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Abstract

We consider the problem of learning with instances de-
fined over a space of sets of vectors. We derive a new pos-
itive definite kernel f(A,B) defined over pairs of matrices
A,B based on the concept of principal angles between two
linear subspaces. We show that the principal angles can be
recovered using only inner-products between pairs of col-
umn vectors of the input matrices thereby allowing the orig-
inal column vectors of A,B to be mapped onto arbitrarily
high-dimensional feature spaces. We apply this technique to
inference over image sequences applications of face recog-
nition and irregular motion trajectory detection.

1. Introduction

This paper is about developing a similarity function that
operates on pairs of sets of vectors — where, for example,
a vector can represent an image and a set of vectors could
represent a video sequence — in such a way that the func-
tion can be plugged into a variety of existing classification
engines.

It would be natural to ask why would one need such a
function to begin with? The conventional approach to repre-
senting a signal for classification tasks — be it a 2D image,
a string of characters or any 1D signal — is to form a one-
dimensional representation, which is typically an attribute
vector xi in some space Rn defined as the instance space.
However, there are situations which call for representing an
instance as a set of vectors. For example, in a visual inter-
pretation task, the models themselves may be obtained from
sets of images (such as a video sequence), and in machine
learning when a training set is pre-expanded to contain vir-
tual examples in order to incorporate prior knowledge about
invariances of the input data. To be concrete, we will de-
scribe a couple of such situations below.

In the context of face detection, contemporary face track-
ing systems can provide long sequences of images of a per-
son. Thus, for better recognition performance, it has been
argued ([14, 19], for example) that the information from all
images should be used in the classification process — rather
than matching a single image to a set of model images. One
is therefore faced with the problem of matching between
two sets of images (where each image is represented by a
vector of pixel values).

For a second example, consider a visual surveillance task
of deciding whether a video sequence of people in motion
contains an “irregular” trajectory. The application can vary
from detection of shop-lifting, breaking-and-entry or the
detection of “irregular” movements of an individual in a
crowd. Given that the motion trajectory of an individual
can be modeled as a vector of positions over time, then the
most natural representation of the entire video clip is a set of
vectors. We would be looking, therefore, for an appropriate
set-matching measure which could be plugged-in into con-
ventional classification engines. More details are provided
in Section 4.

For convenience, we represent the collection of vectors
in Rn as columns of a matrix, thus our instance space
is the space over matrices. In both examples above, the
order of the columns of a training matrix is unimpor-
tant, thus the similarity metric over a pair of matrices we
wish to derive should ideally match between the two re-
spective column spaces, rather than between the individ-
ual columns. Another useful property we desire is to in-
corporate the similarity metric with a non-linear “feature
map” φ : Rn → F with a corresponding kernel satisfy-
ing k(x, x′) = φ(x)>φ(x′). A typical example is a fea-
ture map of dimension

(

n+d−1

d

)

representing the d’th or-
der monomial expansion of the input vector with the corre-
sponding kernel k(x, x′) = (x>x′)d. Working with feature
maps allows one to represent non-linearities, as for example
the linear subspace defined by the column space of the ma-
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trix A = [φ(a1), ..., φ(ak)] is a surface in the original input
spaceRn. Therefore, the measure of similarity between two
matrices undergoing a feature map translates to a measure
between the two underlying surfaces in Rn. Because of the
prohibitly high dimension of the feature space, we wish to
avoid evaluating the function φ(). This can be accomplished
with the use of the “kernel trick” by having a similarity met-
ric f(A,B) which can be implemented using inner prod-
ucts only between the columns of A = [φ(a1), ..., φ(ak)]
and B = [φ(b1), ..., φ(bk)]. Finally, to make general use of
the similarity function, we also desire that f(A,B) forms
a positive definite kernel on its own accord (for reasons de-
scribed later).

In this paper we propose a measure over the principal
angles between the two column spaces of the input matri-
ces A,B. The principal angles are invariant to the column
ordering of the two matrices, thereby representing a mea-
sure over two unordered sets of vectors. The challenge in
this work is two fold: the first challenge is to compute the
principal angles in feature space using only inner-products
between the columns of the input matrices, i.e., using only
computations of the form k(ai,bj), k(ai, aj) and k(bi,bj)
for i, j = 1, ..., k. The second challenge is to introduce
an appropriate function over the principal angles such that
f(A,B) forms a positive definite kernel.

