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Abstract

The quadrifocal tensor which connects image measurements along 4 views is not
yet well understood as its counterparts the fundamental matrix and the trifo-
cal tensor. This paper establishes the structure of the tensor as an \epipole-
homography" pairing

Qijkl = v0jHikl � v00kHijl + v000lHijk

where v0; v00; v000 are the epipoles in views 2,3,4, H is the \homography tensor" the
3-view analogue of the homography matrix, and the indices i; j; k; l are attached
to views 1,2,3,4 respectively | i.e.,Hikl is the homography tensor of views 1,3,4.

In the course of deriving the structure Qijkl we show that Linear Line Com-
plex (LLC) mappings are the basic building block in the process. We also in-
troduce a complete break-down of the tensor slices: 3 � 3 � 3 slices are homog-
raphy tensors, and 3 � 3 slices are LLC mappings. Furthermore, we present a
closed-form formula of the quadrifocal tensor described by the trifocal tensor and
fundamental matrix, and also show how to recover projection matrices from the
quadrifocal tensor. We also describe the form of the 51 non-linear constraints a
quadrifocal tensor must adhere to.

1 Introduction

The study of the geometry of multiple views has revealed the existence of certain
multi-linear forms that connect image measurements of points and lines across
2,3,4 views. The coe�cients of these multi-linear forms make up the fundamental
matrix [8, 1] in the case of two views, the trifocal tensor [9, 4, 11, 14] of three
views, and the quadrifocal tensor in case of four views [2, 16, 7, 3].

Among the three, the quadrifocal tensor is the least understood. What is
known so far is somewhat fragmented and includes (i) the existence of 16 quad-
linear forms per quadruple of matching points across 4 views [2,16, 17],
(ii) quadlinear forms between a pair of matching quadruples form a rank 31 sys-
tem [3], (iii) the fact that the coe�cients of the tensor are Grassman coordinates
[2,16], (iv) that the quadlinear forms are spanned by trilinear and bilinear forms



[2] (using, however, symbolic algebra and random camera con�gurations), (v)
3� 3 slices of the quadrifocal tensor are rank-2 matrices [7], and (vi) equations
for recovering fundamental matrices and trifocal tensors from the quadrifocal
tensor [7], albeit not as far as recovering the camera projection matrices in a
general manner (only for "reduced" representations [6,5]), and (vii) the source
of the 51 non-linear constraints and their form is still an open issue.

In this paper we derive the quadrifocal tensor "bottom up" similarly to the
way the trifocal tensor was derived in [9,4, 10] and establish the following results.
First and foremost we obtain an explicit formula that describes the tensor as a
sum of epipole-homography outer-products:

Qijkl = v0jHikl � v00kHijl + v000lHijk

where v0; v00; v000 are the epipoles in views 2,3,4,H is the \homography tensor" the
3-view analogue of the homography matrix, and the indices i; j; k; l are attached
to views 1,2,3,4 respectively | i.e.,Hikl is the homography tensor of views 1,3,4.

In the course of deriving the representation above we �nd that the Linear Line
Complex (LLC) mapping (introduced in the past in the context of ambiguities
in reconstruction [15]) forms a basic building block in the construction of the
tensor. The explicit representation allows us to introduce a complete break-down
of the tensor slices: 3� 3� 3 slices are homography tensors, and 3� 3 slices are
LLCmappings. Furthermore, we present a closed-form formula of the quadrifocal
tensor described by the trifocal tensor and fundamental matrix, and also show
how to generally recover projection matrices from the quadrifocal tensor. Finally,
we describe the form of the 51 non-linear constraints a quadrifocal tensor must
adhere to.

2 Notations and Background

We will be working with the projective 3D space and the projective plane. In
this section we will describe the basic elements we will be working with (i)
collineations of the plane (ii) camera projection matrices, (iii) Linear Line Com-
plex (LLC) mapping, and (iv) tensor notations.

A point in P2 is de�ned by three numbers, not all zero, that form a coordinate
vector de�ned up to a scale factor. The dual projective plane represents the
space of lines which are also de�ned by a triplet of numbers. A point p in the
projective plane coincides with a line s if and only if p>s = 0, i.e., the scalar
product vanishes. In the projective plane any four points in general position can
be uniquely mapped to any other fours points in the projective plane. Such a
mapping is called collineation and is de�ned by 3�3 invertible matrices, de�ned
up to scale. These matrices are sometimes referred to as homographies. If H is a
homography matrix, then H�T (inverse transpose) is the dual homography that
maps lines onto lines.

