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Abstract referred to astatic Dynamic configurations, for example,
include as a particular case multi-body motion, i.e., when
each body contains multiple points rigidly attached to the
same coordinate system [3, 6]
In this paper we address the geometry of multiple views

of dynamic scenes from the point of viewldfing the prob-
lem to a static scene embedded in a higher dimensional
space. In other words, we investigate camera projection ma-
trices of P* — P2, k = 3,4, 5,6 for modeling a static
body in k-dimensional projective spa@ projected onto
the image spac®?. These projection matrices model dy-
namic situations in 2D and 3D. We will consider, for ex-
ample, three different applications #* — P2 which
include (i) multiple linearly moving coplanar points under
onstant velocity, (i) 3D points moving in constant veloc-
ty along a common single direction, and (iii) Two-body
segmentation in 3D — the resulting tensor is referred to
as the 3Dsegmentatioriensor P? — P2 models a 2D
segmentation problem). Projection matfiX — P2 is
shown to model moving 3D points under constant veloc-

Projection matrices from projective spac®s to P? have
long been used in multiple-view geometry to model the per-
spective projection created by the pin-hole camera. In this
work we introduce higher-dimensional mappirgé —

P2, k = 3,4,5, 6 for the representation of various applica-
tions in which the world we view is no longer rigid. We also
describe the multi-view constraints from these new projec-
tion matrices (wheré& > 3) and methods for extracting the
(non-rigid) structure and motion for each application.

1 Introduction

The projective camera model, represented by the mappin
between projective spacé®® — P2, has long been used

to model the perspective projection of the pin-hole cam-
era in Structure from Motion (SFM) applications in com-

puter vision. These applications include photogrammetry,
ego-motion estimation, feature alignment for visual recog- : ) . . :
nition, and view-synthesis for graphics rendering. There is ity and coplanar trajectories (all straight line paths are on a

o 6 > -
a large body of literature on the projective camera model in plane). Projection matn_?@ — P |s_shown to m_odel th_e
a multi-view setting with the resulting multi-linear tensors general constant velocity multiple linearly moving points

as the primitive building-blocks of 3D computer vision. A n 3D'. The latter was derived in the pgst by [7] for ortho-
summary of the past decade of work in this area with a de_graph|c cameras while here we take this further and address
tailed exposition of the multi-linear maps with their associ- the problem in the general perspective pin-hole (projective)

ated tensors (bifocal, trifocal and quadrifocal) can be found setting. ) ) ) . ) )
in [8] and earlier work in [4]. Following the introduction ofP* — P< and their role

The literature mentioned above is mostly relevant to a iN dynamic SFM, we describe the construction of tensors
static scene, i.e., a rigid body viewed by an uncalibrated from multi-view relations of each model and the process
camera. Recently, however, a new body of work has ap_for recovering the camera motion parameters (the physical

peared [1, 12, 10, 13, 7] which assumes a configurationc@meras) and the 3D structure of the scene.

of points in which every single point in the configuration

can move independently along some arbitrary trajectory . .

(straight line path and in some cases second-order) while2 Appllcatlons of Pk — P2

the camera is undergoing general motion (in 3D projective

space). For brevity, we will refer to such a scendwasamic We will describe below a number of different applications
whereas the conventional rigid body configuration would be for values ofk = 3,4,5,6. These applications include



multi-body segmentation (we call “segmentation tensors”) P3 — P2, then all the body of work on static SFM from

and multiple linearly moving points. two views (and more than 2 views) apply here. For exam-
ple, a “fundamental” matri¥’ can be computed from 8 (un-
2.1 Applications for P3 _y P2 segmented) points, i.e'" Fip = 0 for all matching points

regardless of which body they come from. The imagé&’of
The family of3 x 4 matrices have been extensively studied i.e., Fp, is a line in the second view which passes through
in the context of SFM. These matrices model the (uncal- the two possible images of the point. The null vectoFof
ibrated) pin-hole camera viewing a rigid configuration of is the pointBt. Each body is represented as a plan®ih
points, i.e., astatic 2D from 3D scenario. We present an thus having 3 segmented points would allow us to fix the
additional instantiation 0P — P? in the context of 2D plane and in turn segment the scene.
segmentation” defined below:

- . . i ~ati 4 2
Problem Definition 1 (2D segmentation)We are given 2.2 Applications for P* — P
2D general views of a planar point configuration consist- \va introduce three different instantiations B — P2

ing of two bodies moving relatively to each other by pure i, yhe context of dynamic SFM. First application would be
translation. Describe algebraic constraints necessary for three views of multiple linearly moving coplanar points un-

segmenting the two bodies from image measurements.  yer constant velocity, second is constant velocity multiple

Clearly, 4 point matches per body (8 points in total) linearly moving points in :_BD yvhere all trajectorie_s are par-
uniquely determine the 2D homography between the two allel to each other, and third is the 3D segmentation tensor.
views of the plane, thus a segmentation can be achieve
by searching over all quadruples of matching points un-
til a consistent set is found (i.e., the resulting homography
agrees on a sufficiently large subset of points). This ap-
proach is general and will work even when the relative mo-
tion between the two bodies is full projective.

We show that on this kind of problem, where the relative
motion between the two bodies is pure translation, we can
do better. We will first use 8 unsegmented point matches af-  The problem above is a particular case of a more gen-
ter which we will need only 3 segmented point matches (i.e. eral problem (same as above but without the constant veloc-
search over triplets of matching points). The formulation of ity constraint) addressed by [12]. The algebraic constraints
the problem is described next. there were in the form of & x 3 x 3 tensor called “Hten-

Let A, B be the (unknown) homography matrices from sor” which requires 26 triplets of point-matches for a solu-
the world plane to views 1,2 respectively. Lebe a point  tion. We will show next that the constant-velocity assump-

c13roblem Definition 2 (Coplanar Dynamic Scene)We

are given views of a planar configuration of points where
each point may move independently along some straight-
line path with a constant velocity motion. Describe the
algebraic constraints necessary for reconstruction of cam-
era motion (homography matrices), static versus dynamic
segmentation, and reconstruction of point velocities.

on the first body. The image efin the first view isp = As tion reduces the requirements considerably to 13 triplets of
and in the second viey/ = Bs. The image of a point on point-matches, not to mention that Htensor becomes degen-
the second body would he= Ar in the first view, and erate for constant-velocity. The key is%4 — P? problem

formulation as follows.

e B Zx Let H;, j = 0,1,2 denote the homography from
p = Br+ é/ world plane to thej’th view onto the image pointp; =

(zj,y;,1) 7. Let(X,Y,1) be the coordinates of the world
point projecting ontg;. Note that since the reconstruction
is up to a 3D Affine ambiguity (because of the constant ve-
locity assumption), then we are allowed to fix the third coor-
dinate of the world plane to 1. LetX, dY be the direction

of the constant-velocity motion of the poifiX, Y, 1) . Let

H denote the lefB x 2 sub-matrix of ;. We have the
following relation:

on the second view, whete= (dz, dy, 0) is the fixed (un-
known) translational motion between the two bodies.

