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Abstract

We introduce a 3� 3� 3 tensor Hijk and its dual Hijk which represent the 2D
projective mapping of points across three projections (views). The tensor Hijk is
a generalization of the well known 2D collineation matrix (homography matrix)
and it concatenates two homography matrices to represent the joint mapping
across three views. The dual tensor Hijk concatenates two dual homography ma-
trices (mappings of line space) and is responsible for representing the mapping
associated with moving points along straight-line paths, i.e., Hijk can be recov-
ered from line-of-sight measurements only.

1 Introduction

In this paper we revisit the fundamental element of projective geometry, the
collineation (also referred to as homography matrix) between two sets of points
on the projective plane undergoing a projective mapping. The role of homogra-
phy matrices responsible for mapping point sets between two views of a planar
object is basic in multiple-view geometry in computer vision. The object stands
on its own as a point-transfer vehicle for planar scenes (aerial photographs, for
example) and in applications of mosaicing, camera stabilization and tracking
[6]; a homography matrix is a standard building block in handling 3D scenes
from multiple 2D projections: the \plane+parallax" framework [7, 4, 5, 2] uses
a homography matrix for setting up a parallax residual �eld relative to a pla-
nar reference surface, and the trifocal tensor of three views is represented by a
\homography-epipole" structure whose slices are homography matrices as well
[3,8].

In our work we �rst consider a 3-view version of a projective mapping rep-
resented by a 3� 3� 3 contravariant tensor Hijk, referred to as a homography
tensor (abbreviated as "Htensor"). The entries of the Htensor are bilinear prod-
ucts of the orginal pair of homography matrices and its 27 coe�cients can be
recovered linearly (up to scale) from 4 matching points (lines) across the three



views. The Htensor can perform directly the image-to-imagemapping or alterna-
tively the original piarwise collineations can be linearly recovered from the slices
of the tensor. The 27 entries of the tensor satisfy a number of non-linear con-
straints which are unique to the coupling of three views together | in pairwise
projective mappings all constraints are linear.

We next consider the dual Htensor, a covariant formHijk whose constituents
are dual homography matrices (mapping of line space). The dual Htensor has an
interesting \twist" in the sense that it applies to projections of moving points
following straight-line paths on a planar surface. In other words, if pip0jp00kHijk =
0 then the three optical rays de�ned by the image points p; p0; p00 in views 1,2,3
respectively meet at a line. Consequently, the dual tensor opens new applications
in which static and moving points live together as equal partners | the process
of mapping and estimation of the dual tensor from image measurements need
not know in advance what is moving and what is static.

1.1 Background and Notations

We will be working with the projective plane, i.e., the space P2. Points and lines
are represented by triplets of numbers (not all zero) that de�ne a coordinate
vector. Consider a collection of planar points P1; :::; Pn in space living on a plane
� viewed from two views. The projections of Pi are pi; p

0
i in views 1,2 respectively.

There exists a unique collineation (homography) 3 � 3 matrix A� that satis�es
the relation A�pi �= p0i, i = 1; :::; n, and where A� is uniquely determined by 4
matching pairs from the set of n matching pairs. Moreover, A�T� s �= s0 will map
between matching lines s; s0 arising from 3D lines living in the plane �. Likewise,
A>� s

0 �= s will map between matching lines from view 2 back to view 1.

It will be most convenient to use tensor notations from now on because
the material we will be using in this paper involves coupling together pairs of
collineations into a \joint" object. The distinction of when coordinate vectors
stand for points or lines matters when using tensor notations. A point is an object
whose coordinates are speci�ed with superscripts, i.e., pi = (p1; p2; p3). These
are called contravariant vectors. A line in P2 is called a covariant vector and
is represented by subscripts, i.e., sj = (s1; s2; s3). Indices repeated in covariant
and contravariant forms are summed over, i.e., pisi = p1s1 + p2s2 + p3s3. This
is known as a contraction. For example, if p is a point incident to a line s in P2,
then pisi = 0.

