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Abstract can move independently along some arbitrary trajectory
(straight line path and in some cases second-order) while
Projection matrices from projective spacé® to P2 the camera is undergoing general motion (in 3D projective

have long been used in multiple-view geometry to modelspace). For brevity, we will refer to such a sceneysamic
the perspective projection created by the pin-hole camera.Whereas the conventionalrigid body configuration would be
In this work we introduce higher-dimensional mappings referred to astatic Dynamic configurations, for example,
Pk — P2 | = 4,5,6 for the representation of various include as a particular case multi-body motion, i.e., when
applications in which the world we view is no longer rigid. €ach body contains multiple points rigidly attached to the
We also describe the multi-view constraints from these newsame coordinate system [3, 6]

projection matrices and methods for extracting the (non-

rigid) structure and motion for each application. In this paper we address the geometry of multiple views

of dynamic scenes from the point of viewldfing the prob-
) lem to a static scene embedded in a higher dimensional
1 Introduction space. In other words, we investigate camera projection
matrices ofP* —s P2, k = 4,5,6 for modeling a static
The projective camera model, represented by the map-body in k-dimensional projective spa@ projected onto
ping between projective spac® — P2, has long been the image spac®2. These projection matrices model dy-
used to model the perspective projection of the pin-hole namic situations in 2D and 3D. We will consider, for ex-
camera in Structure from Motion (SFM) applications in ample, three different applications &* — P2 which
computer vision. These applications include photogram-include (i) multiple linearly moving coplanar points under
metry, ego-motion estimation, feature alignment for vi- constant velocity, (ii) 3D points moving in constant velocity
sual recognition, and view-synthesis for graphics rendering.along a common single direction, and (iii) Two-body seg-
There is a large body of literature on the projective cameramentation in 3D — the resulting tensor is referred to as the
model in a multi-view setting with the resulting multi-linear 3D segmentatiotensor. Projection matri®> — P2 is
tensors as the primitive building-blocks of 3D computer vi- shown to model moving 3D points under constant veloc-
sion. A summary of the past decade of work in this area ity and coplanar trajectories (all straight line paths are on a
with a detailed exposition of the multi-linear maps with plane). Projection matriR® —s P2 is shown to model the
their associated tensors (bifocal, trifocal and quadrifocal) general constant velocity multiple linearly moving points
can be found in [8] and earlier work in [4]. in 3D. The latter was derived in the past by [7] for ortho-
The literature mentioned above is mostly relevant to a graphic cameras while here we take this further and address
static scene, i.e., a rigid body viewed by an uncalibrated the problem in the general perspective pin-hole (projective)
camera. Recently, however, a new body of work has ap-setting.
peared [1, 12, 10, 13, 7] which assumes a configuration

of points in which every single point in the configuration  Following the introduction oP* — 2 and their role
in dynamic SFM, we describe the construction of tensors

o ; ; . ; from multi-view relations of each model and the process
guidelines of this proceedings. The full-length version of this work . . .
can be found in http:/www.cs.huji.acdl/ shashua/papers/pkp2 — for recovering the camera motion parameters (the physical
journal.pdf cameras) and the 3D structure of the scene.

*The length of this paper was considerably reduced to fit the length



2 Applications of P* — P? whereH; is a3 x 5 matrix [H;, jH?]. We have therefore
aP* — P? formalismp; = H;P whereP € P*. The

We will describe below a number of different applica- geometry of such projections is described in more detail in
tions for values ofk = 4,5,6 (for k = 3 see [14]). section 3 and as an example, the center for projection is no

