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Abstract

The problem of selecting a subset of relevant features in
a potentially overwhelming quantity of data is classic and
found in many branches of science. Examples in computer
vision, text processing and more recently bio-informatics
are abundant. In text classification tasks, for example, it
is not uncommon to have 104 to 107 features of the size
of the vocabulary containing word frequency counts, with
the expectation that only a small fraction of them are rel-
evant. Typical examples include the automatic sorting of
URLs into a web directory and the detection of spam email.

In this work we present a definition of ”relevancy” based
on spectral properties of the Laplacian of the features’ mea-
surement matrix. The feature selection process is then based
on a continuous ranking of the features defined by a least-
squares optimization process. A remarkable property of the
feature relevance function is that sparse solutions for the
ranking values naturally emerge as a result of a “biased
non-negativity” of a key matrix in the process. As a result,
a simple least-squares optimization process converges onto
a sparse solution, i.e., a selection of a subset of features
which form a local maxima over the relevance function. The
feature selection algorithm can be embedded in both unsu-
pervised and supervised inference problems and empirical
evidence show that the feature selections typically achieve
high accuracy even when only a small fraction of the fea-
tures are relevant.

1. Introduction
As visual recognition, text classification, speech recognition
and more recently bio-informatics aim to address larger and
more complex tasks the problem of focusing on the most
relevant information in a potentially overwhelming quan-
tity of data has become increasingly important. Examples
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from computer vision, text processing and Genomics are
abundant. For instance, in visual recognition the pixel val-
ues themselves often form a highly redundant set of fea-
tures; methods using an “over-complete” basis of features
for recognition are gaining popularity [23], and recently
methods relying on abundance of simple efficiently com-
putable features of which only a fraction of are relevant
were proposed for face detection [30] — and these are only
few examples from the visual recognition literature. In text
classification tasks it is not uncommon to have 104 to 107

features of the size of the vocabulary containing word fre-
quency counts, with the expectation that only a small frac-
tion of them are relevant [18]. Typical examples include
the automatic sorting of URLs into a web directory and the
detection of spam email. In Genomics, a typical example
is gene selection from micro-array data where the features
are gene expression coefficients corresponding to the abun-
dance of cellular mRNA taken from sample tissues. Typical
applications include separating tumor from normal cells or
discovery of new subclasses of Cancer cells based on the
gene expression profile. Typically the number of samples
(expression patterns) is less than 100 and the number of fea-
tures (genes) in the raw data ranges from 5000 to 50000.
Among the overwhelming number of genes only a small
fraction is relevant for the classification of tissues whereas
the expression level of many other genes may be irrelevant
to the distinction between tissue classes — therefore, identi-
fying highly relevant genes from the data is a basic problem
in the analysis of expression data.

From a practical perspective, large amounts of irrelevant
features affects learning algorithms at three levels. First,
most learning problems do not scale well with the growth
of irrelevant features — in many cases the number of train-
ing examples grows exponentially with the number of ir-
relevant features [16]. Second, is a substantial degrada-
tion of classification accuracy for a given training set size
[1, 13]. The accuracy drop affects also advanced learn-
ing algorithms that generally scale well with the dimension
of the feature space such as the Support Vector Machines
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(SVM) as recently observed in [32]. The third aspect has
to do with the run time of the learning algorithm on test
instances. In most learning problems the classification pro-
cess is based on inner-products between the features of the
test instance and stored features from the training set, thus
when the number of features is overwhelmingly large the
run-time of the learning algorithm becomes prohibitively
large for real time applications, for example. Another prac-
tical consideration is the problem of determining how many
relevant features to select. This is a difficult problem which
is hardly ever addressed in the literature and consequently
it is left to the user to choose manually the number of fea-
tures. Finally, there is an issue of whether one is looking for
the minimal set of (relevant) features, or simply a possibly
redundant but relevant set of features.

The potential benefits of feature selection include, first
and foremost, better accuracy of the inference engine and
improved scalability (defying the curse of dimensionality).
Secondary benefits include better data visualization and un-
derstanding, reduce measurement and storage requirements,
and reduce training and inference time. Blum and Langley
[4] in a survey article distinguish between three types of
methods: Embedded, Filter and Wrapper approaches. The
filter methods apply a preprocess which is independent of
the inference engine (a.k.a the predictor or the classifica-
tion/inference engine) and select features by ranking them
with correlation coefficients or make use of mutual infor-
mation measures. The Embedded and Wrapper approaches
construct and select feature subsets that are useful to build
a good predictor. The issue being the notion of relevancy,
i.e., what constitutes a good set of features. The modern
approaches, therefore, focus on building feature selection
algorithms in the context of a specific inference engine. For
example, [32, 5] use the Support Vector Machine (SVM)
as a subroutine (wrapper) in the feature selection process
with the purpose of optimizing the SVM accuracy on the
resulting subset of features. These wrapper and embedded
methods in general are typically computationally expensive
and often criticized as being “brute force”. Further details
on relevancy versus usefulness of features and references to
historical and modern literature on feature selection can be
found in the survey papers [4, 15, 11].

In this paper the inference algorithm is not employed
directly in the feature selection process but instead gen-
eral properties are being gathered which indirectly indi-
cate whether a feature subset would be appropriate or not.
Specifically, we use clustering as the predictor and use spec-
tral properties of the candidate feature subset to guide the
search. This leads to a “direct” approach where the search
is conducted on the basis of optimizing desired spectral
properties rather than on the basis of explicit clustering and
prediction cycles. The search is conducted by the solution
of a least-squares optimization function using a weighting

scheme for the ranking of features. A remarkable prop-
erty of the energy function is that ”sparse” solutions for
the weights naturally emerge as a result of a “biased non-
negativity” of a key matrix in the process. The algorithm,
called Q − α, is iterative, very efficient and achieves re-
markable performance on a variety of experiments we have
conducted.

There are many benefits of our approach: First, we avoid
the expensive computations associated with Embedded and
Wrapper approaches, yet still make use of a predictor to
guide the feature selection. Second, the framework can han-
dle both unsupervised and supervised inference within the
same framework and handle any number of classes. In other
words, since the underlying inference is based on clustering
class labels are not necessary, but on the other hand, when
class labels are provided they can be used by the algorithm
to provide better feature selections. Third, the algorithm
is couched within a least-squares framework — and least-
squares problems are the best understood and easiest to han-
dle. Finally, the performance (accuracy) of the algorithm is
remarkable.

2 Algebraic Definition of Relevancy

A key issue in designing a feature selection algorithm in
the context of an inference is defining the notion of rele-
vancy. Definitions of relevancy proposed in the past [4, 15]
lead naturally to a explicit enumeration of feature subsets
which we would like to avoid. Instead, we take an alge-
braic approach and measure the relevance of a subset of fea-
tures against its influence on the cluster arrangement of the
data points with the goal of introducing an energy function
which receives its optimal value on the desired feature se-
lection. We will consider two measures of relevancy based
on spectral properties where the first is based on the Stan-
dard spectrum and the second on the Laplacian spectrum.

