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Abstract

Projection matrices from projective spacesP3 to P2 have
long been used in multiple-view geometry to model the per-
spective projection created by the pin-hole camera. In this
work we introduce higher-dimensional mappingsPk �!

P2, k = 3; 4; 5; 6 for the representation of various applica-
tions in which the world we view is no longer rigid. We also
describe the multi-view constraints from these new projec-
tion matrices (wherek > 3) and methods for extracting the
(non-rigid) structure and motion for each application.

1 Introduction

The projective camera model, represented by the mapping
between projective spacesP3 ! P2, has long been used
to model the perspective projection of the pin-hole cam-
era in Structure from Motion (SFM) applications in com-
puter vision. These applications include photogrammetry,
ego-motion estimation, feature alignment for visual recog-
nition, and view-synthesis for graphics rendering. There is
a large body of literature on the projective camera model in
a multi-view setting with the resulting multi-linear tensors
as the primitive building-blocks of 3D computer vision. A
summary of the past decade of work in this area with a de-
tailed exposition of the multi-linear maps with their associ-
ated tensors (bifocal, trifocal and quadrifocal) can be found
in [8] and earlier work in [4].

The literature mentioned above is mostly relevant to a
static scene, i.e., a rigid body viewed by an uncalibrated
camera. Recently, however, a new body of work has ap-
peared [1, 12, 10, 13, 7] which assumes a configuration
of points in which every single point in the configuration
can move independently along some arbitrary trajectory
(straight line path and in some cases second-order) while
the camera is undergoing general motion (in 3D projective
space). For brevity, we will refer to such a scene asdynamic
whereas the conventional rigid body configuration would be

referred to asstatic. Dynamic configurations, for example,
include as a particular case multi-body motion, i.e., when
each body contains multiple points rigidly attached to the
same coordinate system [3, 6]

In this paper we address the geometry of multiple views
of dynamic scenes from the point of view oflifting the prob-
lem to a static scene embedded in a higher dimensional
space. In other words, we investigate camera projection ma-
trices ofPk �! P2, k = 3; 4; 5; 6 for modeling a static
body in k-dimensional projective spacePk projected onto
the image spaceP2. These projection matrices model dy-
namic situations in 2D and 3D. We will consider, for ex-
ample, three different applications ofP4 �! P2 which
include (i) multiple linearly moving coplanar points under
constant velocity, (ii) 3D points moving in constant veloc-
ity along a common single direction, and (iii) Two-body
segmentation in 3D — the resulting tensor is referred to
as the 3Dsegmentationtensor (P3 �! P2 models a 2D
segmentation problem). Projection matrixP5 �! P2 is
shown to model moving 3D points under constant veloc-
ity and coplanar trajectories (all straight line paths are on a
plane). Projection matrixP6 �! P2 is shown to model the
general constant velocity multiple linearly moving points
in 3D. The latter was derived in the past by [7] for ortho-
graphic cameras while here we take this further and address
the problem in the general perspective pin-hole (projective)
setting.

Following the introduction ofPk �! P2 and their role
in dynamic SFM, we describe the construction of tensors
from multi-view relations of each model and the process
for recovering the camera motion parameters (the physical
cameras) and the 3D structure of the scene.

2 Applications ofPk ! P2

We will describe below a number of different applications
for values ofk = 3; 4; 5; 6. These applications include
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multi-body segmentation (we call “segmentation tensors”)
and multiple linearly moving points.

2.1 Applications for P3 ! P2

The family of3� 4 matrices have been extensively studied
in the context of SFM. These matrices model the (uncal-
ibrated) pin-hole camera viewing a rigid configuration of
points, i.e., astatic 2D from 3D scenario. We present an
additional instantiation ofP3 ! P2 in the context of “2D
segmentation” defined below:

Problem Definition 1 (2D segmentation)We are given
2D general views of a planar point configuration consist-
ing of two bodies moving relatively to each other by pure
translation. Describe algebraic constraints necessary for
segmenting the two bodies from image measurements.

Clearly, 4 point matches per body (8 points in total)
uniquely determine the 2D homography between the two
views of the plane, thus a segmentation can be achieved
by searching over all quadruples of matching points un-
til a consistent set is found (i.e., the resulting homography
agrees on a sufficiently large subset of points). This ap-
proach is general and will work even when the relative mo-
tion between the two bodies is full projective.

We show that on this kind of problem, where the relative
motion between the two bodies is pure translation, we can
do better. We will first use 8 unsegmented point matches af-
ter which we will need only 3 segmented point matches (i.e.
search over triplets of matching points). The formulation of
the problem is described next.

Let A;B be the (unknown) homography matrices from
the world plane to views 1,2 respectively. Lets be a point
on the first body. The image ofs in the first view isp �= As

and in the second viewp0 �= Bs. The image of a pointr on
the second body would bep �= Ar in the first view, and

p0 �= Br +B

2
4 dxdy

0

3
5

on the second view, wheret = (dx; dy; 0) is the fixed (un-
known) translational motion between the two bodies.

To formulate this as aP3 ! P2 problem we “lift” s
andr to 3D space by definingPs

�= (s; 0)> for points and
Pr

�= (r; 1)> for point r on the second body. Define the
following projection matrices:

M1
�= [A 03�1 ]

M2
�= [B Bt ]

Therefore,M1;M2 apply to both bodies in a uniform man-
ner without the need for prior segmentation. Since we have
formulated the 2D segmentation problem in the domain of

P3 ! P2, then all the body of work on static SFM from
two views (and more than 2 views) apply here. For exam-
ple, a “fundamental” matrixF can be computed from 8 (un-
segmented) points, i.e.,p0>Fp = 0 for all matching points
regardless of which body they come from. The image ofF ,
i.e.,Fp, is a line in the second view which passes through
the two possible images of the point. The null vector ofF>

is the pointBt. Each body is represented as a plane inP3,
thus having 3 segmented points would allow us to fix the
plane and in turn segment the scene.

2.2 Applications for P4 ! P2

We introduce three different instantiations ofP4 ! P2

in the context of dynamic SFM. First application would be
three views of multiple linearly moving coplanar points un-
der constant velocity, second is constant velocity multiple
linearly moving points in 3D where all trajectories are par-
allel to each other, and third is the 3D segmentation tensor.

Problem Definition 2 (Coplanar Dynamic Scene)We
are given views of a planar configuration of points where
each point may move independently along some straight-
line path with a constant velocity motion. Describe the
algebraic constraints necessary for reconstruction of cam-
era motion (homography matrices), static versus dynamic
segmentation, and reconstruction of point velocities.

