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Abstract

We propose a data structure that captures global geo-
metric properties in images: Histogram of Mirror Symmetry
Coefficients. We compute such a coefficient for every pair
of pixels, and group them in a 6-dimensional histogram. By
marginalizing the HMSC in various ways, we develop al-
gorithms for a range of applications: detection of nearly-
circular cells; location of the main axis of reflection sym-
metry; detection of cell-division in movies of developing
embryos; detection of worm-tips and indirect cell-counting
via supervised classification. Our approach generalizes a
series of histogram-related methods, and the proposed al-
gorithms perform with state-of-the-art accuracy.

1. Introduction

This paper is a study on capturing the quantitative mir-
ror symmetry between pairs of pixels, and on the use of this
pairwise measure as a tool for finding various geometric en-
tities, as well as for constructing shape representations.

A classical method for geometry representations is the
Hough Transform [7], where the evidence for a certain
shape comes from pixels with high edge intensity. Recently,
there has been great advance in building computational rep-
resentations of more complex objects via so-called Deep
Learning methods [3, 10, 13], where the basic idea is to
perform convolutions with filters and pooling coefficients
from the convolution outputs.

The present work also explores the convolution and pool-
ing techniques—we convolve the input image with a bank
of Morlet wavelets, and pool the magnitude and orienta-
tion of the wavelet of maximum output at every pixel—but
instead of considering global relationships between pixels
via recursive convolution and pooling, we approach them
directly by computing a coefficient of mirror symmetry for
every pair of pixels. Considering pairs, as opposed to in-
dividual pixels, is also what sets us apart from the Hough
Transform methods.

These pairwise coefficients are accumulated in a 6-
dimensional Histogram of Mirror Symmetry Coefficients
(HMSC). By marginalizing the HMSC in different ways,
we develop methods for a set of computer vision problems:
detection of nearly-circular cells, and tips of worms; loca-
tion of the main axis of reflection symmetry; detection of
cell-division in a time-lapse movie of a developing embryo;
indirect cell-counting via supervised classification.

We conduct several computational experiments that
demonstrate the strength of the HMSC and its marginals for
shape analysis and representation. Our approach general-
izes a series of histogram-based methods, and the proposed
algorithms display state-of-the-art performance.

For a list of previous work related with this paper, please
refer to section 6. Sample code and related material is avail-
able at marceloc.net/science/hmsc.

2. Pairwise Mirror Symmetry
Let I be a grayscale image, p ∈ I a pixel, S1 the unitary

circle in R2, and τp ∈ S1 a tangent vector that captures the
direction perpendicular to the one in which the contrast is
maximum around pixel p. Now, for v ∈ S1 and θv ∈ [0, 2π)
its associated angle, the reflection matrix with respect v is

S(v) =

(
cos 2θv sin 2θv
sin 2θv − cos 2θv

)
. (1)

Let p and q be distinct points in the plane, with associ-
ated unit tangents τp and τq , and Tpq = q−p

‖q−p‖ . The pair
((p, τp), (q, τq)) is mirror symmetric if τq = ±S(T⊥pq)τp.
For simplicity, sometimes we will just say that p and q are
mirror symmetric, without mentioning the associated tan-
gent vectors.

We construct a mirror symmetry measure (a mirror sym-
metry coefficient) between two distinct points p and q as

f(p, τp, q, τq) = |τq S(T⊥pq) τp| . (2)

Notice how f is invariant to a change of sign in τp or τq .
We can simplify the notation and write f(p, q) instead of
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f(p, τp, q, τq). Observe that f(p, q) ∈ [0, 1], and that the
larger f(p, q), the more mirror symmetric p and q are.

For each pixel p in I , convolutions with wavelets of
n different orientations (equally distributed in the inter-
val [0, π)) are performed. After this we have a set of n
convolved images, {Jk = I ∗ ψλk

, k = 1...n}, where
λk = (σ, τk,m, γ) are the wavelet parameters (scale, ori-
entation, number of visible peaks, and elongation).