1.1 Related Work

The idea of using principal angles as a measure for
matching two image sequences was proposed in [19] with
dissimilarity between the two subspaces measured by the
smallest principal angle — thereby effectively measuring
whether the subspaces intersect, which is somewhat similar
to a “nearest neighbor” approach. However, the assump-
tion that a linear subspace is a good representation of the
input set of vectors is somewhat restrictive with decreasing
effectiveness for low dimension n and large input set size
k. In our approach, the dimension of the feature space is
very high and due to the use of the “kernel trick” one ef-
fectively matches two non-linear surfaces in Rn instead of
linear subspaces.

Another recent approach for matching two image se-
quences, proposed by [14], is to compute the covariance
matrices of the two input sets, and to use the Kullback-
Leibler divergence metric (algebraically speaking, a func-
tion of AA>, BB> assuming zero mean column spaces)
assuming the input set of vectors form a Gaussian distri-
bution. The fact that only input space dimension Rn is
used constrains the applicability of the technique to rela-
tively small input sets, and the assumption of a Gaussian
distribution limits the kind of variability along the input se-
quence which can be effectively tolerated.

Other ideas published in the context of matching image

sequences are farther away from the concepts we propose
in this paper. The common idea in most of the published lit-
erature is that recognition performance can be improved by
modeling the variability over the input sequence. Most of
those ideas are related to capturing “dynamics” and “tem-
poral signatures” [8, 9, 4].

2 Kernel Principal Angles

Let the columns of A = [φ(a1), ..., φ(ak)] and B =
[φ(b1), ..., φ(bk)] represent two linear subspaces UA, UB

in the feature space where φ() is some mapping from in-
put space Rn onto a feature space F with a kernel function
k(x, x′) = φ(x)>φ(x′). The principal angles 0 ≤ θ1 ≤
... ≤ θk ≤ (π/2) between the two subspaces are uniquely
defined as:

cos(θk) = max
u∈UA

max
v∈UB

u>v (1)

subject to:

u>u = v>v = 1, u>ui = 0, v>vi = 0, i = 1, ..., k − 1

The concept of principal angles is due to Jordan in 1875,
where [10] is the first to introduce the recursive definition
above. The quantities cos(θi) are sometimes referred to
as canonical correlations of the matrix pair (A,B). There
are various ways of formulating this problem, which are all
equivalent, but some are more suitable for numerical sta-
bility than others. A numerically stable algorithm was pro-
posed by [5] based on the QR factorization and SVD, as
follows.

Let A = QARA and B = QBRB where Q is an or-
thonormal basis of the respective subspace andR is a upper-
diagonal k × k matrix with the Gram-Schmidt coefficients
representing the columns of the original matrix in the new
orthonormal basis. The singular values σ1, ..., σk of the ma-
trix Q>

AQB are the principal angles cos(θi) = σi.
The challenge of computing the principal angles is that

the matrices QA, QB should never be explicitly evaluated
because the columns of the Q matrices are in the high di-
mensional feature space. Our task therefore is to compute
Q>

AQB without computing the individual matricesQA, QB .
Consider the result of the Gram-Schmidt orthogonaliza-

tion process of the matrix A: Let vj ∈ F be defined as:

vj = φ(aj) −

j−1
∑

i=1

v>i φ(aj)

v>i vi

vi (2)

Let VA = [v1, ..., vk] and

sj = (
v>
1 φ(aj)

v>1 v1

, ...,
v>j−1φ(aj)

v>
j−1

vj−1

, 1, 0, 0, ..., 0)> (3)

Then,
A = VASA, (4)
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where SA = [s1, ..., sk] an upper diagonal k×k matrix. The
QR factorization is therefore:

A = (VAD
−1

A )(DASA), (5)

where DA is a diagonal matrix Dii =|| vi ||2. Assuming
the columns of A are linearly independent (this assumption
will be removed later) then S−1

A is well defined, and

A = AS−1

A D−1

A DASA, (6)

from which we obtain: QA = AR−1

A and RA = DASA.
The last step taking us from (5) to (6), although may ap-
pear somewhat artificial, is actually the key to making the
kernel-based computation of principal angles work. All
we will need is to compute DA and S−1

A (both of which
are k × k), and likewise DB , S

−1

B . Then, Q>
AQB =

R−T
A A>BR−1

B , where A>B involves only inner products
between the columns of A and B and thus can be computed
by using the kernel: (A>B)ij = k(ai,bj).

What remains to show is that DA, S
−1

A can be computed
with only inner-products of the columns of A. We will
describe now an interleaving algorithm for computing the
columns si of the matrix SA and the columns ti of S−1

A one
at a time.

