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This paper introduces an object descriptor for classification based on the Euler characteristic of subsets
created by thresholding a function at multiple levels (sub-level filtration). We demonstrate the effective-
ness of this basic topological invariant of sets, the Euler characteristic, and use it to compute descriptors
in two different domains – images and 3D mesh surfaces. The descriptors used as input to linear SVMs
achieve state of the art classification results on various public data sets. Moreover, these descriptors
are extremely fast to compute. We present linear time methods to calculate the Euler characteristic for
multiple threshold values and to compute the Euler characteristic in a sliding window.
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1. Introduction

Supervised object classification entails two main elements –
features (descriptors) and learning algorithms. In recent years,
much effort has been invested in developing features that yield
good classification. Different features are developed for different
domains such as images and 3D objects. Some features are even
object specific, e.g. faces or texture.

For good classification, features should be rich, descriptive and
discriminative, and on the other hand, invariant to different trans-
formations and robust enough to allow intra-class variation. The
focus in recent years shifted from global features that describe
the object as a whole, to statistical descriptors of local features.
The statistical descriptor of low-dimensional local features is sim-
ply their distribution (e.g. color histogram). For more complex local
features (e.g. SIFT), a Bag-of-Words (BoW) scheme is used.

The main criticism for statistical descriptors of local features is
the loss of all spatial information: ‘‘because these methods disre-
gard all information about the spatial layout of the features, they
have severely limited descriptive ability’’ [14]. For example, in
one object class, the different values of the local feature might be
evenly distributed, and in another class, the different values are
clustered. Several approaches for putting the local features into
some spatial (or spatio-temporal) context have been suggested.
Some examples are spatial pyramids [14] and hierarchical
neighborhood features [12].
This paper presents a new descriptor for supervised classifica-
tion, which is based on simple local features, but instead of using
their distribution, we propose to threshold the feature at multiple
levels and calculate the Euler characteristic (EC) values of the
resulting subsets of the domain. The vector of Euler Numbers –
the Euler Characteristic Graph (or EC Graph) is then used as an
object descriptor.

The EC is a global topological invariant which in the case of a
two-dimensional set is the number of connected components
minus the number of holes. The EC Graph feature therefore
encodes information about the spatial distribution of the local
property, information which is missing in many statistical descrip-
tors. One of the nice algorithmic properties of EC Graph is that it
can be easily computed by counting local elements. The EC is
invariant to all topological transformations, including rotation
and scale. Section 6.2.2 shows that the EC Graph descriptor has
better invariance to image transformations than the global distri-
bution descriptor [21].

We evaluate the performance of the EC Graph descriptor using
images and 3D mesh objects, based on different local properties. In
both domains we use publicly available object classification data-
sets and show that the EC Graph feature achieves state of the art
results at very low computation time.

The rest of the paper is organized as follows: In Section 2 we
review existing methods for calculating the EC and for its use as
a descriptor. The EC Graph descriptor is introduced in Section 3.
Sections 4 and 5 present our efficient methods for calculating the
EC Graph on the entire domain and in a sliding window. In
Section 6 we provide experimental results for the efficient calcula-
tion methods and evaluate the performance of the EC Graph
feature for classification. We provide our conclusions in Section 7.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.07.001&domain=pdf
http://dx.doi.org/10.1016/j.patrec.2014.07.001
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The contributions of this paper:

� EC Graph – A new descriptor for supervised classification based
on the Euler characteristic of simple local features.
� An algorithm for efficient calculation of the EC Graph for

multiple thresholds, for regular and non-regular domains.
� An algorithm for efficient calculation of the EC Graph in a

sliding window (can be used for object detection).
� Evaluation of the EC Graph feature for classification of images

and 3D mesh objects.

2. Related work

2.1. The Euler characteristic

The Euler characteristic (or Euler number) dates back to
Leonhard Euler (1707–1783) who observed that in simple polyhe-
dra, V � Eþ F ¼ 2 i.e. the number of vertices minus the number of
edges plus the number of faces always equals 2. This was later gen-
eralized to the topological invariant: v ¼ V � Eþ F, for any object
constructed from 0,1 and 2-dimensional cells (vertices, edges
and faces). In general, the EC v of a set S is equal to the alternating
sum of the cardinalities of the open k-dimensional cells in any
partition of S.

