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Abstract

Projection matrices from projective spacesP3 to P2

have long been used in multiple-view geometry to model
the perspective projection created by the pin-hole camera.
In this work we introduce higher-dimensional mappings
Pk �! P2, k = 4; 5; 6 for the representation of various
applications in which the world we view is no longer rigid.
We also describe the multi-view constraints from these new
projection matrices and methods for extracting the (non-
rigid) structure and motion for each application.

1 Introduction

The projective camera model, represented by the map-
ping between projective spacesP3 ! P2, has long been
used to model the perspective projection of the pin-hole
camera in Structure from Motion (SFM) applications in
computer vision. These applications include photogram-
metry, ego-motion estimation, feature alignment for vi-
sual recognition, and view-synthesis for graphics rendering.
There is a large body of literature on the projective camera
model in a multi-view setting with the resulting multi-linear
tensors as the primitive building-blocks of 3D computer vi-
sion. A summary of the past decade of work in this area
with a detailed exposition of the multi-linear maps with
their associated tensors (bifocal, trifocal and quadrifocal)
can be found in [8] and earlier work in [4].

The literature mentioned above is mostly relevant to a
static scene, i.e., a rigid body viewed by an uncalibrated
camera. Recently, however, a new body of work has ap-
peared [1, 12, 10, 13, 7] which assumes a configuration
of points in which every single point in the configuration

�The length of this paper was considerably reduced to fit the length
guidelines of this proceedings. The full-length version of this work
can be found in http://www.cs.huji.ac.il/� shashua=papers=pkp2 �
journal:pdf

can move independently along some arbitrary trajectory
(straight line path and in some cases second-order) while
the camera is undergoing general motion (in 3D projective
space). For brevity, we will refer to such a scene asdynamic
whereas the conventional rigid body configuration would be
referred to asstatic. Dynamic configurations, for example,
include as a particular case multi-body motion, i.e., when
each body contains multiple points rigidly attached to the
same coordinate system [3, 6]

In this paper we address the geometry of multiple views
of dynamic scenes from the point of view oflifting the prob-
lem to a static scene embedded in a higher dimensional
space. In other words, we investigate camera projection
matrices ofPk �! P2, k = 4; 5; 6 for modeling a static
body in k-dimensional projective spacePk projected onto
the image spaceP2. These projection matrices model dy-
namic situations in 2D and 3D. We will consider, for ex-
ample, three different applications ofP4 �! P2 which
include (i) multiple linearly moving coplanar points under
constant velocity, (ii) 3D points moving in constant velocity
along a common single direction, and (iii) Two-body seg-
mentation in 3D — the resulting tensor is referred to as the
3D segmentationtensor. Projection matrixP5 �! P2 is
shown to model moving 3D points under constant veloc-
ity and coplanar trajectories (all straight line paths are on a
plane). Projection matrixP6 �! P2 is shown to model the
general constant velocity multiple linearly moving points
in 3D. The latter was derived in the past by [7] for ortho-
graphic cameras while here we take this further and address
the problem in the general perspective pin-hole (projective)
setting.

Following the introduction ofPk �! P2 and their role
in dynamic SFM, we describe the construction of tensors
from multi-view relations of each model and the process
for recovering the camera motion parameters (the physical
cameras) and the 3D structure of the scene.
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2 Applications ofPk ! P2

We will describe below a number of different applica-
tions for values ofk = 4; 5; 6 (for k = 3 see [14]).
These applications include multi-body segmentation (we
call “segmentation tensors”) and multiple linearly moving
points.

2.1 Applications for P4 ! P2

We introduce three different instantiations ofP4 ! P2

in the context of dynamic SFM. The first application con-
sists of three views of multiple linearly moving coplanar
points under constant velocity, second is constant velocity
multiple linearly moving points in 3D where all trajectories
are parallel to each other, and third is the 3D segmentation
tensor.