¿From (4) we have VA = AS−1

A , thus vj = Atj and
due to the nature of the Gram-Schmidt process (SA is upper
diagonal) we have:

vj =

j
∑

q=1

tqjφ(aj),

where tqj is the q’th element of the vector tj . The inner
products v>

j φ(ai) and v>
j vj can be computed via a kernel:

v>j φ(ai) =

j
∑

q=1

tqjk(ai, aq) (7)

v>
j vj =

j
∑

p=1

j
∑

q=1

tpjtqjk(ap, aq) (8)

The inner-products above are the building blocks of DA —
whose diagonal consists of the norm of vj which is com-
puted via (8). From (3), the columns sj of SA are defined
as:

sj = (
t11k(a1, aj)

t211k(a1, a1)
, ...

∑j−1

q=1
tqjk(aj , aq)

∑j−1

p,q=1
tpjtqjk(ap, aq)

, 1, 0, ..., 0).

(9)
We see that the columns sj depends on tl from l = 2, ..., j,
and conversely tj depends on sj as well. However, the way
to break the cycle of dependency is by noticing that tj can
be represented as a function of t1, ..., tj−1 and of sj as fol-
lows. From (2) we have:

vj = [−v1, ...,−vj−1, φ(aj), 0, ..., 0]sj , (10)

and since vj = Atj we have by substitution in (10):

vj = A[−t1, ...,−tj−1, ej , 0, ..., 0]sj ,

where ej is defined such that I = [e1, ..., ek] is the k × k
identity matrix. As a result,

tj = [−t1, ...,−tj−1, ej , 0, ..., 0]sj . (11)

We have described all the elements of the algorithm for
computing the principal angles between A,B using only
inner-products between the column vectors. We summarize
below the algorithm:

• Given two sets of vectors ai,bi, i = 1, ..., k in
Rn, we would like to find the principal angles be-
tween the two matrices A = [φ(a1), ..., φ(ak)] and
B = [φ(b1), ..., φ(bk)] where φ() is some high-
dimensional mapping with a kernel function k(x, x′) =
φ(x)>φ(x′).

• Compute the k × k matrix R−1

A as follows:

• Let s1 = t1 = e1

• Repeat for j = 2, ..., k:

– Compute sj using Equation (9).

– Compute tj using Equation (11).

• Compute the diagonal matrix DA using Equation (8).

• R−1

A = [t1, ..., tk]D−1

A .

• Follow the previous steps and compute R−1

B .

• Let Mij = k(ai,bj) be the entries of the k × k matrix
M = A>B.

• The cosine of the principal angles are the singular val-
ues of the matrix R>

AMR−1

B .

It is worthwhile noting that the two sets of vectors need
not be of the same size, i.e., the column spaces of A and
B need not be of the equal dimensions. The requirement
of equal dimensions is necessary only in the context of ob-
taining a positive definite kernel from the principal angles
— which is the topic of the next section. Finally, note that
if the column space of A is not full rank then we can omit
those tj for which (DA)jj = 0 and obtainR−1

A whose num-
ber of columns are equal to the rank of A. Likewise for B.

3 Making a Positive Definite Kernel

In this section we address the issue of constructing a pos-
itive definite kernel f(A,B) and consider a number of can-
didate functions. Specifically, we propose and prove that

Πk
i=1cos(θi)

2

3



is a positive definite kernel. The reason we would like a sim-
ilarity measure that can be described by an inner-product
space is for making it generally applicable to a wide family
of classification and clustering tools. Existing kernel algo-
rithms like the Support Vector Machine (SVM) and “kernel-
PCA” (to mention a few) rely on the use of a positive def-
inite kernel to replace the inner-products among the input
vectors. Our measure f(A,B) can be “plugged-in” as a
kernel function provided that for any set of matrices Ai,
i = 1, ...,m and for any (positive) integer m, the m × m
matrix K:

Kij = f(Ai, Aj)

is (semi) positive definite, i.e., x>Kx ≥ 0 for all vectors
x ∈ Rm. This property enhances the usefulness of f(A,B)
for a wider variety of applications, and in some applications
(like optimal margin algorithms) it is a necessary condition.

To avoid confusion, the computation of cos(θi) involves
the use of some kernel function as was described in the pre-
vious section — but this does not necessarily imply that
any function d(θi) of cos(φi) is a positive definite kernel,
i.e., that there exist some canonical mapping ψ(A) from the
space of matrices to a vector space such that d(θ1, .., θk) =
ψ(A)>ψ(B). The result we will need for the remainder
of this section is the Binet-Cauchy theorem on the product
of compound matrices ([1],pp.93) attributed by Binet and
Cauchy in 1812 — described next.

Definition 1 (Compound Matrices) LetA be an n×k ma-
trix. The matrix whose elements are the minors of A of
order q constructed in a lexicographic order is called the
“q’th compound of A” and is denoted by Cq(A).