The problem above is a particular case of a more gen-
eral problem (same as above but without the constant veloc-
ity constraint) addressed by [12]. The algebraic constraints
there were in the form of a3 � 3 � 3 tensor called “Hten-
sor” which requires 26 triplets of point-matches for a solu-
tion. We will show next that the constant-velocity assump-
tion reduces the requirements considerably to 13 triplets of
point-matches, not to mention that Htensor becomes degen-
erate for constant-velocity. The key is aP4 ! P2 problem
formulation as follows.

Let Hj , j = 0; 1; 2 denote the homography from
world plane to thej’th view onto the image pointspj =
(xj ; yj ; 1)

>. Let (X;Y; 1) be the coordinates of the world
point projecting ontopj . Note that since the reconstruction
is up to a 3D Affine ambiguity (because of the constant ve-
locity assumption), then we are allowed to fix the third coor-
dinate of the world plane to 1. LetdX; dY be the direction
of the constant-velocity motion of the point(X;Y; 1)>. Let
H�

j denote the left3 � 2 sub-matrix ofHj . We have the
following relation:

pj �= Hj

0
@X

Y

1

1
A+ jHj

0
@ dX

dY

0

1
A = ~Hj

0
BBB@

X

Y

1
dX

dY

1
CCCA
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where ~Hj is a3�5matrix [Hj ; jH
�

j ]. We have therefore

a P4 ! P2 formalismpj �= ~HjP whereP 2 P4. The
geometry of such projections is described in more detail in
section 3 and as an example, the center for projection is no
longer a point but an extensor of step 2, i.e., a line.

Let sj = (1; 0;�xj) andrj = (0; 1;�yj). Let l2 be
any line such thatl>2 p2 = 0. Then,0 = s>j pj = s>j

~HjP ,

0 = l>
2
~H2P . Therefore, two points and a line provide a

constraint as follows:

det

0
BBBB@

2
66664

s>
0
~H0

r>
0
~H0

s>
1
~H1

r>
1
~H1

l>
2
~H2

1
CCCCA

3
77775 = 0

The determinant expansion provides a multilinear con-
straint with a3�3�3 tensor described next. It will be use-
ful to switch notation: letp; p0; p00 replacep0; p1; p2 respec-
tively, and likewise lets; s0; s00 andr; r0; r00 replacesj ; rj ,
j = 0; 1; 2, respectively. The multilinear constraint is ex-
pressed as follows:

pip0js00kA
k
ij = 0;

where the index notations follow the covariant-
contravariant tensorial convention, i.e.,pisi stands for
the scalar productp>s and superscripts represent points
and subscripts represent lines. The entries of the tensor
Ak

ij is a multilinear function of the entries of~Hj . The
constraint itself is a point-point-line constraint, thus a triplet
p; p0; p00 provides two linear constraintspip0js00kA

k
ij = 0

andpip0jr00kA
k
ij = 0 on the entries ofAk

ij . Therefore, 13
matching triplets are sufficient for a solution (compared to
26 triplets for the Htensor of [12]). Further details on the
properties ofAk

ij , how to extract the homographies up to
an Affine transformation, segment static from non-static
points, and how to reconstruct structure and motion are
found in section 3.

Problem Definition 3 (3D Dynamic Scene, Collinear Motion)
We are given (general) views of a 3D configuration of points
where each point may move independently along some
straight-line path with a constant velocity motion. All
the line trajectories are along the same direction (par-
allel to each other). Describe the algebraic constraints
necessary for reconstruction of camera motion (3 � 4
projection matrices), static versus dynamic segmentation,
and reconstruction of point velocities.

Let Pi = (Xi; Yi; Zi; 1)
>, i = 1; :::; n, be a con-

figuration of points in 3D (Affine space) moving along a
fixed directiondP = (dX; dY; dZ; 0)> such that at time
j = 0; :::;m the position of each point isPi + j�idP . Let

Mj denote thej’th 3� 4 camera matrix, and letpij denote
the projection ofPi on viewj:

pij �= Mj(Pi + j�idP ) = [Mj jMjdP ]

0
BBB@
Xi

Yi
Zi

1
�i

1
CCCA ;

which is again aP4 ! P2 problem formulation. Further
details can be found in the section 3.

Problem Definition 4 (3D Segmentation)We are given
three general views of a 3D point configuration consisting
of two bodies moving relatively to each other by pure trans-
lation. Describe algebraic constraints necessary for seg-
menting the two bodies from image measurements.

Clearly, one can approach this problem using trifocal
tensors. The motion of each body is captured by a trifocal
tensor which requires 7 points (or 6 points for a non-linear
solution up to a 3-fold ambiguity). Thus, a segmentation
can be achieved by searching over all 6-tuples (or 7-tuples)
of matching points until a consistent set is found. This ap-
proach is general and applies even when the relative motion
between the two bodies is full projective.

Just like in the 2D Segmentation problem, since the rel-
ative motion between the two bodies is pure translation, we
can do better. In fact we need to search over all quadruples
of points instead of 6-tuples. The key is theP4 ! P2 prob-
lem formulation which allows us to describe a multilinear
constraint common to both bodies — as described next.

Let P 2 P3 be a point in 3D. IfP is on the first body,
then a set of camera matricesM1

j , j = 0; 1; 2, provide the
image pointspj �= M1

j P . Likewise, ifP is on the second
body thenpj �=M2

j P . Because the relative motion between
the two bodies consists of pure translation the homography
Aj
1 due to the plane at infinity is the same for thej’th cam-

era matrix of both bodies:

M1

j
�= [Aj

1
v1j ] M2

j
�= [Aj

1
v2j ] :

We “lift” P ontoP4 by defining ~P as follows. IfP belongs
to the first body, then~P �= (P1 P2 P3 P4 0 )

T .
If P belongs to the second body, then~P �=
(P1 P2 P3 0 P4 )

T . The P4 ! P2 projection
matrix would then be:

Mj
�= [Aj

1v
1

j v
2

j ] :

The resulting3� 3� 3 tensor would be derived exactly
as above and would require 13 (unsegmented) points for a
linear solution. Each body is represented by an extensor
of step 4 inP4, thus 4 (segmented) point matches are re-
quired to solve for the extensor. Therefore, once the tensor
is found, 4 segmented points are required to provide a seg-
mentation of the entire point configuration.
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2.3 Applications for P5 ! P2

There are a number of instantiations ofP5 ! P2. The
first is the projection from 3D lines represented by Pl¨ucker
coordinates to 2D lines [5]:l �= ~ML where the three rows
of ~M are the result of the “meet” [2] operation of pairs of
rows of the original3 � 4 camera projection matrix, i.e.,
each row of ~M represents the line of intersection of the two
planes represented by the corresponding rows ofM .

