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Abstract

We consider a scene containing two independently and gen-
erally moving objects, viewed by two general perspective
views. Using matching points arising from both objects si-
multaneously we derive a geometrical constraint, applica-
ble to points from both objects, we call the segmentation
matrix. We then use this constraint in order to recover the
Jundamental matrices associated with each object, or sim-
ply to segment the scene into the two objects. Moreover,
when the two bodies move in pure translation relative to
each other we can both segment the scene and recover the
affine calibration (homography at infinity) of the camera ge-
ometry. Unlike algorithms suggested in the past we need
only two images, we work with general projective cameras
(rather than affine or orthographic) and with general body
motion, and no prior information beyond point matches is
required.

1 Introduction

We consider the problem of segmenting a collection of
matching points across a pair of images arising from two
3D bodies moving relatively to each other in a general man-
ner — which we refer to as the two-body motion segmenta-
tion problem. All we are given as input are matching points
from which we would like to decide which pair of match-
ing points comes from which object, recover the underlying
fundamental matrices (each body is associated with one),
and in case the relative motion between the bodies is pure
translation to recover the affine calibration of the camera
geometry. We do so using geometric constraints alone, i.e.,
without the need for statistical model fitting in the presence
of outliers techniques like Least-Median Squares, Ransac,
or M-estimation. In other words, we look for multi-linear
constraints which apply to the matching points as a whole
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regardless from which object they arise from — from these
constraints we can recover all aspects of the individual bod-
ies’ motion (epipoles, fundamental matrix, segmentation).

The closest work to ours is the factorization-based mo-
tion segmentation of [2] applicable to the affine (parallel
projection) camera model. There it was shown that the mea-
surement matrix of all points across a sequence of images
lies in a linear subspace whose dimension is determined by
the number of independent bodies and where the motion of
each body lies in a separate subspace — the rearrangement
of the data can be done in order to separate between the sub-
spaces (see also [6]). In our work we assume a full projec-
tive model (but also address the affine model) and assume
only two views (whereas the factorization would require at
least 4 views).

Our analytical approach follow the path of a growing
body of work on dynamic scenes [2, 1, 10, 3,7, 11, 4, 12],
i.e., 3D scenes which contain multiply moving points or
collections of points (bodies) seen under multiple views.
Among these, the most relevant are [12] who propose a seg-
mentation tensor applicable to two bodies, but which move
in pure translation to each other (instead of general motion),
the technique requires three views (instead of two) and 4
points are assumed to be pre-segmented (whereas here we
require no information beyond the matching points them-
selves).

2 The 2-body Multi-linear Con-

straints

We will model the image plane as the projective plane P2,
Points and lines are represented as triplets of numbers (not
all zero) which are defined up to scale. A point p lies on a
line [ if their inner-product " p vanishes. A conic is repre-
sented by some symmetric 3 x 3 matrix C. A point p is on
aconic C if p" Cp = 0. If the conic matrix is of rank two,
the conic is a union of two lines s and r and is given by:
srl +rs'.

Consider two images of two independently moving bod-



ies where each image taken by a different camera at a dif-
ferent time. Thus, due to the relative motion (rotation and
translation) between the two bodies, the image measure-
ments per body would be subject to a distinct fundamental
matrix. Therefore, if p,p’ is a pair of matching points from
one of the bodies, and ¢, ¢' is a pair of matching points from
the other body, then they satisfy the epipolar constraints
p'TF'p =0, ¢'"F?q¢ = 0. Note that segmentation can
be achieved if we can first recover the two fundamental ma-
trices, or recover the epipoles (provided they are distinct)
— as detailed later in the paper. Our goal is therefore to de-
scribe a constraint applicable to both matching constraints
and from which one can later recover the individual funda-
mental matrices or the epipoles.