We modify the mirror symmetry coefficient to in-
clude the strengths of the wavelets of maximum response,
Jkp(p) = maxk Jk(p) and Jkq (q) = maxk Jk(q):

fJ(p, q) = f(p, q)Jkq (q)Jkp(p) . (3)

3. HMSC and its Marginals

The pairwise mirror symmetry coefficients are grouped
in a 6-dimensional histogram H defined by

H(cx, cy, d, θ, φp, φq) =
∑
p,q
q 6=p

fJ(p, q)χpqcx,cy,d,θ , (4)

where

χpqcx,cy,d,θ = δc− p+q
2
· δ
d− |p−q|

2
· δθ−θ⊥pq , (5)

c = (cx, cy), θ⊥pq is the angle associated to T⊥pq (the unit
vector perpendicular to q − p), φp and φq are the angles
associated with τp and τq , and δx is the Kronecker delta.

The main idea of this paper is that we can detect geomet-
ric properties and shapes in images via histogram marginal-
izations in H: we perform sums in H over the variables we
do not focus on, or on a subset of the domain of H where
the variables satisfy certain restrictions; this reduces the di-
mensionality of the histogram, leaving only the variables
needed for the specific problem.

In general, marginalization assumes the form

H(β) =
∑

α1,...,α6

H(α)

k∏
i=1

δβi−fi(α) , (6)

where β = (β1, ..., βk), with k ≤ 6, is the new set of pa-
rameters, and the set of functions fi(α1, ..., α6) depend on
the variable restrictions related to the particular application.

The HMSC is a theoretical framework for describing
shapes and developing algorithms. In the applications, we
compute the marginal histograms directly. Computational
complexity is linear in the size of each marginal histogram,
and running times are of the order of a few seconds for the
applications described in section 4.

Circularity Setting k = 3, β1 = Cx, β2 = Cy , β3 = r,
and f = (f1, f2, f3) as the function representing the param-
eters (center coordinates and radius) of the best circle fitting
p, τp, q, τq , equation 6 takes the form

H◦(C, r) =
∑
α

H(α)δC−(f1(α),f2(α)) δr−f3(α) (7)

where α = (cx, cy, d, θ, φp, φq). We define the best cir-
cle fitting p, τp, q, τq as the one centered at the line with in-
clination T⊥pq passing through p+q

2 , whose boundary passes
through p with tangent parallel to τp. In our applications we
marginalizeH◦(C, r) further. A centers histogramHc(c) is
created by summing over the radius variable:

Hc(C) =
∑
r

H◦(C, r) . (8)

A radii histogram, Hr(r), is obtained by summing over the
circle centers:

Hr(r) =
∑
C

H◦(C, r) . (9)

Applications of centers and radii histograms are reported in
the three first experiments of section 4.

Reflection Symmetry Suppose our goal is to extract the
best symmetry axis (line) from an image. A line can be
described by two parameters, (θ, ρc), where ρc is the dis-
tance between the origin (top-left corner of the image) and
the line, while the line inclination is given by θ. Then,
given (cx, cy, θ) in the symmetry histogram space, we have

ρc =
√
c2x sin2 θ + c2y cos2 θ, so we define the restric-

tion f(cx, cy, θ) = ρc. We then marginalize H(α) into
HS(θ, ρc) as follows:

HS(θ, ρ) =
∑
cx,cy
d,φp,φq

H(α)δ
ρ−
√
c2x sin2 θ+c2y cos2 θ

, (10)

where α is as in Equation 7. Local maxima in HS(θ, ρ)
correspond to axis of symmetry in images. Examples are
shown in Detecting the Axis of Symmetry, section 4.