The resulting multi-view tensors in the straight-forward
sense represent the ”trajectory triangulation” introduced in
[1] which models the application of a moving pointP along
a straight lineL such that in thej’th view we observe the
projection ofpj of P . Thus,p>j ~ML = 0 for all views ofP .
In the situation of trajectory triangulation, in each view we
have an imagePi of a point which lies on the line in 3D. So
pTi MiL �= pTi li = 0. The determinant of the6 � 6 matrix
whose rows arep>j ~M must vanish. The resulting tensor
is 36 and thus would require 728 matching points across 6
views in order to obtain a linear solution. Naturally, this
situation is unwieldy application-wise.

A more tractable tensor (in terms of size) would arise
from adding two more assumptions (i) the motion of the
point is with constant velocity, and (ii) all the line trajecto-
ries are coplanar. We have the following problem definition:

Problem Definition 5 (3D Dynamic Scene, Coplanar Motion)
We are given (general) views of a 3D configuration of points
where each point may move independently along some
straight-line path with a constant velocity motion. All
the line trajectories are coplanar. Describe the algebraic
constraints of this situation.

Following the derivation of Problem 3, thej’th projec-
tion matrix ~Mj has the form[Mj ; jMjdP1; jMjdP2] where
Mj is the corresponding3� 4 camera matrix anddP1; dP2
span the 2D plane of trajectories. The points inP5 have
the formPi = (Xi; Yi; Zi; 1; �i; �i)

>, thuspij �= ~MjPj .
The resulting tensorial relation follows from 3 views, as
follows. For a triplet of matching pointsp; p0; p00 denote
the liness = (1; 0;�x) and r = (0; 1;�y) coincident
with p and likewise the liness0; r0 and the liness00; r00.
Thus the two rowss> ~M , andr> ~M per camera (and like-
wise with ~M 0 and ~M 00) form a 6 � 6 matrix with a van-
ishing determinant. The determinant expansion provides a
multilinear constraint ofp; p0; p00 with a 3 � 3 � 3 tensor
pip0jp00kEijk = 0. Therefore 26 matching triplets across 3
views are sufficient for a solution (compared to 728 points
across 6 views).

Finally, we can make the following analogy between
P5 ! P2 and planar dynamic scenes with general motion
(no constant velocity assumption). The case of planar dy-
namic motion across three views was introduced in [12],
where the constraint is based on the fact that ifp; p0; p00 are
projections of a moving pointP along some line on a fixed

world plane, thenHp;H 0p0; p00 are collinear, whereH;H 0

are homography matrices aligning images 1,2 onto image
3 (H;H 0 are uniquely defined as a function of the position
of the three cameras and the position of the world plane on
which the pointsP reside). We make the following claim:
in the context ofP5 ! P2, there exist two such homog-
raphy matricesH;H 0 from images 1,2 onto image 3, such
that the projections of pointsP 2 P5 onto the three image
planes produces a set of 3 collinear points.

Claim 1 (Dynamic Coplanar, General Motion) Given
three viewsp; p0; p00 of a point configuration inP 2 P5,
there exist homographiesH andH 0 suchHp;H 0p0; p00 are
collinear.

Proof: The key observation is that without loss of gener-
ality we can choose a projective coordinate system (inP5)
such that the first two projection matrices are of the form
[A3�3 03�3 ], and [ 03�3 B3�3 ]. The third projection
matrix will have some general form[C3�3 D3�3 ]. Let
H = CA�1 andH 0 = DB�1 and letP = (p1; � � � ; p6).
Then,Hp �= C(p1; p2; p3)

> andH 0p0 �= D(p4; p5; p6)
>,

whereasp00 �= C(p1; p2; p3)
> +D(p4; p5; p6)

>.

2.4 Applications for P6 ! P2

In this section we consider the most general constant veloc-
ity tensor - the tensor of constant velocity in 3D, where di-
rection of motion is not restricted and the cameras are gen-
eral3� 4 projective cameras.

Problem Definition 6 (3D Dynamic Scene)We are given
(general) views of a 3D configuration of points. Each point
may move independently along some straight-line path with
a constant velocity motion. Describe the algebraic con-
straints necessary for reconstruction of the points in 3D and
their velocities.

Let Pi = (Xi; Yi; Zi; 1)
>, i = 1; :::; n, be a configura-

tion of points in 3D (Affine space) moving along a direction
dPi = (dXi; dYi; dZi; 0)

> such that at timej = 0; 1; 2; 3
the position of each point isPi + jdPi. LetMj denote the
j’th 3 � 4 camera matrix, andM�

j denote the left3 � 3
sub-matrix ofMj . The projectionpij of Pi on view j is
described bypij �= ~Mj

~Pi where ~Mj = [Mj M�
j ] and

~Pi = (Xi; Yi; Zi; 1; dXi; dYi; dZi)
>.

The resulting tensorial relation follows from 4 views,
as follows. denote bysj = (1; 0;�xj)

> and rj =
(0; 1;�yj)

> be lines coincident with the projectionspj �=
(xj ; yj ; 1)

> of a point ~P . We construct a7� 7 matrix with
a vanishing determinant such that it’s first 6 rows ares>j

~Mj

andr>j ~Mj , j = 0; 1; 2, and for the 7’th rowl000> ~M3 where
l000 is any line coincident with the projectionp3. The de-
terminant expansion is a multilinear relations between the
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image pointsp0; p1; p2, denoted now byp; p0; p00 and the
line l000 with a 34 tensorBq

ijk , i.e., pip0jp00kl000q B
q
ijk = 0.

Since we can take any linel000 coincident with the 4’th im-
age points each quadruple of matching points provides 2
linear constraints on the tensor, hence 40 matching points
across 4 views are sufficient to uniquely (up to scale) de-
termine the tensor. The process for extracting the camera
matricesMj up to a 3D affinity is described in section 3.

2.5 Summary of Applications

So far, we have discussed multi-view constraints of scenes
containing multiple linearly moving points. The constraints
were derived by “lifting” the non-rigid 3D phenomena into
a rigid configuration in a higher dimensional space ofPk.
We have presented 6 applications for various values ofk

ranging from 3 to 6. To summarize, the table below lists the
various applications ofPk ! P2 which were presented in
the preceding sections.

Pk Tensor Name Size ref.
P3 2D segmentation tensor 32 2.1
P4 2D constant velocity tensor 33 2.2
P4 3D segmentation tensor 33 2.2
P4 3D constant collinear velocity 33 2.2
P5 3D constant coplanar velocity 33 2.3
P6 3D constant velocity tensor 34 2.4

The resulting tensors for eachPk ! P2 were reasonable
in terms of size (thus practical) where the largest tensor of
size 34 requiring 40 matching quadruples across 4 views
was for the general, constant velocity, 3D dynamic motion.

3 The Geometry ofPk ! P2

We will derive the basic elements for describing and recov-
ering the projective matrices ofPk ! P2. These elements
are analogous to the role homography matrices and epipoles
play in theP3 ! P2 setting) inPk ! P2 geometry. We
will start with some general concepts that are common to
all the constructions ofPk ! P2 and then proceed to the
detailed derivation ofP4 ! P2 andP6 ! P2.