2.1 The Standard Spectrum

Consider a n × q data set M consisting of q samples
(columns) over n-dimensional feature space Rn represent-
ing n features x1, ..., xn over q samples. Let the row vectors
of M be denoted by m�

1 , ..., m�
n pre-processed such that

each row is centered around zero and is of unit L2 norm
‖mi‖ = 1. Let S = {xi1 , ..., xil

} be a subset of (relevant)
features from the set of n features and let αi ∈ {0, 1} be
the indicator value associated with feature xi, i.e., αi = 1
if xi ∈ S and zero otherwise. Let As be the correspond-
ing affinity matrix whose (i, j) entries are the inner-product
between the i’th and j’th data points restricted to the se-
lected coordinate features, i.e., As =

∑n
i=1 αimim�

i where
mim�

i is the rank-1 matrix defined by the outer-product be-
tween mi and itself. Finally, let Qs be a q×k matrix whose
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columns are the first k eigenvectors of As associated with
the leading (highest) eigenvalues λ1 ≥ ... ≥ λk .

We define “relevancy” as directly related to the cluster-
ing quality of the data points restricted to the selected co-
ordinates. In other words, we would like to measure the
quality of the subset S in terms of cluster coherence of the
first k clusters, i.e., we make a direct linkage between clus-
ter coherence of the projected data points and relevance of
the selected coordinates.

We measure cluster coherence by analyzing the (stan-
dard) spectral properties of the affinity matrix As. Con-
sidering the affinity matrix as representing weights in an
undirected graph, it is known that maximizing the quadratic
form x�Asx where x is constrained to lie on the standard
simplex (

∑
xi = 1 and xi ≥ 0) provides the identification

of the maximal clique of the (unweighted) graph [22, 9], or
the maximal “dominant” subset of vertices of the weighted
graph [24]. Likewise there is evidence (motivated by find-
ing cuts in the graph) that solving the quadratic form above
where x is restricted to the unit sphere provides cluster
membership information (cf. [20, 31, 25, 28, 6, 7]). In
this context, the eigenvalue (the value of the quadratic form)
represents the cluster coherence. In the case of k clusters,
the highest k eigenvalues of As represent the corresponding
cluster coherences and the components of an eigenvector
represent the coordinate (feature) participation in the corre-
sponding cluster. The eigenvalues decrease as the intercon-
nections of the points within clusters get sparser (see [26]).
Therefore, we define the relevance of the subset S as:

rel(S) = trace(Q�
s A�

s AsQs)

=
∑
r,s

αirαis(m
�
ir

mis)m
�
ir

QsQ
�
s mis

=
k∑

j=1

λ2
j ,

where λj are the leading eigenvalues of As. Note that the
proposed measure of relevancy handles interactions among
features up to a second order. To conclude, achieving a high
score on the combined energy of the first k eigenvalues of
As indicate (although indirectly) that the q input points pro-
jected onto the l-dimensional feature space are “well clus-
tered” and that in turn suggests that S is a relevant subset of
features.

Rather than enumerating all possible feature subsets S
and ranking them according to the value of rel(S) we con-
sider the prior weights α1, ..., αn as unknown real numbers
and define the following optimization function:

Definition 1 (Relevant Features Optimization) Let M be
an n × q input matrix with rows m�

1 , ..., m�
n . Let Aα =∑n

i=1 αimim�
i for some unknown scalars α1, ..., αn. The

weight vector α = (α1, ..., αn)� and the orthonormal q×k

matrix Q are determined at the maximal point of the follow-
ing optimization problem:

max
Q,αi

trace(Q�A�
α AαQ) (1)

subject to

n∑
i=1

α2
i = 1, Q�Q = I

Note that the optimization function does not include the
inequality constraint αi ≥ 0 and neither a term for “encour-
aging” a sparse solution of the weight vector α — both of
which are necessary for a “feature selection”. As will be
shown later in Section 4, the sparsity and positivity condi-
tions are implicitly embedded in the nature of the optimiza-
tion function and therefore “emerge” naturally with the op-
timal solution.

Note also that it is possible to maximize the gap∑k
i=1 λ2

i −∑q
j=k+1 λ2

j by defining Q = [Q1|Q2] where
Q1 contains the first k eigenvectors and Q2 the remaining
q − k eigenvectors (sorted by decreasing eigenvalues) and
the criterion function (1) would be replaced by:

max
Q=[Q1|Q2],αi

trace(Q�
1 A�

α AαQ1) − trace(Q�
2 A�

α AαQ2).

We will describe in Section 3 an efficient algorithm for
finding a local maximum of the optimization (1) and later
address the issue of sparsity and positivity of the resulting
weight vector α. The algorithms are trivially modified to
handle the gap maximization criterion and those will not be
further elaborated here. We will describe next the problem
formulation using an additive normalization (the Laplacian)
of the affinity matrix.

2.2 The Laplacian Spectrum

Given the standard affinity matrix A, consider the Laplacian
matrix: L = A−D + dmaxI where D is a diagonal matrix
D = diag(

∑
j aij) and dmax is a scalar larger or equal to

the maximal element of D1. The matrix L normalizes A in
an additive manner and there is much evidence to support
such a normalization both in the context of graph partition-
ing [21, 12] and spectral clustering [31, 20].

It is possible to reformulate the feature selection problem
(1) using the Laplacian as follows. Let Ai = mim�

i and
Di = diag(mim�

i 1). We define Lα =
∑

i αiLi where
Li = Ai − Di + dmaxI . We have, therefore:

Lα = Aα − Dα + (
∑

i

αi)dmaxI,

where Dα = diag(A�
α 1). Note that since α is a unit norm

vector then
∑

i αi > 1. The feature selection problem is
identical to (1) where Lα replaces Aα.

1Note that in applications of algebraic graph theory the Laplacian is
defined as D −A. The reason for the somewhat different definition is that
we wish to maintain the order of eigenvectors as in those of A (where the
eigenvectors associated with the largest eigenvalues come first).
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3 An Efficient Algorithm

We wish to find an optimal solution for the non-linear prob-
lem (1). We will focus on the Standard spectrum matrix Aα

and later discuss the modifications required for Lα. If the
weight vector α is known, then the solution for the matrix
Q is readily available by employing a Singular Value De-
composition (SVD) of the symmetric (and positive definite)
matrix Aα. Conversely, if Q is known then α is readily de-
termined as shown next. We already saw that

trace(Q�A�
α AαQ) =

∑
i,j

αiαj(m�
i mj)m�

i QQ�mj

= α�Gα

where Gij = (m�
i mj)m�

i QQ�mj is symmetric and posi-
tive definite. The optimal α is therefore the solution of the
optimization problem:

max
α

α�Gα subject to α�α = 1,

which results in α being the leading eigenvector of G, i.e.,
the one associated with its largest eigenvalue. A possible
scheme, guaranteed to converge to a local maxima, is to
start with some initial guess for α and iteratively interleave
the computation of Q given α and the computation of α
given Q until convergence. We refer to this scheme as the
Basic Q − α Method.

A more advanced scheme with superior convergence rate
and more importantly accuracy of results (based on empir-
ical evidence) is to embed the computation of α within the
“orthogonal iteration” [10] cycle for computing the largest
k eigenvectors, described below:

Definition 2 (Standard Power-Embedded Q − α Method)
Let M be an n× q input matrix with rows m�

1 , ..., m�
n , and

some orthonormal q × k matrix Q(0), i.e., Q(0)�Q(0) = I .
Perform the following steps through a cycle of iterations
with index r = 1, 2, ...

1. Let G(r) be a matrix whose (i, j) components are

(m�
i mj)m�

i Q(r−1)Q(r−1)�mj .