Vectors are also called 1-valence tensors. 2-valence tensors (matrices) have
two indices and the transformation they represent depends on the covariant-
contravariant positioning of the indices. For example, aji is a mapping from
points to points (a collineation, for example), and hyperplanes (lines in P2)
to hyperplanes, because a

j
ip

i = qj and a
j
isj = ri (in matrix form: Ap = q

and A>s = r); aij maps points to hyperplanes; and aij maps hyperplanes to
points. When viewed as a matrix the row and column positions are determined
accordingly: in a

j
i and aji the index i runs over the columns and j runs over

the rows, thus bkja
j
i = cki is BA = C in matrix form. An outer-product of



two 1-valence tensors (vectors), aib
j, is a 2-valence tensor cji whose i; j entries

are aib
j | note that in matrix form C = ba>. A 3-valence tensor has three

indices, say H
jk
i . The positioning of the indices reveals the geometric nature of

the mapping: for example, pisjH
jk
i must be a point because the i,j indices drop

out in the contraction process and we are left with a contravariant vector (the

index k is a superscript). Thus, Hjk
i maps a point in the �rst coordinate frame

and a line in the second coordinate frame into a point in the third coordinate
frame. A single contraction, say piH

jk
i , of a 3-valence tensor leaves us with a

matrix. Note that when p is (1; 0; 0) or (0; 1; 0), or (0; 0; 1) the result is a \slice"
of the tensor.

We will make extensive use of the \cross-product tensor" � de�ned next.
The cross product (vector product) operation c = a�b is de�ned for vectors in
P2. The product operation can also be represented as the product c = [a]�b
where [a]� is called the \skew-symmetric matrix of a". In tensor form we have
�ijka

ibj = ck representing the cross product of two points (contravariant vectors)
resulting in the line (covariant vector) ck. Similarly, �ijkaibj = ck represents
the point intersection of the to lines ai and bj. The tensor �ijk is the anti-
symmetric tensor de�ned such that �ijkaibjck is the determinant of the 3 � 3
matrix whose columns are the vectors a; b; c. As such, �ijk contains 0;+1;�1
where the vanishing entries correspond to arrangement of indecis with repetitions
(21 such entries), whereas the odd permutations of ijk correspond to �1 entries
and the even permutations to +1 entries.

In the sequel we will reserve the indices i; j; k to represent the coordinate
vectors of images 1,2,3 respectively. We will denote points in images 1,2,3 as
p; p0; p00 respectively, thus in a tensor equation these points will appear with
their corresponding indecis | for instance, pip0jp00kHijk = 0.

2 Homography Tensor Hijk

Consider some plane � whose features (points or lines) are projected onto three
views and let A be the collineation from view 1 to view 2, and B the collineation
from view 1 to 3 (we omit the reference to � in our notation). Let P be some
point on the plane � and its projections are p; p0; p00 in views 1,2,3 respectively.
Let q; s; r be some line through p; p0; p00 respectively. We have q>(A>s�B>r) = 0
because A>s is the projection of the line L on � onto view 1, where L projects
to s in view 2, and similarly B>r is a line in view 1 matching the line r in view
3. These two lines must intersect at p (see Fig. 1). In tensor form we have:

qisjrk(�
inuajnb

k
u) = 0; (1)

and we denote the object in parenthesis

Hijk = �inuajnb
k
u (2)

as the Homography Tensor (in short, Htensor). In the remainder of this section
we will investigate the properties and uses of the Htensor along the following
lines:



{ Number of matching points (lines) required for a unique solution for the
Htensor (Proposition 1,2).

{ Slicing properties of the Htensor and the means for recovering the origi-
nal homography matrices A;B from the Htensor (Theorem 1). The nature
of these slices provide the source for 11 non-linear constraints among the
tensor's coe�cients.