It is important to note that the Euler characteristic of an object
is independent of the cell-decomposition (also termed triangulation)
being used. An example for a cell-decomposition is a uniform
square lattice, in which a 2D planar set (e.g. an image) is con-
structed of open squares (pixels), their edges and corners. Another
example is a triangle-mesh representing a surface in 3D, which is
constructed from triangular faces, edges and vertices. In addition,
it should be noted that the Euler characteristic is additive, obeying
the inclusion–exclusion principle.

2.2. The Euler characteristic as an object descriptor

Several papers suggest using the Euler characteristic of a binary
image for recognition or classification. For example, Anagnostopo-
ulos et al. [2] use the EC of a binary image of a license plate for OCR.
Mery et al. [16] suggest using the EC of corn tortillas to evaluate
their quality (a high-quality tortilla is expected to have one con-
nected component and no holes). In both papers, a single Euler
number is calculated for a binary image that was created by seg-
menting the original image.

The concept of calculating the EC of subsets of the domain
defined by multiple threshold values of a density function over
the domain is suggested by Worsley [20]. The resulting graph is
manually compared to the expected EC graph of a proposed
stochastic model [1].

Huber et al. [10,22] use the Minkowski Functionals (MFs) of
grayscale images at multiple threshold levels for classification. In
both cases, the EC is calculated on the original grayscale image.
We propose a more general descriptor, which is based on the EC
graph of different local features instead of using the original image.
We will show that this approach yields much better results and is
applicable to different domains and not just to images.

2.3. Calculating the Euler characteristic

The Euler characteristic of a binary image on a continuous 2D
plane and on a lattice (a discretized image) is defined by Gray
[8]. Over the years, several methods were suggested for efficient
calculation of the EC of a binary image (an image with pixel values
of ‘0’ and ‘1’). Gray [8] proposes a calculation method based on
counting 2 � 2 pixel patterns (in case of a square lattice). Bribiesca
[3] proposes a method based on the Contact Perimeter (length of
edges adjacent to two pixels).

For grayscale images, simply repeating the EC calculation for
multiple threshold levels will result in OðNTÞ time complexity,
where N is the number of pixels in the image and T is the number
of threshold values. Snidaro and Foresti [19] and Conaire [5]
propose a method that operates at OðN þ TÞ, but since it is based
on Gray’s 2 � 2 pixel pattern, it is applicable to regular grids only.
The method we propose has a time complexity of OðN þ TÞ as well,
and is applicable also to non-regular domains, such as 3D mesh
surfaces.

The Minkowski Functionals (which include the EC) are sug-
gested as a feature for texture analysis, an application that requires
calculating the MFs in multiple image sub-windows [15]. The
authors describe a bias in the MFs calculation and propose an
approximated solution by averaging MF values calculated using 8
different traversing directions. In Section 5 we propose a closed
and efficient solution for calculating the EC in multiple sub-win-
dows. Our method is based on triangulation (counting vertices,
edges and faces) and on a modified Integral Image [6] calculation.

3. The Euler Characteristic Graph feature

Fig. 1 demonstrates the EC Graph feature for a two-dimensional
image. A more formal definition is provided in the next section. The
input image shown in Fig. 1(a) was generated by applying a Gauss-
ian filter on a random image. Fig. 1(b)–(f) show how the original
object is segmented by thresholding the input. As we increase
the threshold, holes (shown in black) begin to appear and v
becomes negative. When we continue raising the threshold, the
segmented object begins breaking up into components. v will
reach 0 again when the number of components is equal to the
number of holes (Fig. 1(d)). v continues to rise as we increase
the threshold, until the object consists of many separate ‘islands’.
As we continue increasing the threshold, the islands will start to
disappear and v will move towards 0 again. Fig. 1(g) shows the
resulting EC Graph.
4. Efficient calculation of the Euler Characteristic Graph

A set X � Rn can be represented, non uniquely, as a union of
open k-cells (open elements of dimension k; k 6 n):

X ¼
[n

k¼0

[MðkÞ

i¼1

xðkÞi ð1Þ

where xðkÞi is an open cell of dimension k and MðkÞ is the number of
k-cells. The Euler characteristic v of the set X is:

v ¼
Xn

k¼0

ð�1ÞkMðkÞ ð2Þ

In some cases, as in most applications discussed in this paper, we
need to find the EC of a subset S of the original domain, defined
by a function over the domain. S can be represented as a union of
open k-cells, as defined by (1). In this section we assume that S itself
is closed.