To formulate this as &% — P2 problem we “lift” s
andr to 3D space by defining; = (s,0) T for points and
P, = (r,1)" for pointr on the second body. Define the
following projection matrices:

M, = [A 03><1]

M, = [B Bt] X

X dX Y

Therefore M, M> apply to both bodies in a uniform man- p; =H; | Y | +jH; | dY | =H; | 1
ner without the need for prior segmentation. Since we have 1 0 dx
formulated the 2D segmentation problem in the domain of dy



whereH; is a3 x 5 matrix [Hj,jH}]. We have therefore  M; denote thg'th 3 x 4 camera matrix, and lgt;; denote
aP* — P? formalismp; = H;P whereP ¢ P*. The  theprojection off; on view;:
geometry of such projections is described in more detail in

X

section 3 and as an example, the center for projection is no Y;
longer a point but an extensor of step 2, i.e., aline. pij = M;(P; + jN\dP) = [M; jM;dP] | z; |,

Let S5 = (1,0, —l'j) andrj = (0,1,—yj). Letl, be 1

any line such that] p, = 0. Then,0 = szpj = sJTHjP, A;

0= IQTI:IzP. Therefore, two points and a line provide a

. . 4 5 .
constraint as follows: which is again @°* — P= problem formulation. Further

details can be found in the section 3.

Siffo Problem Definition 4 (3D Segmentation)\We are given
TOTIE[O three general views of a 3D point configuration consisting

det s1 Hi =0 of two bodies moving relatively to each other by pure trans-
r{ 13[1 lation. Describe algebraic constraints necessary for seg-
l; Hy menting the two bodies from image measurements.

The determinant expansion provides a multilinear con- Clearly, one can approach this problem using trifocal
straint with a3 x 3 x 3 tensor described next. It will be use- tensors. The motion of each body is captured by a trifocal
ful to switch notation: lep, p', p” replacepy, p1, p» respec-  tensor which requires 7 points (or 6 points for a non-linear

tively, and likewise lets, s', s andr, ', r" replaces;,r;, solution up to a 3-fold ambiguity). Thus, a segmentation
j = 0,1,2, respectively. The multilinear constraint is ex- can be achieved by searching over all 6-tuples (or 7-tuples)
pressed as follows: of matching points until a consistent set is found. This ap-
o proach is general and applies even when the relative motion
pipisiAl =0, between the two bodies is full projective.

] ) ) Just like in the 2D Segmentation problem, since the rel-
where the index notations follow the covariant- e motion between the two bodies is pure translation, we
contravariant tensorial convention, i.epjs; stands for .o, 4o better. In fact we need to search over all quadruples
the scalar producst and_superscrlpts re_present points ¢ points instead of 6-tuples. The key is thé — P2 prob-
ar)gd subscripts represent lines. The entries of the tensofey formulation which allows us to describe a multilinear
Ajj is a multilinear function of the entries ;. The  4ngiraint common to both bodies — as described next.
constraintitself is a point-point-line constraint, thus atriplet | ot p ¢ P3 pe a point in 3D. IfP is on the first body,
p.p',p" provides two linear constrains'p” sy Aj; = 0 then a set of camera matricés!, j = 0, 1,2, provide the
andp'p/rj/ Aj; = 0 on the entries of4;. Therefore, 13 jnage pointp; = M}P. Likewise, if P is on the second
matching triplets are sufficient for a solution (compared to body therp; = M]‘?P. Because the relative motion between

26 triplets for tkhe Htensor of [12]). Further details on the 4 1y hodies consists of pure translation the homography
properties ofAY., how to extract the homographies up to AJ_ due to the plane at infinity is the same for g cam-

. A . . X
an Affine transformation, segment static from non-static era matrix of both bodies:

points, and how to reconstruct structure and motion are . .
found in section 3. M} =[ALvi] M;=[ALv7].

Problem Definition 3 (3D Dynamic Scene, Collinear Motion)Ve “lift" P ontoP* by definingP as follows. IfP belonjgs
We are given (general) views of a 3D configuration of points 10 the first body, then” = (P P P; P;_0)
where each point may move independently along somd’ P belongs to thj‘? second body, the® =
straight-line path with a constant velocity motion. All (F1 P> P30 Py)". The P* — P? projection
the line trajectories are along the same direction (par- Matrix would then be:

allel to each other). Describe the algebraic constraints M; = [ Al vho?].

necessary for reconstruction of camera motidh X 4

projection matrices), static versus dynamic segmentation, The resulting x 3 x 3 tensor would be derived exactly

and reconstruction of point velocities. as above and would require 13 (unsegmented) points for a
linear solution. Each body is represented by an extensor
Let P, = (X;,Y;,Z;,1)T, i = 1,...,n, be a con-  of step 4 inP*, thus 4 (segmented) point matches are re-

figuration of points in 3D (Affine space) moving along a quired to solve for the extensor. Therefore, once the tensor
fixed directiondP = (dX,dY,dZ,0)" such that at time is found, 4 segmented points are required to provide a seg-
j = 0,...,m the position of each point i&; + j\;dP. Let mentation of the entire point configuration.



2.3 Applications for P> — P?

There are a number of instantiations®f — P2. The
first is the projection from 3D lines represented bydkér
coordinates to 2D lines [5} = M L where the three rows
of M are the result of the “meet” [2] operation of pairs of
rows of the original3 x 4 camera projection matrix, i.e.,
each row ofM represents the line of intersection of the two
planes represented by the corresponding rows of

The resulting multi-view tensors in the straight-forward

world plane, therH p, H'p', p" are collinear, wheréf, H'

are homography matrices aligning images 1,2 onto image
3 (H, H' are uniquely defined as a function of the position
of the three cameras and the position of the world plane on
which the pointsP reside). We make the following claim:

in the context ofP> — P2, there exist two such homog-
raphy matricedd, H' from images 1,2 onto image 3, such
that the projections of point® € P° onto the three image
planes produces a set of 3 collinear points.

sense represent the "trajectory triangulation” introduced in Claim 1 (Dynamic Coplanar, General Motion) Given

[1] which models the application of a moving poiRtalong

a straight lineL such that in thg’th view we observe the
projection ofp; of P. Thus,pjTML = 0 for all views of P.