{ Image-to-image mapping using the Htensor.
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Fig. 1. The lines s; r are mapped by the dual collineations A>;B> onto view 1, satis-
fying the relationship q>(A>s�B>r) = 0.

The �rst result is that 4 matching triplets provide 26 linearly independent
constraints on the 27 coe�cients of Hijk | hence, a unique solution (up to
scale) is provided from image measurements of 4 points.

Proposition 1. The n'th matching triplet provides 8 � (n � 1) linearly inde-
pendent constraints to the constraints provided from the previous n�1 matching
triplets. Hence, 4 matching triplets provide 8+7+6+5 = 26 linearly independent
constraints.

Proof: The �rst matching triplet provides 8 linearly independent constraints
because a point is spanned by two lines. Take for example the vertical q1i =
(�1; 0; x) and the horizontal q2i = (0;�1; y) lines passing through the point p,
and similarly the horizontal and vertical lines s1j ; s

2

j through the point p0 and the

lines r1k; r
2

k through p00 and we have the eight constraints:

q
�
i s

�
j r

�
kH

ijk = 0; �; �; � = 1; 2:

Consider the second matching triplet p2; p
0
2
; p00

2
and one of the constraints de�ned

by selecting the line q to pass through p2 and p, the line s to pass through p
0
2
and

p0 and the line r to pass through p00
2
and p00. Clearly, these lines are spanned by the

lines through p; p0; p00, thus the added constraint is linearly spanned by the eight



constraints provided by p; p0; p00. Hence, the second matching triplet contributes
only 7 additional linearly independent constraints to the 8 constraints from the
�rst matching triplet (see Fig. 2). Continue by induction, the n'th point has lines
to the previous n�1 points, thus n-1 constraints from the 8 possible constraints
are already covered by the previous points.

2
p

1
p

2
p’

p’
1

2

1

p’’
p’’

Fig. 2. A triplet of matching points provides 8 constraints. A second triplet provides
only 7 additional constraints because the constraint de�ned by the lines connecting the
the two sets of points is already covered by the 8 constraints of the �rst triplet.

Note that the lines q; s; r in eqn. 1 are not matching lines although they pass
through matching points. Our next issue is to show that if q; s; r are matching
lines, then they provide 7 linear constraints, thus 4 matching line triplets provide
28 constraints and a unique solution to Hijk.

Proposition 2. If q; r; s are matching lines in views 1,2,3 then qisjHijk,qirkHijk

and sjrkH
ijk are null vectors providing a total of 7 linearly independent con-

straints on the Htensor. Thus 4 matching lines provide a unique linear solution
for Hijk.

Proof: If q; s; r are matching lines then the rank of the matrix whose columns
are [q; A>s; B>r] is 1. Thus, q � A>s = 0,q � B>r = 0 and s>A� B>r = 0. In
tensor form, these translate to the following:

qisjekH
ijk = 0 8ek;

qiejrkH
ijk = 0 8ej ;

eisjrkH
ijk = 0 8ei:

Note that qisjrkHijk appears three times (once in every row above), thus among
the nine constraints arising from the fact that qisjH

ijk,qirkH
ijk and sjrkH

ijk

are null vectors two of the constraints are already accounted for making the total
of 7 linearly independent constraints.



So far we have shown that 4 matching points or 4 matching lines across
the three views provide a unique solution to the Htensor | just like with
collineations: 4 is the number of points or lines that is required for a unique
solution. We turn our attention next to single and double contractions of the
Htensor | what can be extracted from them and what is their geometric signif-
icance.