We first discuss the case of a binary function: Let fdðxðdÞÞ 2 f0;1g
be a binary function defined over the open cells of the highest
dimension d of which X is constructed. For example, if X is a mesh
surface in R3; f will be defined over the triangular faces (d ¼ 2). The
functions over the lower-dimension elements are not given as an
input and are derived from fd. We define fkðxðkÞÞ; k < d to be 1 for
all k-cells on the boundary of ‘‘1’’ d-cells, in which fdðxðdÞÞ ¼ 1:

fkðxðkÞÞ ¼ 1½9 xðdÞ2NdðxðkÞÞ :fdðxðdÞÞ¼1� ð3Þ



Fig. 1. The EC Graph (a) the input image (b) t ¼ 0:2 (c) t ¼ 0:4 (d) t ¼ 0:5 (e) t ¼ 0:6
(f) t ¼ 0:8 (g) the EC Graph for 32 threshold values.
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where NdðxðkÞÞ are all d-cells in the immediate neighborhood of xðkÞ

(i.e. xðkÞ is in the closure of xðdÞ). See Fig. 2(a). If we define Mf ðkÞ to be
the number of k-cells satisfying fkðxðkÞÞ ¼ 1, the EC of the subset
defined by the function f (or fd) is:
vf ¼
Xn

k¼0

ð�1ÞkMf ðkÞ ð4Þ

For two-dimensional binary images, the input function f or f2 is
the binary image itself, defined over the 2-cells (pixels). 1-cells
(pixel edges) and 0-cells (pixel corners) are assigned the value of
Fig. 2. Function over triangulation cells (a) edges and vertices on the boundary of
faces with f2 ¼ 1, have f1 ¼ 1 and f0 ¼ 1 respectively (shown in darker color) (b) f0

value of the vertices are defined as the max f2 values of their neighboring faces
(darker gray = higher value). f1 values are not shown.
1 if they border a ‘‘1’’ pixel. We calculate the EC of the binary image
by counting the ‘‘1’’ corners minus the ‘‘1’’ edges plus the ‘‘1’’
pixels.

Now consider the case of a non-binary function: fdðxðdÞÞ 2
½0 . . . 1�. We would like to calculate vf ðtÞ, the Euler characteristic
of the sub-set defined by f ðxÞP t for multiple threshold values:
t 2 ft1; . . . ; tTg. One option of course is to define a binary indicator
function for each threshold:

f̂ t
dðxðdÞÞ ¼ 1½fdðxðdÞÞPt� ð5Þ

and calculate the EC for each binary function as described above.
The time complexity of such a method is OðNTÞ, where N is the
number of cells and T the number of threshold values.

We describe an alternative method for calculating vf ðtÞ in
OðN þ TÞ. Unlike the methods proposed by Snidaro and Foresti
[19] and Conaire [5], our method uses the basic triangulation and
is therefore applicable to any domain. Given fdðxðdÞÞ 2 ½0 . . . 1�, we
define fkðxðkÞÞ; k < d to be:

fk xðkÞi

� �
¼ max

j2Nd xðkÞ
i

� �fd xðdÞj

� �
ð6Þ

where Nd xðkÞi

� �
are all d-cells in the immediate neighborhood of xðkÞi

(i.e. xðkÞi is on their boundary). See Fig. 2(b). Define:

Mt
f ðkÞ ¼j fxðkÞ; fkðxðkÞÞP tg j ð7Þ

Mt
f ðkÞ counts the number of k-cells with a value fk greater or equal

to the threshold t. The EC for the subset defined by the threshold t of
the function f can be calculated using:

vf ðtÞ ¼
Xn

k¼0

ð�1ÞkMt
f ðkÞ ð8Þ

The above holds because the closed subset S defined by thresh-
old t contains all open d-cells with fdðxðdÞÞP t and all k-cells (k < d)
on their boundary. A k-cell will therefore be part of the subset if
any of its neighboring d-cells are in the subset, which will be true
if fdðxðdÞÞP t. The assignment in (6) ensures that.