In the situation of trajectory triangulation, in each view we
have an imagé; of a point which lies on the line in 3D. So
pI M;L = pll; = 0. The determinant of thé x 6 matrix
whose rows ar@jTJ\?[ must vanish. The resulting tensor

is 3¢ and thus would require 728 matching points across 6 [ Asxs

views in order to obtain a linear solution. Naturally, this
situation is unwieldy application-wise.

A more tractable tensor (in terms of size) would arise
from adding two more assumptions (i) the motion of the
point is with constant velocity, and (ii) all the line trajecto-
ries are coplanar. We have the following problem definition:

three viewsp, p', p'" of a point configuration inP € P?,
there exist homographidd and H' suchHp, H'p', p' are
collinear.

Proof: The key observation is that without loss of gener-
ality we can choose a projective coordinate systen{h
such that the first two projection matrices are of the form
Os3x3], and[0s3xs DBsxs]. The third projection
matrix will have some general forfiCs,3  Dsy3]. Let
H =CA'andH' = DB~ ! and letP = (p1,---,ps).
Then,Hp = C(p1,p2,p3)" andH'p' = D(ps,ps,ps) ",
wherea®” 2 C(py,p2,p3) " + D(ps,ps5,p6) " - []

2.4 Applications for P® — P2

Problem Definition 5 (3D Dynamic Scene, Coplanar Motion), this section we consider the most general constant veloc-

We are given (general) views of a 3D configuration of points

where each point may move independently along som
straight-line path with a constant velocity motion. All

the line trajectories are coplanar. Describe the algebraic
constraints of this situation.

Following the derivation of Problem 3, théth projec-
tion matrixM; has the forniM;, j M;d Py, j M;dP,] where
M; is the corresponding x 4 camera matrix andP; , dP»
span the 2D plane of trajectories. The pointsAn have
the formP; = (X, Y3, Zi, 1, i, i) T, thusp;; = M;P;.
The resulting tensorial relation follows from 3 views, as
follows. For a triplet of matching points, p’, p’ denote
the liness = (1,0,—z) andr = (0,1, —y) coincident
with p and likewise the lines’,r’ and the liness”, r".
Thus the two rowss " M, andr " M per camera (and like-
wise with A/’ and M"") form a6 x 6 matrix with a van-
ishing determinant. The determinant expansion provides
multilinear constraint op, p’, p”’ with a3 x 3 x 3 tensor
p'pp"kE;;r = 0. Therefore 26 matching triplets across 3

views are sufficient for a solution (compared to 728 points

across 6 views).
Finally, we can make the following analogy between

a

ity tensor - the tensor of constant velocity in 3D, where di-

Section of motion is not restricted and the cameras are gen-

eral3 x 4 projective cameras.

Problem Definition 6 (3D Dynamic Scene)We are given
(general) views of a 3D configuration of points. Each point
may move independently along some straight-line path with
a constant velocity motion. Describe the algebraic con-
straints necessary for reconstruction of the points in 3D and
their velocities.

Let P, = (X;,Y;,Z;,1)T,4i = 1,...,n, be a configura-
tion of points in 3D (Affine space) moving along a direction
dP; = (dX;,dY;,dZ;,0)" such that at timg = 0,1,2,3
the position of each point i; + jdP;. Let M; denote the
J'th 3 x 4 camera matrix, and/; denote the lef8 x 3
sub-matrix ofM;. The projectionp;; of P; on view j is
described byp;; = M;P; whereM; = [M; M;:]and
Py = (X;,Y;, Z;,1,dX;,dY;,dZ;) 7.

The resulting tensorial relation follows from 4 views,
as follows. denote by; = (1,0,—z;)" andr;
(0,1,—y;) " be lines coincident with the projectiops

~

P5 — P2 and planar dynamic scenes with general motion (%> ¥;» 1?T of a pointP. We construct & x 7 matrix with
(no constant velocity assumption). The case of planar dy-a vanishing determinant such that it's first 6 rows gfé;

namic motion across three views was introduced in [12],

where the constraint is based on the fact that if , p” are
projections of a moving poinP along some line on a fixed

andr] M;, j = 0,1,2, and for the 7'th row""T M3 where

' is any line coincident with the projectigry. The de-
terminant expansion is a multilinear relations between the



image pointspg, p1, p2, denoted now by, p’,p"” and the
line I"" with a 3* tensorBf. , i.g.,p’p’ﬂp”’fl;”ijk = 0.
Since we can take any Ilrié’ coincident with the 4'th im-

of projection is the null space of tf3ex (k + 1) projec-
tion matrix, i.e., the center of projection & — P2
is apoint, of P* — P2?is aline and of P — P2 is an

age points each quadruple of matching points provides 2
linear constraints on the tensor, hence 40 matching points
across 4 views are sufficient to uniquely (up to scale) de- ® Theline of sight(image ray) joins the COP and a point
termine the tensor. The process for extracting the camera  (0n the image plane). Thus, f@* — P the line

matrices)M; up to a 3D affinity is described in section 3. of sight is a line, forP* — P2 the line of sight is
plane (extensor of step 2+1), and 8f — P2 itis an

extensor of step 5.

extensor of step 4.

2.5 Summary of Applications

e The intersection of two lines of sight (a "triangulation”
as it is known inP? — P2) is the meet of two lines
of sights. Thus, ifP? — P? the intersection is either
a point or is not defined (2+2-4=0), i.e., when the two
lines are skew. IP* — P2 the intersection always
exists and is also a point (3+3-5), and®i — P2 the
intersection is a plane (5+5-7). Note that simply from
these counting arguments it is clear thafih — P2
two views of matching points provide constraints on

So far, we have discussed multi-view constraints of scenes
containing multiple linearly moving points. The constraints
were derived by “lifting” the non-rigid 3D phenomena into

a rigid configuration in a higher dimensional spacePdt

We have presented 6 applications for various valuek of
ranging from 3 to 6. To summarize, the table below lists the
various applications oP* — P2 which were presented in
the preceding sections.