2.1 The Segmentation Matrix S

Consider a matching pair p, p’ of points. Since the corre-
sponding 3D object point can arise from either one of the
two bodies, then the constraint

(pIT]_-lp) (ple2p) —

must hold regardless from which body it arises from. This
constraint is a bi-quadratic expression. It is quadratic in
each of the measurements p and p'. Using tensorial nota-
tion it is written as: p'p?p*p" Wi = 0 where Wjjp =
FixF3. The tensor contains 81 elements but cannot be
recovered linearly from the measurements themselves be-
cause of symmetries. Those symmetries arise from the fact
that W is bi-quadratic — thus each measured point appears
twice and in turn we have a 4-fold symmetry:

zp]plk 1l __ =p pzplkpll _pzp]pll 1k __ =p pzpllplk

The symmetry implies that, for example, we cannot solve
for Wia11 linearly, but only for the sum Wia11 + Waiig.
We define instead a more compact structure we call the seg-
mentation matrix whose structure is detailed below.

Let p = (x,y,w)" be the image coordinates and let
p = (22, 2y,y%, 2w, yw,w?)" be the result of “lifting”
p onto a 6-dimensional projective space, and let p' be
the analog expression for p’. The bi-quadratic expression
PP p""Wijii = 0 can be transformed into a bi-linear ex-
pression in p and p' of the form p''Sp = 0. The 6 x 6
matrix S is referred to as the segmentation matrix. Each el-
ement of S is a sum of one or more elements of the tensor
W. For example S11 = Wii11, Saz = Wi2aa + Waio2 and
S24 = Wi213 + Wa113 + Wiazt + Waist.

Stating the relationship between & and W more for-
mally, let T be the vector (1,1,2,1,2,3)T, and J be the
vector (1,2,2,3,3,3)T. Then Sij = cWrwysari)ai) +
Wiaiiaa) + WI(z)J(z)J(g)I(a) + Wi 16)7G)1(5)):
where ¢ is 1/4 if I(i) = J(i) and I(j) =

J(j), 1/2 if

only one of these two equalities hold, and 1 if none of these
equalities hold.

Since every pair of matching points p, p’ provides one
linear constraint '’ Sp = 0 on S, we need a minimal of
35 matching pairs to achieve a unique solution. Note that
S is determined by a maximal number of 14 parameters (7
for each fundamental matrix), and is therefore subject to
21 independent non-linear constraints. This high number
of non-linear constraints make the linear computation of S
somewhat unstable. We will later or show how to use some
non-linear constraints in order to make the computation of
S more robust to noise in the image measurements.

Before we investigate the properties of S and how the
motion geometry (fundamental matrix and epipoles) could
be extracted from it, it is worthwhile noting that the min-
imal number of points on a single object does not exceed
the number of points required for solving (linearly) the fun-
damental matrix in a segmented situation. In other words,
a minimal of 8 points arising from one object is required
(proof omitted) and the remaining (27) points from the other
object.

3 Properties of S

The segmentation matrix S encapsulates the 2-body motion
geometry. We show in this section that the epipolar points
of the respective fundamental matrices are contained in the
null space of Sand ST.

Claim 1 (Slices of S) Sp is a vector representing the de-
generate conic defined by the epipolar lines F'p and F*p.

Proof: Let d = Sp. The vector d can be folded into a
symmetric 3 X 3 matrix D:

l di d2/2 da/2 ]
ds / 2 ds ds / 2 .

da/2 ds/2 dg

Note that p'" Dp' = d"p'. By construction, p'"Sp = 0
iff p' lies on the degenerate conic which includes the two
epipolar lines F'p and F2p. However, any such p’ must
satisfy p' " Dp’ = 0 as well. Therefore D must to be that
degenerate conic. [ ]

Note that this property is completely symmetric between
the images. S ' is a representation of the degenerate conic
which is composed out of the lines F' Tp’ and F2Tp'.

Also note that for every point p in the first view we get
a degenerate conic containing two epipolar lines, F'p and
F2p. Bach epipolar line contains the epipole of its funda-
mental matrix. Accumulating such lines over a number of
points gives us two pencils of epipolar lines. This is shown
in Fig. 1.

Recovery of the epipoles in both images (four epipolar
points all together) is therefore quite simple, using for in-
stance a RANSAC procedure. We will show in the next



Figure 1: a plot of 40 conics in the second image to which a
segmentation matrix is mapping points in the first image.

section a simple algebraic way of deriving the epipoles. It
would be based on the following observation on the null
space of the segmentation matrix S.