The double contractions perform mapping operations. For example, qisjH
ijk

must be a point (contravariant index k is left uncontracted) whose scalar product
with the pencil of lines through p00 vanishes | hence, the point must be p00. We
have therefore:

qisjH
ijk �= p00k

qirkH
ijk �= p0j

sjrkH
ijk �= pi

A single contraction is a correlation mapping of lines to points associated
with a Linear Line Complex (LLC) | a set of lines that have a common line
intersection called the kernel of the set | which we will derive as follows. Con-
sider some arbitrary covariant vector �k and the resulting matrix �kH

ijk. One
can easily verify, by substitution in eqn. 2, that the resulting matrix is E = A[�]x
where � = B>�. What does the matrix E stand for? Let L be the line on � at
the intersection of � and the plane de�ned by the line � in view 3 and its center
of projection (see Fig. 3). The projections of L in view 1 and 2 are � = B>�

and � = A�>�. Clearly, E� = 0 and E>� = 0. Consider any other line S in-
tersecting L in space (S is not necessarily on �) projecting onto s; s0 in views
1,2 respectively. Then s0>Es = 0. Taken together, the matrix E maps lines in
view 1 onto collinear points (on the line �) in view 2. The set of lines S in 3D
whose projections s; s0 satisfy s0>Es = 0 de�ne an LLC whose kernel is the line
L whose projections are the null spaces of E and E>. Moreover, AE> is a skew
symmetric matrix, thus AE> + EA> = 0 provides 6 linear constraints on the
homography matrix A.

By selecting � to range over the standard basis (1; 0; 0); (0; 1; 0); (0;0; 1) we
obtain three slices of Hijk which we will denote by E1; E2; E3. These slices
provide 18 linear constraints for the homography matrix A. Likewise, the three
slicesHi1k;Hi2k;Hi3k provide 18 constraints on the homographyB and the three
slices H1jk;H2jk;H3jk provide 18 constraints on the homography C = BA�1

from view 2 to view 3. We summarize these �ndings in the following theorem:

Theorem 1. Each of the contractions �iHijk; �jH
ijk and �kH

ijk represents a
correlation mapping between views (2; 3); (1; 3) and (1; 2) respectively, associated
with the LLC whose kernel is the line at the intersection of � and the plane de-
�ned by � of views 1,2,3 respectively and the corresponding center of projection.
By setting � to be (1; 0; 0); (0; 1;0) or (0; 0; 1) we obtain three di�erent slicings
of the tensor: denote the slices of �iH

ijk by the matrices G1; G2; G3, the slices
of �jH

ijk by the matrices W1;W2;W3, and the slices of �kH
ijk by the matri-

ces E1; E2; E3. Then these slices provide su�cient (and over-determined) linear
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Fig. 3. The contraction �kH
ijk is a matrix E = A[�]x where � = B>�. The covariant

vector � represents a line in view 3 which together with the center of projection repre-
sents a plane whose intersection with � is a line L. The projections of L in views 1,2
are the null spaces of E and E> respectively, i.e., E� = 0 and E>� = 0. Matching
lines s; s0 in views 1,2 satisfy s0>Es = 0 if and only if the corresponding 3D lines form
a LLC whose kernel is L, i.e., a set of lines S that intersect at L.

constraints for the constituent homography matrices A;B and for C = BA�1:

CG>i + GiC
> = 0; (3)

BW>

i +WiB
> = 0; (4)

AE>i +EiA
> = 0; (5)

for i = 1; 2; 3.

Theorem 3 provides the basis for deriving the "internal consistency" con-
straints which are 11 non-linear functions on the elements of the tensor that
must be satis�ed. The details can be found in the full version of this work in [9].

The slicing breakdown can also be useful for performing a direct image-to-
image mapping, thus bypassing the need to recover the constituent homography
matrices A;B. Consider two slices �kHijk and �kH

ijk for some �; � and denote
the matrices by E1; E2. Let p0 �= s1� s2 for some two lines s1; s2. One can verify
that:

p �= (E>
1
s1 �E>

2
s1)� (E>

1
s2 �E>

2
s2)

Thus, given p0 and the tensor Hijk one can determine directly the matching
point p.