We use the termextensor(cf. [2]) to describe the linear
space spanned by a collection of points. A point will be
extensor of step 1, a line is an extensor of step 2, a plane
is an extensor of step 3, and a hyper-plane is an extensor of
stepk in Pk. InPn, the union (join) of extensors of stepk1
and stepk2, wherek1 + k2 � n + 1 is an extensor of step
k1+ k2. The intersection (meet) of extensors of stepk1 and
k2 is an extensor of stepk1 + k2 � (n + 1). Given these
definitions, the following statements immediately follow:

� Thecenter of projection(COP) of aPk ! P2 projec-
tion is an extensor of stepk � 2. Recall that the center

of projection is the null space of the3�(k+1) projec-
tion matrix, i.e., the center of projection ofP3 ! P2

is apoint, ofP4 ! P2 is a line and ofP6 ! P2 is an
extensor of step 4.

� Theline of sight(image ray) joins the COP and a point
(on the image plane). Thus, forP3 ! P2 the line
of sight is a line, forP4 ! P2 the line of sight is
plane (extensor of step 2+1), and forP6 ! P2 it is an
extensor of step 5.

� The intersection of two lines of sight (a ”triangulation”
as it is known inP3 ! P2) is the meet of two lines
of sights. Thus, inP3 ! P2 the intersection is either
a point or is not defined (2+2-4=0), i.e., when the two
lines are skew. InP4 ! P2 the intersection always
exists and is also a point (3+3-5), and inP6 ! P2 the
intersection is a plane (5+5-7). Note that simply from
these counting arguments it is clear that inP3 ! P2

two views of matching points provide constraints on
the geometry of camera positions, yet two views in
P4 ! P2 do not provide any constraints (because
image rays always intersect), thus one needs at least
3 views of matching points in order to obtain a con-
straint, and inP6 ! P2 one would need at least 4
views for a constraint (two rays intersect at a plane, a
plane and a ray intersect at a point (3 + 5 � 7), thus
three image rays always intersect).

� The “epipole” inP3 ! P2 is defined as the intersec-
tion between the line joining two COPs and an image
plane (thus, for a pair of views we have two epipoles,
one on each image plane). Or, equivalently, if~Mi; ~Mj

are the projection matrices, then~Minull( ~Mj) is the
epipole on viewi. This definition extends toP4 ! P2

where the join of the two COPs is an extensor of step
4 (each COP is an extensor of step 2) and its meet with
an image plane is an extensor of step4 + 3 � 5, i.e.,
is a line. Thus, the epipoles ofP4 ! P2 are lines
on their respective image planes. This definition, how-
ever, does not extend toP6 ! P2 where the join of
two COPs (4+4) fills the entire spaceP6. We define
instead a “joint epipole”, to be described later.

3.1 The Geometry ofP4 ! P2

Recall from the preceding section that one needs at least
three views of matching points in order to obtain a con-
straint (because two image rays always intersect inP4 !

P2). We also noted in Problem 2 that the multi-linear con-
straint across three views takes the form of a3 � 3 � 3
tensorAk

ij which is contracted by two points and a line.
In other words, letp; p0; p00 be three matching points along
views 1,2,3 and lets00; r00 be any two lines coincident with
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p00. The multilinear constraint is expressed as follows:

pip0js00kA
k
ij = 0;

where the index notations follow the covariant-
contravariant tensorial convention, i.e.,pisi stands for
the scalar productp>s and superscripts represent points
and subscripts represent lines. The entries of the tensor
Ak

ij is a multilinear function of the entries of the three

projection matrices~M; ~M 0 and ~M 00. The constraint itself is
a point-point-line constraint, thus a tripletp; p0; p00 provides
two linear constraintspip0js00kA

k
ij = 0 andpip0jr00kA

k
ij = 0

on the entries ofAk
ij . Therefore, 13 matching triplets are

sufficient for a (linear) solution. We will assume from now
on that the tensorAk

ij is given (i.e., recovered from image
measurements) and we wish to recover the3� 5 projection
matrices ~M; ~M 0; ~M 00.

We begin by deriving certain useful properties of the ten-
sor slices from which we could then recover the basic el-
ements (epipoles, homography matrices) of the projection
elements.

Claim 2 (point transfer)

pip0jAk
ij
�= p00k (1)

Proof: Follows from the fact thatpip0js00kA
k
ij = 0

for any line s00 coincident withp00. From the covariant-
contravariant structure of the tensor,pip0jAk

ij is a point
(contravariant vector), let this point be denoted byqk.
Hence,qks00k = 0 for all lines s00 that satisfys00kp

00k = 0.
Thusq andp00 are the same.

Note that the rays associated withp; p0 are extensors of
step 3, i.e., a plane. The intersection of those rays is a point
(as explained in the preceding section), and thuspip0jAk

ij is
the back-projection onto view 3 (projection of a point is a
point). Similarly, letl00 be some line in image 3 (extensor
of step 2), thus the image ray associated with a pointp0 in
image 2 and the extensor of step 4 associated with the join
of l00 and the COP of camera 3 meet at a line (3+4�5 = 2)
and let the projection of this line onto image 1 be denoted
by l. The relationship betweenp0; l00; l is captured by the
tensor:p0j l00kA

k
ij
�= li.

Claim 3 (homography slice) Let Æj be any contravariant
vector. The3�3 matrixÆjAk

ij is a homography matrix (2D
collineation) from views 1 to 3 induced by the plane defined
by the join of the COP of the second projection matrix and
the image pointÆ in view 2 (i.e., the image ray correspond-
ing to Æ).

Proof: Consider(ÆjAk
ij)p

i = qk, from the point transfer
equation 1 we have thatq is the projection onto view 3 of
the intersections of the two planes corresponding to the line

of sightp and line of sightÆ (recall that each line of sight is
a plane inP4 and that two planes generally intersect at as
point). Let�Æ denote the plane associated with the line of
sightÆ. If we fix Æ and vary the pointp over image 1, then
the resulting pointsq are projection of points on the plane
�Æ onto image 3. Thus the matrixÆjAk

ij is projective trans-
formation from image 1 to image 3 induced by the plane�Æ .

Note thatÆjAk
ij is a linear combination of the three slices

Ak
i1;A

k
i2 andAk

i3. Thus, in particular a slice (through the
“j” index) produces a homography matrix. Likewise,ÆiAk

ij

is a homography matrix from image 2 to image 3 induced
by the plane associates with the image ray of the pointÆ in
image 1.

Now that we have the means to generate homography
matrices from the tensor, we are ready to describe the recov-
ery of the epipoles. Let the (unknown) projection matrices
be denoted by~M1; ~M2 and ~M3. Let eij = ~Minull( ~Mj) be
the epipole (a line) as the projection of COPj onto viewi.