Claim 2 (null space of S) Let S be a segmentation matrix
as above, arising from the fundamental matrices F* and
F2. Let ey = null(F'), ea = null(F?). Let &1, €, be their
extension to a vector of six numbers as above. Then Sé; =
0,S8é; = 0. Also, let €| and &}, be the extensions of €] =
null(F7), e = null(F27), then STé} = 0,87é4, =0

Proof: From the construction of the segmentation matrix
Sé; is composed out of sums of the elements of the ten-
sor contraction é%é{W;jr. Where Wi = ]—"ilkffl. Since
Fley =0, e’ie{Wijkl = 0 as well and so is Sé;. Similar ar-
guments show that Sé; = 0, and thatSTé} = 0,8 é}, = 0.

The rank of S is 4 in the general case when the epipoles
of the two fundamental matrices are distinct. We will show
later how to recover the epipoles in this case. The matter is
more subtle when the epipoles coincide as shown next:

Claim 3 (null space of S when the epipoles coincide)
Let S be a segmentation matrix as above, arising from the
fundamental matrices F' and F2. If null(F') = null (F?)
or null (F'T) = null(F27) then rankS < 3.

Proof: We will prove the claim for null(F') = null(F?).
The details for the other case are similar. Consider what
happens in the lifted coordinates (p) when we apply a trans-
formation A to a point p. The point Ap (the lifted trans-
formed point) is

(A1), (AT p)(AT p), (A3 p)?, (AT P)(AF ), (A] P)(A3 ), (A3 P)*)T

where A;,i = 1..3 are the rows of A. This can be written
as a matrix A times the point p. If A is invertible, so is A.
If we apply the transformation A to the first image, then
the two new fundamental matrices become F'A~! and
F2A~L. The new segmentation matrix is SA~!. This is
because for every p in the first image Sp = SA~1(Ap).
Since F! and F? have the same null space we can find
an invertible transformation A~! such that the last row of

FLA~! and the last row of F2A~! vanish. In the new co-
ordinate system every element of Wj;; such that 4 or k is 3
vanishes. From the construction of S fArom W the last three
rows of SA~! has to vanish. Since A~! is invertible, the
rank of S is at most three. []

To conclude, the rank of S indicates wheather we are
in a case where the epipoles coincide or in the general case.
We next address the issue of recovering the distinct epipoles
from null(S) (in the general case).

3.1 Recovery of the Epipoles

~

Assume for now that the epipoles are distinct, i.c., e; =
null(F'), and e2 = null(F?) are distinct. Recall that
p = (2%, 2y,9y%, 2w, yw,w?) " is the lifted representation
of p. We will define another representation of pasa 3 x 3
symmetric matrix P = pp'. Note that p has exactly the
same elements as P.

Let 71, fi2 be the two vectors in the null space of S and
let N1, N> be the representation of 711712 as 3 X 3 symmetric
matrices. We wish to find €; = i1 + M\ 7ig and €3 = 7i; +
X272, such that there exist points e;, eo which map to €1, é,.
Let El = Nl + )\1N2 = eleir and Ez = Nl + )\2N2 =
626;_ .

Note that F4 and E» are rank one matrices, thus any
minor of these matrices must vanish. In other words, let
M, Ms be any 2 x 2 sub matrices of N7, N, respectively,
then the determinant of (M + A; M>) vanishes and there-
fore \; are generalized eigen-values. This gives us 9 second
order polynomials.

Note that all of these polynomial share the same roots,
and so they are all equal up to scale. In order to increase our
accuracy we first compute the norm of each such polyno-
mial (viewed as a vector) and discard those whose norm is
below some threshold, then normalize the remaining poly-
nomials. We then solve the polynomial which is the mean
of those normalized polynomials.

In case the epipoles in at least one of the images coincide,
the solution given above for the recovery of the epipoles
does not hold. The null space of the segmentation matrix is
not spanned only by valid points. However in this case the
epipoles can be recovered for example by first recovering
the fundamental matrices (see section 4).