A point in P3 is de�ned by four numbers, not all zero, that form a coordinate
vector de�ned up to a scale factor. The dual projective space represents the space
of planes which are also de�ned by a quadruple of numbers. The projection from



3D space to 2D space is determined by a 3�4 matrix. A useful parameterization
(which is the one we adopt in this paper) is to have the 3D coordinate frame and
the 2D coordinate frame of view 1 aligned. Thus, in the case of two views we have
[I; 0]; [A; v0] be the two camera matrices from 3D space to views 1,2 respectively.
The matrix A is a homography matrix from view 1 to 2 whose corresponding
plane is the \reference" plane, v0 is the intersection point between the two camera
centers (the null spaces of the respective projection matrices) and view 2 (known
as the epipole). Additional views, [B; v00]; [C; v000], etc., must all agree on the same
reference plane, In other words, the homographies A;B;C; :: all form a group,
i.e., the homography matrix from view 2 to 3 is BA�1, for example. Note that
the choice of the reference plane is free | a fact that provides 3 free parameters
(the \gauge" of the system) when setting up a set of projection matrices that
agree with the image measurements. If A� ; A�� are two homography matrices
between views 1,2 associated with planes �; ��, then A�

�= A�� + v0w> where w
is the projection onto view 1 of the line intersection of � and ��. If � is a line in
view 2, for example, then �>[B; v00] is the plane passing through the line � and
the second camera center.

Another useful transformation between views of a 3D scene is the one re-
sulting from a Linear Line Complex (LLC) con�guration. An LLC con�guration
consists of a set of lines in 3D that have a common line intersection (referred to
as the kernel of the set). Let L be the kernel of the set, and let its projections
onto views 1,2 be l; l0 respectively (see Fig. 1). Let A be a homography matrix of
any plane containing L, then G = A[l]x (where []x is the skew-symmetric matrix
of cross-products, see later) is a unique transformation (does not depend on the
choice of the plane) that satis�es s0>A[l]xs = 0 for all matching lines s; s0 in
views 1,2 respectively arising from lines of the LLC con�guration. The left and
right null spaces of G are the projections of L on views 1,2.

It will be most convenient to use tensor notations from now on because
the material we will be using in this paper involves coupling together pairs
of collineations and epipoles into a \joint" object. When working with tensor
objects the distinction of when coordinate vectors stand for points or lines mat-
ters. A point is an object whose coordinates are speci�ed with superscripts,
i.e., pi = (p1; p2; p3). These are called contravariant vectors. A line in P2 is
called a covariant vector and is represented by subscripts, i.e., sj = (s1; s2; s3).
Indices repeated in covariant and contravariant forms are summed over, i.e.,
pisi = p1s1 + p2s2 + p3s3. This is known as a contraction. For example, if p is a
point incident to a line s in P2, then pisi = 0.

Vectors are also called 1-valence tensors. 2-valence tensors (matrices) have
two indices and the transformation they represent depends on the covariant-
contravariant positioning of the indices. For example, aji is a mapping from
points to points (a collineation, for example), and hyperplanes (lines in P2)
to hyperplanes, because a

j
ip

i = qj and a
j
isj = ri (in matrix form: Ap = q

and A>s = r); aij maps points to hyperplanes; and aij maps hyperplanes to
points. When viewed as a matrix the row and column positions are determined
accordingly: in a

j
i and aji the index i runs over the columns and j runs over
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Fig. 1. A linear line complex (LLC) is a con�guration of lines in 3D that have a common
line intersection, the kernel, L. Let l be the projection of L in view 1 and let A be a
homography of some plane containing L. Then G = A[l]x is the LLC mapping that
s0>Gs = 0 for all matching lines s; s0 in views 1,2 respectively arising from lines of the
LLC con�guration.

the rows, thus bkja
j
i = cki is BA = C in matrix form. An outer-product of

two 1-valence tensors (vectors), aibj, is a 2-valence tensor cji whose i; j entries
are aib

j | note that in matrix form C = ba>. A 3-valence tensor has three
indices, say H

jk
i . The positioning of the indices reveals the geometric nature of

the mapping: for example, pisjH
jk
i must be a point because the i,j indices drop

out in the contraction process and we are left with a contravariant vector (the

index k is a superscript). Thus, Hjk
i maps a point in the �rst coordinate frame

and a line in the second coordinate frame into a point in the third coordinate
frame. The trifocal tensor in multiple-view geometry is an example of such a
tensor. A single contraction, say piH

jk
i , of a 3-valence tensor leaves us with a

matrix. Note that when p is (1; 0; 0) or (0; 1; 0), or (0; 0; 1) the result is a \slice"
of the tensor.