Claim 4 (epipoles) LetHij ; Gij be two (full-rank) homog-
raphy matrices from viewi to viewj induced by two distinct
(but arbitrary) planes. The epipoleeji is one of the gener-
alized eigenvectors ofHT

ij ; G
T
ij , i.e., satisfies the equation:

(H>

ij + �G>ij )eji = 0:

Proof: LetHij be any (full-rank) homography matrix from
view i to view j. Thus,H�T

ij maps lines (dual space) from
view i to view j. Because epipoles are lines inP4 ! P2

geometry, we haveH�T
ij eij �= eji and converselyH>

ij eji
�=

eij . Thus, given two such homography matrices, there ex-
ists a scalar� such that(H>

ij + �G>ij)eji = 0.
Note that from slices ofAk

ij we can obtain three lin-
early independent homography matrices, thus we can find
a unique solution toeji (each pair of homography matrices
produces three solutions). Now that we have the means to
recover epipoles and homography matrices we can proceed
to the central result which is the reconstruction theorem:

Theorem 1 (reconstruction) There exists a projective
frame for which the first projection matrix takes the form
[I3�3; 03�2] and all other projection matrices (of views
2,3,...) take the form:

~Mj = [Hj ; vj ; v
0

j ]

whereHj is a homography matrix from view 1 toj induced
by a fixed (but arbitrary) plane�, andvj ; v0j are two points
on the epipole (a line)ej1 on viewj (projections of two fixed
points in the COP of camera 1 onto viewj).

Proof: Consider two views with projection matrices~M1

and ~M2, a pointP in space and matching image points

6



p; p0 satisfyingp �= ~M1P andp0 �= ~M2P . Let W be a
(full-rank) 5 � 5 matrix representing some arbitrary pro-
jective change of coordinates, thenp �= ~M1WW�1P and
p0 �= ~M2WW�1P , thus we are allowed to chooseW at
will because reconstruction is only up to a projectivity in
P4. Let C;C 0 be two points spanning the COP of cam-
era 1, i.e., two points spanning the null space of~M1, thus
~M1C = 0 and ~M1C

0 = 0. Let W = [U;C;C 0] for some
5 � 3 matrix U chosen such that~M1U = I3�3. Clearly,
~M1W = [I3�3; 03�2].

Let U be chosen to consist of the first 3 columns of the
matrix:

U =

�
~M1

C�

��1
1�3

where the subscript 1–3 signals that we are taking only
columns 1–3 from the5 � 5 matrix, andC� is the2 � 5
matrix defining the plane�, i.e.,C�P = 0 for all P 2 �.
Recall that a plane inP4 is the intersection (meet) of two
hyperplanes (extensor of step 4) because4+4�5 = 3, thus
a plane is defined by a2 � 5 matrix whose rows represent
the hyperplanes. We have that~M1U = I3�3. Consider

~M2W = ~M2[U;C;C
0] = [ ~M2U; v; v

0]

wherev = ~M2C andv0 = ~M2C
0 are two points on the

epipolee21. Recall thate21 = ~M2null( ~M1) andnull( ~M1)
is spanned byC;C 0. What is left to show is that~M2U is
a homography matrixH� from view 1 to 2 induced by the
plane�. This is shown next.

We have that

�
~M1

C�

�
P =

�
~M1P

C�P

�
�=

0
@ p

0
0

1
A 8P 2 �

From which we obtain:

~M2Up = ~M2

�
~M1

C�

��10@ p

0
0

1
A = ~M2P �= p0

Thus, we have shown that~M2Up �= p0 for all matching
points arising from pointsP 2 �.

Taken together, by using the homography slices of the
tensor we can recover~M2. The third projection matrix~M3

can be recovered (linearly) from the tensor and~M1; ~M2 be-
cause the tensor is a multi-linear form whose entries are
multi-linear functions of the three projection matrices. Fi-
nally, it is not difficult to see that the family of homography
matrices (as a function of the position of the plane�) has
the general form with 7 degrees of freedom:

H�1 = �H�2 + vnT + v0n0T ;

where�; n; n0 are general.

3.2 The Geometry ofP6 ! P2

In P6 ! P2 three image rays always intersect. This is be-
cause two extensors of step5 in P6 intersect in an extensor
of step of at least5 + 5 � 7 = 3, and an extensor of step
3 intersects an extensor of step 5 in a point. Thus we need
more then three views of matching points in order to obtain
a constraint. This agrees with the result we have noted in
Problem 6 — a multi-linear constraint across four images
Bl
ijk which is contracted by three points and a line.
Let p; p0; p00; p000 be four matching points along views

1,2,3,4 and lets000; r000 be any two lines coincident withp000.
The multilinear constraint is expressed as follows:

pip0jp00ks000l B
l
ijk = 0;

The entries of the tensorBl
ijk are multilinear functions of

the entries of the four projection matrices~M1; ~M2; ~M3 and
~M4. The constraint itself is a point-point-point-line con-

straint, thus a tripletp; p0; p00; p000 provides two linear con-
straintspip0jp00ks000l B

l
ijk = 0; andpip0jp00kr000l B

l
ijk = 0; on

the entries ofBl
ijk. Therefore, 40 matching triplets are suf-

ficient for a (linear) solution. We will assume from now
on that the tensorBl

ijk was already recovered from image
measurements and we wish to recover the3 � 7 projection
matrices ~M1; ~M2; ~M3; ~M4. As in the case ofP4 ! P2, we
will make use of tensor slices while recovering some ba-
sic elements of the projective settings. Note that for some
of those elements, like homography matrices from view 2
to view 3, we will resort to permuted tensors, i.e., where
the matches are for example point-point-line-point (Bk

ijl).
These permuted tensors can be recovered from exactly the
same image measurements.

Claim 5 (point transfer)

pip0jp00kBl
ijk

�= p000l (2)

Proof: Follows from the fact thatpip0jp00ks000l B
l
ijk = 0

for any lines000 coincident withp000. From the covariant-
contravariant structure of the tensor,pip0jp00kBl

ijk is a point
(contravariant vector), let this point be denoted byql.
Hence,qls000l = 0 for all liness000 that satisfys000l p

000l = 0.
Thusq andp000 are the same point.

The rays associated withp; p0; p00 are extensors of step
5, which as explained in the preceding section intersect at
a point, and thuspip0jp00kBl

ijk is the back-projection onto
view 4. Similarly, let l000 be some line in image 4. The
image rays associated with a pointp0; p00 in images 2 and 3
and the extensor of step 6 associated with the join ofl000 and
the COP of camera 4 meet at a line ((5+5�7)+6�7 = 2)
and let the projection of this line onto image 1 be denoted
by l. The relationship betweenp0; p00; l000; l is captured by
the tensor:p0jp00kl000l B

l
ijk

�= li.
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Claim 6 (homography slice) Let 
j and Æk be any con-
travariant vectors. The3� 3 matrix
jÆkBl

ijk is a homog-
raphy matrix (2D collineation) from views 1 to 4 induced by
the plane defined by the intersection of image rays of
 and
Æ.

