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Abstract� Given the projection of a su
cient number of points it is pos�
sible to algebraically eliminate the camera parameters and obtain view�
invariant functions of image coordinates and space coordinates	 These
single view invariants have been introduced in the past� however� they are
not as well understood as their dual multi�view tensors	 In this paper we
revisit the dual tensors �bilinear� trilinear and quadlinear�� both the gen�
eral and the reference�plane reduced version� and describe the complete
set of synthetic constraints� properties of the tensor slices� reprojection
equations� non�linear constraints and reconstruction formulas	 We then
apply some of the new results� such as the dual reprojection equations�
for multi�view point tracking under occlusions	

� Introduction

There is a large body of research on multi�view geometry of �D scenes which has
culminated to the point where the issues and solutions are well understood� The
body of work on multi�view geometry centers around matching tensors of �����
views known as multi�view constraints �bifocal� trifocal and quadrifocal tensors�
which are borne out of algebraic elimination of the scene geometry �shape� from
the �D�to��D projection equations given a su	cient number of views 
��� �
�
�� �� �� �
� ��� ��� The �dual� form of the elimination process is to eliminate the
camera parameters �motion� given a su	cient number of points in a single view
with the result of what is known as single�view shape tensors 
�� ��� �� and in a
reduced setting where a reference plane is identi�ed in advance is called parallax
geometry 
��� ��� �� ����

Multi�view geometry has been put into practice in a variety of applications in�
cluding �D reconstruction� novel view synthesis� camera ego�motion� augmented
reality and visual recognition by alignment� The multi�point geometry� on the
other hand� has been hardly put into use although the topic makes a very appeal�
ing case for applications� In many instances� one would like to achieve a direct
representation of �D shape from images without the need to recover the camera
geometry as an intermediate step� This includes indexing into a library of ob�
jects �cf� 
����� multi�body segmentation �collection of points belong to the same



structure when the shape invariants hold�� and even for tracking applications
�which traditionally use multi�view constraints� where features may get lost due
to occlusions and later reappear� A direct shape constraint is advantageous due
to the local image support needed to make it work�

In this paper we focus on open issues which remain with shape tensors�
such as the number and nature of the synthetic constraints� properties of tensor
slices� reprojection equations� a full account of the non�linear constraints and
reconstruction formulas� We then apply some of the new results� such as the
dual reprojection equations� for multi�view point tracking under occlusions�

We will start with a brief description of what is known about these tensors
which will create the context for describing in more details our contributions to
this topic�

��� What is Known To�date About Shape Tensors

The basic idea is that points and cameras can be switched �duality principle�
and as a result one can obtain exactly the same multi�linear constraints as in
the multi�view derivations� where instead of multiple views we have multiple
points� Let Pi � �Xi� Yi� Zi�Wi�

� � P� denote points in �D projective space
and let M be a � � � projection matrix� thus pi �� MPi where pi � P� be the
corresponding image points in the �D projective plane� We wish to algebraically
eliminate the camera parameters �matrix M� by having a su	cient number
of points� This could be done elegantly� and along the way obtain the duality
principle� if we �rst change basis as follows� Let the �rst � points P�� ���� P� be
assigned ��� 
� 
� 
�� ���� �
� 
� 
� �� and let the image undergo a projective change
of coordinates such that the corresponding points p�� ���� p� be assigned e� �
��� 
� 
�� e� � �
� �� 
�� e� � �
� 
� ��� e� � ��� �� ��� respectively� Given this setup
the camera matrix M contains only � non�vanishing entries�

M 


�
� � � �
� � � �
� � � �

�

Let �M � ��� �� �� �� � P� be a point �representing the camera� and let �Pi be
the projection matrix�

�Pi 


�
Xi � � Wi

� Yi � Wi

� � Zi Wi

�

And we have the duality pi �� MPi � �Pi
�M where the role of the motion �the

camera� and shape have been switched� At this point we follow exactly the same
steps one does with the multi�view tensors� let li� l

�

i be two distinct lines passing
through the image point pi� i�e�� p

�

i li � 
 and p�i l
�

i � 
� and therefore we have



l�i
�Pi

�M � 
 and l��i
�Pi

�M � 
� For i � �� ���� � we have therefore E �M � 
 where�

E 


�
������

l�� �P�
�

l�� �P�
l��� �P�
�

l��� �P�

�
������ ���

Therefore the determinant of any � rows of E must vanish� The choice of the
� rows can include � points� � points� or � points �on top of the � basis points
P�� ���� P�� and each such choice determines a multilinear constraint whose coef�
�cients are arranged in a tensor� For the case of ���� � points� say points p�� p��
there is only one such tensor with the bilinear constraint p�� Fp� � 
 where the
�� � matrix F contains the shape parameters of P�� P�� In the work of 
�� ��� ��
the properties of F were derived �there are � linear constraints and rank�F�����
The cases of � and � points were less understood� Clearly� in the case of � points�
there are three tensors where we choose two rows of a �reference� point �say P��
and one row from the remaining two points �P�� P��� The determinant expan�

sion provides a trilinear constraint of the form pi�l
�
j l
�
kT

jk
i � 
 where p� is the

reference point� l�� l� are lines through the points p�� p� respectively� and the in�
dices i� j� k follow the covariant�contravariant notations �upper index represents
points� lower represent lines� and follow the summation convention �contraction�
uivi � u�v� � u�v� � ��� � unvn� Note that since the tensor is contracted by a
point �p�� and a choice of line through the remaining two points� then each view
contributes � linear constraints on the �� unknowns of the tensor�

At this point the literature becomes incomplete � clearly� we expect three
views to be su	cient for recovering the tensor �because of duality with the multi�
view trilinear tensor� thus the coe	cients of the tensor must satisfy internal
linear constraints� In 
�� ��� �� the way around this was to �nd out using Grobner
basis with computer algebra tools that there are only �� parameters �up to
scale� which form � trilinear equations� The number of parameters is indeed
�� �as we will see later�� but the tensor has been lost in all of this� In 
���
in attempt to summarize the topic� have noticed that there are internal linear
constraints� which they called �synthetic constraints� �which we will touch upon
later�� However� they did not provide the exact number of such constraints �which
is indeed ��� leaving �� parameters up to scale� as we shall see later�� Moreover�
the following issues remained open� �i� non�linear constraints on the tensor �there
should be ��� �ii� tensor slices �from which we obtain �reprojection equation��
homography slices� dual epipoles� etc��� and �iii� reconstruction of shape from
the tensor slices� properties �dual epipole� dual homography��

The case of � points is open to a large extent� This case is dual to the
quadrifocal multi�view tensor� thus by choosing one row from each point we
obtain a vanishing determinant involving � points which provides �� constraints
�per view� l�i l

�
j l
�
kl

�
tQ

ijkt � 
 for the �� coe	cients of the tensor Qijkt� Again�
one expects two views to su	ce� therefore the quadlinear tensor must contain
many internal linear constraints� In 
�� through the use of Grobner basis with



computer algebra tools it was found that there are �� quadlinear constraints
�per view� with �� coe	cients� thus two views would su	ce� It is unclear where
this result comes from� in fact �as we will show later� the quadlinear tensor has
�� coe	cients �just like its dual brother in the multi�view case� but there are ��
synthetic linear constraints � therefore we have �� parameters up to scale� The
�rst view provides �� constraints� and the second view provides �� constraints
�thus two views are su	cient�� As for non�linear constraints� there are �� of
them�

Next� consider the case in which a plane has been identi�ed in advance and
has been �stabilized� across the sequence of views� This reduced setting has been
coined �parallax geometry� and has the advantage of making a clear geometric
picture of the basic building block of the dual geometry 
��� ��� ��� Existing work
focus on the geometric interpretation �the dual epipole� and in 
��� the trilinear
constraint was derived geometrically �and has been shown to be bilinear in this
setting��

We will show that� beyond the geometrical interpretation� the real advantages
lies elsewhere� First� this setting corresponds to having the �rst � points P�� ���� P�
to have the coordinates ��� 
� 
� 
�� �
� �� 
� 
�� �
� 
� �� 
�� ��� �� �� 
� which is ap�
propriate when P�� ���� P� are indeed coplanar� The tensors are the same� what
changes is the number of synthetic constraints � for the bilinear tensor we have
� constraints� for the trilinear tensor we have �� constraints� and for the quadlin�
ear tensor �� constraints �the latter requires tools from representation theory��
More importantly� these tensors do not have any non�linear constraints � thus
making them appealing in practice� The lack of non�linear constraints is at the
heart of the recent result in 
��� showing that factorization is possible in this
context�

Finally� we have conducted real imagery experiments which highlight the use
of some of the new discoveries � such as the reprojection equations � and which
covers a number of tracking applications and multi�body motion segmentation�

� Synthetic Constraints in the General Case

The multi�point tensors are derived from the vanishing �� � determinants of E
�eqn� ��� Because of duality� we obtain exactly the same tensorial forms as in
the multi�view case� The di�erence is that the projection matrices �Pi are sparse
and as a result one obtains additional constraints� which following 
�� we will
call synthetic constraints� which we will now analyze�

Consider the camera projection matrix Mj be constructed such that the
j�th column is ej �the j�th standard basis vector� and the remaining entries
vanish� We have then MjP is either ej or vanishes for all choices of P � Let li� l

�

i�
i � �� ���� �� be lines through ej � therefore

l�i MjP 
 l�i �P �Mj 
 �

l��i MjP 
 l��i �P �Mj 
 �

for all points P � and dually for all projection matrices �P � Therefore the �� �
determinants of E vanish regardless of �Pi� For example� in the case of � points