We will make extensive use of the \cross-product tensor" � de�ned next.
The cross product (vector product) operation c = a�b is de�ned for vectors in
P2. The product operation can also be represented as the product c = [a]�b
where [a]� is called the \skew-symmetric matrix of a". In tensor form we have
�ijka

ibj = ck representing the cross product of two points (contravariant vectors)
resulting in the line (covariant vector) ck. Similarly, �ijkaibj = ck represents
the point intersection of the to lines ai and bj. The tensor �ijk is the anti-
symmetric tensor de�ned such that �ijkaibjck is the determinant of the 3 � 3
matrix whose columns are the vectors a; b; c. As such, �ijk contains 0;+1;�1
where the vanishing entries correspond to arrangement of indecis with repetitions
(21 such entries), whereas the odd permutations of ijk correspond to �1 entries
and the even permutations to +1 entries.



3 Quadrifocal Tensor Bottom-Up

Consider 4 views with the following 3�4 projection matrices: [I; 0]; [A; v0]; [B; v00]; [C; v000]
associated with views 1,2,3,4 respectively. By de�nition, the matrices A;B;C
are homography matrices from view 1 onto 2,3,4 respectively through some ref-
erence plane �. Let P be some point in 3D projective space projecting onto
p; p0; p00; p000 in the four images, i.e., p �= [I; 0]P; p0 �= [A; v0]P; p00 �= [B; v00]P and
p000 �= [C; v000]P . Let L be some 3D line passing through P and let the projections
of L onto views 3,4 be denoted by r; t, thus L is the intersection of the two planes
r>[B; v00] and t>[C; v000]. See Fig. 2 as a reference from now on.
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Fig. 2. The construction of a LLC mapping between views 1,2 where the kernel line
L is determined by the lines r; t in views 3,4. In the construction one needs to express
the projection of L in view 1 and consider the projection of the intersection point of L
and the reference plane � on view 1 | the point B>r �C>t.

We wish to construct an LLC mapping, a 3�3 matrix Q(r; t), between views
1,2 whose kernel is the line L. Before we do so , it is worthwhile noting what we
would gain from it. From the de�nition of an LLC mapping, we have:

s>Q(r; t)q = 0

for all lines s passing through p0 and all lines q passing through p. In other
words, Q(r; t) = rktlQ

ijkl is a 3� 3 double contraction of the quadrifocal tensor
(linear combination of 3�3 slices). Thus, our mission would be almost completed
if we derive Q(r; t) | almost, because one must separate the contribution of
q; s; r; t from the contribution of the camera matrices in order to get a form
qisjrktlQ

ijkl = 0. To conclude, we have two steps left, one is to derive Q(r; t) as
the LLC between views 1,2 whose kernel is L, and the second is to separate the
image measurements and the camera matrices from the equation s>Q(r; t)q = 0
(this is where the power of tensor notations becomes critical).



Let �r>[B; v00] + �t>[C; v000] be the pencil of planes whose axis is L, param-
eterized by the scalars �; �. Let � be the projection of L onto view 1, thus the
plane �>[I; 0] belongs to the pencil:

�
�

0

�
�= �

�
B>r

v00>r

�
+ �

�
C>t

v000>t

�

Therefore, � �= (v000>t)B>r � (v00>r)C>t. Let � be any plane through L, then
the homography matrix from view 1 to 2 through � is, A�

�= A + v0n>, where
n is the projection of the intersection line between planes �; � onto view 1. By
de�nition of LLC mapping we have:

Q(r; t) = A�[�]x �= A[�]x + v0(n� �)>:

Note that n�� is the projection of the intersection point between L and � onto
view 1, and furthermore,

n � � �= C>t �B>r

because C>t is the projection of the intersection of the planes � and t>[C; v000]
in view 1, and B>r is the projection of the intersection of the planes � and
r>[B; v00] in view 1. The intersection of the two lines in view 1 is the projection
of the intersection point between L and � onto view 1. Taken together, we have
an explicit equation for Q(r; t):

Q(r; t) = v0(t>C � r>B) � (v00>r)A[C>t]x + (v000>t)A[B>r]x (1)

And the quadlinearity s>Q(r; t)q = 0 for all lines q; s; r; t in views 1,2,3,4 respec-
tively that coincide with their respective image point p; p0; p00; p000 is:

(s>v0)(t>C � r>B)q � (v00>r)s>A[C>t]xq (2)

+ (v000>t)s>A[B>r]xq = 0:

We have so far observed that the LLC mapping is a basic building block
in constructing the quadlinearity above. It is worthwhile noting that the quad-
linearity above can be also derived \top-down" by a determinant expansion,
as follows. Since the planes q>[I; 0], r>[A; v0], s>[B; v00], t>[C; v000] meet at the
point P , the determinant below must vanish:

��������

q> 0
s>A s>v0

r>B r>v00

t>C t>v000

��������
= 0

After expanding the determinant by its fourth column we obtain Eqn. 2
above. In order to continue, we introduce another basic block the \homography
tensor" of three views. Referring to Fig. 3, consider the line of intersection �L
between the plane � and the plane r>[B; v00]x. Consider some point �P on �L and
its projections �p; �p0; p00 onto views 1,2,3 respectively. Since the projection of �L
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Fig. 3. The construction of the Homography Tensor. A line r in the third view de-
termines by intersection of the viewing plane and the plane � a line �L in 3D forming
a kernel of an LLC mapping A[B>r]x between views 1,2. In tensor form we have
qisjrkH

ijk = 0 where q; s; r are lines through a matching triplet of points correspond-
ing to points on the plane �. Thus, Hijk is a 3-view analogue to the homography
matrix. See [12] for more details.

onto view 1 is B>r, then the LLC mapping between views 1,2 with �L as the
kernel is A[B>r]x. By de�nition of LLC mapping, we have �s>A[B>r]x�q = 0 for
all lines �q; �s that are coincident with �p; �p0 respectively.

From this point on we will move to tensor notations - necessary step in order
to separate the image measurements q; s; r; t from the camera projection matri-
ces A,B,C,v0,v00,v000. We adopt the notation that indices i; j; k; l are associated
exclusively with views 1,2,3,4. For example, since v0 is a point (epipole) in view
2, then when placed in a tensor equation it will always appear as v0j; likewise s
is a line in view 2, then in a tensor equation it will always appear as sj.

Rewriting �s>A[B>r]�q = 0 in tensor form we have:

�qi�sjrk(�
iunajub

k
n) = 0

and denote
Hijk = �iunajub

k
n: (3)

The tensor Hijk is a homography (collineation) mapping of the plane � associated
with 3 views. For example,

�qi�sjH
ijk �= p00k

�sjrkH
ijk �= �pi

�qirkH
ijk �= �p0j:

Just like a homography matrix it can map directly a point in any view onto
its matching point in any other view (not described here). Its 3 � 3 slices are
LLC maps: we saw that rkH

ijk is the LLC map A[B>r]x between views 1,2 of



the line �L; likewise, sjH
ijk is the LLC map B[A>s]x between views 1,3 whose

kernel is the intersection of � and the plane s>[A; v0], and qiH
ijk is the LLC

map B[q]xA
> between views 2,3 whose kernel is the intersection of � and the

plane q>[I; 0]. Note also that r>B[q]xA
>s = (B>r)(q�A>s) = q>(B>r�A>s).

The tensor Hijk is therefore the extension of the 2-view homography matrix and
is referred to as \Homography Tensor" (Htensor in short) | further details are
beyond the scope of this paper and the reader is referred to [12].