Shape Description The set of points and directions of
wavelets of maximum response, {(p, Jkp(p)) : p ∈ I}, can
be thought of as a vector field, and statistics of the field can
be used as a descriptor, in a supervised classification con-
text, for shape detection. In particular, we choose a pivot
point, say p̄, and look at the bi-dimensional distribution
where one dimension (variable x) is given by the distances
between p̄ and q (which in our notation corresponds to 2d),
and the other (variable y) by the norm of the dot product be-
tween Tp̄q and τp̄. Thus, setting f(α) = (p, 2d, |〈Tpq, τp〉|),
the marginalization we are referring to is
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Figure 1. Circle detection. Left: wavelets used to compute mirror
symmetry coefficients. Right: centers histogram (in red); center
(yellow) and boundary (green) of the fit circle.

HD(x, y) =
∑
α

H(α)δ(p̄,x,y)−f(α) , (11)

where again α = (cx, cy, d, θ, φp, φq). Notice that the re-
striction f1(α) = p̄ implies that, differently from previ-
ous cases, the value in a domain point of the marginalized
histogram doesn’t come from all possible pairs of distinct
points in the image, but rather from pairs where one of the
points is the pivot (p̄, in this case). HD is used in Detecting
Tips of C. Elegans via supervised classification, section 4.

4. Experiments
Counting Cells Local maxima inHc(c) correspond to the
centers of circles in the image. If we are looking for circles
of a known radius, or range of radii, say [r1, r2], we modify
the normalization of equation 8 to reflect this:

Hc(C) =
∑

r∈[r1,r2]

H◦(C, r) . (12)

Since Hc is usually sparse, a smoothing operation is per-
formed before searching for local maxima. Figure 1 shows
intermediate and final steps of this algorithm on an image
containing a cell.

We conducted a series of experiments to evaluate the per-
formance of this circle detection method. First, we tested
the algorithm for finding the number of embryos in a well
(where embryos are in the 1-cell stage). Figure 2 shows
a sample image. We manually located the centers of cells
in 112 images, totaling 1442 embryos, where cell radii are
of about 30 pixels. Detection is considered correct if the lo-
cated center is at most Γ = 15 pixels away from the ground-
truth center. If n > 2 centers are located at a distance < Γ
from a ground truth center, n − 1 are considered false pos-
itives. False negatives correspond to lack of detection at a
distance< Γ from a true center, and to centers located more
than Γ pixels away from any true center.

Figure 3, shows the obtained results in comparison with
the CHT method. The point at the crossing of dashed lines
corresponds to a precision of 99.86% and recall of 99.51%.

The circle detection method based on Hc(C) is similar
to the CHT, in the sense that the later also adopts a voting

Figure 2. Examples of real world images used in our experiments.
Left: embryos in the 1-cell stage. Remaining: cropped embryo.

Figure 3. Performance of our circle detection method on locating
embryos in a well, in comparison with the CHT. The parameter
varying in the CHT method is the minimum gradient magnitude
from which edges are considered for voting (from 0.1 to 0.2 of the
maximum value). In the HMSC method, we vary the minimum
wavelet magnitude from which a point is considered (from 0.16 to
0.24 of the maximum value).

strategy to build the so called “accumulator space” (which is
in fact a histogram). However, there is a main difference in
the way each pixel contributes voting. In the Hough Trans-
form, given a particular radius each pixel votes equally for
all circles of that radius that pass through it regardless of
there being evidence from other pixels that it is in fact con-
tained in a circle. In our method, a pixel votes for a cen-
ter and a radius according to supporting evidence (given by
mirror symmetry coefficients) for the existence of a circle
with such center and radius.

The first experiment doesn’t contain images where cells
overlap. On a second experiment we evaluated the circle de-
tection algorithm on two datasets of overlapping cells. The
datasets were obtained from microscopic images of mouse
embryos at the 4-cell stage (as in Figure 2, right), where
the locations of the centers were annotated with the help
of tracking software [4]. Table 1 summarizes the obtained
performance.