Problem Definition 1 (Coplanar Dynamic Scene)We
are given views of a planar configuration of points where
each point may move independently along some straight-
line path with a constant velocity motion. Describe the
algebraic constraints necessary for reconstruction of cam-
era motion (homography matrices), static versus dynamic
segmentation, and reconstruction of point velocities.

The problem above is a particular case of a more gen-
eral problem (same as above but without the constant veloc-
ity constraint) addressed by [12]. The algebraic constraints
there were in the form of a3 � 3 � 3 tensor called “Hten-
sor” which requires 26 triplets of point-matches for a solu-
tion. We will show next that the constant-velocity assump-
tion reduces the requirements considerably to 13 triplets of
point-matches, not to mention that Htensor becomes degen-
erate for constant-velocity. The key is aP4 ! P2 problem
formulation as follows.

Let Hj , j = 0; 1; 2 denote the homography from
world plane to thej’th view onto the image pointspj =
(xj ; yj ; 1)

>. Let (X;Y; 1) be the coordinates of the world
point projecting ontopj . Note that since the reconstruction
is up to a 3D Affine ambiguity (because of the constant ve-
locity assumption), then we are allowed to fix the third coor-
dinate of the world plane to 1. LetdX; dY be the direction
of the constant-velocity motion of the point(X;Y; 1)>. Let
H�

j denote the left3 � 2 sub-matrix ofHj . We have the
following relation:

pj �= Hj

0
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Y
1

1
A+ jHj

0
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where ~Hj is a3�5 matrix [Hj ; jH
�

j ]. We have therefore

a P4 ! P2 formalismpj �= ~HjP whereP 2 P4. The
geometry of such projections is described in more detail in
section 3 and as an example, the center for projection is no
longer a point but an extensor of step 2, i.e., a line.

Let sj = (1; 0;�xj) andrj = (0; 1;�yj). Let l2 be
any line such thatl>2 p2 = 0. Then,0 = s>j pj = s>j

~HjP ,

0 = l>
2

~H2P . Therefore, two points and a line provide a
constraint as follows:

det

0
BBBB@

2
66664

s>
0
~H0

r>
0

~H0

s>1 ~H1

r>
1

~H1

l>2 ~H2

1
CCCCA

3
77775 = 0

The determinant expansion provides a multilinear con-
straint with a3�3�3 tensor described next. It will be use-
ful to switch notation: letp; p0; p00 replacep0; p1; p2 respec-
tively, and likewise lets; s0; s00 andr; r0; r00 replacesj ; rj ,
j = 0; 1; 2, respectively. The multilinear constraint is ex-
pressed as follows:

pip0js00kA
k
ij = 0;

where the index notations follow the covariant-
contravariant tensorial convention, i.e.,pisi stands for
the scalar productp>s and superscripts represent points
and subscripts represent lines. The entries of the tensor
Ak
ij is a multilinear function of the entries of~Hj . The

constraint itself is a point-point-line constraint, thus a triplet
p; p0; p00 provides two linear constraintspip0js00kA

k
ij = 0

andpip0jr00kA
k
ij = 0 on the entries ofAk

ij . Therefore, 13
matching triplets are sufficient for a solution (compared to
26 triplets for the Htensor of [12]). Further details on the
properties ofAk

ij , how to extract the homographies up to
an Affine transformation, segment static from non-static
points, and how to reconstruct structure and motion are
found in section 3.

Problem Definition 2 (3D Dynamic Scene, Collinear Motion)
We are given (general) views of a 3D configuration of points
where each point may move independently along some
straight-line path with a constant velocity motion. All
the line trajectories are along the same direction (par-
allel to each other). Describe the algebraic constraints
necessary for reconstruction of camera motion (3 � 4
projection matrices), static versus dynamic segmentation,
and reconstruction of point velocities.

Let Pi = (Xi; Yi; Zi; 1)
>, i = 1; :::; n, be a con-

figuration of points in 3D (Affine space) moving along a
fixed directiondP = (dX; dY; dZ; 0)> such that at time
j = 0; :::;m the position of each point isPi + j�idP . Let
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Mj denote thej’th 3� 4 camera matrix, and letpij denote
the projection ofPi on viewj:

pij �= Mj(Pi + j�idP ) = [Mj jMjdP ]

0
BBB@
Xi

Yi
Zi

1
�i

1
CCCA ;

which is again aP4 ! P2 problem formulation. Further
details can be found in the section 3.