These applications include multi-body segmentation (we longer a point but an extensor of step 2, i.e., aline.
call “segmentation tensors”) and multiple linearly moving ~ Lets; = (1,0,—z;) andr; = (0,1,—y;). Letl» be

points. any line such that] p, = 0. Then,0 = s/ p; = s] H; P,
0= IQTI:IzP. Therefore, two points and a line provide a
2.1 Applications for P* — P2 constraint as follows:
. . . - Sgﬁo
We introduce three different instantiations®@t — P> rd Hy
in the context of dynamic SFM. The first application con- det SQFHI —0
sists of three views of multiple linearly moving coplanar riTIEE

points under constant velocity, second is constant velocity
multiple linearly moving points in 3D where all trajectories

are parallel to each other, and third is the 3D segmentationyne geterminant expansion provides a multilinear con-

tensor. straint with a3 x 3 x 3 tensor described next. It will be use-
o _ ful to switch notation: lep, p', p” replacepy, p1, p> respec-
Problem Definition 1 (Coplanar Dynamic Scene)We tively, and likewise lets, s', s andr,r', " replaces;, r;,

are given views of a planar configuration of points where ; — (1,2, respectively. The multilinear constraint is ex-
each point may move independently along some straight-pressed as follows:
line path with a constant velocity motion. Describe the

algebraic constraints necessary for reconstruction of cam- p'p"s) Afj =0,
era motion (homography matrices), static versus dynamic . _ _
segmentation, and reconstruction of point velocities. where the index notations follow the covariant-

contravariant tensorial convention, i.epls; stands for

The problem above is a particular case of a more gen-the scalar producp™s and superscripts represent points
eral problem (same as above but without the constant veloc-2nd subscripts represent lines. The entries of the tensor
ity constraint) addressed by [12]. The algebraic constraints-%; is & multilinear function of the entries dff;. The
there were in the form of & x 3 x 3 tensor called “Hten-  constraintitself is a point-point-line constraint, thus a triplet
sor” which requires 26 triplets of point-matches for a solu- »,P',p" provides two linear constrainis'p’/sj Af; = 0
tion. We will show next that the constant-velocity assump- andp’p"/r/ Af; = 0 on the entries ofd};. Therefore, 13
tion reduces the requirements considerably to 13 triplets ofmatching triplets are sufficient for a solution (compared to
point-matches, not to mention that Htensor becomes degen26 triplets for the Htensor of [12]). Further details on the
erate for constant-velocity. The key isPd — P? problem properties ofAfj, how to extract the homographies up to

formulation as follows. an Affine transformation, segment static from non-static
Let H;, j = 0,1,2 denote the homography from points, and how to reconstruct structure and motion are
world plane to thej’th view onto the image points; = found in section 3.

(zj,y;,1)". Let(X,Y,1) be the coordinates of the world . i ) )
point projecting ontg;. Note that since the reconstruction Problem Definition 2 (3D Dynamic Scene, Collinear Motion)

is up to a 3D Affine ambiguity (because of the constant ve- We are given (ggneral) views of§3D configuration of points
locity assumption), then we are allowed to fix the third coor- Where each point may move independently along some
dinate of the world plane to 1. LétX, Y be the direction straight-line path with a constant velocity motion. All

of the constant-velocity motion of the poifiX, Y, 1)T. Let the line trajectories are along the same direction (par-
H denote the lef8 x 2 sub-matrix of ;. We have the allel to each other). DeS(_:rlbe the algebraic constraints
following relation: necessary for reconstruction of camera motidh X 4

projection matrices), static versus dynamic segmentation,
and reconstruction of point velocities.

X
X dX y Let P, = (X;,Y;,7Z;,1)T, i = 1,...,n, be a con-
pi2H; | Y | +jH;|ay | =H;| 1 figuration of points in 3D (Affine space) moving along a
1 0 dX fixed directiondP = (dX,dY,dZ,0)" such that at time
dy j = 0,...,m the position of each point i&; + j\;dP. Let



M; denote thg'th 3 x 4 camera matrix, and let;; denote 2.2  Applications for P> — P2
the projection ofP; on viewj:
There are a number of instantiations@t — P2. The

X
Y»Z first is the projection from 3D lines represented bydRier
(2 . . ~ ~
pij = M;(Pi+ jNdP) = [M; jM;dP)| Z: |, coordinates to 2D lines [5]6 = ML where thgz three rows
1 of M are the result of the “meet” [2] operation of pairs of

