. But the task is hard to accomplish, due to
cell overlap and occlusions.

In this work we take a statistical approach to the prob-
lem. First, we compute the likelihoods for cells of certain
radii ranges to be in each frame—without actually locating
the cells. The computation consists of a voting scheme, where
votes come from quadruples of points in a way similar to the
first step of the Randomized Hough Transform (RHT) for el-
lipse detection [10]. Second, we search for points of abrupt
change in the matrix of likelihoods (built for all frames), and
pick the two optimal division points using a dynamic pro-
gramming algorithm [11].

We test our method on a database of 100 annotated videos
[12] and estimate the time points of first and second division
cycles (from one to two cells, and from two to four cells, re-
spectively). Our results outperform two other recent methods,
and the medians of our estimated division times differ less
than two frames from the medians of the annotated times.

2. SHAPE STATISTICS

Mouse-embryo cells are well approximated by ellipses—see
Figure 1. In this section we describe how we look for ev-
idence that there’s an ellipse of a certain radii range in an
image. We call “radii range” the interval between the semi-
minor and semi-major axis of an ellipse. Such evidence is
captured by looking at pairs of points with their respective
tangents. Points and tangents are themselves computed using
Morlet wavelets [13].

2.1. Points and Tangents

Let I be our input grayscale image, of size Nr × Nc. Let
w and h be half-window and hop parameters, respectively.
Let s be the scale of the wavelet, and Nθ the total number of
orientations considered. We convolve I with Nθ wavelets, of
scale s and orientations θk = k

Nθ
· 2π, for k = 0, ..., Nθ − 1,

generating Nθ new images, Ik.



Fig. 1. Sample frames from a time-lapse movie of a particular
mouse embryo.

Let Ñr = b(Nr−2w)/h+1c and Ñc = b(Nc−2w)/h+
1c. Then, for every i = 1, ..., Ñr and j = 1, ..., Ñc, we find

maxk,̃i,j̃ Ik(w + (i− 1)h+ ĩ, w + (j − 1)h+ j̃) ,

for k = 1, ..., Nθ and ĩ, j̃ = −w, ..., w.
Our method is based on the list of points of maxima for

which the maximum satisfies certain local and global restric-
tions, along with the corresponding wavelet angles. We define
this list as

L = {(p(l), τ(l)) : l = 1, ..., Np} ,

with τ(l) = (cos θ(l), sin θ(l)), where θ(l) is the tangent at
the point of maximum p(t). We will also use the notation τp
to refer the the tangent at point p. Figure 2 shows an example
of captured tangents for an image containing 4 cells.

The parameters s, w, h, and k are determined empirically,
depending on the images. s is such that only edges of a tar-
get magnitude are considered. w and h must satisfy the con-
dition that two neighbor windows do not overlap (otherwise
there would be redundant pairs in the set L). The local restric-
tions enforce that all values in the window are above a global
threshold, and coefficients are discarded if there’s a stronger
output nearby. Nθ is usually 16 or 32 (larger values do not
improve accuracy significantly). In the results reported here
we use Nθ = 16, h = 5, and w = 1.

There are two main reasons for looking at the wavelet out-
puts on a sub-grid of the image, not on the entire image. First,

the smaller the the grid, the faster the method. Second, a win-
dow approach allows robustness to small perturbations.

2.2. Likelihoods

Let p, q be points in an ellipse, with tangents τp, τq . Let xpq
be the intersection of the lines passing through p with tangent
τp and through q with tangent τq . Let mpq be the midpoint
of (p, q). Than the following property holds: the line through
xpq and mpq intersects the center of the ellipse. In fact, this
trivially holds for a circle, and an ellipse is a center-preserving
linear transformation of a circle. It then follows that two such
lines intersect at the ellipse’s center.

This property has been used for ellipse detection in the
Randomized Hough Transform [10]. We implemented it with
a slight modification: we look at pairs of pairs, instead of a
triplet of points (a triplet defines two distinct pairs), since it
makes the implementation easier, and lets one chose more ro-
bust, close to orthogonal, pairs of lines to intersect. Also as in
the RHT, we reduce computational load by using a subset of
points (actually a subset of pairs of points), chosen randomly.

In the videos we analyze there are mainly three stages,
corresponding to the first three generations of cells. In the ini-
tial stage, there’s one cell (of first generation), of radii range
around r1. When this cell divides, it gives origin to two
daughter cells (of second generation), each with radii range
around r2, with r2 < r1. When these two cells divide, there
will be four cells (of third generation), with radii range around
r3, with r3 < r2. Ideally, the second generation cells divide
at the same time. In practice, though, there’s usually a sepa-
ration in frames. Our method estimates the first division and
the average location of 2nd and 3rd divisions (when the 3rd
generation cells appear).

Let Ri = [rLi , r
U
i ] be the estimated interval of radii for a

cell of generation i. Since we are interested in the first two
rounds of divisions, we consider i ∈ {1, 2, 3}. Let cpqrs be
the center of the ellipse defined by points p, q, r, s and their
respective tangentes, as described above. We define ai as the
number of points cpqrs for which the distances between cpqrs
and the boundary points p, q, r, s are in the range Ri. Ideally,
dividing ai by

(
(rLi + rUi )/2

)2
(which is approximately the

Fig. 2. Embryo image, and corresponding captured tangents.



area of the corresponding ellipse) would make the number
of votes invariant to change in radii range. However there’s
greater overlap for smaller cells, so we further multiply a2 by
2 and a3 by 4 (these factors chosen empirically).