Problem Definition 3 (3D Segmentation)We are given
three general views of a 3D point configuration consisting
of two bodies moving relatively to each other by pure trans-
lation. Describe algebraic constraints necessary for seg-
menting the two bodies from image measurements.

Clearly, one can approach this problem using trifocal
tensors. The motion of each body is captured by a trifocal
tensor which requires 7 points (or 6 points for a non-linear
solution up to a 3-fold ambiguity). Thus, a segmentation
can be achieved by searching over all 6-tuples (or 7-tuples)
of matching points until a consistent set is found. This ap-
proach is general and applies even when the relative motion
between the two bodies is full projective.

Just like in the 2D Segmentation problem, since the rel-
ative motion between the two bodies is pure translation, we
can do better. In fact we need to search over all quadruples
of points instead of 6-tuples. The key is theP4 ! P2 prob-
lem formulation which allows us to describe a multilinear
constraint common to both bodies — as described next.

Let P 2 P3 be a point in 3D. IfP is on the first body,
then a set of camera matricesM1

j , j = 0; 1; 2, provide the
image pointspj �= M1

j P . Likewise, ifP is on the second
body thenpj �= M2

j P . Because the relative motion between
the two bodies consists of pure translation the homography
Aj
1 due to the plane at infinity is the same for thej’th cam-

era matrix of both bodies:

M1

j
�= [Aj

1
v1j ] M2

j
�= [Aj

1
v2j ] :

We “lift” P ontoP4 by defining ~P as follows. IfP belongs
to the first body, then~P �= (P1 P2 P3 P4 0 )

T .
If P belongs to the second body, then~P �=
(P1 P2 P3 0 P4 )

T . The P4 ! P2 projection
matrix would then be:

Mj
�= [Aj

1v
1

j v
2

j ] :

The resulting3� 3� 3 tensor would be derived exactly
as above and would require 13 (unsegmented) points for a
linear solution. Each body is represented by an extensor
of step 4 inP4, thus 4 (segmented) point matches are re-
quired to solve for the extensor. Therefore, once the tensor
is found, 4 segmented points are required to provide a seg-
mentation of the entire point configuration.

2.2 Applications for P5 ! P2

There are a number of instantiations ofP5 ! P2. The
first is the projection from 3D lines represented by Pl¨ucker
coordinates to 2D lines [5]:l �= ~ML where the three rows
of ~M are the result of the “meet” [2] operation of pairs of
rows of the original3 � 4 camera projection matrix, i.e.,
each row of ~M represents the line of intersection of the two
planes represented by the corresponding rows ofM .

The resulting multi-view tensors in the straight-forward
sense represent the ”trajectory triangulation” introduced in
[1] which models the application of a moving pointP along
a straight lineL such that in thej’th view we observe the
projection ofpj of P . Thus,p>j ~ML = 0 for all views ofP .
In the situation of trajectory triangulation, in each view we
have an imagePi of a point which lies on the line in 3D. So
pTi MiL �= pTi li = 0. The determinant of the6 � 6 matrix
whose rows arep>j ~M must vanish. The resulting tensor
is 36 and thus would require 728 matching points across 6
views in order to obtain a linear solution. Naturally, this
situation is unwieldy application-wise.

A more tractable tensor (in terms of size) would arise
from adding two more assumptions (i) the motion of the
point is with constant velocity, and (ii) all the line trajecto-
ries are coplanar. We have the following problem definition:

Problem Definition 4 (3D Dynamic Scene, Coplanar Motion)
We are given (general) views of a 3D configuration of points
where each point may move independently along some
straight-line path with a constant velocity motion. All
the line trajectories are coplanar. Describe the algebraic
constraints of this situation.