Definition 2 (Grassman Vector) Let A be an n×k matrix
where n ≥ k. The k’th compound matrix Ck(A) is a vector
of dimension

(

n
k

)

called the Grassman vector of A denoted
by ψ(A).

Definition 3 (Binet-Cauchy Theorem) Let A,B be rect-
angular matrices of size n×k and n×p, respectively. Then,

Cq(A
>B) = Cq(A)>Cq(B).

Of particular interest to us is the case where p = k = q, thus
Ck(A>B) is a scalar equal to det(A>B) (because A>B is
a k × k matrix and

(

k
k

)

= 1) from which we obtain the
following corollary:

Corollary 1 Let A,B be matrices of size n× k. Then,

det(A>B) = ψ(A)>ψ(B).

As a result, the measure det(A>B) is positive definite.
Since the entries of A>B are the inner-products of the
columns ofA,B thus the computation can be done in the so
called feature space with kernel k(ai,bj) = φ(ai)

>φ(bj)

where φ() is the mapping from the original Rn to some
high dimensional feature space. However, det(A>B) de-
pends on the choice of the columns of A,B rather than on
the respective column spaces (as principal angles do), thus
is not likely to be a good candidate for a positive definite
kernel f(A,B) over pairs of matrices.

The next immediate choice for f(A,B), is det(Q>
AQB)

since from Corollary 1 we have det(Q>
AQB) =

ψ(QA)>ψ(QB). The choice f(A,B) = det(Q>
AQB) is

better than det(A>B) because it is invariant to the choice
of basis for the respective column spaces ofA,B. The prob-
lem, however, is that det(Q>

AQB) can receive both positive
and negative values making it a non-ideal candidate for a
measure of similarity. For example, by changing the sign of
one of the columns of A, results in det(Q>

AQB) changing
sign, yet the respective column spaces have not changed.
On the other hand, the absolute value |det(Q>

AQB)| is not
positive definite. Nevertheless, the product of two positive
definite kernels is also a positive definite kernel (see [13]
for example), then

f(A,B) = det(Q>
AQB)2 = Πk

i=1cos(θi)
2

is our chosen positive definite kernel function.

4 Experimental Results

Our first experimental example simulates the detection
of “irregular” motion trajectory of an individual in a mov-
ing crowd of people. We represent this problem as an in-
ference from a set of training examples. An example con-
sists of a set of trajectories each represented by a vector
(x1, y1, ..., xn, yn)> which denotes the image-plane loca-
tion of an individual over time. Our goal is to learn to
distinguish between homogeneous sets (negative examples)
and inhomogeneous sets (positive examples). An inhomo-
geneous set would contain a trajectory that is different in a
sense from the other trajectories in the set. However, the
trajectories themselves are not labeled.

We define six motion trajectory models. The first model
is of straight trajectories where the degree of freedom con-
sists of the choice between the starting and ending points
and the orientation of the line. The next two models
change their direction once or twice respectively (shown
in Fig. 1(b)). The exact location of the change can vary
slightly as does the orientation of the new direction. The
remaining three models consists of circular arcs of various
extent from small up to a full circle in Fig. 1(d). The pa-
rameters of the circular motion and its starting point along
the trajectory can vary.

We used the Support Vector Machine (SVM) [3, 17] al-
gorithm for our classification engine. The SVM was given a
training set of input matricesA1, ..., Al with labels y1, ..., yl

4



(a) (b)

Figure 1. Two out of the six trajectory models. Each
figure illustrates some of the variability within one specific
model. (a) Direction changes twice. (b) Trajectories which
complete an almost full circle.

where yi = ±1, where the columns of a matrixAi represent
the trajectories of the i’th “instance” example. The input to
the SVM algorithm is a “measurement” matrix M whose
entriesMij = yiyjf(Ai, Aj) and the output is a set of “sup-
port vectors” which consist of the subset of instances which
lie on the margin of the positive and negative examples. In
our case, the support vectors are matrices. The classifica-
tion of a new test example A is based on the evaluation of
the function h(A) = sgn(

∑

µiyif(A,Ai) − b) where the
sum is over the support matrices and µi are the correspond-
ing Lagrange multipliers provided by the algorithm. Note
that it is crucial that our measure f() is a positive definite
kernel because otherwise we could not have plugged it in
the SVM.