2. Let α(r) be the largest eigenvector of G(r).

3. Let A(r) =
∑n

i=1
α

(r)
i mim�

i .

4. Let Z(r) = A(r)Q(r−1).

5. Z(r) QR−→ Q(r)R(r).

6. Increment index r and go to step 1.

The method is very efficient and achieves very good perfor-
mance (accuracy). Note that steps 4,5 of the algorithm con-
sist of the “orthogonal iteration” module, i.e., if we were to
repeat steps 4,5 only we would converge onto the eigenvec-
tors of A(r). However, note that the algorithm does not re-
peat steps 4,5 in isolation and instead recomputes the weight

vector α (steps 1,2,3) before applying another cycle of steps
4,5. We show below that the recomputation of α does not
alter the convergence property of the orthogonal iteration
scheme, thus the overall scheme converges to a local max-
ima:

Proposition 1 (Convergence of Power-Embedded Q − α)
The Power Embedded Q−α method convergence to a local
maxima of the criterion function (1).

Proof: We will prove the claim for the case k = 1, i.e. the
scheme optimizes over the weight vector α and the largest
eigenvector q of Aα.

Because the computation of α is analytic (the largest
eigenvector of G), it is sufficient to show that the compu-
tation of q monotonically increases the criterion function.
It is therefore sufficient to show that:

q(r)A2q(r) ≥ q(r−1)A2q(r−1), (2)

for all symmetric matrices A. Since steps 4,5 of the algo-
rithm are equivalent to the step:

q(r) =
Aq(r−1)

‖q(r−1)‖2
,

we can substitute the right hand side into (2) and obtain the
condition:

q�A2q ≤ q�A4q
q�A2q

, (3)

which needs to be shown to hold for all symmetric matri-
ces A and unit vectors q. Let q =

∑
i γivi be represented

with respect to the orthonormal set of eigenvectors v i of the
matrix A. Then, Aq =

∑
i γiλivi where λi are the corre-

sponding eigenvalues. Since q�A2q ≥ 0, it is sufficient to
show that: ‖Aq‖4 ≤ ‖A2q‖2, or equivalently:

(
∑

i

γ2
i λ2

i )
2 ≤

∑
i

γ2
i λ4

i . (4)

Let µi = λ2
i and let f(x) = x2. We then have:

f(
∑

i

γ2
i µi) ≤

∑
i

γ2
i f(λ2

i ),

which follows from convexity of f(x) and the fact that∑
i γ2

i = 1.
A faster converging algorithm is possible by employing

the “Ritz” acceleration [10] to the basic power method as
follows:

Definition 3 (Q − α with Ritz Acceleration) Let M be
an n × q input matrix with rows m�

1 , ..., m�
n , and some or-

thonormal n×k matrix Q(0), i.e., Q(0)�Q(0) = I . Perform
the following steps through a cycle of iterations with index
r = 1, 2, ...
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1. Let G(r), α(r) and A(r) be defined as in the Standard Power-
Embedded Q − α algorithm.

2. Z(r) = A(r)Q(r−1).

3. Z(r) QR−→ Q̄(r)R(r).

4. Let Ḡ(r) be a matrix whose (i, j) components are

m�
i Q̄(r)�Q̄(r)mj .

5. Recompute α(r) as the largest eigenvector of Ḡ(r), and re-
compute A(r) accordingly.

6. Let S(r) = Q̄(r)�A(r)Q̄(r).

7. Perform SVD on S(r): [U (r)�S(r)U (r)] = svd(S(r)).

8. Q(r) = Q̄(r)U (r).

9. Increment index r and go to step 1.

The Q−α algorithm for the Laplacian spectrum Lα fol-
lows the Standard spectrum with the necessary modifica-
tions described below.

Definition 4 (Laplacian Power-Embedded Q − α Method)
In addition to the definition of the Standard
method, let di = max diag(mim�

i ) and L
(0)
i =

mim�
i − diag(mim�

i 1) + diI . Perform the follow-
ing steps with index r = 1, 2, ...

1. Let F (r) be a matrix whose (i, j) components are

trace(Q(r−1)�L
(r−1)�
i L

(r−1)
j Q(r−1)).

2. Let α(r) be the largest eigenvector of F (r).

3. Let d(r) = (max diag(
∑n

i=1
α

(r)
i mim�

i ))/(
∑n

i=1
αi)

4. For each i let L
(r)
i = mim�

i − diag(mim�
i 1) + d(r)I

5. Let L(r) =
∑n

i=1
α

(r)
i L

(r)
i .

6. Let Z(r) = L(r)Q(r−1).

7. Z(r) QR−→ Q(r)R(r).

8. Increment index r and go to step 1.

3.1 The Supervised Case

The Q − α algorithms and the general approach can be ex-
tended to handle data with class labels. One of the strengths
of our approach is that the feature selection method can han-
dle both unsupervised and supervised data sets. In a nut-
shell, the supervised case is handled as follows. Given c
classes, we are given c data matrices M l, l = 1, ..., c, each
of size n × ql.

Definition 5 (Supervised Relevant Features Optimization)
Let M l be an n× ql input matrices with rows ml�

1 , ..., ml�
n .

Let Agh
α =

∑n
i=1 αim

g
i mh�

i for some unknown scalars
α1, ..., αn. The weight vector α = (α1, ..., αn)� and the
orthonormal qh × kgh matrices Qgh are determined at the
maximal point of the following optimization problem:

max
Qgh,αi

∑
l

trace(Qll�All�
α All

αQll)

−γ
∑
g �=h

trace(Qgh�Agh�
α Agh

α Qgh) (5)

subject to
n∑

i=1

α2
i = 1, Qgh�Qgh = I

Where the weight γ and the parameters kgh are determined
manually (see below).

The criterion function seeks a weight vector α such
that the resulting affinity matrix of all the data points
(sorted) would be semi-block-diagonal, i.e., high inter-
class eigenvalue energy and low intra-class energy. There-
fore, we would like to minimize of the intra-class
eigenvalue energy trace(Qgh�Agh�

α Agh
α Qgh) (off-block-

diagonal blocks) and maximize the inter-class eigenvalue
energy trace(Qll�All�

α All
αQll). The parameters kgh con-

trol the complexity of each affinity matrix. A typical choice
of the parameters would be kgh = 2 when g = h, kgh = 1
otherwise, and γ = 0.5.

The solution to the optimization function follows step-
by-step the Q − α algorithms. At each cycle Qgh is com-
puted using the current estimates Agh

α and α is optimized
by maximizing the expression:∑

l

α�Gllα − γ
∑
g �=h

α�Gghα = α�Gα

where Ggh
ij = (mg�

i mg
j )m

h�
i Qgh�Qghmh

j and G =∑
l Gll − γ

∑
g �=h Ggh. We analyze next the properties of

the unsupervised Q − α algorithm with regard to sparsity
and positivity of the weight vector α and then proceed to
experimental analysis.

4 Sparsity and Positivity of α

The optimization criteria (1) is formulated as a least-squares
problem and as such there does not seem to be any appar-
ent guarantee that the weights α1, ..., αn would come out
non-negative (same sign condition), and in particular sparse
when there exists a sparse solution (i.e., there is a relevant
subset of features). These two conditions are critical for
the compatibility of the algorithm for feature selection. The
positivity is required for making the variables α i serve as
weights, and the sparsity for the feature selection itself —
otherwise the scheme would produce some feature combi-
nation rather than feature selection.