2.1 Concluding Notes

In summary, we have introduced the tensor Hijk representing the joint map-
ping among three views of a planar surface. The tensor is determined uniquely
by 4 matching points or 4 matching lines but in addition lives in a lower di-
mensional manifold | a fact that places internal non-linear constraints on the



27 entries of the tensor. These internal constraints ensure the group property
of collineations arising from a single planar surface. In other words, the con-
catenation of collineations to form a joint mapping could be useful in practice
when dealing with sequence of views of a planar surface. Furthermore, we have
described in detail the tensor contractions (slices) and their geometric role |
notably the role played by the Linear Line Complex con�guration.

It is worthwhile noting that the structure of the Htensor bares similarity to
the structure of the quadrifocal tensor Qijkl which is contracted with 4 lines
across 4 views: qisjrktlQ

ijkl = 0 where q; s; r; t are coincident with 4 matching
points p; p0; p00; p000 across the images. The di�erence is that Qijkl applies to
a general 3D world whereas the Htensor applies to a coplanar con�guration.
Proposition 1, for example, stating that the number of linear constraints drop
gradually as matching points are introduced is analogous to the gradual drop
in independent constraints for the quadrifocal tensor. In fact, the Htensor is
a contraction, say tlQ

ijkl, a slice, of the quadrifocal tensor where the plane
� is determined by the choice of tl in the example | and as such one can
represent the quadrifocal tensor as a sum of three outer-products of epipoles
and Htensors. Further details on this issue can be found in a companion paper
in these proceedings [10].

In the next section we will explore the dual form Hijk of the Htensor. The
dual form turns out to be of particular interest as it applies to dynamic point
con�gurations | a feature which opens up new application frontiers as well.

3 The Dual Homography Tensor Hijk

Consider the tensor made up from Hijk but replacing the homographies A;B
(in eqn. 2) by their duals A�T and B�T . Denote A0 = A�1 and B0 = B�1, then
the dual homography tensor is the covariant tensor described below:

Hijk = �inua
0n
j b

0u
k : (6)

Because Hijk is a covariant tensor it applies to 3 points, one in each view.
Consider, therefore, the contraction pip0jp00kHijk = 0. What does that entail on
the relationship between p; p0; p00? We have:

pip0jp00kHijk = p>(A0p0 �B0p00) = det(p;A0p0; B0p00) = 0:

In other words, pip0jp00kHijk = 0 when the rank of the 3�3 matrix [p;A0p0; B0p00]
is either 1 or 2. The rank is 1 i� the points p; p0; p00 match in the usual sense
when the three optical rays intersect at a single point in space. The rank is 2,
however, when the three optical raysmeet at a line on � because then p;A0p0 and
B0p00 are collinear points in view 1 (note that A0; B0 are collineations from view
2 to 1 and view 3 to 1, respectively | see Fig. 4). We thus make the following
de�nitions:

De�nition 1. A triplet of points p; p0; p00 are said to be matching with re-

spect to a static point if they are matching in the usual sense of the term,



i.e., the corresponding optical rays meet at a single point. The triplet are said to
be matching with respect to a moving point if the three optical rays meet
at a line.

We see from the above that the dual Htensor Hijk applies to both static and
moving points coming from the planar surface �. The possibility of working with
static and moving elements was introduced recently in [1] where it was shown
that if a moving point along a general (in 3D) straight path is observed in 5
views, and the camera projection matrices are known, then it is possible to set
up a linear system for estimating the 3D line. With the dual Htensor Hijk, on
the other hand, we have no knowledge of the camera projection matrices, but on
the other hand we require that the straight paths the points are taking should
all be coplanar (what makes it possible to work with 3 views instead of 5 and
not require prior information on camera positions). We have from above the
following theorem:

Theorem 2. The tensor Hijk can be uniquely de�ned from image measurements
associated with moving points only. A triplet of matching points p; p0; p00 with
respect to a moving point on � contributes one linear constraint pip0jp00kHijk = 0
on the entries of Hijk.