\; rows of the original3 x 4 camera projection matrix, i.e.,
each row ofM represents the line of intersection of the two
which is again @* — P? problem formulation. Further planes represented by the corresponding rows of
details can be found in the section 3. The resulting multi-view tensors in the straight-forward
sense represent the "trajectory triangulation” introduced in
[1] which models the application of a moving poiitalong
a straight lineL, such that in the’'th view we observe the
projection ofp; of P. Thus,p] ML = 0 for all views of P,
In the situation of trajectory triangulation, in each view we
have an imagé; of a point which lies on the line in 3D. So
Clearly, one can approach this problem using trifocal p/ M;L = p{i; = 0. The determinant of thé x 6 matrix
tensors. The motion of each body is captured by a trifocal whose rows ar@jTM must vanish. The resulting tensor
tensor which requires 7 points (or 6 points for a non-linear is 3% and thus would require 728 matching points across 6
solution up to a 3-fold ambiguity). Thus, a segmentation views in order to obtain a linear solution. Naturally, this
can be achieved by searching over all 6-tuples (or 7-tuples)situation is unwieldy application-wise.
of matching points until a consistent set is found. This ap- A more tractable tensor (in terms of size) would arise
proach is general and applies even when the relative motionfrom adding two more assumptions (i) the motion of the
between the two bodies is full projective. point is with constant velocity, and (ii) all the line trajecto-
Just like in the 2D Segmentation problem, since the rel- ries are coplanar. We have the following problem definition:
ative motion between the two bodies is pure translation, we
can do better. In fact we need to search over all quadrupled®roblem Definition 4 (3D Dynamic Scene, Coplanar Motion)
of points instead of 6-tuples. The key is tRé — P2 prob- We are given (general) views of a 3D configuration of points
lem formulation which allows us to describe a multilinear Where each point may move independently along some
constraint common to both bodies — as described next. ~ Straight-line path with a constant velocity motion. All
Let P € P3 be a point in 3D. IfP is on the first body,  the line trajectories are coplanar. Describe the algebraic

then a set of camera matrica!, j = 0,1,2, provide the ~ constraints of this situation.

) NSSUR i A
image pointp; = M; P. Likewise, if P’ is on the second Following the derivation of Problem 2, théth projec-

body therp; = M]‘?P._ Because the relative motion between jop matrix}; has the fornil;, jM;dP;, j M;dP,] where
the two bodies consists of pure translation the homographyMj is the corresponding x 4 camera matrix andP, , dP,

Problem Definition 3 (3D Segmentation)\We are given
three general views of a 3D point configuration consisting
of two bodies moving relatively to each other by pure trans-
lation. Describe algebraic constraints necessary for seg-
menting the two bodies from image measurements.

AL, due to the plane atinfinity is the same for ffith cam-  gpan the 2D plane of trajectories. The pointsih have
era matrix of both bodies: the form P, = (X;,Y;, Zi,1, A, i) T, thuspy; = M, P;.
MP=[Alo}] M?]Al ). The resulting tensorial relation follows from 3 views, as

g follows. For a triplet of matching pointg, p’, p” denote
We “lift” P ontoP* by definingP as follows. IfP belonjgs the liness = (1,0,—z) andr = (0,1, —y) coincident
)

to the first body, then® = (P P, P; Py 0 with p and likewise the lines’,r’ and the liness”,r".

If P belongs to thj? second body, thef = Thus the two rows "M, andr ™ M per camera (and like-
(P P, Py 0 P)°. TheP® — P? projection  wise with A" and }") form a6 x 6 matrix with a van-
matrix would then be: ishing determinant. The determinant expansion provides a

multilinear constraint op, p’, p”" with a3 x 3 x 3 tensor
p'pp"kE;;r = 0. Therefore 26 matching triplets across 3
The resulting3 x 3 x 3 tensor would be derived exactly views are sufficient for a solution (compared to 728 points
as above and would require 13 (unsegmented) points for aacross 6 views).
linear solution. Each body is represented by an extensor Finally, we can make the following analogy between
of step 4 inP*4, thus 4 (segmented) point matches are re- P> — P2 and planar dynamic scenes with general motion
quired to solve for the extensor. Therefore, once the tensor(no constant velocity assumption). The case of planar dy-
is found, 4 segmented points are required to provide a seghamic motion across three views was introduced in [12],
mentation of the entire point configuration. where the constraint is based on the fact that if , p” are