Pk Tensor Name Size | ref. the geometry of camera positions, yet two views in
P3 2D segmentation tensor | 32 2.1 P* — P2 do not provide any constraints (because
P* | 2D constant velocity tensor| 33 2.2 image rays always intersect), thus one needs at least
Pt 3D segmentation tensor | 33 2.2 3 views of matching points in order to obtain a con-

straint, and inP® — P2 one would need at least 4
views for a constraint (two rays intersect at a plane, a
plane and a ray intersect at a poifit{ 5 — 7), thus
three image rays always intersect).

P* | 3D constant collinear velocity 3? 2.2
P> | 3D constant coplanar velocity 3° 2.3
P% | 3D constant velocity tensor| 3* | 2.4

The resulting tensors for eagf — P? were reasonable
in terms of size (thus practical) where the largest tensor of e The “epipole” inP? — P? is defined as the intersec-
size 3* requiring 40 matching quadruples across 4 views tion between the line joining two COPs and an image
was for the general, constant velocity, 3D dynamic motion. plane (thus, for a pair of views we have two epipoles,
one on each image plane). Or, equivalently\if, M;
are the projection matrices, thed;null(M;) is the
epipole on view. This definition extends t®* — P?
where the join of the two COPs is an extensor of step
4 (each COP is an extensor of step 2) and its meet with
an image plane is an extensor of step- 3 — 5, i.e.,
is a line. Thus, the epipoles @t* — P? arelines
on their respective image planes. This definition, how-
ever, does not extend ®B° — P2 where the join of
two COPs (4+4) fills the entire spad®. We define
instead a “joint epipole”, to be described later.

3 The Geometry of P¥ — P2

We will derive the basic elements for describing and recov-
ering the projective matrices @* — P2. These elements
are analogous to the role homography matrices and epipoles
play in theP? — P2 setting) inP* — P2 geometry. We

will start with some general concepts that are common to
all the constructions oP* — P2 and then proceed to the
detailed derivation oP* — P? andP% — P2,

We use the ternextensor(cf. [2]) to describe the linear
space spanned by a collection of points. A point will be
extensor of step 1, a line is an extensor of step 2, a plane3.1  The Geometry ofP* — P?
is an extensor of step 3, and a hyper-plane is an extensor of . .
stepk in P*. In P™, the union (join) of extensors of stép Recall from the prece_dlng s_ectu_)n that one nee_ds at least
and stepk,, wherek, + k» < n + 1 is an extensor of step thre_e views of match_mg points in order_to obtain a con-
k1 + ko. The intersection (meet) of extensors of ste@and st;amt (because tWO. image rays always |nter§e_dr‘in—>
ks is an extensor of stepy + k» — (n + 1). Given these P ).' We also noted |n.Pr0bIem 2 that the multi-linear con-
definitions, the following statements immediately follow: straint across thrge views takes the form b & 3 x 3

tensorAfj which is contracted by two points and a line.
e Thecenter of projectiofCOP) of aP* — P? projec- In other words, lep, p’, p’ be three matching points along
tion is an extensor of step— 2. Recall that the center  views 1,2,3 and let”, r" be any two lines coincident with



p". The multilinear constraint is expressed as follows: of sightp and line of sight (recall that each line of sight is

a plane inP* and that two planes generally intersect at as
point). Letws denote the plane associated with the line of
sightd. If we fix § and vary the poinp over image 1, then
the resulting pointg are projection of points on the plane
75 onto image 3. Thus the matré Aj; is projective trans-

formation from image 1 to image 3 induced by the plape

p'pUsi Al =0,

where the index notations follow the covariant-
contravariant tensorial convention, i.epis; stands for
the scalar producp’s and superscripts represent points
and subscripts represent lines. The entries of the tenso
Afj is a multilinear function of the entries of the three

projection matriced/, M’ andM". The constraint itself is
a point-point-line constraint, thus a tripletp’, p” provides
two linear constraints’p'/ s}/ A%, = 0 andp'p'r{ A¥;, = 0
on the entries omfj. Therefore, 13 matching triplets are

sufficient for a (linear) solution. We will assume from now

on that the tensoﬂfj is given (i.e., recovered from image
measurements) and we wish to recoverdhej projection
matricesM , M', M".

Note thaw/ Aj; is a linear combination of the three slices
Ak Ak and AY. Thus, in particular a slice (through the

“4” index) produces a homography matrix. LikewiééAfj
is @ homography matrix from image 2 to image 3 induced
by the plane associates with the image ray of the pbint
image 1.

Now that we have the means to generate homography
matrices from the tensor, we are ready to describe the recov-

ery of the epipoles. Let the (unknown) projection matrices

We begin by deriving certain useful properties of the ten- pe denoted by, , M, andM;. Lete;; = M;null(M;) be
sor slices from which we could then recover the basic el- the epipole (a line) as the projection of C@Bnto viewi.

ements (epipoles, homography matrices) of the projection

elements.
Claim 2 (point transfer)
p'p Al = p™ (1)

Proof:  Follows from the fact thapips{AY, = 0
for any line s” coincident withp”. From the covariant-
contravariant structure of the tensgrp'/ A%; is a point
(contravariant vector), let this point be denoted ¢y
Hence,q*s} = 0 for all liness” that satisfysjp"* = 0.
Thusg andp" are the samé]

Note that the rays associated wijilhp’ are extensors of

step 3, i.e., a plane. The intersection of those rays is a point

(as explained in the preceding section), and @ip$ A%; is

the back-projection onto view 3 (projection of a point is a
point). Similarly, let!” be some line in image 3 (extensor

of step 2), thus the image ray associated with a pdiim

Claim 4 (epipoles) Let H;;, G;; be two (full-rank) homog-

raphy matrices from viewto view; induced by two distinct

(but arbitrary) planes. The epipolg; is one of the gener-

alized eigenvectors df;, G, i.e., satisfies the equation:
T T _

Proof: Let H;; be any (full-rank) homography matrix from
view i to view j. Thus,Hi;T maps lines (dual space) from
view i to view j. Because epipoles are linestt — P?
geometry, we havé{i;Teij = ¢;; and conversel Jeji =~

e;j. Thus, given two such homography matrices, there ex-
ists a scalah such that(H;; + A\G/)eji = 0]]

Note that from slices omfj we can obtain three lin-
early independent homography matrices, thus we can find
a unique solution te; (each pair of homography matrices
produces three solutions). Now that we have the means to
recover epipoles and homography matrices we can proceed

image 2 and the extensor of step 4 associated with the jOinto the central result which is the reconstruction theorem:

of " and the COP of camera 3 meet at a lide-@ — 5 = 2)

and let the projection of this line onto image 1 be denoted Theorem 1 (reconstruction) There exists a projective

by I. The relationship betweepl, (", is captured by the
tensor:p i A¥; = 1;.