Following the derivation of Problem 2, thej’th projec-
tion matrix ~Mj has the form[Mj ; jMjdP1; jMjdP2] where
Mj is the corresponding3� 4 camera matrix anddP1; dP2
span the 2D plane of trajectories. The points inP5 have
the formPi = (Xi; Yi; Zi; 1; �i; �i)

>, thuspij �= ~MjPj .
The resulting tensorial relation follows from 3 views, as
follows. For a triplet of matching pointsp; p0; p00 denote
the liness = (1; 0;�x) and r = (0; 1;�y) coincident
with p and likewise the liness0; r0 and the liness00; r00.
Thus the two rowss> ~M , andr> ~M per camera (and like-
wise with ~M 0 and ~M 00) form a 6 � 6 matrix with a van-
ishing determinant. The determinant expansion provides a
multilinear constraint ofp; p0; p00 with a 3 � 3 � 3 tensor
pip0jp00kEijk = 0. Therefore 26 matching triplets across 3
views are sufficient for a solution (compared to 728 points
across 6 views).

Finally, we can make the following analogy between
P5 ! P2 and planar dynamic scenes with general motion
(no constant velocity assumption). The case of planar dy-
namic motion across three views was introduced in [12],
where the constraint is based on the fact that ifp; p0; p00 are
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projections of a moving pointP along some line on a fixed
world plane, thenHp;H 0p0; p00 are collinear, whereH;H 0

are homography matrices aligning images 1,2 onto image
3 (H;H 0 are uniquely defined as a function of the position
of the three cameras and the position of the world plane on
which the pointsP reside). We make the following claim:
in the context ofP5 ! P2, there exist two such homog-
raphy matricesH;H 0 from images 1,2 onto image 3, such
that the projections of pointsP 2 P5 onto the three image
planes produces a set of 3 collinear points.

Claim 1 (Dynamic Coplanar, General Motion) Given
three viewsp; p0; p00 of a point configuration inP 2 P5,
there exist homographiesH andH 0 suchHp;H 0p0; p00 are
collinear.

Proof: The key observation is that without loss of gener-
ality we can choose a projective coordinate system (inP5)
such that the first two projection matrices are of the form
[A3�3 03�3 ], and [ 03�3 B3�3 ]. The third projection
matrix will have some general form[C3�3 D3�3 ]. Let
H = CA�1 andH 0 = DB�1 and letP = (p1; � � � ; p6).
Then,Hp �= C(p1; p2; p3)

> andH 0p0 �= D(p4; p5; p6)
>,

whereasp00 �= C(p1; p2; p3)
> +D(p4; p5; p6)

>.

2.3 Applications for P6 ! P2

In this section we consider the most general constant ve-
locity tensor - the tensor of constant velocity in 3D, where
direction of motion is not restricted and the cameras are
general3� 4 projective cameras.

Problem Definition 5 (3D Dynamic Scene)We are given
(general) views of a 3D configuration of points. Each point
may move independently along some straight-line path with
a constant velocity motion. Describe the algebraic con-
straints necessary for reconstruction of the points in 3D and
their velocities.

Let Pi = (Xi; Yi; Zi; 1)
>, i = 1; :::; n, be a configura-

tion of points in 3D (Affine space) moving along a direction
dPi = (dXi; dYi; dZi; 0)

> such that at timej = 0; 1; 2; 3
the position of each point isPi + jdPi. LetMj denote the
j’th 3 � 4 camera matrix, andM�

j denote the left3 � 3
sub-matrix ofMj . The projectionpij of Pi on view j is
described bypij �= ~Mj

~Pi where ~Mj = [Mj M�
j ] and

~Pi = (Xi; Yi; Zi; 1; dXi; dYi; dZi)
>.

The resulting tensorial relation follows from 4 views,
as follows. denote bysj = (1; 0;�xj)

> and rj =
(0; 1;�yj)

> be lines coincident with the projectionspj �=
(xj ; yj ; 1)

> of a point ~P . We construct a7� 7 matrix with
a vanishing determinant such that it’s first 6 rows ares>j

~Mj

andr>j ~Mj , j = 0; 1; 2, and for the 7’th rowl000> ~M3 where

l000 is any line coincident with the projectionp3. The de-
terminant expansion is a multilinear relations between the
image pointsp0; p1; p2, denoted now byp; p0; p00 and the
line l000 with a 34 tensorBq

ijk , i.e., pip0jp00kl000q B
q
ijk = 0.