To calculate Mti
f ðkÞ for multiple threshold values defined by the

monotonic series ðt1; . . . ; tTÞ, we first calculate:

M̂ti
f ðkÞ ¼ xðkÞ; ti 6 fkðxðkÞÞ < tiþ1

� ��� �� ð9Þ

M̂ti
f ðkÞ counts the number of k-cells in each half-open interval

between two consecutive threshold values and can be calculated
for all threshold values using bucket-sort in time OðNÞ. Each cell
is assigned to a single half-open interval, or histogram bin (denoted
by b in Algorithm 1). We then compute Mti

f ðkÞ by summing over
M̂ti

f ðkÞ values:

Mti
f ðkÞ ¼

XT

j¼i

M̂
tj

f ðkÞ ð10Þ

Our method is based on the fact that the highest dimension
open cells, for which the function fd is defined, determine which
lower-dimension cells will be part of the subset S. Given a function
fd and a threshold t; d-cells for which fd is above t will be part of the
subset S and all lower-dimension cells on their closure. A k-cell will
therefore be in S according to maxðfdÞ of the d-cells it borders.
Another key idea in our method is the ability, for a monotonic ser-
ies of threshold values ft1; . . . ; tTg, to count cells above a threshold t
by first counting cells belonging to each interval ti . . . tiþ1½ Þ (histo-
gram bins) and then integrating over the intervals.
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See Algorithm 1 for the pseudo-code of the proposed method.

Algorithm 1. Calculate vf ðtÞ for t 2 ðt1; . . . ; tTÞ

Require fd,ft1; . . . ; tTg
1: v 0
2: //Go through the cell dimensions. . .

3: for k ¼ 0! d do

4: //Calculate the function fk and its histogram M̂f

5: M̂f  0
6: for i ¼ 1! MðkÞ do

7: fk  maxj2Ndðx
ðkÞ
i Þ

fdðx
ðdÞ
j Þ

8: b binðfkÞ
9: M̂f ðbÞ  M̂f ðbÞ þ 1

10: end for
11: //Accumulate the histogram and update v
12: c 0
13: for i ¼ T ! 1 do

14: c  c þ M̂f ðiÞ
15: vðiÞ  vðiÞ þ ð�1Þk � c
16: end for
17: end for
18: return v
5. Efficient calculation of the Euler characteristic in a sliding
window

For object detection it is sometimes required to calculate a
feature in a sliding window over the domain. For example, in
face detection, we first learn a model for faces and then test
the model in a sequence of overlapping windows. Calculating
the EC Graph in each window will result in a total time
complexity of OðMWÞ, where M is the number of windows and
W is the window size. In this section we propose an efficient
method for calculating the EC Graph in a sliding window. The
method is based on the concept of Integral Images [6], however,
adopting this concept for the EC is not trivial and requires
special treatment of the boundaries.

The Integral Image is an efficient method for calculating
integrals (sums of pixel values) over rectangular windows in con-
stant time. The integral over the window W in Fig. 3 is calculated
using the pre-calculated integral values of its four corners (sums
over the rectangles to the bottom-left of each corner):
Fig. 3. Integral Image – integral of a function over the window is calculated using
the pre-calculated integrals over the four rectangles to the bottom-left of the four
window corners. Throughout this section, corners are denoted by small letters and
the window to the bottom-left of each corner is denoted by a capital letter.
SW ¼ SA � SD � SB þ SC ð11Þ

The above equation is a direct result of the inclusion–exclusion
principle. Since the EC is a sum of local properties and the inclu-
sion–exclusion principle is valid for it, we might think that it is
possible to calculate the EC value of a window in the same manner
as the Integral Image above. This is not correct, as demonstrated in
Fig. 4(a): We expect the EC value in the window (W) to be 1, since
it contains one component and no holes, however:

vðAÞ � vðDÞ � vðBÞ þ vðCÞ ¼ 1� 1� 0þ 0 ¼ 0 – 1

The reason for this error is that, as we saw in the previous sec-
tion, the EC calculation includes one and zero-dimension open cells
(edges, vertices). These cells, unlike the 2D cells (pixels) that are
counted in the regular Integral Image, exist on the boundary of
the window. This breaks the assumption that W \ B ¼W \ D ¼ ;,
which is made when applying in the inclusion–exclusion principle.
To correctly adopt the Integral Image concept to the EC, we need to
handle the window boundaries.