M; = [A(J)ov]lvf] )



projections of a moving poinP along some line on a fixed
world plane, therH p, H'p', p" are collinear, wheréf, H'

' is any line coincident with the projectigry. The de-
terminant expansion is a multilinear relations between the

are homography matrices aligning images 1,2 onto imageimage pointspg, p1, p2, denoted now by, p', p"" and the

3 (H, H' are uniquely defined as a function of the position

of the three cameras and the position of the world plane onSince we can take any Iirié’ coincident with th

which the pointsP reside). We make the following claim:

in the context ofP> — P2, there exist two such homog-
raphy matricesd, H' from images 1,2 onto image 3, such
that the projections of point8 € P° onto the three image

planes produces a set of 3 collinear points.

Claim 1 (Dynamic Coplanar, General Motion) Given
three viewsp, p', p" of a point configuration inP € P?,
there exist homographidd and H' suchHp, H'p', p" are
collinear.

Proof: The key observation is that without loss of gener-
ality we can choose a projective coordinate systen{h
such that the first two projection matrices are of the form
[A3xs 03x3], and[03x3 Bsxs]. The third projection
matrix will have some general forfiCs,3  Dsy3]. Let
H=CA'andH' = DB ! and letP = (p1,---,ps).
Then,Hp = C(p1,pa2,p3)" andH'p' = D(ps,ps,ps) ",
wherea®” 2 C(py,p2,p3) " + D(ps,ps5,p6) " - []

2.3 Applications for P¢ — P?

e 4'th im-
age points each quadruple of matching points provides 2
linear constraints on the tensor, hence 40 matching points
across 4 views are sufficient to uniquely (up to scale) de-
termine the tensor. The process for extracting the camera
matricesM; up to a 3D affinity is described in section 3.

line 1" with a 3* tensorB{,,,, i.e., p'p"p"* 1}’ B, = 0.

3 The Geometry of P¥ — P?

We will derive the basic elements for describing and re-
covering the projective matrices &% — P2. These ele-
ments are analogous to the role homography matrices and
epipoles play in the?® — P? setting) inP* — P? ge-
ometry. We will start with some general concepts that are
common to all the constructions 8 — P? and then pro-
ceed to the detailed derivation #* — P2. The detailed
derivation ofP® — P2 can be found in the full-length ver-
sion of this work [14].

We use the ternextensor(cf. [2]) to describe the linear
space spanned by a collection of points. A point will be
extensor of step 1, a line is an extensor of step 2, a plane
is an extensor of step 3, and a hyper-plane is an extensor of
stepk in P*. In P™, the union (join) of extensors of stép

In this section we consider the most general constant ve-5 ¢ stepks, wherek; + ky < n + 1 is an extensor of step

locity tensor - the tensor of constant velocity in 3D, where
direction of motion is not restricted and the cameras are
generaB x 4 projective cameras.

Problem Definition 5 (3D Dynamic Scene)We are given
(general) views of a 3D configuration of points. Each point
may move independently along some straight-line path with
a constant velocity motion. Describe the algebraic con-
straints necessary for reconstruction of the pointsin 3D and
their velocities.

Let P, = (X;,Y;, Z;,1)T,4i = 1,...,n, be a configura-
tion of points in 3D (Affine space) moving along a direction
dP; = (dX;,dY;,dZ;,0)" such that at timg = 0,1,2,3
the position of each point iB; 4 jdP;. Let M; denote the
J'th 3 x 4 camera matrix, and/; denote the lef8 x 3
sub-matrix ofM;. The projectiorp;; of P; on view j is
described by;; = M;P; whereM; = [M; M} ] and
Pi - (XZ, }/i) Zi, ]-7 dXZ; dK) de)T

The resulting tensorial relation follows from 4 views,
as follows. denote by; = (1,0,—z;)" andr;
(0,1,—y;) " be lines coincident with the projectiops =
(zj,y;,1)" ofa pointP. We construct & x 7 matrix with
a vanishing determinant such that it’s first 6 rows%Téij

andr] Mj, j = 0,1,2, and for the 7'th row"'T M5 where

k1 + k2. The intersection (meet) of extensors of skg@nd
ks is an extensor of step; + k2 — (n + 1). Given these
definitions, the following statements immediately follow:

e Thecenter of projectiofCOP) of aP* — P? projec-
tion is an extensor of step— 2. Recall that the center
of projection is the null space of thiex (k+ 1) projec-
tion matrix, i.e., the center of projection & — P>
is apoint, of P* — P? is aline and of P® — P? is an
extensor of step 4.