Typically, these conditions should be specifically pre-
sented into the optimization criterion one way or the other.
The possible means for doing so include introduction of in-
equality constraints, use of L0 or L1 norms, adding specific
terms to the optimization function to “encourage” sparse so-
lutions or use a multiplicative scheme of iterations which
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preserve the sign of the variables throughout the iterations
(for a very partial list see [23, 14, 17, 29]). It is there-
fore somewhat surprising, if not remarkable, that the least-
squares formulation of the feature selection problem could
consistently converge onto same-sign and sparse solutions.

We will first address the issue of positivity of the weight
vector α by analyzing the structure of the matrix G. Specif-
ically, since α comes out as the first eigenvector of G there
is a direct relationship between the “positivity” of G, i.e.,
the likelihood that the entries Gij are non-negative, and the
positivity of α. The sparsity issue will then be addressed by
first defining what we mean by a ”sparse” solution. Since
the optimization does not directly enforce vanishing weight
variables αi we cannot expect a true sparse solution. Nev-
ertheless, the weights αi tend to concentrate around a rel-
atively small number of rows (features) and have very low
values for the remaining indices. We therefore define and
derive a “sparsity gap” which measures the ratio between
the average value of the weights associated with relevant
features and the average value of the remaining weights as a
function of the ratio between the number of relevant features
and the total number of features. With the risk of abusing
standard terminology, we will refer to the property of hav-
ing the weight vector concentrate its (high) values around
a small number of coordinates as a sparsity feature — and
leave the precise definition to Section 4.2.

Before we proceed with the technical issues, it is worth-
while to make a qualitative argument (which was the basis
of developing this approach to begin with) as to the underly-
ing reason for sparsity. Consider rewriting the optimization
criterion (1) by an equivalent criterion:

min
α,Q

{‖Aα − QQ�Aα‖2
F − ‖Aα‖2

F

}
(6)

where ‖ · ‖2
F is the square Frobenious norm of a matrix

defined as the sum of squares of all entries of the ma-
trix. The first term of (6) measures the distance between
the columns of Aα and the projection of those columns
onto a k-dimensional subspace (note that QQ� is a pro-
jection matrix). This term receives a low value if indeed
Aα has a small (k) number of dominant eigenvectors, i.e.,
the spectral properties of the feature subset represented by
Aα are indicative to a good clustering score. Since Aα =∑

i αimim�
i is represented by the sum of rank-1 matrices

one can combine only a small number of them if the first
term is desired to be small. The second term (which may
be viewed also as a regularization term) encourages addi-
tion of more rank-1 matrices to the sum provided they are
redundant, i.e., are already spanned by the previously se-
lected rank-1 matrices. This emphasizes the point made in
Section 2 that the feature selection scheme looks for rele-
vant features but not necessarily the minimal set of relevant
features. To summarize, from a qualitative point of view
the selection of values for the weights αi is directly related

to the rank of the affinity matrix Aα which should be small
if indeed Aα arises from a clustered configuration of data
points. A uniform spread of values αi would result in a
high rank for Aα, thus the criteria function encourages a
non-uniform (i.e., sparse) spread of weight values. This ar-
gument is presented here to facilitate clarity of the approach
and should not be taken as a proof for sparsity. The posi-
tivity and sparsity issues are approached in the sequel from
a different angle which provides a more analytic handle to
the underlying search process than the qualitative argument
above.

4.1 Positivity of α

The key for the emergence of a sparse and positive α has to
do with the way the entries of the matrix G are defined. Re-
call that Gij = (m�

i mj)m�
i QQ�mj and that α comes out

as the leading eigenvector of G (at each iteration). If G were
to be non-negative (and irreducible), then from the Perron-
Frobenious theorem the leading eigenvector is guaranteed
to be non-negative (or same-sign). However, this is not the
case and G in general has negative terms as well as positive
ones. Nevertheless, a closer look reveals that each entry of
G consists of a sum of products of three inner-products:

Gij =
k∑

l=1

(m�
i ql)(m

�
j ql)(m

�
i mj).

In general, a product of the form f = (a�b)(a�c)(b�c),
where ‖a‖ = ‖b‖ = ‖c‖ = 1 satisfies −1 < f ≤ 1 where
f = 1 when a = b = c. Since f > −1 there is an asymme-
try on the expected value of f , i.e., the expected values of
the entries of G are biased towards a positive value — and
we should expect a bias towards a positive leading eigen-
vector of G. In the context of deriving the probability that
the leading eigenvector of G is positive we will address the
following three questions:

• What is the minimal value of f = (a�b)(a�c)(b�c)
when a, b, c vary over the n-dimensional unit hyper-
sphere? We will show that the −1/8 ≤ f ≤ 1.

• Given a uniform sampling of the vectors a, b, c over
the n-dimensional unit hypersphere, what is the mean
µ and variance σ2 of f? The result that −1/8 ≤ f ≤ 1
suggests that µ > 0.

• Given that Gij ∼ N(µ, σ2), what is the probability (as
a function of n) that the first eigenvector of G is strictly
non-negative (same sign)?

We will show that in the worst case of a random data
matrix M , the probability of the first eigenvector α of G to
be strictly non-negative rapidly approaches 1 with n. We
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will then focus our attention to the issue of sparsity of the
recovered weight vector α.

Proposition 2 The minimal value of f =
(a�b)(a�c)(b�c) where a, b, c ∈ Rn are defined
over the unit hypersphere is −1/8.

Proof: Let e1, e2, e3 ∈ Rn be three units vectors
(1, 0, ..., 0), (0, 1, 0, ..., 0) and (0, 0, 1, 0, ..., 0). The param-
eterization of 3 points on the unit hypersphere takes the
form:

[a, b, c] = [e1, e2, e3]


 1 cos(β) cos(γ1)

0 sin(β) sin(γ1) cos(γ2)
0 0 sin(γ1)sin(γ2)



(7)

Setting the partial derivatives of

f = cos(β) cos(γ1) (cos(β) cos(γ1) + sin(β) sin(γ1) cos(γ2))
(8)

with respect to β, γ1, γ2 to zero and solving for the ex-
tremum points (using a symbolic solver such as Maple)
yields 36 solutions for the triplet (β, γ1, γ2). When these
solutions are substituted in expression (8) the values f =
{−1/8, 0, 1} appear with multiplicity {16, 14, 4}, respec-
tively.

Proposition 3 The expected value of f =
(a�b)(a�c)(b�c) where a, b, c ∈ Rn are uniformly
sampled over the unit hypersphere is µ = 1

6 with a
standard deviation (s.t.d) σ =

√
21

6 .