π

A’

B’

p’

p’’

p

B’p’’

A’p’

Fig. 4. The dual homography tensor and moving points. The collineations A0;B0 are
from view 2 to 1 and 3 to 1 respectively. If the triplet p; p0; p00 are projections of
a moving point along a line on � then p;A0p0;B0p00 are collinear in view 1. Thus,
p>(A0p0 �B0p00) = 0, or pip0jp00kHijk = 0 where Hijk = �inua

0n
j b0uk .

With 26 matching triplets with respect to moving points on � we can obtain
a unique linear solution of the dual tensor. From the principle of duality with
Proposition 1 we can state that there could be at most 8 moving points on
the �rst line trajectory on �, at most 7 moving points on the second line, at
most 6 points on the third line and at most 5 points on the fourth line. The



four trajectory lines should be in general position, i.e., no three of them are
concurrent.

If a triplet of points p; p0; p00 are known to arise from a static point, then by
principle of duality with Proposition 2 such a triplet provides 7 constraints on
Hijk and thus 4 matching triplets that are known to arise from static points (in
general position) provide a unique solution for for the dual tensor.

3.1 Mixed Static and Dynamic Points

We have so far applied the principle of duality to assert that the 26 matching
triplets with respect to moving points should be arranged along at least 4 line
trajectories and that 4 matching triplets arising from static points are su�cient
for a solution of the dual Htensor. The dual tensor raises also the possibility
of handling a mixed situation where some of the matching triplets arise from
moving points and some from static points | but without any prior knowledge
of what is static and what is dynamic.We call this situation of having a matching
triplets without a label of whether they arise from a static or dynamic point as
an "unlabeled matching triplet". In this section we will address the following
issues:

{ In an unlabeled situation what is the maximumnumber of matching triplets
arising from static points that are allowed for a unique solution? We will
show that the number is 10, i.e., that among the 26 triplets at least 16
should arise from moving points.

{ In case x � 4 of the matching triplets are labeled as static, how many moving
points are required for a unique solution? We will show that we need 16�4x
triplets arising from moving points.

Theorem 3. In a situation of unlabeled matching triplets arising from a mix-
ture of static and moving points, let x � 4 be the number of labeled matching
triplets that are known a priori to arise from static points. If x = 0, then the
matching triplets arising from static points contribute at most 10 linearly inde-
pendent constraints, therefore the minimal number of matching triplets arising
from moving points must be 16. In general, the minimal number of matching
triplets arising from moving points is 16� 4x for x � 4.

Proof: It is su�cient to prove this theorem for the case where A = B = I

(the identity matrix) | because all other cases are transformed into this one by
local change of coordinates.

Consider �rst the case x = 0, i.e., all 26 measurements are of the form
pip0jp00kHijk = 0 regardless whether the matching triplet arises from a static
or moving point. We wish to show that the dimension of the estimation matrix
in case all the measurements arise from static points is 10. Each row of the
estimation matrix is some \constraint tensor" Gijk such that GijkHijk = 0. In
the case A = B = I, Gijk is a symmetric tensor if the matching triplet arises from



a static point (because p = p0 = p00), i.e., remains the same under permutation
of indices | hence contains only 10 di�erent groups of indexes

111; 222; 333; 112; 113;221; 223; 331;332;123

up to permutations. Therefore, the rank of the estimation matrix from unlabeled
static points is at most 10, and in order to solve for the tensor we would have
to use at least 16 additional moving points.