Theline of sight(image ray) joins the COP and a point
(on the image plane). Thus, f@* — P2 the line
of sight is a line, forP* — P? the line of sight is
plane (extensor of step 2+1), and 8f — P2 itis an
extensor of step 5.

The intersection of two lines of sight (a "triangulation”
as it is known inP? — P?) is the meet of two lines
of sights. Thus, inP? — P? the intersection is either
a point or is not defined (2+2-4=0), i.e., when the two
lines are skew. IrP* — P2 the intersection always
exists and is also a point (3+3-5), and®i — P2 the
intersection is a plane (5+5-7). Note that simply from
these counting arguments it is clear thafih — P2
two views of matching points provide constraints on



the geometry of camera positions, yet two views in Claim 2 (point transfer)
P4 — P2 do not provide any constraints (because

image rays always intersect), thus one needs at least p'pT A ="t 1)
3 views of matching points in order to obtain a con- ik
straint, and inP% — P2 one would need at least 4 Proof:  Follows from the fact thap'p”s A7, = 0

views for a constraint (two rays intersect at a plane, a for any line s coincident withp”. From the covariant-
plane and a ray intersect at a poifit{ 5 — 7), thus contravariant structure of the tenst’fAfj is a point
three image rays always intersect). (contravariant vector), let this point be denoted ddy
Hence,g*s}, = 0 for all lines s” that satisfys}/p"* = 0.
Thusg andp" are the samég]

Note that the rays associated withyp’ are extensors of

e The “epipole” inP? — P? is defined as the intersec-
tion between the line joining two COPs and an image

plane (thus, for a pair of views we have two epipoles, step 3, i.e., a plane. The intersection of those rays is a point
one on each image plane). Or, equivalenthWi, M; - (55 eyplained in the preceding section), and ip8 A% is

are the projection matrices, théd;null(M;) is the  the pack-projection onto view 3 (projection of a point is a
epipole on view. This definition extends t8* — P> poing). Similarly, let!” be some line in image 3 (extensor
where the join of the two COPs is an extensor of Step of step 2), thus the image ray associated with a pgii

4 (each COP is an extensor of step 2) and its meet withjmage 2 and the extensor of step 4 associated with the join
an image plane is an extensor of step- 3 — 5, i.e., of " and the COP of camera 3 meet ata liBe-@ — 5 = 2)

is a line. Thus, the epipoles 6t* — P2 arelines  5n Jet the projection of this line onto image 1 be denoted

on their respective image planes. This definition, how- by I. The relationship betweesi, ", is captured by the
ever, does not extend 8% — P? where the join of tensor:p 1l A¥, = I; w7
PILAY = 1.

two COPs (4+4) fills the entire spa@®. We define

instead a “joint epipole”, described in [14]. Claim 3 (homography slice) Let 7 be any contravariant
A ) vector. The3 x 3 matrixd/ Aj; is a homography matrix (2D
3.1 The Geometry ofP* — P collineation) from views 1 to 3 induced by the plane defined

) ) by the join of the COP of the second projection matrix and
Recall from the preceding section that one needs at Ieastthe image poind in view 2 (i.e., the image ray correspond-
three views of matching points in order to obtain a con- ing t0 4).

straint (because two image rays always interse@4n—
P?). We also noted in Problem 1 that the multi-linear con- pygof: Consider(&j/lfj)pi = ¢*, from the point transfer

straint across three views takes the form o & 3 x 3 equation 1 we have thatis the projection onto view 3 of
tensorAf; which is contracted by two points and a line. the intersections of the two planes corresponding to the line
In other words, lep, p', p” be three matching points along  of sightp and line of sight (recall that each line of sight is
views 1,2,3 and let”, 7" be any two lines coincident with 3 plane inP* and that two planes generally intersect at as
p". The multilinear constraint is expressed as follows: point). Letws denote the plane associated with the line of
pip’szAfj =0, sightd. If we fix § and vary the poinp over image 1, then