3.2 Segmentation using Epipolar Points

If the two epipoles in both images are distinct we can use
them to perform segmentation. We do not need to recover
the underlying fundamental matrices, we only need these
epipoles and the segmentation matrix.

Assume that we have recovered the segmentation ma-
trix S, and extracted the epipoles in the second image from



it. We are given a point p in the first image and a match-
ing point p’ in the second image. The segmentation ma-
trix maps p to the degenerate conic represented by Sp.
This conic is composed out of the two epipolar lines F'p,
F2p. One of these epipolar lines passes through the first
epipole in the second image and the other through the sec-
ond epipole in the second image.

We then check to see on which one of the two epipolar
lines the point in the second image p' lies. If it lies on an
epipolar line passing through the first epipole, it belongs to
the first object. If it lies on an epipolar line passing through
the second epipole, it belongs to the second object. If the
point p' lies on the intersection of these two epipolar lines,
then the two views are not sufficient in order to segment this
point using epipolar constraints.

4 Recovery of the Fundamental Ma-
trices using S

The segmentation method based on the epipoles applies
only when the epipoles are distinct. Alternatively we can
recover the fundamental matrices directly from S as de-
scribed below (the method works well even if the epipoles
coincide).

Consider the vector S[1,0,0,0,0,0]" representing the
degenerate conic in the second image associated with the
point p = [1,0,0] T in the first image. According to Claim
1 the underlying lines of that conic are Flp, F2?p. These
lines are the first columns of the two fundamental matrices
F! and F2. In a similar fashion we can recover the second
and third columns as well. The problem is that we do not
know to which fundamental matrix each column belongs
to (the labeling problem), and the relative scales of these
columns are unknown as well.

We overcome the labeling problem by considering all
eight possibilities. Each possibility is a pair: a fundamental
matrix for the first object, and a fundamental matrix for the
second object.

To compute the scales we look at the degenerate conic in
the firstimage S [1,0,0,0,0,0] " associated with the point
p' =[1,0,0]" in the second image. This conic is composed
out of the first row of F! and the first row of 2. We now
assign a label to each of the lines which make this conic.
One row would be the first row of the first fundamental ma-
trix, and the other would be the first row of the second fun-
damental matrix. Using these rows we can set the scales
between the columns of all the eight pairs of possible fun-
damental matrices.

There might be a problem in cases where there are van-
ishing elements in these rows. However in this case we
can use other rows as well. Alternatively, we can also pick
points not in the standard basis. For example, picking the

point p = [1,1,0] T allows us to set the scales between the
first two columns of the fundamental matrices. .

To check which one of the eight possibilities is the cor-
rect one, we can for example construct a segmentation ma-
trix from each possibility, and measure the similarity to the
estimated segmentation matrix S. Alternatively, one can ap-
ply the segmentation matrix to a random collection of points
and measure the similarity of the epipolar lines to the epipo-
lar lines of the estimated S.

Once the fundamental matrices have been recovered, the
segmentation can be achieved by examining the distance of
the matched point in the second image from the epipolar
line we obtain from the fundamental matrices of each of the
objects.

S Reduced Configurations

So far we have addressed the general motion segmentation
problem where the views are full projective and the relative
motion between the two bodies is general as well. There
are reduced situations of interest such as (i) the affine cam-
era model, and (ii) motion between the bodies is pure trans-
lation (we can recover the homography at infinity and thus
achieve affine calibration).

5.1 Affine Cameras

In the affine camera model (parallel projection) the upper
left 2 x 2 matrix of each of the fundamental matrices van-
ishes. In this case many of the elements in the segmentation
matrix vanish as well:

Claim 4 (Segmentation matrix in Affine case) LetS bea
segmentation matrix arising from Affine fundamental ma-
trices F! and F?, then there exist 21 vanishing elements in

S.