Since we can take any linel000 coincident with the 4’th im-
age points each quadruple of matching points provides 2
linear constraints on the tensor, hence 40 matching points
across 4 views are sufficient to uniquely (up to scale) de-
termine the tensor. The process for extracting the camera
matricesMj up to a 3D affinity is described in section 3.

3 The Geometry ofPk ! P2

We will derive the basic elements for describing and re-
covering the projective matrices ofPk ! P2. These ele-
ments are analogous to the role homography matrices and
epipoles play in theP3 ! P2 setting) inPk ! P2 ge-
ometry. We will start with some general concepts that are
common to all the constructions ofPk ! P2 and then pro-
ceed to the detailed derivation ofP4 ! P2. The detailed
derivation ofP6 ! P2 can be found in the full-length ver-
sion of this work [14].

We use the termextensor(cf. [2]) to describe the linear
space spanned by a collection of points. A point will be
extensor of step 1, a line is an extensor of step 2, a plane
is an extensor of step 3, and a hyper-plane is an extensor of
stepk in Pk. InPn, the union (join) of extensors of stepk1
and stepk2, wherek1 + k2 � n + 1 is an extensor of step
k1+ k2. The intersection (meet) of extensors of stepk1 and
k2 is an extensor of stepk1 + k2 � (n + 1). Given these
definitions, the following statements immediately follow:

� Thecenter of projection(COP) of aPk ! P2 projec-
tion is an extensor of stepk � 2. Recall that the center
of projection is the null space of the3�(k+1) projec-
tion matrix, i.e., the center of projection ofP3 ! P2

is apoint, ofP4 ! P2 is a line and ofP6 ! P2 is an
extensor of step 4.

� Theline of sight(image ray) joins the COP and a point
(on the image plane). Thus, forP3 ! P2 the line
of sight is a line, forP4 ! P2 the line of sight is
plane (extensor of step 2+1), and forP6 ! P2 it is an
extensor of step 5.

� The intersection of two lines of sight (a ”triangulation”
as it is known inP3 ! P2) is the meet of two lines
of sights. Thus, inP3 ! P2 the intersection is either
a point or is not defined (2+2-4=0), i.e., when the two
lines are skew. InP4 ! P2 the intersection always
exists and is also a point (3+3-5), and inP6 ! P2 the
intersection is a plane (5+5-7). Note that simply from
these counting arguments it is clear that inP3 ! P2

two views of matching points provide constraints on
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the geometry of camera positions, yet two views in
P4 ! P2 do not provide any constraints (because
image rays always intersect), thus one needs at least
3 views of matching points in order to obtain a con-
straint, and inP6 ! P2 one would need at least 4
views for a constraint (two rays intersect at a plane, a
plane and a ray intersect at a point (3 + 5 � 7), thus
three image rays always intersect).

� The “epipole” inP3 ! P2 is defined as the intersec-
tion between the line joining two COPs and an image
plane (thus, for a pair of views we have two epipoles,
one on each image plane). Or, equivalently, if~Mi; ~Mj

are the projection matrices, then~Minull( ~Mj) is the
epipole on viewi. This definition extends toP4 ! P2

where the join of the two COPs is an extensor of step
4 (each COP is an extensor of step 2) and its meet with
an image plane is an extensor of step4 + 3 � 5, i.e.,
is a line. Thus, the epipoles ofP4 ! P2 are lines
on their respective image planes. This definition, how-
ever, does not extend toP6 ! P2 where the join of
two COPs (4+4) fills the entire spaceP6. We define
instead a “joint epipole”, described in [14].

3.1 The Geometry ofP4 ! P2

Recall from the preceding section that one needs at least
three views of matching points in order to obtain a con-
straint (because two image rays always intersect inP4 !