Proof: Consider(
jÆkBl
ijk)p

i = ql, from the point trans-
fer equation 2 we have thatq is the projection onto view 4
of the intersections of the three rays of sight corresponding
to p; 
; Æ. (recall that each ray of sight is an extensor of step
5 in P6 and that three such extensors generally intersect at
a point). Let�
Æ denote the plane associated with the in-
tersection of the rays of sight of
 andÆ. If we fix 
 andÆ
and vary the pointp over image 1, then the resulting points
q are projection of points on the plane�
Æ onto image 3.
Thus the matrix
jÆkBl

ijk is projective transformation from
image 1 to image 4 induced by the plane�
Æ.

Likewise,
iÆjBl
ijk is a homography matrix from image

3 to image 4, and
iÆkBl
ijk is an homography matrix from

image 2 to image 4.
The next item on the list of elementary building blocks

for reconstruction of projection matrices are the epipoles.
However, there are no epipoles inP6 ! P2 because the
join of two COPs (each is a step 4 extensor) fills up the
entire spaceP6. We define instead the notion of “Joint
Epipole” as follows:

Definition 1 (Joint Epipoles) Let Cij be the intersection
(meet) of the centers of two projection matrices~Mi and ~Mj :

Cij
�= null( ~Mi) ^ null( ~Mj):

Cij is a point because4+4�7 = 1. Letckij be the projection

ofCij onto thek’th view, i.e.,ckij �= ~MkCij . We refer tockij
the joint epipole in imagek of the COPs of the projection
matrices ~Mi; ~Mj .

Just as with epipoles inP3 ! P2, the joint epipoles are
mapped to each other via homography matrices (which in
turn are obtained from the homography slices of the tensor).

Claim 7 (Joint Epipoles) Let Hil = 
jÆkBl
ijk be a ho-

mography matrix from view1 to view4, obtained by slicing
the tensorBl

ijk , then:Hc123
�= c423

Proof: The homography matrix
jÆkBl
ijk from view 1 to

view 4 is induced by the plane defined by the intersection
of the rays of sights associated with the points
 andÆ (see
above). Each ray of sight (extensor of step 5) contains its
projection center, hence the plane of intersection of two im-
age rays must contain the pointC23 (which is the intersec-
tion of both projection centers of views 2,3) — regardless
of the choice of
; Æ. So any homography of this formH
would satisfyHc3

12
�= c4

12
.

From the result above, and similarly toP4 ! P2, it
is clear the joint epipoles are generalized eigenvectors of
homography matrices obtained by slicing the tensor.

Now that we have the means to recover epipoles and ho-
mography matrices we can proceed to the (first) reconstruc-
tion theorem.

Theorem 2 (Reconstruction I) There exists a projective
frame for which the first projection matrix takes the form
[I3�3; I3�3; 03�1] and all other projection matrices (of
views 2,3,4,...) take the form:

~Mj = [Hj ;Gj ; vj ]

whereHj is a homography matrix from view 1 toj induced
by a fixed (but arbitrary) plane�, Gj is a homography ma-
trix from view 1 toj induced by another fixed arbitrary
plane� and vj is the projection of a fixed arbitrary point
contained in the first camera center to imagej.

Proof: Reconstruction inP6 is given up to a7� 7 projec-
tive transformationW . LetC be a point inside the COP of
camera 1, i.e., any point which satisfies~M1C = 0. Let
W = [U; V; C] for some5 � 3 matricesU andV cho-
sen such that~M1U = ~M1V = I3�3. Clearly, ~M1W =
[I3�3; I3�3; 03�1].

Let U be chosen to consist of the first 3 columns of the
matrix:

U =

�
~M1

C�

��1
1�3

where the subscript 1–3 signals that we are taking only
columns 1–3 from the inverted7� 7 matrix, andC� is the
4 � 7 matrix defining the plane�, i.e.,C�P = 0 for all
P 2 �. Recall that a plane inP6 is dual to an extensor
of step four and thus is defined by the intersection (meet)
of four hyperplanes, i.e a plane is defined by a4 � 7 ma-
trix whose rows represent these hyperplanes. We have that
~M1U = I3�3. Likewise, let

V =

�
~M1

C�

��1
1�3

whereC� is the4�7 matrix representing the plane�. Con-
sider

~M2W = ~M2[U; V; C] = [ ~M2U;M2V; v]

wherev = ~M2C. What is left to show is that~M2U is a
homography matrixH� from view 1 to 2 induced by the
plane�, and that ~M2V is a homography matrixH� from
view 1 to 2 induced by the plane�. The proof of this is very
similar to what was done in the proof of Theorem 1.

This reconstruction theorem is not ready yet for practi-
cal use because one needs homographies of two planes from
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view 1 and view 2, and homographies for the same planes
from view 1 to view 3. One also needs the projection to
views 2 and 3 of the same pointC in the first camera cen-
ter. (The fourth camera can then be recovered linearly from
the tensorBl

ijk - which is multilinear in the entries of the
camera matrices).

Although it is fairly easy to find homography matrices
between any two views (simply take slices of the tensors), it
is difficult finding homographies of some fixed plane across
three views. We will show later that it is possible to se-
lect a canonical coordinate system which allows choosing
homography matrices between two views only (instead of
across three views). As a preparation for this, we define
next the “correlation slices” of the tensor:

Claim 8 (correlation slices) 
iÆlBl
ijk is a mapping (corre-

lation matrix) from points in the second view to a line in the
third view (or from points in the third view to lines in the
second view). This mapping is associated with the extensor
of step 4 defined by the intersection of an extensor of step
5 with an extensor of step 6 (5 + 6 � 7 = 4). The step 5
extensor is the ray of sight associated with
 (in view 1).
The step 6 extensor is the join of the line in the 4’th image
planeÆ and the projection center (extensor of step 4) of the
forth camera.

Proof: 
ipjqkÆlB
l
ijk = 0 iff the lines of sight associ-

ated with
; p; q and the step 6 extensor associated withÆ

all intersect in at least one point. Fixing
 andÆ we get
a fixed extensor of step5 + 6 � 7 = 4. The equation
pjqk(
iÆlB

l
ijk) = 0 implies that the lines of sight associ-

ated withpj andqk intersect that extensor at a single point.
The line of sight associated withpj intersects that fixed ex-
tensor in an extensor of step4+5�7 = 2 — which is a line.
Every pointqk on the projection of that line onto view three
has to satisfypjqk(
iÆlBl

ijk) = 0, hence the projection of
this line ispj(
iÆlBl

ijk).
This correlation matrix can be seen as the “Fundamental

matrix” of the extensor of step four space, where the effec-
tive “camera centers” are the intersection of the COP of the
P6 ! P2 projection matrices with that space.