Consider the case x = 1, i.e., one of the matching triplets contributed 9
constraints of rank 7:

pip0jek
1
Hijk = 0 pie

j
1
p00kHijk = 0 ei

1
p0jp00kHijk = 0

pip0jek
2
Hijk = 0 pie

j
2
p00kHijk = 0 ei

2
p0jp00kHijk = 0

pip0jek
3
Hijk = 0 pie

j
3
p00kHijk = 0 ei

3
p0jp00kHijk = 0;

where e1; e2; e3 are the standard basis (1; 0; 0); (0; 1;0); (0; 0;1). Note that be-
cause A = B = I, then p = p0 = p00. Add the three constraints in the �rst
row:

Gijk = pipjek
1
+ pie

j
1
pk + ek

1
pjpk

Then, Gijk is a symmetric tensor and thus spanned by the 10-dimensional sub-
space of the unlabeled static points. Likewise, the constraint tensors resulting
from adding the constraint of the second and third row above are also symmetric.
Taken together, 3 out of the 7 constraints contributed by a labeled static point
are already accounted for by the space of unlabeled static points. Therefore, each
labeled static point adds only 4 linearly independent constraints.

3.2 Contractions of dual Htensor

A double contraction of the tensor performs a point-point to line mapping. For
example, pip0jHijk is a line in view 3 which is the projection of the line on �

traced by the moving point onto view 3. In other words, given any two non-
matching points p; p0 let the line passing through the two intersecting points
between the optical rays and � be denoted by L. Then, pip0jHijk is the projection
of L onto view 3, so that any point p00 coincident with the projection will form
a matching triplet p; p0; p00 associated with a moving point tracing the line L on
�.

A single contraction is a correlation mapping points to concurrent lines. Con-
sider, for example, �kHijk for some contravariant vector (a point in view 3) �.
One can verify by substitution in eqn. 6 that the resulting matrix is E = [�]xA0

where � = B0�. Let the matching points of � in views 1,2 be �; � respectively.
Then, by duality with Hijk we have that E� = 0 and E>� = 0. Furthermore,
Ep0 is a line passing through � and A0p0 in view 1. Therefore, E maps the points
in view 2 onto concurrent lines that intersect at a �xed point �, and likewise, E>

maps points in view 1 onto concurrent lines that intersect at a �xed point � in
view 2. Furthermore, p>Ep0 = 0 for all pairs of p; p0 on matching lines through
the �xed points �; � (see Fig. 5).
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Fig. 5. A single contraction, say �kHijk, is a mapping E between views 1,2 from points
to concurrent lines. The null spaces of E and ET are the matching points �; � of � in
views 1,2. The image points p0 are mapped by E to the lines A0p0 � � and the image
points p are mapped by E> to the lines A0�1p � � in view 2. The bilinear relation
p>Ep0 = 0 is satis�ed for all pairs of p; p0 on matching lines through the �xed points
�; �.

The constituent homography matrices A0; B0 can be extracted from the slices
of Hijk as follows. Let E1; E2; E3 correspond to the three slices of �kHijk by
letting � be (1; 0; 0); (0; 1; 0) and (0; 0; 1) respectively. Then, A0>Ei+E>i A

0 = 0,
i = 1; 2; 3. Likewise, B0 satis�es such a relation on the slices �jHijk, and the
homography A0�1B from the slices �iHijk.

In summary, the dual form of the homography tensor applies to both cases:
optical rays meet at a single point (matching points with respect to a static
point) and optical rays meet at a line on � (matching points with respect to a
moving point). In the case where no distinction can be made to the source of a
matching triplet p; p0; p00 (static or moving) then we have seen that in a set of
at least 26 such matching triplets, 16 of them must arise from moving points.
In case that a number x � 4 of these triplets are known a-priori to arise from
static points, then 16� 4x must arise from moving points. Once the dual tensor
is recovered from image measurements it forms a mapping of both moving and
static points and in particular can be used to distinguish between moving and
static points (a triplet p; p0; p00 arising from a static point is mapped to null
vectors pip0jHijk,p

ip00kHijk and p0jp00kHijk). The dual Htensor can be useful in
practice to handle situations rich in dynamic motion seen from a monocular
sequence.