P2). We also noted in Problem 1 that the multi-linear con-
straint across three views takes the form of a3 � 3 � 3
tensorAk

ij which is contracted by two points and a line.
In other words, letp; p0; p00 be three matching points along
views 1,2,3 and lets00; r00 be any two lines coincident with
p00. The multilinear constraint is expressed as follows:

pip0js00kA
k
ij = 0;

where the index notations follow the covariant-
contravariant tensorial convention, i.e.,pisi stands for
the scalar productp>s and superscripts represent points
and subscripts represent lines. The entries of the tensor
Ak
ij is a multilinear function of the entries of the three

projection matrices~M; ~M 0 and ~M 00. The constraint itself is
a point-point-line constraint, thus a tripletp; p0; p00 provides
two linear constraintspip0js00kA

k
ij = 0 andpip0jr00kA

k
ij = 0

on the entries ofAk
ij . Therefore, 13 matching triplets are

sufficient for a (linear) solution. We will assume from now
on that the tensorAk

ij is given (i.e., recovered from image
measurements) and we wish to recover the3� 5 projection
matrices ~M; ~M 0; ~M 00.

We begin by deriving certain useful properties of the ten-
sor slices from which we could then recover the basic el-
ements (epipoles, homography matrices) of the projection
elements.

Claim 2 (point transfer)

pip0jAk
ij
�= p00k (1)

Proof: Follows from the fact thatpip0js00kA
k
ij = 0

for any line s00 coincident withp00. From the covariant-
contravariant structure of the tensor,pip0jAk

ij is a point
(contravariant vector), let this point be denoted byqk.
Hence,qks00k = 0 for all lines s00 that satisfys00kp

00k = 0.
Thusq andp00 are the same.

Note that the rays associated withp; p0 are extensors of
step 3, i.e., a plane. The intersection of those rays is a point
(as explained in the preceding section), and thuspip0jAk

ij is
the back-projection onto view 3 (projection of a point is a
point). Similarly, letl00 be some line in image 3 (extensor
of step 2), thus the image ray associated with a pointp0 in
image 2 and the extensor of step 4 associated with the join
of l00 and the COP of camera 3 meet at a line (3+4�5 = 2)
and let the projection of this line onto image 1 be denoted
by l. The relationship betweenp0; l00; l is captured by the
tensor:p0jl00kA

k
ij
�= li.

Claim 3 (homography slice) Let Æj be any contravariant
vector. The3�3 matrixÆjAk

ij is a homography matrix (2D
collineation) from views 1 to 3 induced by the plane defined
by the join of the COP of the second projection matrix and
the image pointÆ in view 2 (i.e., the image ray correspond-
ing to Æ).

Proof: Consider(ÆjAk
ij)p

i = qk, from the point transfer
equation 1 we have thatq is the projection onto view 3 of
the intersections of the two planes corresponding to the line
of sightp and line of sightÆ (recall that each line of sight is
a plane inP4 and that two planes generally intersect at as
point). Let�Æ denote the plane associated with the line of
sightÆ. If we fix Æ and vary the pointp over image 1, then
the resulting pointsq are projection of points on the plane
�Æ onto image 3. Thus the matrixÆjAk

ij is projective trans-
formation from image 1 to image 3 induced by the plane�Æ .

Note thatÆjAk
ij is a linear combination of the three slices

Ak
i1;A

k
i2 andAk

i3. Thus, in particular a slice (through the
“j” index) produces a homography matrix. Likewise,ÆiAk

ij

is a homography matrix from image 2 to image 3 induced
by the plane associates with the image ray of the pointÆ in
image 1.

Now that we have the means to generate homography
matrices from the tensor, we are ready to describe the recov-
ery of the epipoles. Let the (unknown) projection matrices
be denoted by~M1; ~M2 and ~M3. Let eij = ~Minull( ~Mj) be
the epipole (a line) as the projection of COPj onto viewi.