�choose two rows from p� and two rows from p�� we obtain e�j Fej � 
� j �
�� ���� �� Therefore� we have � synthetic constraints on F � i�e�� the ��point tensor
is represented by �� � � � parameters up to scale as already pointed out in 
��
��� ���

In the case of � points� say p� is the reference point� thus we have the multi�
linear constraint pi�l

�
j l
�
kT

jk
i � 
 where l�� l� are lines through the points p�� p�

respectively� Let lj � l
�

k be a line through e � ej � then from the above we have that

eilj l
�

kT
jk
i � 
 which provides � constraints �because there are two choices for

lines lj and two choices for lines l�k�� Therefore we have �� synthetic constraints
�because e ranges over e� � ��� 
� 
�� ���� e� � ��� �� ��� We have arrived to the
result�

Claim� In the case of � points� each of the three ����� trilinear tensors contract
on a point �the reference point� and two lines coincident with the remaining two
points� The choice of the reference point determines the tensor in question� Each
of these tensors has �� internal linear constraints� thus leaving �� parameters
up to scale� Each view contributes � linear constraints on the tensor in question�
thus � views are necessary for a linear solution�

The number of parameters a ��point con�guration carries is ��� � � �because
P� can be set arbitrarily� say P� � ��� �� �� �� and each additional point carries �
parameters��We therefore expect � non�linear constraints on each of the tensors�
We will return to this issue later after we study the tensor slices�

In the case of � points� we have a single ������� tensor Qijkt responsible
for the �� quadlinear constraints l�i l

�
j l
�
kl

�
tQ

ijkt � 
 �we have a choice of � lines for
each point� thus �� constraints�� From the discussion above� if all the lines are
coincident with e � ej the constraint holds for all quadlinear tensors �i�e�� apply
to all space points�� Therefore� for e � e� we have �� synthetic constraints� For
e � e� we will have �� constraints because the line between e� and e� is already
covered by the previous �� constraints� Likewise� each additional point provides
one less constraint� thus we have a total of ����������� � �� synthetic con�
straints� The �rst view will contribute �� constraints �the lines through p�� ���� p�
passing through ej are already spanned by the synthetic constraints�� and the
second view will contribute �� constraints �because the lines through the four
points in view � and the four points in view � are spanned by the �� constraints
from view ��� Therefore� we have �� � �� � �� � �� which provides su	cient
constraints to solve for the quadlinear tensor� To summarize�

Claim� In the case of � points� there is a single quadlinear tensor of size �� � ���
The tensor has �� linear constraints� thus is de�ned by �� parameters up to
scale� Each view contributes �� linear constraints on the tensor of which �� are
independent for the �rst view and �� are independent for the second view�

An ��point con�guration is determined by ����� � � parameters� thus we
expect �� non�linear constraints�



� Synthetic Constraints With a Reference Plane

When a plane is identi�ed in advance and stabilized we �nd a di�erent set of syn�
thetic constraints� The �rst � basis points P�� ���� P� are assigned the coordinates
��� 
� 
� 
�� �
� �� 
� 
�� �
� 
� �� 
�� ��� �� �� 
� which is appropriate when P�� ���� P�
are indeed coplanar� The resulting camera matrix becomes�

M 


�
� � � �
� � � �
� � � �

�

and the resulting projection matrix �Pi becomes�

�P 


�
Wi � � Xi

� Wi � Yi

� � Wi Zi

�

And as in the general case we have the duality pi �� MPi � �Pi
�M where the

role of the motion �the camera� and shape have been switched� The matrix E
is identical to eqn� � thus the tensors are exactly the same� What is di�erent is
the number of synthetic constraints �and also geometric interpretation which we
will address later��

Since P�� ���� P� are coplanar we have the constraint P�
i n � 
� i � �� ���� �

and� due to our choice of coordinates� n � �
� 
� 
� ��T � Consider the family of
camera matrices M � un� for all choices of u � �u�� u�� u��� In other words� the
��th column of M consists of the arbitrary vector u and all other entries vanish�
Thus we have that MP either vanishes or is equal to u �up to scale� for all P �
Let li� l

�
i be lines through u� therefore

l�i MjP 
 l�i �P �Mj 
 �

l��i MjP 
 l��i �P �Mj 
 �

for all points P � and dually for all projection matrices �P � Therefore the �� �
determinants of E vanish regardless of �Pi� For example� in the case of � points
�choose two rows from p� and two rows from p�� we obtain u�Fu � 
 for all
choices of u� thus the matrix F is skew�symmetric and in turn is de�ned by �
parameters �as already pointed out in 
��� ��� ����

In the case of � points� say p� is the reference point� thus we have the multi�
linear constraint pi�l