Returning to the quadlinearity in eqn. 2, we notice that all three terms consist
of homography tensors of the plane � of views (1; 3; 4) and (1; 2; 4) and (1; 2; 3).
Using our notation of indices, we have Hikl for the Htensor of views (1; 3; 4),
Hijl for the Htensor of views (1; 2; 4) and Hijk for the Htensor of views (1; 2; 3).
Therefore, the quadrifocal tensor is:

Qijkl = v0jHikl � v00kHijl + v000lHijk (4)

and the quadlinearity in eqn. 2 is simply

qisjrktlQ
ijkl = 0:

Finally, the form of Qijkl does not depend on the position of the reference plane
�. Changing the reference plane to �� results in the new set of camera projection
matrices [I; 0]; [A+ v0w>]; [B + v00w>]; [C + v000w>] where w is the projection
onto view 1 of the intersection line between � and ��. By substitution in eqn 4
one notices that the terms with w drop out | details are in the full version of
this paper [13].

4 Properties of the Quadrifocal Tensor

Since every quadruple of lines q; s; r; t coincident with the matching points p; p0; p00; p000,
respectively, contributes one equation qisjrktlQ

ijkl = 0 we have a total of 16 lin-
early independent equations per matching quadruple of points. Hartley [3] �rst
noticed and proved that two quadruples contribute only 31 linearly independent
equation, and every additional quadruple contributes one less equation, thus 6
matching quadruples contribute 16 + 15+ 14+ 13 + 12+ 11 = 81 linearly inde-
pendent equations for the 81 coe�cients of the tensor. One can obtain a simpler
geometric proof of why this is so:

Each quadlinearity is spanned by a set of 16 quadlinearities

q
�
i s

�
j r

�
kt

�
lQ

ijkl = 0 �; �; �; � = 1; 2

where q1i ; q
2
i are two lines, say the horizontal and vertical scan lines, passing

through p, etc. Given any lines q; s; r; t passing through the matching points,
then each line is linearly spanned by the horizontal and vertical scan lines and
this linear combination carries through to a linear combination of the 16 quadlin-
earities above. Given a second matching quadruple, �p; �p0; �p00; �p000, then the quad-
linearity resulting from taking the lines q = p � �p; s = p0 � �p0; r = p00 � �p00 and



t = p000 � �p000 is spanned by the 16 quadlinearities of the �rst set of matching
quadruple p; p0; p00; p000 (see Fig. 4). Thus, the two subspaces have a single non-
trivial intersection and the total rank is 31 (instead of 32). Likewise, the n'th
additional quadruple of matching points has n � 1 quadlineairites spanned by
the previous n� 1 subspaces.

p

p’

p’

p’’
p’’

p’’’ p’’’p

Fig. 4. A quadruple of matching points provides 16 constraints. A second quadruple
provides only 15 additional constraints because the constraint de�ned by the lines
connecting the the two sets of points is already covered by the 16 constraints of the
�rst quadruple.

4.1 Slicing Breakdown

We move our attention to the breakdown of slices of the tensor. From the con-
struction of the tensor and the symmetrical role that all views play (all indices
are contravariant, unlike the trifocal tensor which has both covariant and con-
travariant indices) we conclude:

Theorem 1. Let x; y, x 6= y, be a pair of indices from the set fi; j; k; lg, let
Mx;My be the camera projection matrices associated with the choice of view that
the indices x; y represent, and let �; � range over the standard basis (1; 0; 0); (0; 1;0); (0;0;1).
Every 3�3 slice �x�yQijkl of the quadrifocal tensor corresponds to an LLC map-
ping between the remaining views not represented by x; y and whose kernel is the
line intersection of the planes �>Mx and �>My. For example, if x = i; y = j

then �i�jQ
ijkl provide 9 slices, each slice is an LLC map between views 3,4 and

whose kernel is the intersection of the planes �>[I; 0] and �>[A; v0].

Note that in particular a 3 � 3 slice is a rank-2 matrix (as observed by
[7]), but not every rank-2 matrix is an LLC mapping. Note also that any linear
combination of the 9 slices �x�yQ

ijkl, for a �xed choice of x; y, is also an LLC
mapping. Thus the �nding above is a stronger constraint on the structure of the
3� 3 slices of the tensor then what was known so far.

Next we state (proof in [13]) that every 3 � 3 � 3 slice of the quadrifocal
tensor corresponds to a homography tensor:



Theorem 2. Let x be an index from the set fi; j; k; lg, let Mx be the camera
projection matrices associated with the choice of view that the index x represents,
and let � range over the standard basis (1; 0; 0); (0; 1;0); (0;0;1). Then every
3� 3� 3 slice �xQ

ijkl is a homography tensor between the three remaining views
of the plane �>Mx.