Claim 4 (epipoles) LetHij ; Gij be two (full-rank) homog-
raphy matrices from viewi to viewj induced by two distinct
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(but arbitrary) planes. The epipoleeji is one of the gener-
alized eigenvectors ofHT

ij ; G
T
ij , i.e., satisfies the equation:

(H>

ij + �G>ij)eji = 0:

Proof: LetHij be any (full-rank) homography matrix from
view i to view j. Thus,H�T

ij maps lines (dual space) from
view i to view j. Because epipoles are lines inP4 ! P2

geometry, we haveH�T
ij eij �= eji and converselyH>

ij eji
�=

eij . Thus, given two such homography matrices, there ex-
ists a scalar� such that(H>

ij + �G>ij)eji = 0.
Note that from slices ofAk

ij we can obtain three lin-
early independent homography matrices, thus we can find
a unique solution toeji (each pair of homography matrices
produces three solutions). Now that we have the means to
recover epipoles and homography matrices we can proceed
to the central result which is the reconstruction theorem:

Theorem 1 (reconstruction) There exists a projective
frame for which the first projection matrix takes the form
[I3�3; 03�2] and all other projection matrices (of views
2,3,...) take the form:

~Mj = [Hj ; vj ; v
0

j ]

whereHj is a homography matrix from view 1 toj induced
by a fixed (but arbitrary) plane�, andvj ; v0j are two points
on the epipole (a line)ej1 on viewj (projections of two fixed
points in the COP of camera 1 onto viewj).

Proof: Consider two views with projection matrices~M1

and ~M2, a pointP in space and matching image points
p; p0 satisfyingp �= ~M1P andp0 �= ~M2P . Let W be a
(full-rank) 5 � 5 matrix representing some arbitrary pro-
jective change of coordinates, thenp �= ~M1WW�1P and
p0 �= ~M2WW�1P , thus we are allowed to chooseW at
will because reconstruction is only up to a projectivity in
P4. Let C;C 0 be two points spanning the COP of cam-
era 1, i.e., two points spanning the null space of~M1, thus
~M1C = 0 and ~M1C

0 = 0. Let W = [U;C;C 0] for some
5 � 3 matrix U chosen such that~M1U = I3�3. Clearly,
~M1W = [I3�3; 03�2].

Let U be chosen to consist of the first 3 columns of the
matrix:

U =

�
~M1

C�

��1
1�3

where the subscript 1–3 signals that we are taking only
columns 1–3 from the5 � 5 matrix, andC� is the2 � 5
matrix defining the plane�, i.e.,C�P = 0 for all P 2 �.
Recall that a plane inP4 is the intersection (meet) of two
hyperplanes (extensor of step 4) because4+4�5 = 3, thus
a plane is defined by a2 � 5 matrix whose rows represent
the hyperplanes. We have that~M1U = I3�3. Consider

~M2W = ~M2[U;C;C
0] = [ ~M2U; v; v

0]

wherev = ~M2C andv0 = ~M2C
0 are two points on the

epipolee21. Recall thate21 = ~M2null( ~M1) andnull( ~M1)
is spanned byC;C 0. What is left to show is that~M2U is
a homography matrixH� from view 1 to 2 induced by the
plane�. This is shown next.

We have that�
~M1

C�

�
P =

�
~M1P
C�P

�
�=

0
@ p

0
0

1
A 8P 2 �

From which we obtain:

~M2Up = ~M2

�
~M1

C�

��10@ p
0
0

1
A = ~M2P �= p0

Thus, we have shown that~M2Up �= p0 for all matching
points arising from pointsP 2 �.

Taken together, by using the homography slices of the
tensor we can recover~M2. The third projection matrix~M3

can be recovered (linearly) from the tensor and~M1; ~M2 be-
cause the tensor is a multi-linear form whose entries are
multi-linear functions of the three projection matrices. Fi-
nally, it is not difficult to see that the family of homography
matrices (as a function of the position of the plane�) has
the general form with 7 degrees of freedom:

H�1 = �H�2 + vnT + v0n0T ;

where�; n; n0 are general.