Our results are similar to those of state-of-the-art algo-
rithms for cell detection. [23], for instance, reports 95%
precision / 80 % recall for cytoplasm detection on simu-
lated cell culture images, and 82% / 90% on a Drosophila
Kc167 dataset; [1] claims an accuracy of > 94% on nuclei
detection in histological images; and [22] publishes pre-
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cision/recall rates of 90% and 78% for cell segmentation
in Hematoxylin-stained breast TMA specimen images. We
were able to run the method in [23] on our dataset of 112
hand-labeled images totaling 1442 embryos, obtaining pre-
cision/recall (in %) of 99.86/90.17, which is slightly worse
than ours (99.86/99.51).

Detecting Cell Division By monitoring the centers his-
togram along a sequence of frames, cell division detection
can be performed. Here we describe a method for detecting
the first division in a time-lapse movie of a mouse embryo.
The movie starts with one cell, of radius r1, which eventu-
ally divides in two cells of radii r2 < r1. The movie ends
at the 2-cell stage.

For each frame t, we consider the marginal histogram

Ht
c(C) =

∑
r∈[r1−ε,r1+ε]

Ht
◦(C, r) , (13)

where the superscript t denotes histogram computation at
the frame of index t in the video sequence, and ε is about 5
pixels (the range [r1− ε, r1 + ε] allows for deviations of the
cell shape from perfect circularity).

ThusHt
c(C) accumulates the evidence that there is a cir-

cle of radius in the range [r1 − ε, r1 + ε], centered at point
C, in frame t. Therefore, the value Lt =

∑
C H

t
c(C) rep-

resents the likelihood that there is a circle of radius in such
range in the entire image.

If ε is small enough so that r2 < r1 − ε, the like-
lihood Lt will drop significantly when the first cell di-
vides. The frame of division is the global minimum of a
cost function {g(t), t = 1, ..., T}, computed as follows.
For each t = 2, ..., T , split the set L in two segments,
L−t = {L1, ..., Lt−1} and L+

t = {Lt, ..., LT }, and define
g(t) = variance(L−) + variance(L+). For complete-
ness, define g(1) = g(2). The frame of division will be
t̂ = arg min g(t).

This method provides an accuracy of 92% in detecting
the first division on a dataset of 100 movies. The detection
is considered accurate when the algorithm outputs a time
that differs from the true value by less than 3 frames. If we

Table 1. Performance of our circle detection method on largely
overlapping cells of radius r ≈ 60 pixels. Each image contains 4
cells, where the minimum distance between a pair of cells is larger
than Γ1 ·r and smaller than Γ2 ·r. Notice that Γ2 = 2 corresponds
to cells that intersect in at least one point (their boundaries touch),
and Γ1 = 1 implies that cells can intersect as much as to share a
radius. The criterion for correct detection is as in the experiment
Counting Cells (see main text), with Γ = 30 pixels. Legend: NI =
number of images; NC = number of cells.

NI NC Γ1 Γ2 Precision Recall
597 2388 1.25 2.00 99.36% 97.49%
527 2108 1.00 1.25 95.41% 96.68%

allow a difference of less than 5 frames instead, accuracy
goes to 95%. In comparison, the sum of absolute pixel-to-
pixel differences for consecutive frames (as in [17]) finds
the first division with 78% accuracy when 3 frames of error-
flexibility are given, and with 80% accuracy for a 5-frames
precision window.

Counting Cells via Supervised Classification In mouse-
embryo images, the radii of cells are roughly constant
within generations, and due to the the fact that the total vol-
ume of the cells in the early stage of development is almost
invariant, the radii decrease with the passing of generations.
Therefore, we expect the radii histogram (equation 9) to re-
flect at which development state the embryo is.

Let r1, r2, and r3 be the estimated radii of first, sec-
ond, and third generation cells. Let εi, be range parameters
(for i = 1, 2, 3), big enough to allow for small variations
in expected radii, and small enough so that the intervals
[ri−ε, ri+ε] don’t intersect. Restricting the radii histogram
Hr(r) to the mentioned intervals, and discretizing it so as
to have an integer number of bins, we build a descriptor
that can be used to count cells in a supervised classification
context.