4.2 Quadrifocal Constructed from Trifocal and Bifocal

We move our attention to the construction of the quadrifocal tensor from lower
order tensors: the trifocal tensor of 3 views and the fundamental matrix of two
views. Using symbolic algebra on random camera con�gurations, Faugeras &
Mourrain [2] have concluded that the quadlinear forms are spanned by trilinear
and bilinear ones. We will use the LLC building block to derive a closed form
formula on representing the quadrifocal tensor as a function of trifocal tensors
and fundamentalmatrices. Let Y (�; �) = �i�jQ

ijkl be the LLC slice ofQ between
views 3,4. Then,

Y (�; �) = [�i�jT
ij
l ]xF34[�i�jT

ij
k ]x

where T ij
l is the trifocal tensor of views (4; 1; 2) and T ij

k is the trifocal tensor of
views (3; 1; 2), and F34 is the fundamental matrix between views 3,4.

To see why this expression holds, let L be the line intersection of the planes
�>[I; 0] and �>[A; v0]. Note that �i�jT

ij
l is the projection of L onto view 4, and

�i�jT
ij
k is the projection of L onto view 3. The fundamental matrix anked by

both sides by the skew-symmetric matrix of the projections of the kernel line is
the LLC map between views 3,4.

By varying �; � to range over (1; 0; 0); (0; 1; 0); (0;0; 1) we obtain a closed form
formula of the nine 3� 3 slices

Q11kl; Q12kl; ::::; Q33kl

denoted by Y (1; 1); :::; Y (3; 3), making up the quadrifocal tensor. However, each
slice is up to scale. The 9 scale factors �1; :::; �9 can be recovered (up to a global
scale) by setting �; � each to be (1; 1; 1) in which case we have:

Y (�; �) = �1Y (1; 1) + ::::+ �9Y (3; 3)

which provides a linear system for recovering the scale factors. In conclusion we
have:

Theorem 3. The quadrifocal tensor can be constructed from two trifocal tensors
and one fundamental matrix.

4.3 Fundamental Matrix from Quadrifocal Tensor

We next move our attention to the construction of lower order tensors from the
quadrifocal tensor. We will start with the fundamental matrix. Let Y (�; �) =
�i�jQ

ijkl be the LLC slice ofQ between views 3,4 with kernel line L. Let l000; l00 be



the projections of L onto views 3,4 respectively, thus Y l00 = 0 and Y >l000 = 0. Let
F34 be the fundamental matrix between views 3,4. Let r be some line in view 3,
then Y r is a point coincident with F34[l

00]xr (see Fig. 5). Thus, r
>Y >F34[l

00]xr =
0 for all r, therefore Y >F34[l

00]x is a skew-symmetric matrix. The skew-symmetric
constraint provides 2 linear equations for F34. By varying �; � over the standard
basis we obtain nine LLC slices, each provides 2 constraints on F34.

l’’

L

δ

µ

l’’’

r

Yr

34
F  ([l]r)

Fig. 5. Constructing the fundamental matrix F34 between views 3,4 from the Quadri-
focal tensor. We use the 3� 3 slices �i�jQ

ijkl which form a LLC mapping Y between
views 3,4 with a kernel line L (whose projection in views 1,2 are �; �). The left and
right null spaces of Y are the projections of L on views 3,4. If r is some line in view 3,
the Y r is a point coincident with F34[l

00]xr, thus Y
>F34[l

00] is a skew-symmetric matrix
providing 2 constraints on F34.

4.4 Trifocal from Quadrifocal

To recover the trifocal tensor, say T jk
i of views (1; 2; 3) consider the following.

Consider two lines �l; �l in view 4. Then Hijk = �lQ
ijkl and �Hijk = �lQ

ijkl

are two Htensors of views (1; 2; 3) associated with two distinct planes. Then,
sjrkH

ijk is a point in view 1, and sjrk �Hijk is another point in view 1, but these

two points lie on the line sjrkT
jk
i . Thus, we have the constraint:

sjrkT
jk
i

�= (sjrkH
ijk)� (sjrk �H

ijk)

By varying s; r to range over the standard basis, we obtain slices (each up to
scale) of the trifocal tensor:

T 11
i ; ::::; T 33

i :

The nine scale factors are recovered in two stages. First, by setting s = (1; 1; 1)
and varying r over the standard basis we obtain a linear system for sets of three



scale factors. We are thus left with three 3 � 3 slices T j1
i ; T j2

i ; T j3
i each up to

scale. By setting both s; r to (1; 1; 1) we obtain a linear system for the three
remaining scale factors.