Proof: Let the parameterization of 3 points on the unit
hypersphere be described as in (7), where 0 ≤ β ≤ 2π,
−1 ≤ cos(γ1) ≤ 1 and 0 ≤ γ2 ≤ π are sampled uniformly
inside their respective interval domains. This parameteriza-
tion guarantees a uniform sampling of all the unit direction
triplets which is invariant to rotation. For instance, a uni-
form sampling of γ1 would have resulted in a bias (at the
poles) which can be fixed by sampling cos(γ1) uniformly
instead (as can be verified by deriving the Jacobian of the
joint distribution). The expectation µ can be computed by
the following integral:

µ =
1
4π

∫ π

0

∫ 1

−1

∫ 2π

0

(a�b)(a�c)(b�c)dγ2d(cos(γ1))dβ

=
1
4π

∫ π

0

∫ 1

−1

∫ 2π

0

cos(β)cos(γ1)(cos(β)cos(γ1)

+ sin(β)
√

1 − cos(γ2
1 )cos(γ2))dγ2dcos(γ1)dβ =

1
6

The s.t.d of the distribution can be similarly computed with
the result of σ =

√
2 1

6 .
Each entry Gij is a a sum of k such terms, each with

a mean of 1/6 and s.t.d
√

2(1/6), therefore the mean of

Gij is k(1/6) with s.t.d
√

2k(1/6). In the sequel we will
take the worst case where k = 1. Next, we address the
probability that a matrix G whose entries are random vari-
ables normally distributed and i.i.d. Gij ∼ N(µ, σ2) will
have a strictly non-negative leading eigenvector. We refer
to this question as the ”probabilistic” version of the Perron-
Frobenious theorem over random matrices.

The body of results on spectral properties of random ma-
trices (see for example [19]) deal with the distribution of
eigenvalues. For example, the corner-stone theorem known
as Wigner’s semicircle theorem [33] is about the asymptotic
distribution of eigenvalues with the following result: ”Given
a symmetric n × n matrix whose entries are bounded in-
dependent random variables with mean µ and variance σ 2,
then for any c > 2σ, with probability 1 − o(1) all eigenval-
ues except for at most o(n) belong to Θ(

√
n), i.e., lie in the

interval I = (−c
√

n, c
√

n).”
The notation f(n) = o(g(n)) stands for

limn→∞ f(n)/g(n) = 0, i.e., f(n) becomes insignif-
icant relative to g(n) with the growth of n. This is a
short-hand notation (which we will use in the sequel) to the
formal statement: ”∀ε > 0, ∃n0 s.t. ∀n > n0 the statement
holds with probability 1 − ε.”

It is also known that when µ = 0 all the eigenvalues
belong to the interval I (with probability 1 − o(1)), while
for the case µ > 0 only the leading eigenvalue λ1 is outside
of I and

λ1 =
1
n

∑
i,j

Gij +
σ2

µ
+ O(

1√
n

),

i.e., λ1 asymptotically has a normal distribution with mean
µn + σ2/µ [8]. Our task is to derive the asymptotic be-
havior of the leading eigenvector when µ > 0 under the
assumption that the entries of G are normally distributed
i.i.d. random variables. We will prove below the following
theorem:

Theorem 1 (Probabilistic Perron-Frobenious) Let G =
gij be a real symmetric n×n matrix whose entries for i ≥ j
are independent identically and normally distributed ran-
dom variables with mean µ > 0 and variance σ2. Then, for
any σ > 0 there exist no such that for all n > n0 the leading
eigenvector v of G is positive with probability 1 − o(1).

Preliminaries: Let G = µJ +σS where J = 11� and Sij

are i.i.d. sampled according to N(0, 1). Let e = 1√
n

1. and
let v, v2, ..., vn and λ ≥ λ2 ≥ ... ≥ λn be the spectrum of
G. From the semicircle law [33] and from [8] it is known
that λi = Θ(

√
n) for i = 2, 3..., n.

The following auxiliary claims would be useful for prov-
ing the main theorem.

Lemma 1 (Bounds on Leading Eigenvalue) Under the
conditions of Theorem 1 above, with probability 1 − o(1)

7



the leading eigenvalue λ of G falls into the following
interval:

µn − o(1) ≤ λ ≤ µn + Θ(
√

n).

Proof: From the definition of the leading eigenvalue we
have:

λ = max
‖x‖=1

x�Gx = µ(
∑

i

xi)2 + σ max
‖x‖=1

x�Sx

≤ µn + Θ(
√

n)

where from the semicircle law max‖x‖=1 x�Sx =
Θ(

√
n) and from Cauchy-Schwartz inequality (

∑
i xi)2 ≤

n(
∑

i x2
i ) = n. The lower bound follows from:

λ ≥ e�Ge = µn + σe�Se

= µn + σN(0, 1) ≥ µn − o(1)

Lemma 2 Under the conditions of Theroem 1 above, with
probability 1 − o(1) we have the following bound:∑

i

vi ≥
√

n − c (9)

for some constant c where vi are the entries of the leading
eigenvector v of G.

Proof: Let e = av +
∑n

i=2 aivi. Since the eigenvectors
and e are of unit norm we have a2 +

∑n
i=2 a2

i = 1 and
w.l.o.g. we can assume a > 0. We have therefore e�Ge =
a2λ +

∑
i λia

2
i . Since λi = Θ(

√
n) for i = 2, ..., n and

a2 +
∑

i a2
i = 1 we have:

e�Ge ≤ a2λ + Θ(
√

n).

Using the bound derived above of e�Ge ≥ µn − o(1) and
Lemma 1, we have:

µn − o(1) ≤ λa2
1 + Θ(

√
n)

µn − Θ(
√

n)
µn + Θ(

√
n)

≤ a2 ≤ a

from which we can conclude (with further manipulation):

1 − 2Θ(
√

n)
µn

= 1 − 1
µΘ(

√
n)

≤ a.

Consider now that a is the angle between e and v:

1√
n

∑
i

vi = e�v = a ≥ 1 − 1
µΘ(

√
n)

,

from which we obtain:∑
i

vi ≥
√

n − c,

for some constant c.
As a result so far, we have that

λvi = (Gv)i = µ
∑

i

vi + σ(Sv)i

≥ µ
√

n − C + σg�v

where C = µc is a constant g is some n-dimensional
normally distributed i.i.d random vector. We would be
done if we could show that the probability of the event
g�v > (1/σ)µ

√
n occurs with probability o(1), i.e., de-

cays with the growth of n. The problem is that since g
stands for a row of S and because v depends on S we cannot
make the assumption that g and v are independent — thus
a straightforward Gaussian tail bound would not be appro-
priate. The remainder of the proof below was contributed
by Ofer Zeitouni where care is taken to decouple the depen-
dency between g and v.

Proof of Theorem 1: Let D(c) be the set of vectors in
Rn satisfying Lemma 2:

D(c) =

{
v ∈ Rn : ‖v‖ = 1,

∑
i

vi ≥
√

n − c

}
,

and let g ∈ Rn be some vector of i.i.d. random variables
with standard Normal distribution N(0, 1). We would like
to analyze the probability of the event:

F =
{

g�v ≥ µ

σ

√
n
}

g ∈ Rn, gi ∼ N(0, 1), v ∈ D(c).

In particular we would like to show that the probability
P (F ) belongs to o(1), i.e., decays with the growth of n.