_ . . the resulting pointg are projection of points on the plane

where the index notations follow the covariant- 75 onto image 3. Thus the matr&Afj is projective trans-

contravariant tensorial convention, i.epis; stands for formation from image 1 to image 3 induced by the plape
the scalar producp™s and superscripts represent points D

and subscripts represent lines. The entries of the tensor te thaﬂjAfj is a linear combination of the three slices

P > . .
Aij_ is _a mult|I|.nea[ fuNnctlon 9f the entries qf the th_ree Ak A and A%, Thus, in particular a slice (through the
projection matriced/, M’ andM". The constraint itself is “j” index) produces a homography matrix. Likewise¥.
a point-point-line constraint, thus a triplety’, p” provides g 4 homography matrix from image 2 to image 3 induced
two linear constraints’p'/ sii Af; = 0 andp’p’/r A¥; = 0 by the plane associates with the image ray of the pbint
on the entries omg. Therefore, 13 matching triplets are jmage 1.
sufficient for a (Iinear) solution. We will assume from now Now that we have the means to generate homography
on that the tensorl}; is given (i.e., recovered from image matrices from the tensor, we are ready to describe the recov-
measurements) and we wish to recoverdhe5 projection  ery of the epipoles. Let the (unknown) projection matrices
matricesM, M', M". be denoted by, M, and Ms. Lete;; = M;null(M;) be

We begin by deriving certain useful properties of the ten- the epipole (a line) as the projection of C@Bnto view.
sor slices from which we could then recover the basic el-
ements (epipoles, homography matrices) of the projectionClaim 4 (epipoles) Let H;;, G;; be two (full-rank) homog-
elements. raphy matrices from viewto view; induced by two distinct



(but arbitrary) planes. The epipolg; is one of the gener-
alized eigenvectors di;;, G}, i.e., satisfies the equation:
(HJ + )\G;)eﬂ =0.

Proof: Let H;; be any (full-rank) homography matrix from
view i to view j. Thus,Hi;T maps lines (dual space) from
view i to view j. Because epipoles are linest — P?
geometry, we havéli;Teij = ¢;; and conversely{;eﬂ =]
e;j. Thus, given two such homography matrices, there ex-
ists a scalah such thal H;; + AG})e;i = 0]

Note that from slices omfj we can obtain three lin-

early independent homography matrices, thus we can find

a unique solution tej; (each pair of homography matrices

produces three solutions). Now that we have the means to

recover epipoles and homography matrices we can procee
to the central result which is the reconstruction theorem:

Theorem 1 (reconstruction) There exists a projective

frame for which the first projection matrix takes the form
[I5x3;03x2] and all other projection matrices (of views
2,3,...) take the form:

M; = [Hj; v5,]]

whereH; is a homography matrix from view 1 janduced

by a fixed (but arbitrary) plane, andv;, v} are two points
on the epipole (alined;; on view; (projections of two fixed
points in the COP of camera 1 onto vigyv

Proof: Consider two views with projection matricéd;
and M, a pointP in space and matching image points
p,p’ satisfyingp = M;P andp’ = M,P. LetW be a
(full-rank) 5 x 5 matrix representing some arbitrary pro-
jective change of coordinates, therez M;WW 1P and
p = MWW 1P, thus we are allowed to choo3¥ at
will because reconstruction is only up to a projectivity in
P4, Let C,C' be two points spanning the COP of cam-
era 1, i.e., two points spanning the null space\ff, thus
M,C = 0andM,C" = 0. LetW = [U,C, ("] for some
5x3 matrix U chosen such that/;U = I;5. Clearly,
MW = [I3x3;03x2]-