�
j l
�
kT

jk
i � 
 where l�� l� are lines through the points p�� p�

respectively� Let lj � l
�

k be a line through u� then from the above we have that

uilj l
�

kT
jk
i � 
 for all choices of u where l�u � 
 and l��u � 
� The number of

synthetic constraints is the dimension of T jk
i � The issue of dimension is dual to

the issue of recovering the multi�view tensor from a coplanar scene� Let p� p�� p��

be matching points across � views and let A�B be the homography matrices
p� �� Ap and p�� �� Bp �since the scene is coplanar�� Let s� r be lines through
p�� p�� respectively� thus the measurements for the multi�view trilinear tensor
come from pisjrkT

jk
i � 
 for all choices of p while s��Ap� � 
 and r��Bp� � 
�

Since the choice of A�B does not a�ect the issue of dimension� we may as well set



A � B � I and we have exactly the same situation as in the multi�point tensor
described above� The issue of dimension for planar con�guration for the multi�
view trilinear tensor was resolved in 
��� with the answer of ��� As a result� we
can conclude that there are �� synthetic constraints for the multi�point trilinear
tensor� Moreover� the remaining parameters �� � �� � � � � is exactly what
is required to describe a con�guration of � points� � of which are coplanar�
P� adds only � parameters �because the �rst � points do not provide a full
projective basis because the ��th point is spanned by the �rst three� thus carries
only � parameters� therefore they provide only �� degrees of freedom instead
of ���� and P� adds the usual � parameters� Note that since we are left with
� parameters �up to scale� and each view contributes � linear equations on the
tensor� only � views are necessary �instead of � which was required in the general
case�� Any of the two views adds only � constraints� instead of the expected ��
since it�s possible to choose� l� � p� � p� and l� � p� � p�� Than p�� l

�� l� is a
con�guration of points and two lines through the point� those expressed already
by the synthetic constraints� We summarize�

Claim� In the case of � points where the �rst � are coplanar� each of the three
trilinear tensors has �� internal linear constraints of the form uilj l

�

kT
jk
i � 


for all choices of u where the lines l� l� are coincident with u� These constraints
are all the constraints on the tensor� there are no other non�linear constraints�
Finally� only two views are required in order to solve for the tensor�

In the case of � points� the dimension analysis is more subtle and requires
di�erent tools� The quadlinear tensor is de�ned exactly as in the general case�
we have a single � � � � � � � tensor Qijkt responsible for the �� quadlinear
constraints l�i l

�
j l
�
kl

�
tQ

ijkt � 
 �we have a choice of � lines for each point� thus ��
constraints�� From the discussion above� the four lines contracted by the tensor
are all coincident with the arbitrary point u� Therefore� the question is what
is the dimension of the set of constraints l�i l

�
j l
�
kl

�
tQ

ijkt � 
 where the lines are
arbitrary but form a ��dimensional subspace� Let

V � fv� � v� � v� � v�j dimSpanfv�� ���� v�g � �g

where v�� ���� v� are vectors in R
�� Our question regarding the number of synthetic

constraints is equivalent to the question of what is the dimensions of V � The
answer is �� and is derived as follows�

Let � � ���� ���� ���� be a partition of �� i�e�� �� � �� � �� � �� and
P

i �i �
�� A diagram associated with � has � rows of left�aligned boxes with �i boxes in
row i� Let f� be the number of ways to �ll the diagram of � with the numbers
from � to �� such that all rows and columns are increasing� Let �i� j� denote
the coordinates of the boxes of the diagram where i � �� ��� � denotes the row
number and j denotes the column number� i�e�� j � �� ���� �i in the i�th row� The
hook length hij of a box at position �i� j� in the diagram is the number of boxes
directly below plus the number of boxes to the right plus �� Then�

f� �
m�Q

	i�j
 hij



where the product of the hook�lengths is over all boxes of the diagram� Let d�
denote the number of ways to �ll the diagram with the numbers from � to ��
such that all rows are non�decreasing and all columns are increasing� We have�

d� �
Y
	i�j


�� i� j

hij
�

The de�nitions above can be found in 
��� With this in mind we have �proof is
omitted� that�

dimV �
X

�������

f�d��

We have therefore only three partitions� � � ���� ��� ��� ��� �� to consider� Thus�
f	�
 � �� d	�
 � ��� f	���
 � �� d	���
 � �� f	���
 � � and d	���
 � ��� Therefore�
dimV � �� � �� � �� � ���

Note that there no more non�linear constraints because we are left with
�� � � � �� � � parameters which is exactly the number required to represent
a con�guration of � points in which the �rst � are coplanar� P� contributes �
parameters� P�� P� contribute � parameters each� Finally� although we are left
with ��� ��� � � � parameters� we still need two views� the �rst contributes �
constraints and the second � constraints �proof omitted�� We summarize�

Claim� In the case of � points where the �rst � are coplanar� the quadlinear
tensor has �� internal linear constraints� These constraints are all the constraints
on the tensor� there are no other non�linear constraints�

� Tensor Slices and Properties

The dual tensors are borne out of exactly the same multi�linear forms as the
multi�view tensors � the di�erences lie in the fact that the projection matrices
�Pi are sparse and thus additional constraints are imposed �like the synthetic con�
straints described above�� Moreover� because the multilinear forms are the same
we should expect to have a �dual� of each of the basic elements one encounters in
multi�view analysis� image ray� epipolar line� epipoles and homography matrix�
These duals exist both in the general case and in the special case of stabilized
reference plane� The duals of the homography matrices are the most important
because they are the key for obtaining the source of the non�linear constraints
for the trilinear tensor �as pointed out in 
�� for the multi�view trilinear tensor��

We will derive the dual elements� the reprojection equation from the trilinear
tensor� the homography slices of the trilinear tensor� the non�linear constraints
from the homography slices� the breakdown of the trilinear tensor into a epipole�
homography structure� and reconstruction of space points� We will switch back
and forth between the general case and the case of stabilized reference plane
�which we will refer to as the �reduced case���

We will assume� without proof due to lack of space� that indeed the family
of all camera matrices projecting a �xed set of � copalanr points from P� to P��



have a common stabilized plane � thus they di�er from one another only in the
location of the center of projection�

Let null�M� be the projection center� Note that in the general case null�M� �
����� ���� ���������T � whereas in the reduced case null�M� � ��� �� �����T �
This indicates something of importance� in the general case� when �M � ��� �� �� ��T

varies along a linear subspace �a line or a plane�� null�M� varies along an alge�
braic surface �non�linear�� whereas in the reduced case� null�M� varies along a
linear subspace of the same dimension� This is the key for the simple geometric
interpretation of the elements �like image ray and epipole� in the reduced case
�as introduced in 
����� Nevertheless� all the elements exist and are well de�ned
in the general case as well�
The dual epipoles� In the multi�view context the epipoles are Minull�Mj� which
is the projection of the j�th camera center onto the i�th image plane� Likewise�
because of the duality MP � �P �M � the dual epipole is de�ned by �Pinull� �Pj��
In the case of � points bilinear tensor we should have two dual epipoles� e�� �
�P�null� �P�� and e�� � �P�null� �P���

Claim� �P�null� �P�� is the projection of P� via the camera whose center is at P��

Proof� Recall that null� �P�� � ���X�� ��Y�� ��Z�����W��� From duality we
have�

�P��null� �P��� 


�
��X� � � ���W�

� ��Y� � ���W�

� � ��Z� ���W�

�
P�

where the camera projection has its center equal to P��

Claim� e�� � null�F� and e�� � null�F��

Proof� Consider a camera matrix M whose null space is P�� Such a camera
maps P� to 
� Therefore� for any point p� � P

�� the lines l�� l
�
� passing through

p� satis�es� l�� MP� � 
 and l��� MP� � 
� Therefore� if we take p� to be the
projection of P� via M � than p�� Fp� � 
� for all choices of p� � P�� This of
course implies that Fp� � 
�

In the reduced case the two epipoles must coincide since F is a skew�symmetric
matrix �thus null�F� � null�F���� The epipole e � e�� � e�� was coined the
�dual epipole� in 
���� Since in the reduced case the image plane is stabilized�
the dual epipole is simply the intersection of the line P�P� with the stabilized
image plane �see Fig� �a�� Note however� that this is true only for the reduced
case� In general there are two dual epipoles which we will denote as �left� and
�right� dual epipoles�
The dual image ray� Let l� l� be two lines coincident with the image point p�

Then� l�MP � 
 and l��MP � 
� therefore P has a ��parameter degree of
freedom� i�e�� it is determined up to a line which is de�ned by the intersection
of the two planes l�M and l��M � This line is the image ray corresponding to p�
The same applies in the dual� the camera vector �M is determined up to a line �
the line passing through p and null� �P � �de�ned by l� �P �M � 
 and l�

� �P �M � 
��
This is de�ned as the dual image ray � Note that in the general case this mean



�a� �b� �c� �d�

Fig� �� Stabilized reference plane	 �a� the dual epipole	 �b� The dual epipolar line Fp�	
�c� Homography duality	 �d� Homography slice of the dual trilinear tensor	

that the camera center varies along a ��parameter curve �non�linear�� In the
reduced case� however� null�M� �the camera center� varies along a line � the
line Pp�

Claim� In the reduced case� p �� �P �M constrains null�M� to vary along the line
Pp� which is the line passing through p and P �

Proof� Note that for any line l that pass trough p

� 
 l� �P �M 
 l�

�
�W � � X
� �W � Y
� � �W Z

�	B

�
�
�
��

�
CA

where the camera projection on the right�hand side has its center at P � and
null�M� � ��� �� �����T � Therefore� null�M� is on Pp�

The dual epipolar line� Recall that the dual fundamental matrix F is a result of

eliminating �M from the equations p� �� �P� �M and p� �� �P� �M � Recall also that
p� �� �P� �M constrains �M to lie on the dual image ray of p�� The projection of
P�� MP� � �P� �M is a line �lines are preserved under projection� in the image
corresponding to all the vectors �M that vary along the dual image ray of p��
This line� Fp� is de�ned as the dual epipolar line � Note that in the reduced case�
if �M varies along the dual image ray of p�� then null�M� varies along the line
P�p�� Thus we obtain the simple geometric interpretation 
��� drawn in Fig� �b�

Homography Duality� The term �dual homography� is already used in classic
projective geometry� thus we refer to the dual case of the homography matrix as
�Homography duality�� Recall that in multi�view� the homography matrix H�

induced by a plane 	� de�nes H�p as the projection of P onto the second image
plane� where P is the intersection point of the image ray corresponding to p with
	� In the dual case� H�p� is the projection of P� when the vector �point� �M is at
the intersection of the dual image ray of p� and the plane 	� Let 
n�� �� be the
normal to the plane 	� and denote by 	� the plane de�ned by� 
n������ In the
reduced case� constraining �M to lie on 	 is equivalent to constraining null�M�



to lie on 	�� So null�M� is at the intersection of the line P�p� with 	�� thereby
providing a simple geometric interpretation � see Fig� �c�

The next three claims are provided without proofs due to lack of space�

Claim� Let p�� Fp� � 
� Then F�H� is skew�symmetric for all choices of planes
	�

Claim � is crucial for later on when we discuss the source of the non�linear
constraints of the dual trilinear tensor�

Claim� 
e����H�
�� F for all 	�

��� Trilinear Tensor Properties

Given the elements introduced above we will describe the source of the non�
linear constraints of the dual trilinear tensor� but �rst we will introduce a useful
equation�

Claim �dual reprojection equation�� Let l� be a line coincident with the point
p�� Then�

pi�l
�
jT

jk
i

�� p� ���

Proof� pi�l
�
jT

jk
i is a point �contravariant vector� q� Since pi�l

�
j l
�
kT

jk
i � 
 for all

lines l� coincident with p�� then l� and q are coincident � hence� q � p��
The reprojection equation maps the point p� and any line through p� onto

the point p�� It is dual to the multi�view reprojection where matching points in
views ��� are mapped onto the matching point in view �� The dual reprojection
equation can be used for purposes of tracking �� points predicting the position
of the ��th� and will be detailed further in the experimental section�

Homography slice� A single covariant contraction of the tensor produces a ho�
mography duality �just like in the multi�view tensor 
�����

Claim� The matrix �kT
jk
i is a homography duality induced by the plane 	 de�

�ned by null� �P�� and the line � in the image�

Proof� Recall that pi�l
�
j l
�
kT

jk
i � 
 constrains �M to lie at the intersection of the

dual image ray of p�� the plane null� �P�� � l� and the plane null� �P�� � l� �since

li �Pi
�M � 
�� By a single contraction �kT

jk
i we therefore constrain �M to lie on

the plane null� �P�� � ��
Note that in the reduced case� this also constrains null�M� to lie on the plane

P��� �see claim ��� thus we obtain the geometric interpretation shown in Fig� �d�

Non�linear Constraints� We should expect � non�linear constraints on the trilin�
ear tensor� Consider three homography slices� T j�

i � T j�
i � T j�

i and denote them as
H�� H�� H�� From Claim � we have that H�

� F provides � linear constraints on



F and so do H�
� F and H�

� F � taken together �� linear constraints� Choose �
of these constraints� then the entries of F are represented by �� � determinant
expansions from the �� � estimation matrix constructed from the � constraints�
Each of these determinant expansions is a polynomial in the entries of T jk

i � The
remaining �
 constraints are of rank � because only � constraints are required
to specify F ��� �� � � ��� Therefore by substituting the representation of the
entries of F as determinant expansions in the remaining �
 constraints �choose

any � of them� we obtain � polynomials in the entries of T jk
i �

Reconstruction� All the information required for the �D reconstruction task�
is contained in the dual epipoles� In the case of the ��point tensor� Let F be
recovered from image measurements �we need at least � views of the � points��
The dual epipoles satisfy Fe�� � 
 and F�e�� � 
� Point P� can be assigned
��� �� �� �� �to complete the projective basis� and we are left with recovering
point P�� Recall� e�� �� �P�null� �P�� � �X� �W�� Y� �W�� Z� �W��

� and e�� �
�P�null� �P�� � ��X� �W���X�� �Y� �W���Y�� �Z� �W���Z��

��
Therefore� taking the ratio �component�wise� of e���e�� would produceX�� Y�� Z�

up to a common scale� and W� can be recovered by substitution in e�� thus ob�
taining a linear solution for P� �up to scale�� This reconstruction approach easily
generalizes to the trilinear and quadlinear tensors� First one recovers the dual
epipoles from the tensor and the reconstruction proceeds from there in a similar
manner as with the ��point tensor�

Regarding the reconstruction from the stabilized reference plane tensor� we
�rst recall that P� has only two parameters� On the other hand� in the reduced
case the left and right epipoles coincide� so recovering the dual epipole from F
provides only two constraints on P�� and this is the most one can expect�

In the trilinear tensor case� the points P�� P� contains � parameters� Therefore
considering only the epipoles e�� � e�� and e�� � e�� provides only � constraints�
which is not su	cient� Therefore� one should use the third epipole e�� � e�� as
well� Note that in the reduced case� the epipole associated with the points Pi� Pj

has the form� eij �� �Xi �Xj � Yi � Yj � Zi �Zj�
� �assuming that Wi �Wj � ���

So the three epipoles provides us with the system�

e������X� � �� 
 e������Z� � ��
e������Y� � �� 
 e������Z� � ��
e������X� � �� 
 e������Z� � ��
e������Y� � �� 
 e������Z� � ��

e������X� �X�� 
 e������Z� � Z��
e������Y� � Y�� 
 e������Z� � Z��

where eij�k� is the k�th coordinate of the epipole eij � Though this system con�
tains � equations� it has one trivial solution X� � Y� � Z� � X� � Y� � Z� � ��
If the system has a non�trivial solution� it must be of rank � most� Therefore
the system enables the recovery of P�� P� up to one degree of freedom� as ex�
pected� Similarly� we can achieve �D reconstruction from the quadlinear tensor�
using � out of the � epipoles� Note� as pointed out in 
���� that in the reduced
case it possible to collect any number of images and perform factorization �



however� points on the reference plane would not be reconstructed �and points
near the reference plane would be subject to unstable reconstruction�� Thus� the
reconstruction formulas described above are of interest as they hold generally�
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Fig� �� Separating badly tracked points due to occlusions	 �a�b� two images of a se�
quence of ��� � one of the problematic areas is zoomed in	 �c� the ��point tensor
evaluated for all points	 The badly tracked points are clustered to the right and �ex�
cept one mistake� are well separated from the good points	 �d�e� two views of the
sequence with the labeling of good and bad points	

� Experiments

We describe three applications� The �rst is occlusion detection in a point tracking
experiment� Fig� ��a�b� displays two images from a �

 frames sequence� and a
set of points that were located and tracked by an automatic tracker �openCV�s

��� pyramid LK tracker�� In the �rst image the tracker located some points on
the edge of the books� but as the cylinder starts covering those edges the tracked
points on the edges start moving as well and loose their accuracy� We use the ��
point tensor to evaluate con�gurations of � points in the following manner� The
scene contained roughly �
 feature points which were automatically detected and
tracked� For each of those points� �
 quintets of points were randomly selected�
For each such sextet �the tested point � the quintet�� we computed robustly
�using LMeds 
���� the ��points tensor over the entire sequence� For badly tracked
points� we expect that for each sextet� the evaluation error �the contraction of
the tensor with points p�� p�� will be high� For a good point� we except that out



of the �
 random sets� there would be enough good sets� so that the sum of errors
achieved this way will be signi�cantly lower than the sum of errors achieved for
a badly tracked point� Fog� ��c� displays the error graph � one can observe a
good separation between the badly tracked points �clustered on the right� and
the good points �modulo one exception�� Fig� ��d�e� presents two images from
the sequence with the labeling of good and bad points�

�a� �b� �c�

Fig� �� Using the dual trilinear tensor to resume tracking of lost points	 The images
are part of a sequence of ��� images in which roughly �� points were detected in frame
� and tracked throughout the sequence	 The points overlaid in �a� are those which were
lost as some point due to the passing person �b� and recovered in �c�	

The second application using the ��point dual tensor reprojection equation
�eqn� �� describes a tracking recovery due to interference� In other words� sit�
uations in which the tracker looses a point due to low con�dence yet in future
frames the point reappears and one would like to resume tracking it� Fig� ��a�c�
shows a sample of � images� out of a sequence of ��
� Roughly �
 points were
automatically located and tracked in the beginning of the sequence� Some of
those points were occluded due to the presence of a moving person and the goal
was to recover the lost points once the occlusion was removed� For each lost
point we wish to recover� we randomly chose a set of sextets of points out of the
set of points that were successfully tracked all other the movie� For each such
septet �the sextet�the point we wish to recover�� we compute a ��points dual
trilinear tensor� using the images at the beginning of the movie� where we had
all the � points� After the �th point was lost� we used the computed shape tensor
and the projections of the �rst � points in order to recover the �th point� The
recovered points that are shown in Fig� ��c�� are the average of the results that
were achieved using the set of sextets we chose�

The third application is motion segmentation� Fig� � shows two images out
of a sequence of �
 images of a moving bus �taken from a moving camera� where
roughly �� points were automatically located and tracked along the sequence�
The segmentation technique uses the ��point dual tensor in a manner similar to
the �rst tracking application�



�a� �b�

Fig� �� Two images out of a sequence of �� images of a moving bus taken from a moving
camera	 The ��point dual tensor was used for segmentation	