Considering the closed window in Fig. 4(b), we expect to get
vðWÞ ¼ 4. Note that the EC value includes the shape on the right,
which is tangent to the window and contains some vertices and
edges on the closed border of the window. This calculation is cor-
rect even though the shape on the right does not contain any pixels
(faces) inside the window.

Our proposed solution for calculating the EC in a window is
based on pre-calculating the EC for different closed and half-open
sets. Consider the four sets A;B;C;D defined around the window W
in Fig. 5. We can state the following:

W \ B ¼W \ D ¼ ;; D \ B ¼ C; W [ D [ B ¼ A

And applying the inclusion–exclusion principle, we now get:

vðW [ D [ BÞ ¼ vðWÞ þ vðDÞ þ vðBÞ � vðW \ DÞ � vðW \ BÞ
� vðD \ BÞ þ vðW \ D \ BÞ

vðWÞ ¼ vðAÞ � vðDÞ � vðBÞ þ vðCÞ ð12Þ

To calculate the EC in any window, we therefore need to pre-
calculate four different EC values for each point ðu;vÞ in the image,
for the four rectangles v1 : fx 6 u; y 6 vg; v2 : fx < u; y 6 vg;
v3 : fx 6 u; y < vg; v4 : fx < u; y < vg. If the four corners of the
window (clockwise from top-right) are a; b; c; d, then the EC of
the window will be:

vðWÞ ¼ v1ðaÞ � v2ðdÞ � v3ðbÞ þ v4ðcÞ ð13Þ

An example for detection using the EC Graph in a sliding window is
provided in Section 6.2.2.

6. Experimental results

6.1. Euler characteristic computation time

In Section 4 we presented a method for efficient calculation of
the EC Graph – Euler characteristic of subsets of an object defined
by thresholding a function over the object at different levels. The
method is generic, applicable to any domain and enables calculat-
ing the EC for multiple threshold values in time OðN þ TÞ instead of
OðNTÞ. Table 1 shows the EC calculation time for 32 and 256
threshold values. The left column shows the time of a naive
method that repeats the EC calculation for each threshold value.
The calculation time for our method is shown in the right column.
In both cases, the time shown is for calculating the multiple EC val-
ues only, not including the calculation time of the underlying local
property. We measured the calculation time for a 1 MP grayscale
image and for a 3D triangular mesh with 250 K faces. As can be
seen in Table 1, our proposed method scales well with the number



Fig. 4. (a) Wrong result when applying the Integral Image formula directly to EC (b)
an example of configuration of shapes relative to a window.

E. Richardson, M. Werman / Pattern Recognition Letters 49 (2014) 99–106 103
of threshold values T, while a naive calculation that repeats the EC
calculation for every threshold level is linear in T. The measure-
ments were taken on a desktop PC with an Intel E6600 CPU
@3.06 GHz, using our Matlab implementation.
Table 1
Computation time of the EC Graph feature for images and for 3D mesh objects.

Experiment Naive calculation
(sec)

Our method
(sec)
6.2. Evaluating the EC Graph feature for classification

This section discusses how the EC Graph can be used as a
descriptor for object classification in different domains – mesh sur-
faces and images. In both cases, the Support Vector Machine (SVM)
was used as the supervised classification algorithm. We used the
default Matlab SVM with a linear kernel and Sequential Minimal
Optimization [18]. The pairwise classification accuracy was
measured using random k-fold validation (with k ¼ 4 or k ¼ 8,
depending on the size of the dataset). Each test was repeated 100
times.
1 MP image/32 threshold levels 4.6 0.19
1 MP image/256 threshold levels 37.1 0.29
250 K faces mesh/32 threshold levels 39.4 1.25
250 K faces mesh/256 threshold levels 314.6 1.25