Claim 3 (homography slice) Let 6/ be any contravariant
vector. Thel x 3 matrixéfAfj is @ homography matrix (2D

collineation) from views 1 to 3 induced by the plane defined

frame for which the first projection matrix takes the form
[I5x3;03x2] and all other projection matrices (of views
2,3,...) take the form:

M; = [Hj;vj, 0]

by the join of the COP of the second projection matrix and whereH; is a homography matrix from view 1 janduced

the image poind in view 2 (i.e., the image ray correspond-
ing to ).

Proof: Consider(67 A;)p* = ¢*, from the point transfer
equation 1 we have thatis the projection onto view 3 of

by a fixed (but arbitrary) plane, andv;, 1;;- are two points
on the epipole (alineg;; on view; (projections of two fixed
points in the COP of camera 1 onto vigyv

Proof: Consider two views with projection matricéd;

the intersections of the two planes corresponding to the lineand M-, a point P in space and matching image points



p,p’ satisfyingp = M, P andp’ = M,P. LetW be a
(full-rank) 5 x 5 matrix representing some arbitrary pro-
jective change of coordinates, there2 M; WW =P and
p = M,WW~'P, thus we are allowed to choo$¥ at
will because reconstruction is only up to a projectivity in
P4, Let C,C" be two points spanning the COP of cam-
era 1, i.e., two points spanning the null spacé\fif, thus
M,C = 0andM,C’" = 0. LetW = [U,C, ("] for some
5 x 3 matrix U chosen such that/;U = I3.3. Clearly,
MW = [I343;03x2].
Let U be chosen to consist of the first 3 columns of the
matrix: N
o-[&]
™ 11-3

where the subscript 1-3 signals that we are taking only

columns 1-3 from thé x 5 matrix, andC; is the2 x 5
matrix defining the plane, i.e.,C,P = 0 forall P € .
Recall that a plane iP* is the intersection (meet) of two
hyperplanes (extensor of step 4) becaisel — 5 = 3, thus

a plane is defined by 2 x 5 matrix whose rows represent
the hyperplanes. We have thet, U = I3.3. Consider

MoW = Ms[U,C, C"] = [MyU,v,v']

wherev = M,C andv' = M,C' are two points on the
epipoleey; . Recall thaky, = Mynull(M,) andnull(M;)
is spanned by”, C’. What is left to show is thab/,U is
a homography matri¥f,; from view 1 to 2 induced by the
planer. This is shown next.

We have that

~ ~ p
M; _{ MP\ o

(B (B2 (6] wpes

0
From which we obtain:
- - 71 [P -
MyUp = M, M, ] 0 | =MyP==yp
Cr 0

Thus, we have shown that/,Up = p' for all matching
points arising from point® € 7. []

Taken together, by using the homography slices of the

tensor we can recovell,. The third projection matrix\/;
can be recovered (linearly) from the tensor add, M- be-

cause the tensor is a multi-linear form whose entries are

multi-linear functions of the three projection matrices. Fi-
nally, it is not difficult to see that the family of homography
matrices (as a function of the position of the plarehas
the general form with 7 degrees of freedom:

Hy = MHq, +von” +0'n'T,

where), n,n' are general.

3.2 The Geometry ofP¢ — P?

In P8 — P2 three image rays always intersect. This is be-
cause two extensors of stgpn P8 intersect in an extensor
of step of at leass + 5 — 7 = 3, and an extensor of step
3 intersects an extensor of step 5 in a point. Thus we need
more then three views of matching points in order to obtain
a constraint. This agrees with the result we have noted in
Problem 6 — a multi-linear constraint across four images
B, which is contracted by three points and a line.

Let p,p’,p",p"" be four matching points along views
1,2,3,4and let’’, r'"" be any two lines coincident with"'.
The multilinear constraint is expressed as follows:

i 1j 1k il
p'p’p" s Bij. =0,

The entries of the tensds;;, are multilinear functions of

the entries of the four projection matric&s, , M, M5 and
M,. The constraint itself is a point-point-point-line con-
straint, thus a triplep, p’, p’’, p""" provides two linear con-
straintsp’p"p'"* s} B}, = 0, andp’p//p"*r" B}, = 0, on
the entries of3,, . Therefore, 40 matching triplets are suf-
ficient for a (linear) solution. We will assume from now
on that the tensoijk was already recovered from image
measurements and we wish to recoverdhe 7 projection
matricesM;, Ms, Ms, M. As in the case oP? — P2, we
will make use of tensor slices while recovering some ba-
sic elements of the projective settings. Note that for some
of those elements, like homography matrices from view 2
to view 3, we will resort to permuted tensors, i.e., where
the matches are for example point-point—line-polﬁfjp.
These permuted tensors can be recovered from exactly the
same image measurements.
Claim 5 (point transfer)
pipljpllk[))gjk ~ p///l 2)

Proof: Follows from the fact thap’p'/p"*s)"Bj;, = 0
for any lines”" coincident withp”’. From the covariant-
contravariant structure of the tenspp'/p"'* B, is a point
(contravariant vector), let this point be denoted @y
Hence's)” = 0 for all lines s’ that satisfys)"p""" = 0.
Thusg andp" are the same poin]

The rays associated wifh p’, p"’ are extensors of step
5, which as explained in the preceding section intersect at
a point, and thug’p"/p"* B, is the back-projection onto
view 4. Similarly, let!"”’ be some line in image 4. The
image rays associated with a pointp” in images 2 and 3
and the extensor of step 6 associated with the joifi'aind
the COP of camera4 meetataliie¢5—7)+6—7=2)
and let the projection of this line onto image 1 be denoted
by I. The relationship betweepi, p”, 1", [ is captured by
the tensorp”p"*1j" Bl = 1.