In the first set of experiments we used a different model
for each experiment. In each experiment, all trajectories be-
long to the same single model, but are oriented in one of the
following four directions: left to right, right to left, top to
bottom and bottom up. Each example contains seven trajec-
tories. A homogeneous set is considered to be a set where
all trajectories lie in one direction. An inhomogeneous set
is considered to be a set where six trajectories lie in one di-
rection and one trajectory lies in some other direction. We
used 400 training examples and 100 test examples for each
experiment. The results are shown in Table 1.

Model det(Q>
A

QB)2 det(Q>
A

QB)2 Vector Vector
linear Deg 6 linear Deg 6

(a) F 1% F F
(c) 39% 6% 55% F
(d) 17% 7% 52% F
(f) 8% 3% 57% F

Table 1.

The values in the table entries are of error rates for the
test set. The experiment was done using our proposed ker-
nel for sets (“det(Q>

AQB)2”) over a linear kernel and over
a polynomial kernel of degree 6, and for vector (“Vector”)
representation of the sets learned using the same kernels.

Figure 2. The pair of rows contains some of the extracted
face images of the same person on different shots taken un-
der different illumination.

Each row represents an experiment made using a differ-
ent model of trajectories. “F” means that the SVM classi-
fier failed to converge. Other kernels suggested in section 3
where also tested but failed to converge or gave very poor
results. Further experimental results on this data set are pro-
vided in [18].

In our second experimental example the goal was to rec-
ognize a face by matching video sequences. We ran a
face tracker on 9 persons who were making head and fa-
cial movements in front of a camera. The result of the face
tracker (provided by GenTech Corp.) is an area of interest
bounding the face which was scaled (up or down) to a fixed
size of 35 × 47 per frame per person. The number of im-
ages per set varied from 30 to 200 frames per set. Since the
tracker is not perfect (none of them are) especially against
strong pose changes of the head, some of the elements of the
set were not positioned properly on the face (Fig. 2 second
row).

The training set consisted of 9 sets (one per person),
while the testing set consisted of 7 new sets (of the same
people). We performed a matching over sets in order to se-
lect the closest two sets between the test set and the 9 train-
ing sets. The kernel principal angles was applied once on
the original image space and once using a feature space rep-
resenting the 6’th order monomial expansion of the original
input vectors. Since we are not constrained in this experi-
ment to use a positive definite measure, we used the mean
of the smallest 20 principal angles as the similarity mea-
sure between two video sequences (labeled as “mean θ” in
the sequel). Note also that in this kind of experiment, the
length of the video sequences can vary.

We compared our results to four other approaches for
obtaining a similarity measure over sets. In the second ap-
proach (labeled “alt”), instead of computing the principal
angles, we chose the angle between the closest vectors in
the two sets. At first the two vectors (one from each set)
which had the largest inner-product were picked. They were
removed and we then picked the next pair and so on. This
method is used as a “low cost substitute” for principal an-
gles. The third method (labeled “NN”) measured the dis-
tance between every two sets as the distance in feature space
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between their closest elements. Recall that the distance in
feature space between two vectors is:

d(φ(x), φ(x′))2 = k(x, x) + k(x′, x′) − 2k(x, x′).

The fourth method (labeled “20NN”) examined the 20 vec-
tors in the union of the training sets which were closest
to the vectors of the test set. The recognition process was
based on a vote - the training set which contributed the most
of these vectors was chosen. The last method we compared
to was the method based on Kullback-Leibler divergence
presented in [14].

One can see from Table 4, that our approach based on
computing the principal angles in a feature space of 6’th
order monomials made only a single error out of 7 tests (the
first two rows of Fig. 2, where as all four other approaches
performed poorly.

Linear Deg 6
mean θ 2 1
Alt 4 4
NN 5 5
20NN 3 3
[14] 4 NA

Table 2.

5 Summary

We have made three contributions in this paper: (i) a
case in favor of using instance space over matrices (sets of
vectors) for classification, (ii) introduced a kernelization of
principal angles as a vehicle for matching two sets of vec-
tors, and (iii) introduced a positive definite function of the
computed principal angles — important for making use of
the similarity measure over matrices as a metric for optimal
margin classifiers.

Applications of principal angles are found in numerous
branches of science including data analysis, random pro-
cesses and stochastic processes. The kernelization of the
computation of principal angles provides a means to allow
for non-linearities in the matching between two sets of vec-
tors and would no doubtly become useful beyond the scope
of this paper. It is also worth noting that the algorithm pre-
sented in this paper is general in the sense it holds for any
type of sets, i.e., not only sets made out of vectors. Any set
for which one can present a kernel function operating on the
elements of the set could serve as an input to the algorithm
— for some types of sets it is possible to obtain interesting
interpretations as to what the algorithm actually does, but
that is out of the scope of this paper.
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