We compute a = {a3, a2, a1} for every frame in the time-
lapse video, normalize it so that

∑
i ai = 1, and concatenate

them in a matrix A (of size 3 × n, where n is the number
of frames). A is further normalized to be in the range [0, 1]
(an example can be seen in Figure 3 (a)). Finally, we define
C = 1− A, and use C for division detection, as described in
the next section.

3. DETECTING DIVISIONS VIA DYNAMIC
PROGRAMMING

Divisions are obtained from a certain path of minimal cost,
computed via dynamic programming, in the matrix C built
in the previous section. DP is guaranteed to find the optimal
solution, which is important because otherwise we can’t be
sure if a bad solution is due to the model or to the method
used to solve it. Some problems produce models that are NP
hard to solve, in which case one has no choice but to work
with approximation methods. But we were fortunate that in
our problem DP finds a solution with satisfactory speed.

As input to the dynamic programming algorithm, we have
a 3-rows image C similar to the one shown in Figure 3 (a)
(where bright pixels should be interpreted as low values), in
which the values range from 0 to 1. We look for the path of
minimal cost going from left to right, starting at the third row,
and not going downwards. That is, once the path is in row i,
it can either remain on that row or go to row i− 1 (supposing
i − 1 exists). Furthermore, there’s an additional cost related
to not changing rows. The higher the change in cost within
the row, the higher the cost of not moving upwards.

(a)

(b)

Fig. 3. (a) 3-rows matrix A; rows represent different frames;
columns represent radii ranges; the last row corresponds to
the radii range of 1st-generation cells. (b) 3-rows matrix
showing the solution (in gray), by dynamic programming, of
the path of minimum cost from left to right in (a).

Dynamic programming involves building two matrices:
Q, of accumulated path costs, and P , of predecessors (which
allows recovering the path of minimal cost).

From C, we define a “windowed” derivative, D. Let w
be a window-size parameter; and m, n the number of rows,
columns in C, respectively. For j = w+1 · · ·n−w+1, and
i = 1, 2, 3, set

Di,j =
1
w‖Ci,j···j+w−1 − Ci,j−w···j−1‖1 ,

and the remaining columns of D by replicating the closest
filled column.

Let β be a “decay” parameter. We define a “derivative
strength,” S, as

S(i, j) = 1/(1 + e−βD(i,j)) .

S ranges from 1/2 to 1 when D goes from 0 to∞.
The first column of Q is set as the first column of C. For

j = 2, · · · , n, we set

s = min{Qi,j−1, Qi+1,j−1 + µ(1− Si+1,j)} ,
sa = argmin{Qi,j−1, Qi+1,j−1 + µ(1− Si+1,j)} ,
Pi,j = sa + i− 1 ,
Qi,j = s+ Ci,j , for i = 1, 2, end
P3,j = 3 ,
Q3,j = Q3,j−1 + C3,j ,

where sa assumes values 1 or 2 and µ controls the weight of
the penalty S. For the example shown in Figure 3 we used
w = 5, β = 5, and µ = 5. These parameters are set empiri-
cally (they are equal by coincidence).

To recover the optimal path p = {p1, ..., pn}, we compute
pn = argmin{Q1,n, · · · , Qm,n}, and for j = n − 1, · · · , 1,
we set pj = Ppj+1,j+1. See Figure 3 (b) for an example.

4. RESULTS AND DISCUSSION

We tested our method in 100 time-lapse videos of mouse em-
bryos, from the database in [12]. Statistical results are de-
tailed in Figure 4 and Table 1, where we also show the perfor-
mance of the methods described in [4] and [9].

The median of the true and computed times of first divi-
sions differ by only “half” a frame (50.5 vs 51). The median
of the average between the annotated (true) second and third
division times differs 1.25 frames from the computed “mean”
between second and third division. As can be seen in Table 1,
our method provides medians that are closer to the true medi-
ans when compared with other methods. As per Figure 4, our
method also provides the closest distribution.

Our experiments show that the dynamic programming ap-
proach on the matrices of shape likelihoods provides good
statistical predictors for the times of first and second rounds
of cell divisions. It outperforms not only a simple frame-
difference method [4], but also a much more sophisticated
algorithm that relies on cell tracking [9].

Regarding computational complexity, capturing wavelet
coefficients is linear in the size of the image, and computing



Fig. 4. Box plot of annotated and measured values for the
times of first cell division ({t,m,s,a}1) and the mean between
times of second and third divisions ({t,m,s,a}2). t{1,2}:
true (annotated) distribution; m{1,2}: our method; s{1,2}:
method suggested in [4]; a{1,2}: method described in [9];
Red lines within boxes are the corresponding medians—their
values are shown in Table 1.

t m s a
1st division cycle 50.5 51 55 53
2nd division cycle 221.75 223 287 228.75

Table 1. Medians of the times of first and second rounds of
divisions (corresponding to the red lines within boxes in Fig-
ure 4). t: true distribution; m: our method; s: [4]’s method; a:
[9]’s method.

the likelihoods ai is quadratic in the number of coefficients.
Thus our method is quadratic in the number of image pixels.
In practice, our Objective-C implementation runs in about 5
seconds per frame (each frame is 480 by 480 pixels).

A time lapse movie has about 300 frames. Dynamic pro-
gramming was implemented in Matlab (R2011b, 64-bit), and
runs in about 8 milliseconds per movie. All experiments were
performed on an iMac with 2.8 HGz Intel Core i7 processor
and 16 GB RAM, running Mac OS 10.9.
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