Claim 6 (homography slice) Let v/ and 6% be any con- From the result above, and similarly @* — P2, it

travariant vectors. Th8 x 3 matrixvjd’“Bﬁjk is a homog- is clear the joint epipoles are generalized eigenvectors of
raphy matrix (2D collineation) from views 1 to 4 induced by homography matrices obtained by slicing the tensor.

the plane defined by the intersection of image rayg ahd Now that we have the means to recover epipoles and ho-
0. mography matrices we can proceed to the (first) reconstruc-

tion theorem.
Proof: Consider(,/6*B.,,)p' = ¢', from the point trans-
fer equation 2 we have thatis the projection onto view 4  Theorem 2 (Reconstruction I) There exists a projective
of the intersections of the three rays of sight correspondingframe for which the first projection matrix takes the form
top, v, d. (recall that each ray of sight is an extensor of step [I3x3; Isx3;03x1] and all other projection matrices (of
5 in P% and that three such extensors generally intersect atviews 2,3,4,...) take the form:
a point). Letr,s denote the plane associated with the in- .
tersection of the rays of sight efandd. If we fix v andd M; = [Hj; Gj; v
and vary the poinp over image 1, then the resulting points
g are projection of points on the plangs; onto image 3.
Thus the matrix/6* B, is projective transformation from
image 1 to image 4 induced by the plang. []
Likewise, ‘6’ BL;;, is a homography matrix from image
3 to image 4, and*0* B, is an homography matrix from
image 2 to image 4. Proof: Reconstruction irP% is given up to & x 7 projec-
The next item on the list of elementary building blocks tive transformatiori¥. Let C be a point inside the COP of
for reconstruction of projection matrices are the epipoles. camera 1, i.e., any point which satisfiésC = 0. Let
However, there are no epipoles®’ — P2 because the 117 = [/, V, (] for some5 x 3 matricesU and V' cho-

join of two COPs (each is a step 4 extensor) fills up the sen such that/;UU = M,V = I;.5. Clearly, MbW =
entire spaceP®. We define instead the notion of “Joint

whereH; is a homography matrix from view 1 janduced
by a fixed (but arbitrary) plane, G; is a homography ma-
trix from view 1 toj induced by another fixed arbitrary
planes andv; is the projection of a fixed arbitrary point
contained in the first camera center to image

[I3><35I3><3§03><1]-

Epipole” as follows: Let U be chosen to consist of the first 3 columns of the
matrix:
Definition 1 (Joint Epipoles) Let C;; be the intersection M, -1
(meet) of the centers of two projection matridésand M ;: U= [ C
™ 11-3
Cyj = null (M;) A nuu(Mj). where the subscript 1-3 signals that we are taking only

columns 1-3 from the inverteédx 7 matrix, andC'; is the
C;jisapointbecausé+4—7 = 1. Letcfj be the projection 4 x 7 matrix defining the planer, i.e., C,P = 0 for all

of C;; onto thek'th view, i.e.,cfj = M C;j. We refer tchj P € m. Recall that a plane ifPS is dual to an extensor
the joint epipole in imagé of the COPs of the projection  Of step four and thus is defined by the intersection (meet)
matricesM;, M;. of four hyperplanes, i.e a plane is defined by & 7 ma-

trix whose rows represent these hyperplanes. We have that
Just as with epipoles iR? — P2, the joint epipoles are M U = I3.3. Likewise, let
mapped to each other via homography matrices (which in N
turn are obtained from the homography slices of the tensor). V= { M, }
. 1 Cs
Claim 7 (Joint Epipoles) Let Hy = 496*B.,, be a ho- =3

mography matrix from view to view4, obtained by slicing  where(, is the4 x 7 matrix representing the plame Con-
the tensot3! ;, , then: Hel; = i, sider

ijk?
Proof: The homography matrix’/6* B!, from view 1 to MyW = MU, V,C) = [MaU, MsV, v

view 4 is induced by the plane defined by the intersection

of the rays of sights associated with the poimisndé (see wherev = M,C. What is left to show is thab/,U is a
above). Each ray of sight (extensor of step 5) contains itshomography matrix,, from view 1 to 2 induced by the
projection center, hence the plane of intersection of two im- planer, and thatM,V is a homography matri¥/,, from

age rays must contain the poifit; (which is the intersec-  view 1 to 2 induced by the plare The proof of this is very

tion of both projection centers of views 2,3) — regardless similar to what was done in the proof of Theorenf] 1.

of the choice ofy,d. So any homography of this fort This reconstruction theorem is not ready yet for practi-
would satisfyHe$, = cf,.[] cal use because one needs homographies of two planes from



view 1 and view 2, and homographies for the same planeswith the correlation matrix),. Letp, ¢, § be the embedded

from view 1 to view 3. One also needs the projection to
views 2 and 3 of the same poi6tin the first camera cen-

ter. (The fourth camera can then be recovered linearly from

the tensorBﬁjk - which is multilinear in the entries of the
camera matrices).

Although it is fairly easy to find homography matrices
between any two views (simply take slices of the tensors), it
is difficult finding homographies of some fixed plane acros
three views. We will show later that it is possible to se-

lect a canonical coordinate system which allows choosing

homography matrices between two views only (instead of

image points and lines iR®. We have:

9
9

wherec,, ¢4 are the step 4 extensors representing the pro-

(ca Vp)A(caV3)
(2 V@) A(caV3)

s jection centers of view 2,4 respectively; and’“denotes

the join operation andA” denotes the intersection (meet)
operation. Because the step 6 extensovr § is shared, and
also noting thates V p) A (c2 V §) = c2 because, ¢ are

across three views). As a preparation for this, we define points in view 2, then

next the “correlation slices” of the tensor:

Claim 8 (correlation slices) 'yiélejk is a mapping (corre-
lation matrix) from points in the second view to a line in the
third view (or from points in the third view to lines in the

Q1 N Qs (caVP)A(caVG) A(eqgV8)

ca A (cy V §)

ThereforeQ; A Qs is the intersection of a step 4 and step 6
extensors, which is a plané{ 6 — 7 = 3) contained in the

second view)_. This mapp_ing is as_sociated with the extensolcenter of projection, of view 2 SinceQ:, Q- are the map-
of step 4 defined by the intersection of an extensor of steppings from view 1 to view 3 induced by the step 4 extensors

5 with an extensor of step 6 -6 — 7 = 4). The step 5
extensor is the ray of sight associated witl(in view 1).
The step 6 extensor is the join of the line in the 4'th image
planed and the projection center (extensor of step 4) of the
forth camera.