Using the correlation slices introduced above we wish to
describe a homography matrixH from view 1 onto view 3
associated with a plane which iscontainedin the second
view projection center (which is a step 4 extensor). Let
Q1 = pjslB

l
ijk andQ2 = qjslB

l
ijk be the correlation matri-

ces described above — each is associated with an extensor
of step 4. Generally, two extensors of step 4 intersect (meet)
at a point (4 + 4 � 7 = 1), however in this particular case
since the image lines is shared among the two extensors,
their meet is a step 3 extensor (a plane). To see why this is
so, letQ1 be the step 4 extensor associated with the correla-
tion matrixQ1, and letQ2 be the step 4 extensor associated

with the correlation matrixQ2. Let p̂; q̂; ŝ be the embedded
image points and lines inP6. We have:

Q1 = (c2 _ p̂) ^ (c4 _ ŝ)

Q1 = (c2 _ q̂) ^ (c4 _ ŝ)

wherec2; c4 are the step 4 extensors representing the pro-
jection centers of view 2,4 respectively; and “_” denotes
the join operation and “̂” denotes the intersection (meet)
operation. Because the step 6 extensorc4 _ ŝ is shared, and
also noting that(c2 _ p̂) ^ (c2 _ q̂) = c2 becausep; q are
points in view 2, then

Q1 ^Q2 = (c2 _ p̂) ^ (c2 _ q̂) ^ (c4 _ ŝ)

= c2 ^ (c4 _ ŝ)

Therefore,Q1^Q2 is the intersection of a step 4 and step 6
extensors, which is a plane (4+6� 7 = 3) contained in the
center of projectionc2 of view 2. SinceQ1; Q2 are the map-
pings from view 1 to view 3 induced by the step 4 extensors
Q1;Q2 respectively1, the mappingQ1p�Q2p from view 1
to view 3 is a homography induced by the planeQ1 ^ Q2.
The homography matrixH can be recovered directly (lin-
early) from the matricesQ1; Q2 by noting thatQT

1
H and

QT
2
H are anti-symmetrical — thus providing 6 linear con-

straints each forH .
Now that we have a tool for the recovery of homography

matrices which lie inside projection matrix centers we can
proceed to the second (simplified) reconstruction theorem:

Theorem 3 (reconstruction II) There exists a projective
frame for which the first and second projection matrices
take the form

~M1
�= [ I3�3 03�3 03�1 ]

~M2
�= [ 03�3 I3�3 03�1 ]

and all other projection matrices (of views 3,4,...) take the
form:

~Mj
�= [H1j H2j c

j
12

]

whereH1j is a homography matrix from view 1 to view j in-
duced by a plane� which is contained in the second projec-
tion matrix center,H2j is a homography matrix from view
2 to view j induced by a plane� which is contained in the
first projection matrix center, andcj

12
is the joint epipole,

i.e., the projection onto view j of the intersection point of
the projection centers of views 1,2.

Proof: Consider three views with projection matrices~Mj ,
j = 1; 2; 3, a pointP 2 P6 in space and matching im-
age pointsp; p0; p00 satisfyingp �= ~M1P; p

0 �= ~M2P and
1Such a mapping must be a correlation by definition because the image

ray of view 1 intersects the step 4 extensor at a line (5+4�7 = 2) whose
projection onto view 3 is a line.
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p00 �= ~M3P . Since reconstruction is determined up to a
projectivity, letW be a (full-rank)7 � 7 matrix represent-
ing some arbitrary projective change of coordinates (we are
allowed to chooseW at will). Let C be the point of in-
tersection of the projection centers of views 1,2 (each is
a step 4 extensor, thus they intersect at a point because
4 + 4 � 7 = 1), thus ~M1C = 0 and ~M2C = 0 and
~M3C = c3

12
(the joint epipole). Let� be some plane con-

tained innull( ~M2) and let� be some plane contained in
null( ~M1). Let C� be the4 � 7 matrix defining the plane
�, i.e.,C�P = 0 for all P 2 �; and letC� be the4 � 7
matrix defining the plane�. LetW = [U; V; C] whereU; V
are7� 3 matrices defined as follows.

U =

�
~M1

C�

��1
1�3

V =

�
~M2

C�

��1
1�3

where the subscript 1–3 signals that we are taking only
columns 1–3 from the inverted7 � 7 matrix. We have that
~M1U = I3�3 and ~M2V = I . Moreover, the columns ofU

consist of points on� and since� is contained innull( ~M2)
we have that~M2U = 0; and likewise ~M1V = 0. To see
why this is so, recall that

�
~M1

C�

�
P =

�
~M1P

C�P

�
�=

0
@ p

0
0

1
A 8P 2 �

from which we obtain thatUp = P , i.e., U maps the
first image plane onto the plane�. Thus, in particular the
columns ofU are points on�. Taken together, we have that
for these choices of planes� and�, the first two projection
matrices are:

~M1W �= [ I3�3 03�3 03�1 ]

~M2W �= [ 03�3 I3�3 03�1 ]

We show next that~M3U is a homography matrix from view
1 to 3 induced by�. Recall thatUp is a pointP 2 �,
thus ~M3Up = ~M3P �= p00 wherep; p00 are projections of a
point in�. Similarly,V p0 is a pointP 2 �, thus ~M3V p

0 =
~M3P �= p00 wherep0; p00 are projections of a point on�.

Taken together, we have

~M3W �= [H13 H23 c3
12

] :

Putting together the correlation slices and the reconstruc-
tion theorem above, we see that for reconstruction of pro-
jection matrices all we need to do is to choose 2 correlation
slices from whichH13 is recovered (linearly), and choose
another pair of correlation slices from whichH23 is recov-
ered. Then, by using homography slices we can recover the
joint epipolec312 and we have thus created~M3. The fourth
projection matrix ~M4 can be recovered (linearly) from the
tensor and the three projection matrices.

3.3 Reconstruction of theP3 ! P2 Camera
Matrices

Given that we have recovered the projection matrices~Hj ,
j = 1; 2; 3, of P4 ! P2, and the projection matrices~Mj ,
j = 1; 2; 3; 4 of P6 ! P2 we wish to recover the original
3 � 4 camera matrices up to a 3D Affine ambiguity. The
special structure of the matrices~H and ~M — they have
repeated scaled columns — provides us with linear con-
straints on a the coordinate change inPk ! P2 which will
transform the recovered matrices~H and ~M to the admissi-
ble ones we are looking for.