Let U be chosen to consist of the first 3 columns of the

My

matrix: .
v=[ e
Cﬂ' 1-3

where the subscript 1-3 signals that we are taking only
columns 1-3 from thé x 5 matrix, andC; is the2 x 5
matrix defining the plane, i.e.,C,P = 0 forall P € .
Recall that a plane iP* is the intersection (meet) of two
hyperplanes (extensor of step 4) becaisel — 5 = 3, thus

a plane is defined by 2 x 5 matrix whose rows represent
the hyperplanes. We have thet, U = I3.3. Consider

MoW = Ms[U,C, C"] = [MyU, v,v']

wherev = M,C andv' = M,C' are two points on the
epipolee,; . Recall thaky, = Mynull(M,) andnull(M;)
is spanned by”, C’. What is left to show is thab/>U is
a homography matri¥/,. from view 1 to 2 induced by the
planer. This is shown next.

We have that

~ ~ p

M; _( MyP \ o
[C’W]P_<Cﬁp>_ 0 VPeTr

0
From which we obtain:
. . 7 1P .
MgUp:Mg[Ml] 0 | =MyP==yp
Cr 0

c1‘hus, we have shown that/,Up = p' for all matching
points arising from point® € . []

Taken together, by using the homography slices of the
tensor we can recovéil,. The third projection matrix\/;
can be recovered (linearly) from the tensor ad, 11> be-
cause the tensor is a multi-linear form whose entries are
multi-linear functions of the three projection matrices. Fi-
nally, it is not difficult to see that the family of homography
matrices (as a function of the position of the plarjehas
the general form with 7 degrees of freedom:

Hy = AH,, +vn" +v'n'T,

where), n,n' are general.

3.2 Reconstruction of theP? — P2 Camera Ma-
trices

Given that we have recovered the projection matrices
I:Ij,j = 1,2,3, of P* — P2, and the projection matri-
cesM;, j = 1,2,3,4 of P — P2 we wish to recover
the original3 x 4 camera matrices up to a 3D Affine am-
biguity. The special structure of the matricHsand A/ —
they have repeated scaled columns — provides us with lin-
ear constraints on a the coordinate chang®fn — P>
which will transform the recovered matricés and M to
the admissible ones we are looking for.

In the case oP* — P2, since the third column off; is
unconstrained, the family of collineationsBf — P2 that
leave the structural form intact is organized as follows:

a b e 0 0
c d f 0 0
0 0 g 0O
0 0 h a b
0 0 ¢ ¢ d

Note that we have 9 degrees of freedom up to scale, which
means we have 8 free parameters — 2 more than what is al-
lowed for a 2D affinity. The extra degrees of freedom could



be compensated for by applying another transformation of
the form:

coocor
cocoroO
SO O O
o~o oo
—oooco

The unknown variablel andj can be solved using a single
static point, as follows. Letf; be the projection matrices

up to the unknown correctiolhand:. Let H; to be the left

3 x 3 part offlj. Letpy, p2 be a matching pair in views 1,2
of a static point. Then,

p2 = Hy Hi'p

OO =
O = O
e

This gives us two linear equations for soIviﬁgand%. The
resulting homography matrices (up to a 2D Affine ambigu-
ity) are:

10}} 102}}
Hy,H, |0 1 il|,Hs|0 1 2i
00 1 00 1

The case ofP® — P2 and segmentation tensors are de-
scribed in [14].

4 Experiments

We describe an experiment for one of the applications
in this paper, the 3D segmentation tensor (Problem 3). Re-
call that we observe views of a scene containing two bodies
moving in relative translation to one another. e — P>
problem formulation requires a matching set of at least 13
points across 3 views where the points come from both bod-
ies in an unsegmented fashion. The triplets of matching
points are used to construct thex 3 x 3 tensorA¥; such
that with the segmentation of 4 points on one of the bodies
one can then segment the entire scene.

The scene in the experiment, displayed in Fig. 1, consists

of a rigid background (first body) and a foreground con-
sisting of a number of vehicles moving cohesively together
(second body). Image points were identified and tracked
using openCV’s [11] KLT [9] tracker. Fig. 1(a) shows one

of the three views, Fig. 1b shows the points which were

5 Summary

We have introduced multi-view constraints of scenes
containing multiple linearly moving points. The constraints
were derived by “lifting” the non-rigid 3D phenomena into
a rigid configuration in a higher dimensional spacePt
We have presented 6 applications for various valueg of
ranging from 3 to 6. To summarize, the table below lists the
various applications gP* — P2 which were presented in
the preceding sections.