4.5 Projection Matrices from Quadrifocal Tensor

Finally, we move our attention to the construction of the camera projection
matrices from the quadrifocal tensor. Consider again eqn. 4:

Qijkl = v0jHikl � v00kHijl + v000lHijk:

The epipolar points v0; v00; v000 are the null spaces of the fundamental matrices
which were recovered in Section 4.3. Thus, we have 81 constraints for solving
for the three Htensors Hikl;Hijl and Hijk that together form 81 unknowns.
There are two interesting points to make here. First, all three Htensors corre-
spond to the same reference plane in space | thus if we extract the constituent
homography matrices out of the Htensors, then together with the epipoles we
have an admissible set of camera projection matrices. Second, due to the gauge-
invariance property of the multi-view tensors we have three degrees of freedom
thus the rank of the estimation of the 81 variables of the three Htensors is 78.
We are free to choose any solution spanned by the null space (the choice will
determine the gauge, i.e., the location of the reference plane).

What is left is to show how to extract the homography matrices from view
1 to 2,3,4 from the Htensors. Consider for example Hijk the Htensor of views
(1; 2; 3) with constituent homography matrices A;B. Because 3 � 3 slices cor-
respond to LLC maps, it is possible to extract from them the homographies
A;B. For example, �kH

ijk produces an LLC map A[B>�]x | by allowing �

to range over the standard basis (1; 0; 0); (0; 1; 0); (0;0; 1), we obtain three such
matrices, denoted by E1; E2; E3. We have that AE>i + EiA

> = 0, i = 1; 2; 3,
thus providing 18 linear equations for A. Similarly, one can �nd in this manner
the other homographies B;C | each up to scale. The three scale factors can be
determined by using eqn. 4 again, this time the Htensors are constructed from
the homography matrices where the unknowns are the three scale factors.

4.6 The 51 Non-linear Constraints

The quadrifocal tensor is represented by 29 parameters (44�15 = 29) thus we ex-
pect 51 non-linear constraints (\admissibility" constraints) on the 81 coe�cients
(up to scale) of the tensor. This issue has so far been unresolved. Heyden [7] con-
jectures that the source of these constraints comes from the rank-2 property of
the 3 � 3 slices. But as we saw in Theorem 1 the matter is more complicated
because the slices are LLC maps, and not every rank-2 matrix is an LLC map.
We will use the 3 � 3 � 3 slices, the Htensors, to buildup those 51 constraints,
as described below.

Consider the three 3 � 3 � 3 slices �lQ
ijkl by letting � range over the stan-

dard basis (1; 0; 0); (0; 1;0); (0;0;1). From Theorem 2 we know that these slices



are Htensors denoted by H
ijk

(m), m = 1; 2; 3. Note that all three Htensors are of

views (1; 2; 3) each corresponding to a di�erent plane. Let A(m); B(m) be the con-
stituent homographymatrices of the m'th Htensor. We know that A(1); A(2); A(3)

are homographymatrices from view 1 to 2 corresponding to three di�erent planes
�1; �2; �3, and B(1); B(2); B(3) are homography matrices from view 1 to 3 corre-
sponding to the same planes �1; �2; �3, respectively.

We will divide the 51 constraints into two sets. The �rst set consists of
9 � 3 = 27 constraints which describe the constituent homography matrices
from their corresponding Htensors. The second set consists of 24 constraints
which embody the relationship between A(m); B(m) as described above.