Proof: ~ip/q*6;BL;, = 0 iff the lines of sight associ-
ated with~, p, ¢ and the step 6 extensor associated with
all intersect in at least one point. Fixingand we get
a fixed extensor of step + 6 — 7 = 4. The equation
P ¢*(v'aiBl;,) = 0 implies that the lines of sight associ-
ated withp’ andgq” intersect that extensor at a single point.
The line of sight associated wigH intersects that fixed ex-
tensor in an extensor of stdg-5—7 = 2 —whichis aline.
Every pointg® on the projection of that line onto view three
has to satisfy/ ¢*(v'6;8.,;,) = 0, hence the projection of
this line isp/ (v'618.,). []

Q,, Q, respectively, the mapping.p x Q2p from view 1
to view 3 is a homography induced by the pla@e A Q.
The homography matri¥/ can be recovered directly (lin-
early) from the matrices);, Q- by noting thatQT H and
Q¥ H are anti-symmetrical — thus providing 6 linear con-
straints each fof.

Now that we have a tool for the recovery of homography
matrices which lie inside projection matrix centers we can
proceed to the second (simplified) reconstruction theorem:

Theorem 3 (reconstruction Il) There exists a projective
frame for which the first and second projection matrices
take the form

M,
M

[I3x3 031 ]
[03x3 031 ]

and all other projection matrices (of views 3,4,...) take the

03%3

(a3

I33

This correlation matrix can be seen as the “Fundamentalform:

matrix” of the extensor of step four space, where the effec-

tive “camera centers” are the intersection of the COP of the

P% — P2 projection matrices with that space.

Using the correlation slices introduced above we wish to
describe a homography matri from view 1 onto view 3
associated with a plane which ¢@ntainedin the second
view projection center (which is a step 4 extensor). Let
Q1 = p/s1B};, andQs = ¢’ 5,8}, be the correlation matri-

ces described above — each is associated with an extensor

Mj=[Hyj Hy o]
whereH, ; is a homography matrix from view 1 to view j in-
duced by a plane which is contained in the second projec-
tion matrix center,Hs; is a homography matrix from view
2 to view j induced by a plane which is contained in the
first projection matrix center, and], is the joint epipole,
i.e., the projection onto view j of the intersection point of
the projection centers of views 1,2.

of step 4. Generally, two extensors of step 4 intersect (meet)Proof: Consider three views with projection matricks,

at a point § + 4 — 7 = 1), however in this particular case
since the image ling is shared among the two extensors,

j = 1,2,3, a pointP € P%in space and matching im-
age pointsp, p', p’’ satisfyingp = M, P,p' = M,P and

their meet is a step 3 extensor (a plane). To see why this is
so, let@; be the step 4 extensor associated with the correla-

tion matrix@,, and letQ, be the step 4 extensor associated

1Such a mapping must be a correlation by definition because the image
ray of view 1 intersects the step 4 extensor at a lin¢ ¢ — 7 = 2) whose
projection onto view 3 is a line.



" =~ M5P. Since reconstruction is determined up to a 3.3 Reconstruction of theP? — P? Camera
projectivity, letW be a (full-rank)7 x 7 matrix represent- Matrices
ing some arbitrary projective change of coordinates (we are
allowed to chooséV at will). Let C be the point of in-  Given that we have recovered the projection matridlgs
tersection of the projection centers of views 1,2 (each isj = 1,2,3, of P* — P2, and the projection matricel;,
a step 4 extensor, thus they intersect at a point becausg = 1,2,3 4 of P8 — P? we wish to recover the original
444—7 =1),thusM,C = 0andM,C = 0and 3 x 4 camera matrices up to a 3D Affine ambiguity. The
MsC = ¢3, (the joint epipole). Letr be some plane con-  special structure of the matricé$ and M — they have
tained innull(M>) and letc be some plane contained in repeated scaled columns — provides us with linear con-
null(My). Let C, be the4 x 7 matrix defining the plane  straints on a the coordinate changéit — P2 which will
m, i.e.,C,P = 0forall P € «; and letC, be the4 x 7 transform the recovered matric&sand M to the admissi-

matrix defining the plane. LetW = [U, V, C] whereU, V' ble ones we are looking for.
are7 x 3 matrices defined as follows. In the case oP* — P2, since the third column off; is
N o unconstrained, the family of collineationsBf — P2 that
U= { ]CV'II ] V= [ 1&{2 } leave the structural form intact is organized as follows:
™ 11-3 7 11-3

where the subscript 1-3 signals that we are taking only
columns 1-3 from the invertéd x 7 matrix. We have that
MU = I ;5 andM,V = I. Moreover, the columns dff
consist of points om and sincer is contained imull (M)

we have that\,U = 0; and likewiseM;V = 0. To see

OO OO L
OO O Qo
S S
O 8 OO O
QLT O OO

why this is so, recall that Note that we have 9 degrees of freedom up to scale, which
means we have 8 free parameters — 2 more than what s al-
Y Y p lowed for a 2D affinity. The extra degrees of freedom could
Mip_(MPY~ (o) vren : -
C. C.P be compensated for by applying another transformation of
0 the form:

from which we obtain thal/p = P, i.e., U maps the
first image plane onto the plame Thus, in particular the
columns ofU are points omr. Taken together, we have that
for these choices of planesando, the first two projection
matrices are:

SO OO
OO O = O
SoTvR O O
o= O OO
= o O OO

VoW = [Lses Oses Osei] The. unkr_10wn variableh andj can be solvgd u'sing a si_ngle
N static point, as follows. Letf; be the projection matrices

MyW = [O3x3 Isxz Osxa] up to the unknown correctiolhand:. Let H; to be the left

3 x 3 part offlj. Letp,, p2 be a matching pair in views 1,2

We show next thab/; U is a homography matrix from view : i
of a static point. Then,