PF Tensor Name Size | ref.
P3 2D segmentation tensor 32 ?7?
Pt 2D constant velocity tensor| 3° 2.1
Pt 3D segmentationtensor | 3% | 2.1
P* | 3D constant collinear velocity 3° 2.1
P5 | 3D constant coplanar velocity 3° | 2.2
P% | 3D constant velocity tensor| 3% | 2.3

In the second part of the paper (Section 3) we worked
out the details of describing and recoveridigc (k + 1)
projection matrices (fok = 4, see [14] fork = 6) from the
multi-view tensors’ slices, and the details of recovering the
3 x 4 original camera matrices from the projection matrices.

References

[1] S. Avidan and A. Shashua. Trajectory triangulation: 3D
reconstruction of moving points from a monocular im-
age sequenceEEE Transactions on Pattern Analysis
and Machine Intelligence22(4):348-357, 2000.

M. Barnabei, A. Brini, and G.C. Rota. On the exte-
rior calculus of invariant theoryl. of Alg, 96:120-160,
1985.

(2]

[3] J. Costeira and T. Kanade. A Multibody Factorization
Method for Independent Moving Object4998 Inter-
national Journal on Computer VisioKluwer, Vol. 29,
No. 3, September, 1998.

[4] O.D. Faugeras.Three-Dimensional Computer Vision:

A Geometric ViewpointMIT Press, 1993.

[5] O.D. Faugeras and B. Mourrain. On the geometry and

algebra of the point and line correspondences between

N images. InProceedings of the International Confer-

ence on Computer Visip@ambridge, MA, June 1995.

tracked along the sequence and used for recovery of thg6] A.W. Fitzgibbon and A. Zisserman. Multibody Struc-

tensor. Fig. 1c shows the 4 labeled points (on the back-

ground body) used to segment the entire scene, and Fig. 1d

shows the segmentation result — all points on the back-
ground body were correctly classified as such.

ture and Motion: 3-D Reconstruction of Independently
Moving Object. InProceedings of the European Con-
ference on Computer Vision (ECCG\Dublin, Ireland,
June 2000.



L R -+ L M T ‘?1;_. _ﬂ

"%

(©) (d)

Figure 1. 3D segmentation tensor experiment. (a) first view out of a sequence of three views of a scene consisting of two bodies
moving in relative translation to one another: the vehicles and the static background. (b) points (unsegmented) matched across the
three views for the purpose of recovering the tené@r. (c) four points (manually chosen) on one body (the background) completely
determine the segmentation of the scene into two bodies (display (d)).

[7] M. Han and T. Kanade. Reconstruction of a Scene with [13] Y. Wexler and A.Shashua. On the synthesis of dy-
Multiple Linearly Moving Obijects. InProc. of Com- namic scenes from reference views. Aroceedings of
puter Vision and Pattern Recognitipdune, 2000. the IEEE Conference on Computer Vision and Pattern

RecognitionSouth Carolina, June 2000.

[8] R.I. Hartley and A. ZissermanMultiple View Geome-
try. Cambridge University Press, 2000. [14] http://www.cs.huji.ac.i shashua/papers/pkp2 —

journal.pdf

[9] B.D. Lucas and T. Kanade. An iterative image reg-
istration technique with an application to stereo vi-
sion. InProceedings IJCAlpages 674—679, Vancou-
ver, Canada, 1981.

[10] R.A. Manning and C.R. Dyer. Interpolating view and
scene motion by dynamic view morphing. Pmoceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognitiorpages 388-394, Fort Collins, Co.,
June 1999.

[11] Open source computer vision library
http://www.intel.com/research/mrl/research/cvlib/

[12] A. Shashua and Lior Wolf. Homography tensors: On
algebraic entities that represent three views of static or
moving planar points. IfProceedings of the European
Conference on Computer Visiobublin, Ireland, June
2000.