Fig. 6. A sample object from the TOSCA dataset (a) the original object (b) the
maximum curvature function (c) curvature above a threshold of 0.05 (shown in
red). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
6.2.1. EC Graph feature for 3D objects classification
A 3D triangle-mesh object X is defined by a set of vertices

V � R3 and a set of faces F � Z3. Each face is defined by three ver-
tices. The mesh also implicitly defines edges E � Z2, which are the
borders between adjacent faces. The 3D object is therefore con-
structed of 0-cells (vertices), 1-cells (edges) and 2-cells (faces). Fol-
lowing the definition of Section 4, we calculate the EC Graph for a
function f2 defined over the faces at multiple threshold values.
Note that if tmin ¼minxð2Þ2Xf2ðxð2ÞÞ, then vðtminÞ will be the EC of
the entire surface.

We tested the classification performance of different functions
using two datasets of 3D objects: The TOSCA high-resolution
dataset [4] contains 80 objects divided to 9 categories (e.g. cat,
dog). Objects within each category differ by non-rigid transforma-
tions. See Fig. 6(a) for a sample from the ‘cat’ category. The second
dataset we experimented with contains 248 3D-scanned prehis-
toric stone tools from two excavation sites – Qesem and Nahal
Zihor [9]. See Fig. 7(a) for a sample. In both cases, we performed
Fig. 5. Constructing a window using closed and half-open rectangular sets.
pairwise classification between all category pairs and calculated
the classification accuracy.

In both datasets, a function that yielded high classification
results was the maximum curvature. The two principal curvature
values (k1; k2) of a point on a surface S � R3 are defined as the
two eigenvalues of the Hessian matrix at that point. Geometrically,
the maximum curvature k1 is the amount by which the surface
bends at each point. See Figs. 6(b) and 7(b) for a blue-red visuali-
zation of the maximum curvature values on the surface of the
objects. Figs. 6(c) and 7(c) demonstrate how thresholding the
curvature segments the original surfaces to several connected
components and holes.

Another function that yielded high classification results is the
Shape Index [11], which is a scale-invariant interpretation of the
two principal curvature values defined as s ¼ 2

p arctan k2þk1
k2�k1

.

Fig. 8 shows the EC Graphs of the Shape Index feature for
instances from different classes of the TOSCA dataset. We calcu-
lated the EC Graph of the Shape Index function for 20 uniform
threshold values in ½�1 . . . 1�.

The pairwise classification accuracy values are given in Table 2.
As can be seen, the curvature-based EC Graph features provided
the best results for the Tosca dataset and the second best for the
prehistoric stone tools. The run time for the EC Graph features
Fig. 7. A 3D-scanned stone tool from Nahal Zihor (a) the original object (b) the
maximum curvature function (c) curvature above a threshold of 0.007.
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Fig. 8. The EC Graph feature of the Shape Index property for different objects in the
TOSCA dataset.

Fig. 9. 2D image (a) part of the original gray-scale image (b) zoom in on individual
pixels (c) 0,1 and 2 dimension cells.

Table 2
Classification accuracy for the TOSCA and Lithic datasets using different features. The
best result in each category is marked in bold.

Feature TOSCA (%) Lithics (%)

EC Graph/curvature 98.6 93.7
EC Graph/Shape Index 99.6 96.8
EC Graph/distance from center 89.7 52.2
EC Graph/normal distance 95.2 70
Osada D2 [17] 86.9 65.2
SISI [7] 96.9 97.4
LD-SIFT [7] 96.2 91.4

Fig. 10. Some examples from th
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(including calculation of the underlying curvature function) is only
a fraction (less than one tenth) of the run time for the state of
the art BoW features – LD-SIFT and Scale-Invariant Spin Image
(SISI) [7].
6.2.2. EC Graph feature for image classification
As discussed in Section 2, there are several ways to calculate the

Euler characteristic of an image. We choose to keep using the cell-
decomposition method, which constructs the image object from 0,
1 and 2-degree cells, that is, pixel-corners, pixel-edges and pixels.
See Fig. 9 for an example.