We did an experiment where we consider the ranges
{55, 56, ..., 60}, {45, 46, ..., 50}, and {30, 31, ..., 40} (pix-
els), so that our descriptor has dimension 21. We use the
kNN algorithm to separate images containing one, two, or
four embryonic cells (examples are shown in Figure 2, from
the second to the last). Training and test sets have 200 and
800 samples per class, with images taken from different em-
bryos and different experiments.

We compared our descriptor with the Histogram of Ori-
ented Gradients [5], and an equivalent (i.e., same intervals,
same discretization) radii histogram coming from the stan-
dard CHT algorithm [7], which considers votes point-by-
point, as opposed to our pairwise approach. Table 2 shows
the best obtained results for each of the methods.

Detecting the Axis of Symmetry Local maxima in HS

(equation 10) correspond to the axis of symmetry in an im-
age. Figure 4 shows an example of the method (histogram
and the located symmetry axis). The picture was taken

Table 2. Accuracy of the kNN (k = 5) method with different de-
scriptors in the separation of 2 (one cell or two cells) or 3 (one,
two, or four cells) classes. Legend: HoG = Histogram of Ori-
ented Gradients; HTRH = Hough Transform Radii Histogram;
RH = Radii Histogram (our descriptor).

Feature Acc. (1/2/4 cells) Acc. (1/2 cells)
HoG 0.4229 0.5650

HTRH 0.4788 0.7056
RH 0.9463 0.9931
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Figure 4. HS and symmetry detection. Left: HS , where the red
dot is the point of maximum. Right: white dots represent pairs
with high mirror symmetry coefficient, white big dots are the ver-
tices of the convex hull of those pairs, and the line is the detected
symmetry axis; the white part of the line is the intersection of the
symmetry axis with the convex hull of highly symmetric pairs.

(a) (b) (c) (d)
Figure 5. (a) Positive (tips) labels: for each tip location (labeled
manually), a neighborhood of 5 pixels is used. (b) Negative la-
bels, distributed roughly evenly between in-worm and background
pixels. (c,d) Examples of test images, where highlighted pixels
correspond to pixels our method classified as tips.

from the database of the Symmetry Detection Competition
of CVPR 2011.

Out of the 14 images with single symmetry axis in the
database (6 real world images and 8 synthetic), global max-
ima in HS provided correct answers in all but one image
(a real world example). This corresponds to an accuracy
of 93%, which is the same obtained by the best performing
method for such a subset as reported in [24].

Detecting Tips of C. Elegans In this application, rather
than computing a histogram globally (in the entire image),
we use it as in a “filtering approach,” that is, we scan the
image pixel by pixel and compute the histogram in a local
window. For the particular experiment detailed here, we use
windows of size 11× 11 pixels.

We plugged our shape histogram (equation 11) into a
SVM classifier (using a Radial Basis Function kernel), and
tested its accuracy for detecting tips of Caenorhabditis Ele-
gans (a model-organism worm often used in Biology exper-
iments). Figure 5 shows the images used for training, and
two examples of images used for testing.

Keeping the SVM classifier, we compared our descriptor
with HoG [5] (using the same window size) and SIFT [15]
(computed at the center pixel location). We trained with
44 tip pixels, 73 non-tip worm pixels, and 77 non-tip back-
ground pixels. For test we used 42 images containing a total
of 111 tips (whose locations were hand labeled). Blobs of
pixels classified as tips were collapsed into one tip location

Table 3. Accuracy of the SVM method (using a RBF kernel), with
different descriptors in the detection of tips of C. Elegans.

Feature Precision Recall
Histogram of Oriented Gradients 0.4685 0.4685
Scale Invariant Feature Transform 0.7500 0.4865

Shape Histogram (our descriptor) 0.8272 0.6036

only. Accuracy was measured as in the cell-counting exper-
iment, with Γ = 5. Table 3 shows the best obtained results
for each of the methods.