3.2 Reconstruction of theP3 ! P2 Camera Ma-
trices

Given that we have recovered the projection matrices
~Hj , j = 1; 2; 3, of P4 ! P2, and the projection matri-
ces ~Mj , j = 1; 2; 3; 4 of P6 ! P2 we wish to recover
the original3 � 4 camera matrices up to a 3D Affine am-
biguity. The special structure of the matrices~H and ~M —
they have repeated scaled columns — provides us with lin-
ear constraints on a the coordinate change inPk ! P2

which will transform the recovered matrices~H and ~M to
the admissible ones we are looking for.

In the case ofP4 ! P2, since the third column of~Hj is
unconstrained, the family of collineations ofP4 ! P2 that
leave the structural form intact is organized as follows:0

BBB@
a b e 0 0
c d f 0 0
0 0 g 0 0
0 0 h a b
0 0 i c d

1
CCCA

Note that we have 9 degrees of freedom up to scale, which
means we have 8 free parameters — 2 more than what is al-
lowed for a 2D affinity. The extra degrees of freedom could
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be compensated for by applying another transformation of
the form: 0

BBB@
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 ĥ 1 0
0 0 î 0 1

1
CCCA :

The unknown variableŝh andî can be solved using a single
static point, as follows. LetbHj be the projection matrices
up to the unknown correction̂h andî. LetHj to be the left
3� 3 part of bHj . Let p1; p2 be a matching pair in views 1,2
of a static point. Then,

p2 �= H2

2
4 1 0 ĥ
0 1 î
0 0 1

3
5H�1

1
p1

This gives us two linear equations for solvingĥ andî. The
resulting homography matrices (up to a 2D Affine ambigu-
ity) are:

H1; H2

2
4 1 0 ĥ
0 1 î
0 0 1

3
5 ; H3

2
4 1 0 2ĥ
0 1 2î
0 0 1

3
5

The case ofP6 ! P2 and segmentation tensors are de-
scribed in [14].

4 Experiments

We describe an experiment for one of the applications
in this paper, the 3D segmentation tensor (Problem 3). Re-
call that we observe views of a scene containing two bodies
moving in relative translation to one another. TheP4 ! P2

problem formulation requires a matching set of at least 13
points across 3 views where the points come from both bod-
ies in an unsegmented fashion. The triplets of matching
points are used to construct the3 � 3 � 3 tensorAk

ij such
that with the segmentation of 4 points on one of the bodies
one can then segment the entire scene.

The scene in the experiment, displayed in Fig. 1, consists
of a rigid background (first body) and a foreground con-
sisting of a number of vehicles moving cohesively together
(second body). Image points were identified and tracked
using openCV’s [11] KLT [9] tracker. Fig. 1(a) shows one
of the three views, Fig. 1b shows the points which were
tracked along the sequence and used for recovery of the
tensor. Fig. 1c shows the 4 labeled points (on the back-
ground body) used to segment the entire scene, and Fig. 1d
shows the segmentation result — all points on the back-
ground body were correctly classified as such.

5 Summary

We have introduced multi-view constraints of scenes
containing multiple linearly moving points. The constraints
were derived by “lifting” the non-rigid 3D phenomena into
a rigid configuration in a higher dimensional space ofPk.
We have presented 6 applications for various values ofk
ranging from 3 to 6. To summarize, the table below lists the
various applications ofPk ! P2 which were presented in
the preceding sections.

Pk Tensor Name Size ref.
P3 2D segmentation tensor 32 ??
P4 2D constant velocity tensor 33 2.1
P4 3D segmentation tensor 33 2.1
P4 3D constant collinear velocity 33 2.1
P5 3D constant coplanar velocity 33 2.2
P6 3D constant velocity tensor 34 2.3

In the second part of the paper (Section 3) we worked
out the details of describing and recovering3 � (k + 1)
projection matrices (fork = 4, see [14] fork = 6) from the
multi-view tensors’ slices, and the details of recovering the
3�4 original camera matrices from the projection matrices.
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