In the case ofP4 ! P2, since the third column of~Hj is
unconstrained, the family of collineations ofP4 ! P2 that
leave the structural form intact is organized as follows:

0
BBB@
a b e 0 0
c d f 0 0
0 0 g 0 0
0 0 h a b

0 0 i c d

1
CCCA

Note that we have 9 degrees of freedom up to scale, which
means we have 8 free parameters — 2 more than what is al-
lowed for a 2D affinity. The extra degrees of freedom could
be compensated for by applying another transformation of
the form: 0

BBB@
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 ĥ 1 0
0 0 î 0 1

1
CCCA :

The unknown variableŝh andî can be solved using a single
static point, as follows. LetbHj be the projection matrices
up to the unknown correction̂h andî. LetHj to be the left
3� 3 part of bHj . Letp1; p2 be a matching pair in views 1,2
of a static point. Then,

p2 �= H2

2
4 1 0 ĥ

0 1 î

0 0 1

3
5H�1

1
p1

This gives us two linear equations for solvingĥ andî. The
resulting homography matrices (up to a 2D Affine ambigu-
ity) are:

H1; H2

2
4 1 0 ĥ

0 1 î

0 0 1

3
5 ; H3

2
4 1 0 2ĥ
0 1 2î
0 0 1

3
5

In the case ofP6 ! P2, the reconstruction of~Mj satis-
fying the structural constraints up to a 3D Affine ambiguity
proceeds along similar lines. The ambiguity matrix is of
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this form: 0
BBBB@

a b c j 0 0 0

d e f k 0 0 0

g h i l 0 0 0

0 0 0 m 0 0 0

0 0 0 n a b c

0 0 0 o d e f

0 0 0 p g h i

1
CCCCA

This kind of matrices is an Affine transformation on the
left 3 � 4 part of the projection matrix fromP6 to P2, but
it is a different Affine transformation for every view.

Here again we can take the first recovered camera ma-
trix to be the left part of the transformed projective camera
matrix. We have to find only some transformation of the
form: 0

BBBB@

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 n̂ 1 0 0

0 0 0 ô 0 1 0

0 0 0 p̂ 0 0 1

1
CCCCA

Assuming that we know one static point, we can extract
eightlinear constraints on the unknownsn̂; ô; p̂ of the form:

det

0
BBBBBBBBBBBBBB@

2
666666666666664

lT
0
R0

lT
1
R1

2
4 1 0 0 n̂

0 1 0 ô

0 0 1 p̂

0 0 0 1

3
5

lT
2
R2

2
4 1 0 0 2n̂

0 1 0 2ô

0 0 1 2p̂

0 0 0 1

3
5

lT
3
R3

2
4 1 0 0 3n̂

0 1 0 3ô

0 0 1 3p̂

0 0 0 1

3
5

3
777777777777775

1
CCCCCCCCCCCCCCA

= 0

WhereRi are the left parts of the transformed projective
camera matrices, andli are lines through the tracked static
point. The final cameras would be:

R0; R1

2
4 1 0 0 n̂

0 1 0 ô

0 0 1 p̂

0 0 0 1

3
5 ; R2

2
4 1 0 0 2n̂

0 1 0 2ô

0 0 1 2p̂

0 0 0 1

3
5 ; R3

2
4 1 0 0 3n̂

0 1 0 3ô

0 0 1 3p̂

0 0 0 1

3
5

3.4 Reconstruction of Segmentation Tensors

The stage of the reconstruction of the underlying structure is
(as noted above) application dependent. For reconstruction
in the case of the segmentation tensor, we do not have any
special information about structure of the projection matri-
ces. Here we may use some known points on one object in
order to reconstruct in 2D/3D.

In the planar segmentation tensor case we know that the
space inP3 spanned by points on one object is a space of
rank 3. From 3 point matches in two images (or even point-
line matches), we can reconstruct 3 points in that rank 3
subspace ofP3. Note that using theP4 to P2 projection
matrices we’ve recovered earlier, we do not need a forth ba-
sis point in order to determine the projection of each point

in this space to the images. Hence we compute the homog-
raphy of the first object is achieved. Now that we know the
homographies of the first object, segmentation is possible,
so we can determine the homography of the second object
from its points. The next stage is to find a transformation
that will make the first 2 columns of the homographies iden-
tical. The resulting solution would be the real homographies
up to an Affine transformation.

The segmentation tensor for the 3D case is similar. Here
we are going to have to use4 point matches from one object
in order to recover the set of cameras for the first object over
time. These cameras would be defined up to a projective
transformation. Segmentation would now give us points on
the second object, from which recovery of the motion of the
second camera is possible. Aligning these sets of cameras
would give us a common Affine reconstruction. Note that
both sets of cameras agree on the homography at infinity.
Thus the recovery of that homography can be achieved for
example by intersecting epipolar lines.

The case of the constant velocity in 3D going in one di-
rection is similar to the case of the 3D segmentation tensor.
Note that recovery of the image projections of the common
direction in 3D can be achieved, although we can not use
this information as one of our4 points. This is because this
point has more then one reconstruction inP4 from it’s point
matches (as a static point, or as pure motion, or any combi-
nation of the two).

4 Experiments

We describe an experiment for one of the applications in this
paper, the 3D segmentation tensor (Problem 4). Recall that
we observe views of a scene containing two bodies moving
in relative translation to one another. TheP4 ! P2 prob-
lem formulation requires a matching set of at least 13 points
across 3 views where the points come from both bodies in
an unsegmented fashion. The triplets of matching points
are used to construct a3 � 3 � 3 tensor such that with the
segmentation of 4 points on one of the bodies one can then
segment the entire scene.

The scene in the experiment, displayed in Fig. 1, con-
sists of a rigid background (first body) and a foreground
consisting of a number of vehicles moving cohesively to-
gether (second body). Image points were identified and
tracked using openCV’s [11] KLT [9] tracker. Fig. 1(a-c)
shows the three views , Fig. 1d shows the points which
were tracked along the sequence and used for recovery of
the tensor. Fig. 1e shows the 4 labeled points (on the back-
ground body) used to segment the entire scene, and Fig. 1f
shows the segmentations result — all point on the back-
ground body were correctly classified as such.
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(a) (b)

(c) (d)

(e) (f)

Figure 1:3D segmentation tensor experiment. See text for details.
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5 Summary

This paper has two parts. In Section 2 we have shown that
multi-view constraints of scenes containing multiple lin-
early moving points can be derived by “lifting” the non-
rigid 3D phenomena into a rigid configuration in a higher
dimensional space ofPk. And to that end we have pre-
sented 6 applications for various values ofk ranging from 3
to 6.

In the second part of the paper (Section 3) we worked
out the details of describing and recovering3� (k+1) pro-
jection matrices (fork = 4; 6) from the multi-view tensors’
slices, and the details of recovering the3�4 original camera
matrices from the projection matrices.
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