1 to 3 induced byr. Recall thatUp is a pointP € m,
thusMsUp = M3P = p" wherep, p” are projections of a

pointin. Similarly, Vp' is a pointP € o, thusM;Vp' = ~ I 10 h -1
MsP = p" wherep',p’ are projections of a point oa. p2=Hy |01 ) Hypy
Taken together, we have 00 1
M3W = [Hy3 Hoyz cly]. This gives us two linear equations for solvih@nd:. The

resulting homography matrices (up to a 2D Affine ambigu-
[JPutting together the correlation slices and the reconstruc- ity) are:

tion theorem above, we see that for reconstruction of pro-

jection matrices all we need to do is to choose 2 correlation 1 0 h 1 0 2h

slices from whichH,3 is recovered (linearly), and choose H,H»|0 1 i|,H3|0 1 2

another pair of correlation slices from whiéfs is recov- 0 0 1 00 1

ered. Then, by using homography slices we can recover the

joint epipolec}, and we have thus creatéds. The fourth In the case of® — P2, the reconstruction cM satis-
projection matrix, can be recovered (linearly) from the  fying the structural constraints up to a 3D Affine amblgwty
tensor and the three projection matrices. proceeds along similar lines. The ambiguity matrix is of

10



this form: in this space to the images. Hence we compute the homog-

y Z ; i 8 g 8 raphy of the first object is achieved. Now that we know the
g h i L 00 0 homographies of the first object, segmentation is possible,
000 m OO0 0 so we can determine the homography of the second object
000 n 3 b ¢ from its points. The next stage is to find a transformation
8 8 g Z g . ’: that will make the first 2 columns of the homographies iden-

o o ] . tical. The resulting solution would be the real homographies
This kind of matrices is an Affine transformation on the yp to an Affine transformation.

iecti i 6 2
left 3 x 4 part of the projection matrix fror” to P*, but The segmentation tensor for the 3D case is similar. Here

it is a different Affine transformation for every view. ; ; :
Here again we can take the first recover)t/ed camera ma-"€ are going to have to ugepoint matches from one object

trix to be the left part of the transformed projective camera in order to recover the set of cameras for the first object over
matrix. We have to find only some transformation of the time. These cameras would be defined up to a projective
form: transformation. Segmentation would now give us points on

é (1) 8 8 8 8 8 the second object, from which recovery of the motion of the
0010000 second camera is possible. Aligning these sets of cameras
000 1000 would give us a common Affine reconstruction. Note that
000 A 100 N
0006010 both sets of cameras agree on the homography at infinity.
000 $ 00 1 Thus the recovery of that homography can be achieved for
Assuming that we know one static point, we can extract example by intersecting epipolar lines.
eightlinear constraints on the unknownsé, p of the form: The case of the constant velocity in 3D going in one di-
i GRo ] rection is similar to the case of the 3D segmentation tensor.
é (1) 8 » Note that recovery of the image projections of the common
HRi |y o P direction in 3D can be achieved, although we can not use
0 0 0 1 this information as one of ourpoints. This is because this
det '(1) ‘; 8 ZJL o point has more then one reconstructiom'ﬁf_rom it's point
ITR, 00 1 2 matches (as a static point, or as pure motion, or any combi-
0 0 0 1| nation of the two).
[1 0 0 3i7
TN
L L0 0 0 1]

- 4 Experiments
WhereR; are the left parts of the transformed projective

camera matrices, aridare lines through the tracked static . . L o
point. The final cameras would be: We describe an experiment for one of the applications in this

paper, the 3D segmentation tensor (Problem 4). Recall that

100 n 100 24 100 3 _ (F _ :
Rom |0 L0 0 p 10 10 2| o |0 10 30 we observe views of a scene containing two bodies moving
O™do 0 1 p™ o0 1 2> 0 0 1 3 in relative translation to one another. TRé — P2 prob-

0001 000 1 000 1 lem formulation requires a matching set of at least 13 points

across 3 views where the points come from both bodies in

. . an unsegmented fashion. The triplets of matching points
3.4 Reconstruction of Segmentatlon Tensors are used to constructdax 3 x 3 tensor such that with the

The stage of the reconstruction of the underlying structure isSegmentation of 4 points on one of the bodies one can then
(as noted above) application dependent. For reconstructiorfegment the entire scene.
in the case of the segmentation tensor, we do not have any The scene in the experiment, displayed in Fig. 1, con-
special information about structure of the projection matri- sists of a rigid background (first body) and a foreground
ces. Here we may use some known points on one object inconsisting of a number of vehicles moving cohesively to-
order to reconstruct in 2D/3D. gether (second body). Image points were identified and
In the planar segmentation tensor case we know that thetracked using openCV'’s [11] KLT [9] tracker. Fig. 1(a-c)
space inP3 spanned by points on one object is a space of shows the three views , Fig. 1d shows the points which
rank 3. From 3 point matches in two images (or even point- were tracked along the sequence and used for recovery of
line matches), we can reconstruct 3 points in that rank 3the tensor. Fig. 1e shows the 4 labeled points (on the back-
subspace oP?. Note that using thé* to P? projection ground body) used to segment the entire scene, and Fig. 1f
matrices we've recovered earlier, we do not need a forth ba-shows the segmentations result — all point on the back-
sis point in order to determine the projection of each point ground body were correctly classified as such.
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(a) (b)

(e) ()

Figure 1:3D segmentation tensor experiment. See text for details.
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5 Summary [10] R.A. Manning and C.R. Dyer. Interpolating view and
_ _ scene motion by dynamic view morphing. Pmoceed-
This paper has two parts. In Section 2 we have shown that  ings of the IEEE Conference on Computer Vision and

multi-view constraints of scenes containing multiple lin- Pattern Recognitionpages 388-394, Fort Collins, Co.,
early moving points can be derived by “lifting” the non- June 1999.

rigid 3D phenomena into a rigid configuration in a higher

dimensional space dP*. And to that end we have pre- [11] Open  source  computer  vision library
sented 6 app”cations for various Va|uegc0'hnging from 3 http://WWW.intel.Com/researCh/mrl/researCh/CV”b/

to 6.

d [12] A. Shashua and Lior Wolf. Homography tensors: On
algebraic entities that represent three views of static or
moving planar points. IfProceedings of the European
Conference on Computer VisioDublin, Ireland, June
2000.

In the second part of the paper (Section 3) we worke
out the details of describing and recoverihg (k + 1) pro-
jection matrices (fok = 4, 6) from the multi-view tensors’
slices, and the details of recovering 4 original camera
matrices from the projection matrices.

[13] Y. Wexler and A.Shashua. On the synthesis of dy-
namic scenes from reference views. Aroceedings of
the IEEE Conference on Computer Vision and Pattern
RecognitionSouth Carolina, June 2000.
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