Let v = e + f where e = 1√
n

1 was defined above and f

is the residual. From the constraint ‖v‖2 = 1 we obtain a
constraint on f:

2√
n

∑
i

fi +
∑

i

f2
i = 0 (10)

Given that v ∈ D(c) we obtain:∑
i

vi =
√

nv�e =
√

n +
∑

i

fi ≥
√

n − c,

from which obtain another constraint on f:

−
∑

i

fi ≤ c (11)

Combining both constraints (10) and (11) we arrive at:

‖f‖2 ≤ 2c√
n

(12)

The expression g�v can be broken down to a sum of two
terms:

g�v = g�e + g�f ≤ o(1) + ‖g‖‖f‖

≤ o(1) + ‖g‖
(√

2c

n1/4

)
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Since, with probability 1− o(1), ‖g‖ = Θ(
√

n), the proba-
bility that g�v ≥ Θ(

√
n) is proportional to the probability

that ‖g‖ ≥ n3/4 which by the Gaussian tail bound decays
eponentially with the growth of n. Since the probability
that each entry of v is negative decays exponentially, i.e.,
p(vi < 0) < e−Cn, for some constant C, then by the union-
bound the union of such events p(v1 < 0∪ .... ∪ vn < 0) is
bounded from above by ne−Cn which decays exponentially
with the growth of n.

Fig. 1a displays a simulation result ploting the probabil-
ity of positive leading eigenvector of G (with µ = 1/6 and
σ =

√
2/6) as a function of n. One can see that for n > 20

the probability becomes very close to 1 (above 0.99). Sim-
ulations with µ = 0.1 and σ = 1 show that the probability
is above 0.99 starting from n = 500.

To summarize the positivity issue, the weight vector α
comes out positive due to the fact that it is the leading
eigenvector of a matrix whose entries have a positive mean
(Propositions 2 and 3). Theorem 1 made the connection be-
tween matrices which have the property of a positive mean
and the positivity of its leading eigenvector in a probabilis-
tic setting.

4.2 Sparsity Gap

We move our attention to the issue of sparsity of the weight
vector α. It has been observed in the past that the key for
sparsity lies in the positive combination of terms (cf. [17])
— therefore there is a strong (somewhat anecdotal) relation-
ship between the positivity of α and the sparsity feature. We
will establish below the relationship between the “sparsity
gap” and the fraction of relevant features 0 < p ≤ 1. We
will see that the gap between the large and small values of
αi is inversely proportional to the value of p. In other words,
the sparsity result is significant when the ratio between the
number of relevant and irrelevant features is high.

In Theorem 1 the matrix G was modeled as a sin-
gle block where each element was normally distributed
N(µ, σ2). We extend this model to consist of a block struc-
tured matrix which includes a block with high correlation
among the corresponding features (µ is high) and blocks
with low correlation (µ = 1/6) representing randomly se-
lected feature vectors:

G =
[

A B
B� C

]
(13)

where A is np × np (np being the number of relevant fea-
tures) with entries normally distributed N(µa, σ2), where
C is nq×nq (nq, p+ q = 1, being the number of irrelevant
features) and the entries of B, C are normally distributed
N(µb, σ

2), where from Proposition 3 we can assume that
µb = 1

6 . The largest eigenvector of G will also broken down
into two pieces the first containing np elements and the sec-
ond nq elements. The sparsity gap is defined below:

Definition 6 (Sparsity Gap) Let x = (x1, x2)� be the
largest eigenvector of G defined in (13) where x1 holds the
first np entries of x and x2 the remaining nq entries. The
sparsity gap corresponding to G is the ratio x̄1

x̄2
where x̄i is

the mean of xi, i = 1, 2.

The theorem below derives the sparsity gap as a function
of p:

Theorem 2 Let Ḡ be the 2 × 2 matrix defined below:

Ḡ =

[
npµa nqµb

npµb nqµb

]

and let x̄ = (x1, x2) be the eigenvector associated with the
largest eigenvalue of Ḡ. The sparsity gap corresponding to
G is

x1 + N(0, σ2

np )

x2 + N(0, σ2

nq )
.

Proof: Sum up the rows of the matrix equation λx = Gx:

λ

np∑
i=1

xi = (np)
np∑
i=1

µaxi + (np)
n∑

i=np+1

µbxi + N(0, npσ2)

λ

n∑
i=np+1

xi = (nq)
np∑
i=1

µbxi + (nq)
n∑

i=np+1

µbxi + N(0, nqσ2),

and divide the first equation by np and the second by nq.
Note that we have omitted the higher values along the

diagonal of the block A and C since they make no differ-
ence to final result. The sparsity gap asymptotes for large
values of n because the normal distributions N(0, σ2

np ) and

N(0, σ2

nq ) become delta functions around the origin as n in-
creases. For example, empirical data show that µa ≈ 0.85
therefore the sparsity gap for values µa = 0.85, µb = 1

6 and
n = 100 is:

61p− 10 +
√

3321p2 − 820p + 100
20p

Fig. 1c plots the sparsity gap as a function of p. The gap
approaches the value of 5.1 when p approaches the value
of 1. For example, when p = 0.2 (20% of the features are
relevant) the sparsity gap is fairly significant and stands on
2.6.

In the next section we will present a number of experi-
ments, both synthetic and with real data. Fig. 1b shows the
weight vector α for a random data matrix M , and for a syn-
thetic experiment (6 relevant features out of 202) described
in the next section. One can clearly observe the positivity
and sparsity of the recovered weight vector — even for a
random matrix.
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Figure 1: (a) Probability of positive leading eigenvector of the matrix G in simulations with µ = 1/6 and σ =
√

2/6. The probability
is very close to 1 starting from n = 20. (b) Positivity and sparsity demonstrated on the synthetic feature selection problem described in
Section 6 (6 relevant features out of 202) and of a random data matrix. The alpha weight vector (sorted for display) comes out positive and
sparse. (c) the plot of the theoretical sparsity gap (see text)

5 Representing Higher-order Cumu-
lants using Kernel Methods

The information on which the Q − α method relies on to
select features is contained in the matrix G. Recall that the
criterion function underlying the Q − α algorithm is a sum
over all pairwise feature vector relations:

trace(Q�A�
α AαQ) = α�Gα,

where G is defined such that Gij = (m�
i mj)m�

i QQ�mj .
It is apparent that feature vectors interact in pairs and the
interaction is bilinear. Consequently, cumulants of the orig-
inal data matrix M which are of higher order than two are
not being considered by the feature selection scheme. For
example, if M were to be decorrelated (i.e., MM � is diag-
onal) the matrix G would be diagonal and the feature selec-
tion scheme would select only a single feature rather than a
feature subset.

In this section we employ the so called ”kernel trick”
to allow for cumulants of higher orders among the feature
vectors to be included in the feature selection process. Ker-
nel methods in general have been attracting much attention
in the machine learning literature — initially with the in-
troduction of the support vector machines [29] and later
took a life of their own (see [27]). The common princi-
ple of kernel methods is to construct nonlinear variants of
linear algorithms by substituting inner-products by nonlin-
ear kernel functions. Under certain conditions this process
can be interpreted as mapping of the original measurement
vectors (so called ”input space”) onto some higher dimen-
sional space (possibly infinitely high) commonly referred
to as the ”feature space” (which for this work is an unsuc-
cessful choice of terminology since the word ”feature” has
a different meaning). Mathematically, the kernel approach
is defined as follows: let x1, ..., xl be vectors in the input

space, say Rq, and consider a mapping φ(x) : Rq → F
where F is an inner-product space. The kernel-trick is to
calculate the inner-product in F using a kernel function
k : Rq × Rq → R, k(xi, xj) = φ(xi)�φ(xj), while avoid-
ing explicit mappings (evaluation of) φ(). Common choices
of kernel selection include the d’th order polynomial ker-
nels k(xi, xj) = (x�i xj +c)d and the Gaussian RBF kernels
k(xi, xj) = exp(− 1

2σ2 ‖xi − xj‖2). If an algorithm can be
restated such that the input vectors appear in terms of inner-
products only, one can substitute the inner-products by such
a kernel function. The resulting kernel algorithm can be
interpreted as running the original algorithm on the space
F of mapped objects φ(x). Kernel methods have been ap-
plied to the support vector machine (SVM), principal com-
ponent analysis (PCA), ridge regression, canonical correla-
tion analysis (CCA), QR factorization and the list goes on.
We will focus below on deriving a kernel method for the
Q − α algorithm.