Proof: Consider the multi-linear tensor Wijx = Fj Fi.
Any element of W;;; such that ¢ and k are either 1 or 2
is zero. So is every element with indexes j and ! which
are either 1 or 2. Let I be the vector (1,1,2,1,2,3)7,
and J be the vector (1,2,2,3,3,3)T. Recall that S;; =
Wiaiyaiy1)a) + Wiy 1ay16)G) + Wi 6)s ()16) +
Wi)1(i)7j)1(j))» Where ¢ is two to the power of minus the
number of equalities that hold out of the following two:
I(i) = J(i), I(j) = J(j). Si;j vanishes if at least three
out of the four indexes (i), J (i), I(j), J(j) are either 1 or
2. This happens exactly 21 times, where (i, j) if one of
the following pairs: (1,1), (1,2), (1,3),(1,4), (1,5), (2,1), (2,2),
(2,3), (2,4), (2,5), (3,1), (3,2), (3,3), (3,4), (3,5), (4, 1), (5, 1),
(4,2), (5,2), (4,3), (5,3). ]

1

since the fundamental matrices are of rank 2, we cannot set all the
scales with only one p using this method



Therefore there are additional 21 linear constraints on
the segmentation matrix and one needs only 14 points in
order to solve it. Note that in [2] less points were required
(the minimal number is not reported, but it has to be at least
8), but here we use only two views.

5.2 Pure Translation

In [12] three views and 13 points were used to solve the
case where motion between the bodies is pure translation
(however 4 pre-segmented points were required). If we add
the assumption of pure relative translation and solve for
the segmentation matrix, we obtain a useful property: the
mapping between the point in the first view and the cen-
ter of the degenerate conic that the segmentation matrix
maps to is the homography at infinity H,. This is because
(Hoop) " Flp = (Hoop) " F2?p = 0 forall p. In other words,
the point H,p is on both epipolar lines, thus it has to be on
their intersection.

Using the property that the mapping between p and the
center of the degenerate conic (in the second view) is gov-
erned by H,, we can recover H,, and obtain a 3D affine
reconstruction for each one of the moving bodies.

The recovery of the homography at infinity from the
point to conic centers mapping requires some care — we
must avoid conics of rank 1. Consider points on the first
image which the homography at infinity maps to points be-
tween the two epipoles in the second image. The match-
ing conic in the second image is composed out of the same
line repeated twice, and the center of the conic is ill de-
fined. This phenomenon is demonstrated in the experiment
described in Fig. 2. To overcome this we can compute the
homography at infinity using only points which are mapped
to conics composed out of two well separated lines (rank 2
conics).

6 Non-linear Constraints

There are several sources for the existence of non-linearities
between the elements of the segmentation matrix. The first
source of non-linear constraints comes from the fact that the
35 elements up to scale of the segmentation matrix are sums
of bi-linear products of two 3 x 3 matrices defined up to
scale. This gives us 35 — 16 = 19 second order constraints.

Second source of non-linearity arises from the fact that
each fundamental matrix F!, 72 is a rank 2 matrix. This
gives two additional constraints, which are cubic in the el-
ements of the fundamental matrices, and can be of higher
order on the elements of the segmentation matrix. For ex-
ample, the 5’th order constraints arising from the property
that every 5 x 5 minor of the segmentation matrix vanishes
(the segmentation matrix has at most rank 4) has its source
in the cubic constraints of the fundamental matrices. A third

source of non-linearity comes from the fact the the two cam-
eras share the same internal parameters. Then, for example,
if we know the cameras calibration, then each fundamental
matrix is determined only by three elements for rotation and
two for translation up to scale.

In this paper we chose to ignore most of the non-linear
constraints and instead obtain a simple and manageable al-
gorithm. Ultimately it is a matter of a trade-off between the
possibility of achieving higher accuracies in the presence of
noise and the resulting added complexity of doing so. We
did however incorporate some non-linear constraints in an
iterative process aimed at making the estimation of the seg-
mentation matrix more stable. This is described in the next
subsection.

6.1 Improving the Estimation of S using an
Iterative Process

Assume for now that we know the epipoles in the first image
e1,ea. We know that each one of the rows of S is perpen-
dicular to €1, é2. Assuming e; and e are distinct, thus each
row of § is spanned by four known basis vectors.