� Summary

Single�view shape invariants were introduced in the past� however� much of the
underlying constraints and forms remained incomplete� In this paper we have
introduced a full account of the dual tensors which have exactly the same form
as the multi�view tensors but with additional constraints borne out of the spe�
cial structure of the dual projection matrices� The �rst di�erence lies with the
internal constraints �synthetic constraints� � we have shown that the trilinear
tensor has �� of them and the quadlinear tensor has ��� The nature of these con�
straints change when a plane has been identi�ed in advance and stabilized �the
reduced case�� There we have shown that the trilinear tensor has �� constraints
and the quadlinear tensor �� constraints� We have introduced the dual of the
tensor slices� the reprojection equation� the dual epipoles� the homography du�
ality� the non�linear constraints of the trilinear tensor� and reconstruction from
dual epipoles�

Given the understanding of the internal constraints and the introduction
of the dual reprojection equation we made use of the shape tensors for two
applications of tracking and an application of ��body segmentation� The hope
is that with a better understanding of the underlying internal structure of these
shape invariants the applications �which have so far been a few� using these
invariants would increase as well�

References

�	 N	 Canterakis	 A minimal set of constraints for the trifocal tensor	 In Proceedings
of the European Conference on Computer Vision� Dublin� Ireland� June ����	

�	 S	 Carlsson	 Duality of reconstruction and positioning from projective views	 In
Proceedings of the workshop on Scene Representations� Cambridge� MA	� June
����	

�	 S	 Carlsson and D	 Weinshall	 Dual computation of projective shape and camera
positions from multiple images	 International Journal of Computer Vision� ������
����	



�	 A	 Criminisi� I	 Reid� and A	 Zisserman	 Duality� rigidity and planar parallax	 In
Proceedings of the European Conference on Computer Vision� Frieburg� Germany�
����	 Springer� LNCS ����	

�	 O	D	 Faugeras and B	 Mourrain	 On the geometry and algebra of the point and line
correspondences between N images	 In Proceedings of the International Conference
on Computer Vision� Cambridge� MA� June ����	

�	 W	 Fulton and J	 Harris	 Representation Theory� Springer� ����	
�	 R	I	 Hartley	 Lines and points in three views and the trifocal tensor	 International

Journal of Computer Vision� �������������� ����	
�	 R	I	 Hartley and A	 Zisserman	 Multiple View Geometry	 Cambridge University

Press� ����	
�	 A	 Heyden	 Reconstruction from image sequences by means of relative depths	 In

Proceedings of the International Conference on Computer Vision� pages ����������
Cambridge� MA� June ����	

��	 A	 Heyden	 A common framework for multiple view tensors	 In Proceedings of the
European Conference on Computer Vision� pages ����� Freiburg� Germany� June
����	

��	 M	 Irani and P	 Anandan	 Parallax geometry of pairs of points for �D scene
analysis	 In Proceedings of the European Conference on Computer Vision� LNCS
����� pages ������ Cambridge� UK� April ����	 Springer�Verlag	

��	 M	 Irani� P	 Anandan� and D	 Weinshall	 From reference frames to reference planes�
Multiview parallax geometry and applications	 In Proceedings of the European
Conference on Computer Vision� Frieburg� Germany� ����	 Springer� LNCS ����	

��	 D	W	 Jacobs	 Space e
cient �D model indexing	 In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition� pages �������� ����	

��	 P	 Meer� D	 Mintz� D	 Kim and A	 Rosenfeld	 Robust regression methods for
computer vision� A review	 International Journal of Computer Vision ����� ����	

��	 Open source computer vision library http���www�intel�com�research�mrl�research�cvlib�
��	 A	 Shashua and M	 Werman	 Trilinearity of three perspective views and its associ�

ated tensor	 In Proceedings of the International Conference on Computer Vision�
June ����	

��	 A	 Shashua and Lior Wolf	 On the structure and properties of the quadrifocal
tensor	 In Proceedings of the European Conference on Computer Vision� Dublin�
Ireland� June ����	

��	 C	 Rother and S	 Carlsson	 Linear Multi View Reconstruction and Camera
Recovery	 In Proceedings of the International Conference on Computer Vision�
Vancouver� Canada� July ����	

��	 G	 Stein and A	 Shashua	 On degeneracy of linear reconstruction from three views�
Linear line complex and applications	 IEEE Transactions on Pattern Analysis and
Machine Intelligence� �������������� ����	

��	 B	 Triggs	 Matching constraints and the joint image	 In Proceedings of the Inter�
national Conference on Computer Vision� pages �������� Cambridge� MA� June
����	

��	 D	 Weinshall� M	 Werman� and A	 Shashua	 Duality of multi�point and multi�
frame geometry� Fundamental shape matrices and tensors	 In Proceedings of the
European Conference on Computer Vision� LNCS ����� pages �������� Cambridge�
UK� April ����	 Springer�Verlag	