5.1 Kernel Q − α

We will consider mapping the rows m�
i of the data ma-

trix M such that the rows of the mapped data matrix be-
come φ(m1)�, ..., φ(mn)�. Since the entries of G consist
of inner-products between pairs of mapped feature vectors,
the interaction will be no longer bilinear and will contain
higher-order cumulants whose nature depends on the choice
of the kernel function.

Replacing the rows of M with their mapped version in-
troduces some challenges before we could apply the kernel
trick. The affinity matrix Aα =

∑
i αiφ(mi)φ(mi)� can-

not be explicitly evaluated because Aα is defined by outer-
products rather than inner-products of the mapped feature
vectors φ(mi). The matrix Q holding the eigenvectors of
Aα cannot be explicitly evaluated as well and likewise the
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matrix Z = AαQ (in step 4). As a result, kernelizing the
Q−α algorithm requires one to represent α without explic-
itly representing Aα and Q both of which were instrumental
in the original algorithm. Moreover, the introduction of the
kernel should be done in such a manner to preserve the key
property of the original Q − α algorithm of producing a
sparse solution.

Let V = MM� be the n × n matrix whose entries
are evaluated using the kernel vij = k(mi, mj). Let
Q = M�E for some n × k (recall k being the number of
clusters in the data) matrix E. Let Dα = diag(α1, ..., αn)
and thus Aα = M�DαM and Z = AαQ = M�DαV E.
The matrix Z cannot be explicitly evaluated but Z �Z =
E�V DαV DαV E can be evaluated. The matrix G can be
expressed with regard to E instead of Q:

Gij = (φ(mi)�φ(mj))φ(mi)�QQ�φ(mj)
= k(mi, mj)φ(mi)�(M�E)(M�E)�φ(mj)
= k(mi, mj)v�i EE�vj

where v1, ..., vn are the columns of V . Step 5 of the Q − α
algorithm consists of a QR factorization of Z . Although
Z is uncomputable it is possible to compute R and R−1

directly from the entries of Z�Z without computing Q
using the Kernel Gram-Schmidt described in [34]. Since
Q = ZR−1 = M�DαV ER−1 the update step is simply
to replace E with ER−1 and start the cycle again. In other
words, rather than updating Q we update E and from E we
obtain G and from there the newly updated α. The kernel
Q − α is summarized below:

Definition 7 (Kernel Q − α) Let M be an uncomputable
matrix with rows φ(m1)�, ..., φ(mn)� where φ() : Rn −→
F is a mapping from input space to a feature space and
which is endowed with a kernel function φ(mi)�φ(mj) =
k(mi, mj). Therefore the matrix V = MM� is a com-
putable n × n matrix. Let E(0) be an n × k matrix se-
lected such that M�E(0) has orthonormal columns. Per-
form the following steps through a cycle of iterations with
index r = 1, 2, ...

1. Let G(r) be a n × n matrix whose (i, j) components are

k(mi, mj)v�
i E(r−1)E(r−1)�vj .

2. Let α(r) be the largest eigenvector of G(r), and let D(r) =
diag(α

(r)
1 , ..., α

(r)
n ).

3. Let Z(r) be an uncomputable matrix

Z(r) = (M�D(r)M)(M�E(r−1)) = M�D(r)V E(r−1).

Note that Z(r)�Z(r) is a computable k × k matrix.

4. Z(r) QR−→ QR. It is possible to compute directly R, R−1

from the entries of Z(r)�Z(r) without explicitly computing
the matrix Q (see [34]).

5. Let E(r) = E(r−1)R−1.

6. Increment index r and go to step 1.

The result of the algorithm is the weight vector α and
the design matrix G which contains all the data about the
features.

6 Experiments

Synthetic Data

We compared the Q−α algorithm with three classical filter
methods (Pearson correlation coefficients, Fisher criterion
score and the Kolmogorov-Smirnoff test), standard SVM
and the wrapper method using SVM of [32]. The data set
we used follow precisely the one described in [32] which
was designed for supervised 2-class inference. In [32] two
experiments were designed, one with 6 relevant features
out of 202 referred to as “linear” problem, and the other
experiment with 2 relevant features out of 52 designed in
a more complex manner and referred to as “non-linear”
problem. In the linear data the class label y ∈ {−1, 1}
was drawn at equal probability. The first six features were
drawn as xi = yN(i, 1), i = 1..3, and xj = N(0, 1),
j = 4..6 at probability 0.7, otherwise they were drawn as
xi = N(0, 1), i = 1..3, and xj = yN(i − 3, 1), j = 4..6.
The remaining 196 dimensions were drawn from N(0, 20).
The reader is referred to [32] for details of the non-linear ex-
periment. We ran Q−alpha on the two problems once with
known classes (supervised version) and with unknown class
labels (unsupervised version). In the supervised case the se-
lected features were used to train an SVM and in the unsu-
pervised case the class labels were not used for the Q − α
feature selection but were used for the SVM training. The
unsupervised test appears artificial but is important for ap-
preciating the strength of the approach as the results of the
unsupervised are only slightly inferior to the supervised test.
In Fig. 2a we overlay the Q − α results (prediction error of
the SVM on a testing set) on the figure obtained by [32].
The performance of the supervised Q − α closely agrees
with the performance of the wrapper SVM feature selection
of [32]. The performance of the unsupervised version does
not fall much behind. Similar results were obtained for the
non-linear problem but are omitted due to lack of space.

Since our method can handle more than two classes we
investigated the scaling-up capabilities of the algorithm as
we increase the number of classes in an unsupervised set-
ting. For k = 2, 3, ... classes we sampled k cluster centers
in 3D space (3 coordinates per center) in the 3D cube where
each coordinate is uniformly sampled in the interval [−3, 3].
Around each of the k class centers we sampled 20 points
according to a normal distribution whose mean is the class
center and with a unit s.t.d. for each coordinate. Taken to-
gether we have 20k points in 3D. We added 70 additional
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coordinates sampled similarly around k centers sampled
uniformly inside the 70D hypercube with edges of length 6.
Each such added coordinate was permuted by a random per-
mutation to break the correlation between the dimensions.
Thus each of the 20k points lives in a 73-dimensional space
out of which only the first three dimensions are relevant. We
ran the Q − α algorithm on the 73 × 20k data matrix and
obtained the weight vector α and selected the three coordi-
nates with the highest weights. We ran this experiment 50
times and recorded for each of the 73 coordinates the prob-
ability of being selected as one of the relevant features. The
ratio of the average probability of the first three coordinates
to the average probability of the remaining 70 coordinates
was recorded. Ideally the ratio should be very high if the
algorithm consistently succeeds in selecting the first three
coordinates as the relevant ones. Fig. 2b illustrates the re-
sults of this experiment in a graph whose x-axis runs over
the number of classes k and the y-axis displays the ratio
score discussed above. One can see that the algorithm per-
formed well until k = 5 classes (in a setting of three rel-
evant features among 73) judging by the high ratio score.
The performance degrades sharply after 5 classes as indi-
cated by the low ratio score.