Let U be a 6 x 4 matrix with columns which span the
rows of S. Let C be a 36 x 24 block diagonal matrix which
has U as each one of its six blocks. The 36 elements of S
can be computed as the matrix C' multiplied by a vector of
24 entries x.

Let E be our estimation matrix for the matrix S (the di-
mension of E is the number of points times 36). The al-
gebraic error of each computed segmentation matrix S is
simply the norm of E times the 36 elements of S.

In order to find an S whose null space is spanned by the
epipoles e1, ez, and which minimizes the algebraic error,
we minimize EC'z subject to || Cz ||= 1. An algorithm to
solve such a minimization problem is given in [5] p.566.

We now have a way to perform a mapping from the
two epipoles in the first image to a segmentation matrix
which minimizes algebraic error. Finding the best epipoles
in terms of the algebraic error is a non-linear minimiza-
tion problem, which can be solved using the Levenberg-
Marquardt algorithm. We represent each epipole as three
numbers in order to allow the epipoles to be at infinity, and
our non-linear minimization problem has a manageable size
of 6 parameters.

This algorithm was inspired by similar algorithms given
in [5] for the computation of the fundamental matrix and of
the trifocal tensor. Unlike those algorithms, the segmenta-
tion matrix we get at each stage of the minimization pro-
cedure is not guaranteed to satisfy all the non-linear con-
straints. This is basically because both the fundamental ma-
trix and the trilinear tensor are linear in homography matri-
ces, while the segmentation matrix is bi-linear in the under-
lying remaining parameters.
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Figure 2: (a) The image of the box in 3D from which points were
uniformly sampled. (b) Motion of the two objects and the cam-
era is illustrated by the image of the moved boxes. (c) Grades of
segmentations using epipole-based segmentation matrix algorithm
(top line), fundamental matrices extracted from the segmentation
matrix (middle line), and of totally random segmentation (bottom
line). Grades are shown against standard deviation of the noise in
a 1800 x 1800 image (d) Grades of the segmentation picked by
the heuristic against standard deviation of the noise.

7 Experiments

We begin with a synthetic experiment designed to test the
sensitivity of the method in the presence of (normally dis-
tributed) noise. For each of the 20 experimental trials, 50
points (with added noise with varying variance) were sam-
pled from each object (all points were sampled uniformly
from a box, see Fig. 2a,b). The performance was measured
as a function of the number of miss-classification by the
segmentation program — a performance rating of 0.5 was
considered as pure chance. The noise level varied from 0 to
a standard deviation of 10 pixels (where the image size was
1800 x 1800).

Fig. 2c shows the performance of segmentation using
the segmentation matrix based on epipoles (top line), of a
segmentation based on using fundamental matrices which
were extracted from the segmentation matrix (middle line)
and of a totally random segmentation. Each reported grade
is a mean value of the 20 trials. Note that in the major-
ity of the runs the performance of segmentation based on
epipoles outperformed that based on the fundamental ma-
trices, although in some runs the fundamental matrix based
segmentation was better.

We used a simple heuristic in order to pick automati-
cally the best segmentation out of the two (based on epipole,

based on fundamental matrix) at each trial. Each segmenta-
tion gives us two groups. We picked the larger group from
each one of these pairs. Then we computed a fundamental
matrix from these larger groups. We computed the median
of the distances from the epipolar lines to all the 100 points.
The heuristic picked the segmentation with the lower me-
dian. The grades of the segmentation result picked by this
heuristic is shown in 2d. The heuristic picked the best seg-
mentation in about 75% of the cases, and the mean differ-
ence of the grade of segmentation picked by the heuristic
and the best grade was less then 0.02.

7.1 Real Imagery Experiments

In Fig. 3 we evaluate the performance of the estimation of
the homography at infinity in the case of pure translation.
We have chosen an outdoor setting in which one body is the
background scene and the second body is a moving vehicle
along a straight section of the roadway (the motion between
the two bodies is therefore pure translation). Fig. 3(a,b) dis-
plays two images of the moving car taken by a moving cam-
era. Points were tracked using openCV’s [8] pyramid LK
tracker. The segmentation results using our algorithm are
shown in Fig. 3(c,d) — which illustrates a good segmenta-
tion — there were no miss-classifications.