4 Experiments

We conducted tests on the performance of Hijk compared to pairwise homogra-
phy recovery, and tests on Hijk in order to evaluate the performance on static
and moving point con�gurations. The full details on the experiments of Hijk can



be found in [9] which we will briey summarize its conclusions here. The Hten-
sor is recovered using standard robust estimators for least-squares estimation.
The non-linear constraints were not taken into account. The reprojection perfor-
mance using the recovered Htensor was consistently superior to the performance
using a recovered homographymatrix between pairs of views. On the other hand,
we found out that recovering the constituent homography matrices from the Ht-
ensor produced signi�cantly poorer results compared to the reprojection error
achieved by the Htensor. Our conclusion is that the recovery of the homography
matrix from Hijk requires numerical conditioning which is beyond the scope of
this work. It is worthwhile to note that recovering the homography matrix from
the skew-symmetric relations with the slices of the tensor is identical to the way
one can recover the fundamental matrix from two or more homographymatrices.
It has been shown empirically (R. Szeliski, private communication) that doing
so for the fundamental matrix yields poor results.

In the second experiment, displayed in Fig. 6, we created a scene with mixed
static and moving points. The moving points were part of 4 remote controls
that were in motion while the camera changed position from one view to the
next. The points were tracked along the three views, without knowledge what
is static and what is moving. The triplet of matching points were fed into a
least-square estimation for Hijk. We then checked the error of reprojection on
the static points |these were at sub-pixel level as can be seen in Fig. 6h | and
the accuracy of the line trajectory of the moving points. Because the moving
points were clustered on only 4 objects (the remote controls), then the accuracy
was measured by \eye-balling" the parallelism of the trajectories of all points
within a moving object. The lines are closely parallel as can be seen in Fig. 6f.
The dual Htensor can also be used to segment the scene into static and moving
points | this is shown in Fig. 6e.

5 Summary

Two views of a 3D scene are su�cient for performing reconstruction, yet there
exist trifocal and quadrifocal tensors that concatenate 3 and 4 views and display
an algebraic added value over 2-view reconstruction. In this paper we have done
something similar to the well known Homography matrix | we have shown that
there is an added value in investigating a 3-view analogue of the collineation
operation. The resulting homography tensor Hijk and its dual Hijk are both
intriguing and of practical value. The homography tensor places stronger con-
straints on the mapping across three views than concatenation of pairwise ho-
mography matrices | as evident by the coupling associated with a single linear
system, the existence of the non-linear constraints, and the experimental results.
This performance is comparable to the sub-space approach under in�nitesimal
motion recently presented in [12].

The dual Htensor, in our mind, shows promising potential for new application
areas and explorations in strucutre from motion. The possibility of handling



(a) (b)

(c) (d)
            

(e) (f)

Fig. 6. (a),(b) two of three views of a planar scene with 4 remotes moving along straight
lines. (c) The �rst view with the overlaid tracked points. These points were used for
computing the dual homography tensor in a least-squares manner. (d) Segmenting the
static from dynamic points using the recovered dual Htensor. Only the static points are
shown. (e) The trajectory lines are overlaid on the third image | one can see that the
lines of each remote are closely parallel thus providing an indication of accuracy of the
dual Htensor. (f) Reprojection results using the Htensor as a point transfer mapping.
Note that the static points are aligned with the the transferred points whereas the
dynamic points are shifted relative to the transferred points.



static and dynamic points on equal grounds raises a host of new issues in which
this paper only begins to address.

The extension of these tensors to higher dimensions is relatively straightfor-
ward| in that case the moving points in the dual tensor move along hyperplanes
not lines, and the size of the tensor grows exponentially with dimension (and
so does the number of constraints for static points). On the other hand, the
restriction of the moving points to dimension k < n � 1 (in particular, k = 2
corresponds to motion along a line) is of more practical interest. For example,
the case of n = 3; k = 2 has been explored in [11] where the application area
is the extension of the classic 3D-to-3D alignment of point clouds to dynamic
situations, such as when the structured light pattern attached to a sensor moves
along with the sensor while the 3D reconstruction takes place.
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