5. Conclusion
We introduced a framework for shape analysis that con-

sists of different marginalizations of a 6-dimensional His-
togram of Mirror Symmetry Coefficients (HMSC) for the
geometric study of objects in images. Properties such as
circularity, reflection symmetry, and shape description are
considered.

A number of marginalizations are described in detail,
and computational experiments for five applications are re-
ported. Our approach performs with state-of-the-art accu-
racy on circle detection (in the context of counting cells),
as well as on symmetry axis detection; and our histogram
descriptors outperform classic descriptors (such as HoG
and SIFT) in association with classification techniques for
counting cells and detecting tips of worms.

We are very excited with the generality and range of ap-
plications of the method, as well as with the avenues of re-
search that it opens. One possibility, for instance, is to build
a system that “learns” the proper marginalization for shape
recognition based on the input images.

Sample code (in Matlab and C++) and related material is
available at marceloc.net/science/hmsc.

6. Related Research
Mirror symmetry has already been shown to lead to the

extraction of skeletons [8], and is the basis for more gen-
eral methods for detecting the global axes of symmetry
[12, 11, 20]. A recent review of methods specially designed
for reflection symmetry detection can be found in [14], and
a more recent work is [21]. Detection of mirror symmetry
also appeared as a particular case in [26]. Although one of
our applications is the detection of symmetry axis, we did
not focus on this problem, but rather on pairwise symmetry
as a general framework for geometric image analysis.

Due to the fact that marginalizing histograms is a “vot-
ing scheme,” and considering that we also deal with circle
detection, our work naturally resembles the Circular Hough
Transform (CHT) [7]. We provided a more detailed com-
parison with the CHT in section 4. Similarly, and also
related to the problem of detecting the axis of symmetry,
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our method resembles [16], in the sense that pairwise in-
formation is accumulated in a “Hough space.” Differently,
though, our symmetry measurement is based on the outputs
of wavelets, instead of the more complex SIFT descriptor
[15] on selected feature points.

Methods based on symmetry between pairs of pixels
with tangents have been proposed in the past, e.g. in
[28, 19, 8, 27]. [18] provides a good application for 3D
object recognition, but the work does not develop the his-
togram framework, nor is it based on wavelet filters. [11]
is of interest as well, as they similarly define symmetry via
reflection matrices. However, they also do not have a his-
togram formulation.

The literature for shape detection is likewise vast, includ-
ing RANSAC methods [25], Multiresolution Histograms
[9], and Shape Contexts, [2], to cite a few. Our approach is
similar to Multiresolution Histograms, but we accumulate
pairwise information of magnitudes and angles, instead of
pixel luminances for different image resolutions. Also, our
method for worm-tips detection has a connection to Shape
Contexts, and the method for computing similarity between
vector fields described in [6], but we use a different tech-
nique to compute the image gradients (wavelets), and those
methods do not build histograms using pairwise symmetry
measurements, which is the focus of our work.

References
[1] Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam. Im-

proved automatic detection and segmentation of cell nuclei
in histopathology images. IEEE TBE, 57(4):841–852, 2010.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching
and object recognition using shape contexts. IEEE TPAMI,
24(4):509–522, Apr. 2002.

[3] J. Bruna and S. Mallat. Invariant scattering convolution net-
works. CoRR, abs/1203.1513, 2012.

[4] M. Cicconet and K. C. Gunsalus. Mouse embryo tracking
database. http://aquila.bio.nyu.edu/celltracking/, 2014.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005, volume 1, pages 886–893
vol. 1, june 2005.

[6] H. Q. Dinh and L. Xu. Measuring the similarity of vector
fields using global distributions. In Proceedings of the IAPR,
pages 187–196, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] R. O. Duda and P. E. Hart. Use of the hough transforma-
tion to detect lines and curves in pictures. Commun. ACM,
15(1):11–15, Jan. 1972.