We then estimated the homography at infinity from the
point to conic center matching. Fig. 3(e) shows the warp of
the first image with H, using all point to conic matches.
Once can see that some of the matches were with con-
ics of rank=1 which had a detrimental effect on the result.
Fig. 3(f) shows the warp when only rank-2 conics were used
— the warped image looks undistorted.

Once the first image is warped with H,, the rotational
component of camera motion is cancelled. One way to mea-
sure the quality of H, is to create in-between frames and
observe the perspective distortion — a lack of perspective
distortion suggests a good fit. A sequence of synthetic im-
ages are shown in the last row of Fig. 3 illustrating a smooth
and undistorted animation.

Fig 4(a,b) shows two images taken from a camera mov-
ing inside the cabin of a vehicle while the vehicle is in mo-
tion. The bodies are the static cabin features and the back-
ground scene. The relative motion between the two bodies
is general as the car was in the middle of making a turn.
Fig 4(c,d) illustrate the segmentation results — there were
3 miss-classifications when extracting the background and
no miss-classifications when extracting in-cabin features.

The last experiment shown is an example of the algo-
rithm’s behavior on low relief objects which occupy a nar-
row region in the image. Fig. 5(a,b) are two images of a cat
moving its head with overlayed tracked points. The cat’s
head captures only a small part of the image, and not many
points were tracked on the head. We can expect the compu-
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Figure 3: (a), (b) Two images of a moving car with overlaid tracked points. (c) Points on first object (car) segmented using fundamental
matrices extracted from the segmentation matrix. (d) Points on the second object (background). Since we are in a pure translation case we
can compute the homography at infinity using the point to center of conic mapping. (e) shows the results warping the first image by this
mapping using all matches, including those corresponding with rank-1 conics. Note that on the line connecting the epipoles this mapping
is degenerate. (the epipoles are seen as locus of bent lines). (f) shows the first image warped by the homography at infinity computed using
only rank-2 conics. Last row shows the result of interpolation made after canceling the effects of rotation using the homography at infinity.
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Figure 5: Example of the algorithm’s behavior for low relief objects. (a), (b) Two images of a cat moving it’s head with overlaid tracked
points. The images were segmented by hand, then a fundamental matrix was computed for each object. These fundamental matrices were
used for segmentation and the resulting objects are seen in images (c,d). (e,f) The result of segmentation using fundamental matrices
computed from the segmentation matrix. Note the comparable performance.
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Figure 4: Example of algorithm’s performance for general mo-
tion. (a), (b) Two images of a back window of a car with overlaid
tracked points. The car is rotating into a parking space, and so
the relative motion of the two objects (inside of car, outside the
car) is a combination of translation and rotation. (c,d) The result
of segmentation using epipoles computed from the segmentation
matrix.

tation of the fundamental matrix computed from points on
the head to be ill-posed.

The scene was first segmented by hand. The two fun-
damental matrices were computed, and segmentation was
performed using these fundamental matrices. Fig. 5(c,d)
shows the resulting segmentation. Note that the group of
background points was segmented without error, while the
group of points on the cat’s head is contaminated by outliers
and ill-tracked points (such as points on the cat’s front leg,
which were affected by the cat’s whiskers).

Applying segmentation based on fundamental matrices
extracted from the segmentation matrix gives comparable
performance as seen in fig. 5(e,f).

8 Summary

We have presented a method for 2-body motion segmenta-
tion using two perspective views. The method is based on
the introduction of the segmentation matrix S which forms
a constraint which applies to matching points arising from
both bodies. The slices of S and its null spaces encapsulate
all the necessary information for recovering the underlying
fundamental matrices and epipoles of each of the moving
bodies. Furthermore, when the bodies are known to move
relative to each other in pure translation, the segmentation
matrix contains the information for recovering the homog-
raphy at infinity and thus obtaining an affine calibration of
the camera geometry.
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