Recall that an Htensor produces 18 linear constraints for each of its ho-
mography matrices. Consider the three 3 � 3 slices Hij1

(1) ;H
ij2
(1) ;H

ij3
(1) of the Ht-

ensor H
ijk

(1) and denote the resulting matrices by E1; E2; E3. We know that

A(1)E
>
i + EiA

>

(1) = 0, i = 1; 2; 3, which provide 18 constraints for A(1). Choose
8 constraints from these 18 constraints. Thus, each entry of the matrix A(1)

can be represented by a determinant expansion of an 8 � 8 matrix whose com-
ponents come from the tensor elements that participate in those 8 constraints.
The remaining 10 constraints must be of rank 8, thus by substituting A(1) in
the remaining 10 constraints we have 8 polynomials of degree 9 on the entries of
E1; E2; E3 that must be satis�ed in order that A(1)E

>
i +EiA

>

(1) = 0 for i = 1; 2; 3.
In this way we may solve for B(1), but this does not add new constraints because
we are using the same information used to derive A(1). The scale of the Htensor
is set because it is a slice of the quadrifocal tensor - yet the scales of A(1); B(1)

are arbitrary. Therefore, there is another constraint that is captured as follows.
Let � be some unknown scale of A(1), such that H(1) = �A(1) 
 B(1), where

 is a short-cut denoting the Htensor equation 3. This provides 27 equations.
Choose any two of them and eliminate � | the results is non-linear equaiton in
the elements of A(1) and B(1). Taken togetner, we have 9 non-linear constraints
from H(1) and since this is true for m = 2; 3 as well, we have 27 non-linear
constraints.

We have 27 constraints, and have represented A(m); B(m) by determinant
expansions of the entries of the quadrifocal tensor. Because A(m) are between
view 1 to 2, and B(m) are between view 1 to 3, and each pair A(m); B(m) are
associated with the same plane �m, m = 1; 2; 3 respectively, we have:

A(2) = �1A(1) + v0w>

�2B(2) = �3B(1) + v00w>

A(3) = �4A(1) + v0 �w>

�5B(3) = �6B(1) + v00 �w>

where w; �w is the projection onto view 1 of line intersection between �1; �2
and between �1; �3 respectively. We have 36 equations in A(m); B(m) (which
are represented in terms of determinant expansions of the quadrifocal tensor
elements), the epipoles v0; v00 (which are also represented as non-linear functions
of the quadrifocal elements | as we saw in Section 4.3) and 12 variables: 6 from



w; �w and the scales �1; :::; �6. By elimination of the 12 variables we are left with
36�12 = 24 polynomials on the elements of the quadrifocal tensor alone. Taken
together we have 27 + 24 = 51 constraints (plus the constraint arising from the
global scale factor). The two sets of constraints are algebraically independent as
they use di�erent information: the �rst set arises from the rank-2 LLC map of
the 3 � 3 slice of the Htensors which provides constraints on the homography
matrices, and the second set arises from the relationships between the individual
homography matrices.

5 Summary

We have derived an explicit form of the quadrifocal tensor (eqn. 4) analogous to
the forms of the lower order tensors of multi-view geometry, the trifocal tensor
and the fundamental matrix. The lower-order tensors have explicit forms as
an epipole-homography outer-products. The fundamental matrix is formed by a
single epipole-homography coupling F = [v0]xA, and the trifocal tensor is formed

by two pairs of epipole-homography: T jk
i = v0jbki � v00ka

j
i . We have shown that

the quadrifocal tensor is formed by three pairs of epipole-Htensor couplings:

Qijkl = v0jHikl � v00kHijl + v000lHijk;

where the Htensors are 3-view analogue to the 2-view homographymatrices (they
perform the operation of collineations between views of a 2D con�guration).

Using the explicit form of the tensor and the tool of LLC mapping for analy-
sis, the slicing breakdown is relatively simple: the 3� 3 slices of the quadrifocal
tensor form LLC mappings | in particular these are rank-2 matrices, but not
every rank-2 matrix is an LLC mapping. The 3 � 3 � 3 slices are homography
tensors (Htensors), i.e., collineations of 3-view sets | which is analogous to
the covariant 3�3 slices of the trifocal tensor which form homography matrices.
Moreover, the construction of the quadrifocal tensor from the lower-order tensors
and, vice-versa, the construction of the lower-order tensors from the quadrifo-
cal tensor as well as the camera projection matrices were presented in detail
| again, become relatively straightforward once the explicit form (eqn. 4) is
available.

Finally, the explicit form and the discovery that the 3 � 3 � 3 slices are
homography tensors has provided a simple route to deriving the 51 non-linear
constraints that all quadrifocal tensors must adhere to.
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