[8] D. Geiger, T.-L. Liu, and R. Kohn. Representation and self-
similarity of shapes. IEEE TPAMI, 25(1):86–99, 2003.

[9] E. Hadjidemetriou, M. Grossberg, and S. Nayar. Multires-
olution Histograms and their use for Recognition. IEEE
TPAMI, 26(7):831–847, Jul 2004.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning
algorithm for deep belief nets. Neural Comput., 18(7):1527–
1554, July 2006.

[11] M. Kazhdan, B. Chazelle, D. Dobkin, A. Finkelstein, and
T. Funkhouser. A reflective symmetry descriptor. In ECCV,
pages 642–656, May 2002.

[12] N. Kiryati and Y. Gofman. Detecting symmetry in grey level
images: The global optimization approach. In In ICPR, vol-
ume I, pages 951–956, 1996.

[13] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional
networks and applications in vision. In ISCAS, pages 253–
256, 2010.

[14] S. Lee and Y. Liu. Curved glide-reflection symmetry detec-
tion. IEEE TPAMI, 34(2):266–278, 2012.

[15] D. G. Lowe. Object recognition from local scale-invariant
features. In ICCV - Volume 2, ICCV ’99, pages 1150–, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[16] G. Loy and J. Eklundh. Detecting symmetry and symmetric
constellations of features. In In ECCV, pages 508–521, 2006.

[17] M. Meseguer, J. Herrero, A. Tejera, K. Hilligsoe, N. Ram-
sing, and J. Remohi. The use of morphokinetics as a
predictor of embryo implantation. Human Reproduction,
26(10):2658–71, Oct 2011.

[18] A. S. Mian, M. Bennamoun, and R. Owens. Three-
dimensional model-based object recognition and segmenta-
tion in cluttered scenes. IEEE TPAMI, 28:1584–1601, 2006.

[19] D. Mumford, C. Series, and D. Wright. Indra’s Pearls: The
Vision of Felix Klein. Cambridge Univ. Press., 2002.

[20] M. Park, S. Lee, P.-C. Chen, S. Kashyap, A. A. Butt, and
Y. Liu. Performance evaluation of state-of-the-art discrete
symmetry detection algorithms. In CVPR ’08, June 2008.

[21] V. Patraucean, R. von Gioi, and M. Ovsjanikov. Detection
of mirror-symmetric image patches. In IEEE CVPRW, pages
211–216, June 2013.

[22] X. Qi, F. Xing, D. J. Foran, and L. Yang. Robust segmenta-
tion of overlapping cells in histopathology specimens using
parallel seed detection and repulsive level set. IEEE TBE,
59(3):754–765, 2012.

[23] P. Quelhas, M. Marcuzzo, A. M. Mendona, and A. C.
Campilho. Cell nuclei and cytoplasm joint segmentation
using the sliding band filter. IEEE TMI, 29(8):1463–1473,
2010.

[24] I. Rauschert, K. Brocklehurst, S. Kashyap, J. Liu, and Y. Liu.
First symmetry detection competition: Summary and results.
Technical Report, Department of Computer Science and En-
gineering, The Pennsylvania State University, Oct 2011.

[25] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for
point-cloud shape detection. Computer Graphics Forum,
26(2):214–226, June 2007.

[26] T. Tuytelaars, A. Turina, and L. Van Gool. Noncombinatorial
detection of regular repetitions under perspective skew. IEEE
TPAMI, 25(4):418–432, April 2003.

[27] A. G. White, P. G. Cipriani, H.-L. Kao, B. Lees, D. Geiger,
E. Sontag, K. C. Gunsalus, and F. Piano. Rapid and accu-
rate developmental stage recognition of c. elegans from high-
throughput image data. In CVPR, pages 3089–3096, 2010.

[28] S. Zucker and A. Dobbins. Two stages of curve detection
suggest two styles of visual computation. Neural Computa-
tion, 1989.

4326