Real Image Unsupervised Feature Selection

The strength of the Q−α method is that it applies for unsu-
pervised settings as well as supervised. An interesting un-
supervised feature selection problem in the context of visual
processing is the one of automatic selection of relevant fea-
tures which discriminate among perceptual classes. Assume
one is given a collection of images where some of them
contain pictures of a certain object class (say, green frogs
(Rana clamitans specie)) and other images contain pictures
of a different class of objects (say, American toads) — see
Fig. 3. We would like to automatically, in an unsupervised
manner, select the relevant features such that a new picture
could be classified to the correct class membership.

The features were computed by matching patches of
equal size of 20 × 20 pixels in the following manner. As-
suming that the object of interest lies in the vicinity of the
image center, we defined 9 “template” patches arranged in
a 3 × 3 block centered at the image. We had 27 images
(18 from one class and 9 from the other), which in turn de-
fines 27 ∗ 9 = 243 feature coordinates. Each image was
sampled by 49 “candidate” patches (covering the entire im-
age) where each of the 243 template patches was matched
against the 49 patches in its respective image and the score
of the best match was recorded in 243 × 27 data matrix.
The matching between a pair of patches was based on L1-
distance between the respective color histograms in HSV
space. The resulting α weight vector forms a feature se-
lection from which we create a submatrix of data points

Figure 3: Image samples of several animal classes — American
toad (top row) and Green frogs (Rana clamitans), elephants, and
sea elephants. The objects appear in various positions, illumina-
tion, context and size.

and construct its affinity matrix and the associated matrix
of eigenvectors Q. The rows of the Q matrix were clustered
using k-means into two clusters. A test image was classified
based on distance from the cluster centroids. Performance
on test images varied between 80% to 90% correct classi-
fication over many experiments over several object classes
(including elephants, sea elephants, and so forth). This per-
formance was compared to spectral clustering using all the
243 features which provided a range of 55% to 65% correct
classification.

Fig. 5a and Fig. 5b show the 20 most relevant templates
selected for the two classes, and Fig. 5c shows the alpha
values. Note that the α weights are positive as predicted
from Theorem 1 and exhibit a sharp break when the relevant
features begin (sparsity).

6.1 Kernel Q − α Experiments

One of the possible scenarios for which a polynomial (for
example) kernel is useful is when hidden variables affect the
original feature measurements and thus create non-linear in-
teractions among the feature vectors. We consider the situ-
ation in which the original measurement matrix M is mul-
tiplied, element wise, with a hidden variable matrix whose
entries are ±1. The value of the hidden state was changed
randomly every 8 measurements and independently for each
feature. This scheme simulates measurements taken in “ses-
sions” where a session lasts for 8 sample data points. As a
result, the expectation of the inner product between any two
feature vectors is zero yet however any two feature vectors
contain higher-order interactions which could come to bear
using a polynomial kernel.

The kernel we used in this experiment was a sum second-
order polynomial kernels each over a portion of 8 entries of
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Figure 2: (a) Comparison of feature selection methods following [32]. Performance curves of Q − α were overlaid on the figure adapted
from [32]. The x-axis is the number of training points and the y-axis is the test error as a fraction of test points. The thick solid lines
correspond to the Q − α supervised and unsupervised methods (see text for details). (b) Performance of a test with three relevant features
and 70 irrelevant ones with k clusters represented by the x-axis of the graph. The y-axis represents a success score (see text for details).
One can see that the unsupervised Q − α sustained good performance up to 5 classes.

the feature vector:

k(mi, mj) =
∑

k

(mk�
i mk

j )2,

where mk
i represents the k’th section of 8 successive entries

of the feature vector mi. The original data was composed
out 120 sample points with 60 coordinates out of which
12 were relevant and 48 were irrelevant. The relevant fea-
tures were generated from three clusters, each containing 40
points. The points of a cluster were Normally distributed
with a mean vector drawn uniformly from the unit hyper-
cube in R12 and with a diagonal covariance matrix with
entries uniformly distributed in the range [λ,2λ], where λ
is a parameter of the experiment. A 2D slice out of the
relevant 12 dimensions is shown in figure 4(a). The irrele-
vant features were generated in a similar manner, where for
each irrelevant feature the sample points were permuted in-
dependently in order to break the interactions between the
irrelevant features. This way it is impossible to distinguish
between a single relevant feature and a single irrelevant fea-
ture.

We considered an experiment to be successful if among
the 12 features with the highest α values, at least 10 were
from the relevant features subset. The graph in figure 4(b)
shows the success rate for the kernel Q−α algorithm aver-
aged over 80 runs. It also shows, for comparison, the suc-
cess rate for experiments conducted by taking the square of
every element in the measurements matrix followed by run-
ning the original Q − α algorithm. The success rate for the
original Q−α algorithm on the unprocessed measurements
was constantly zero and is not shown in the graph.

Genomics

We have tested our algorithm against the synthetic model
of gene expression data (“microarrays”) given in [3]. This
synthetic model has 6 parameters m, a, b, e, d, s, explained
below. a samples are drawn from class A, and b samples are
drawn from class B. Each sample has m dimensions - em
samples are drawn randomly using the distribution N(0, s).
The rest of the (1 − e)m features are drawn using either
N(µA, µAs) or N(µB, µBs), depending on the class of the
sample. The means of the distributions µA and µB are uni-
formly chosen from the interval [−1.5d, 1.5d].

In [3] the parameters of the model were estimated to
best fit the gene expressions of the leukemia dataset: m =
600, a = 25, b = 47, e = 0.72, d = 555, s = 0.75 (the
leukemia dataset has over 7000 gene expressions but con-
tains much redundancy). Similarly to [3], we varied one of
the parameters m, d, e, s while fixing the other parameters
to the values specified above. This enabled us to compare
the performance of the Q−α algorithm to the performance
of their Max-Surprise algorithm (MSA).

Our algorithm was completely robust to the number of
features m. It always chose the correct features using as
few as 5 features. MSA needed at least 250 features, since
it used the redundancy in the features in order to locate the
informative features. Both algorithms are invariant to the
distance between the means of the distributions determined
by d, and perform well for d ∈ [1, 1000]. The percentage of
irrelevant features, e, can reach 95% for MSA and 99.5%
for our algorithm. Such performance suggests that the data
set is not very difficult.
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Figure 4: (a) 2D slice out of the relevant features in the original data matrix used in the synthetic experiment, showing three clusters. (b)
A graph showing the success rate for the 2nd order polynomial kernel (solid blue), and for a preprocessing of the data (dashed red). The
results are shown over the parameter λ specifying the variance of the original dataset (see text). The success rate of the regular Q − α
algorithm was constantly zero and is not shown.

The parameter s effects the spread of each class. While
MSA was able to handle values of s reaching 2, our algo-
rithm was robust to s, and was at least 30 times more likely
to choose a relevant feature than an irrelevant one, even for
s > 1000.

The unsupervised analysis of real gene expression data
sets is subject to future research.
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