For testing the performance of the EC Graph, we used UIUCTex
[13], a dataset of natural textures containing 25 classes of textures
with 40 samples in each class. See Fig. 10 for some examples. We
compared two basic functions defined over the pixels – the gray-
scale pixel intensity value and the gradient magnitude. Table 3
provides the pairwise classification accuracy of all texture classes.

Comparing the global distribution to the EC Graph: the first two
rows in Table 3 list the success rates of the global distribution of
the grayscale values and of the EC Graph of these values. As can
be seen, the EC Graph provides a slightly better result (98.1% vs
97.2%).

To test the robustness of the features to image distortions, we
applied a random illumination distortion to the texture images.
The distortion consisted of an illumination offset: �I ¼ I þ a, scale:
�I ¼ ð1þ bÞI and gamma change: �I ¼ Ið1þcÞ. The three parameters
where chosen randomly for each image. An example of the illumi-
nation distortion can be seen in Fig. 11. As can be seen, the distor-
tion is minor and typical to photographs taken at different
lighting conditions. The classification accuracy for the distorted
textures is given in the right column of Table 3. Comparing the
performance of the EC Graph to that of the global distribution,
the EC Graph results are significantly better (84.5% vs 67.7%), indi-
cating that it is more robust to transformations that affect the
underlying local property.

When using gradient magnitude as the local feature, the EC
Graph classification accuracy for the original textures was slightly
e natural textures dataset.

Table 3
Pairwise classification accuracy for the original and distorted textures dataset using
different features. The best result in each category is marked in bold.

Feature Original (%) Distorted (%)

Distribution/gray-level 97.2 67.7
EC Graph/gray-level 98.1 84.5
EC Graph/gradients 94.8 90.2
EC Graph/gray-level, Gradients 98.9 91.8



Fig. 11. Applying illumination distortion to the textures dataset. First four samples from the ‘brick1’ class (top row), same samples after applying random illumination
distortions (bottom row).

Fig. 12. Detection of the ‘bricks’ texture in a sliding window. Intensity of red color
indicates the positive detection probability. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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lower than that of the original gray values, however, the accuracy
for the distorted textures was higher when using the gradients
(90.2%) compared to the gray value (84.5%). The best results where
achieved when concatenating the EC Graphs of the gray-level and
the gradients to form a single descriptor – 98.9% and 91.8% for the
original and distorted textures respectively. For all EC Graph
features, 16 threshold values were used.

Fig. 12 shows an example for detection in a sliding window
using the EC Graph descriptor. A classifier for brick texture was
trained using all ‘brick’ texture examples from [13]. 60 random
background images were used as negative examples. Two EC Graph
descriptors were calculated for each 80 � 80 pixels window, one
for the gray-level values and one for the gradient magnitudes. Each
descriptor was calculated using 8 threshold values, and the two
descriptors were concatenated to form one vector. The probability
of each pixel to be part of a brick texture region was defined as the
number of positive detection windows it was part of. The EC Graph
descriptors in the detection phase were calculated using the effi-
cient method described in Section 5 for EC Graph calculation in a
sliding window.

7. Conclusions

We presented the EC Graph – a new descriptor for supervised
object classification in various domains, which is based on the
Euler characteristic. Using the fast computation method we
presented, the EC Graph in any domain can be computed in time
complexity of OðN þ TÞ, which is the same as the time for comput-
ing the global distribution of the underlying local feature. The EC
Graph yields surprisingly good results in the two domains we eval-
uated – images and 3D mesh objects, even with simple underlying
local properties, possibly because of the information it encodes
about their spatial distribution.

The choice of local feature for which the EC Graph descriptor is
calculated affects the classification performance. We evaluated dif-
ferent local features for the different domains, for example, the
image spatial gradients and the curvature for 3D surface objects.
Evaluation of additional local features in conjunction with the EC
Graph descriptor is encouraged. For the task of object detection,
we have presented an efficient method for calculating the EC Graph
feature in multiple windows (sliding window) over the domain.

Matlab code for the EC Graph descriptor calculation for images,
and 3D mesh objects and for sliding window calculation is
available at the author’s web site.
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