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Abstract

We derive single view indexing functions for dynamic scenes
— where dynamic is defined as a scene consisting of multi-
ply moving points each moving independently with constant
velocity. The indexing functions we derive are view inde-
pendent and form a generalization of the “shape tensors”
associated with rigid scenes by introducing a time-varying
parameter. We derive those indexing functions under full 3D
projective, 3D affine, and various reduced configurations.

The indexing functions were implemented and tested for
matching against objects for which their non-rigid motion
is an intrinsic part of their character — human gait recog-
nition and hand gesture identification are the two chosen
application examples.

1 Introduction

In the context of multi-view analysis of 3D rigid scenes two
kinds of algebraic invariants are often discussed and elabo-
rated upon — one is invariant to the 3D shape of the object
(multi-view tensors such as the fundamental matrix of two
views and the trilinear and quadlinear tensors of 3,4 views
respectively [18, 10, 21, 13, 19]) and the other is invari-
ant to the viewing geometry (shape tensors). The latter is
often used in the context of recognition of rigid objects un-
der varying viewing positions and is based on the following
principle. A 3D rigid object is modeled as a point configu-
ration projected onto multiple 2D views. The projection is
a function of the 3D coordinates, the camera position, and
the image coordinates. By having sufficiently many points
in a single view, the camera parameters can be algebraically
eliminated leaving constraints which involve the 3D coor-
dinates and the 2D coordinates alone. These constraints are
known as single view shape constraints and have appeared
in [23,6, 17,9, 22, 14, 15, 8].

In this paper we derive single view shape constraints of
a continuously changing 3D shape — i.e., the notion of
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time is integrated into the shape constraints. The continu-
ous change model is inspired by the recent work on motion
understanding of 3D dynamic point configurations, where
dynamic is defined in the sense of having multiply mov-
ing points along straight line (or curved) paths (and in some
case with constant velocity) [2, 20, 16, 24, 12, 25]. The non-
rigidity in this framework is “structured” in a way which
is amenable to algebraic treatment — for example, multi-
view tensors for planar scenes [20] and general 3D scenes
[12, 25] were introduced for dynamic point configurations
and which form a natural generalization of the classical
multi-view tensors associated with rigid configurations.

In the same vain, we wish to generalize the shape ten-
sors introduced in [23, 6] which were associated with rigid
point configurations to the case of dynamic configurations.
Unlike the rigid case where the shape tensors are a function
of image measurements and 3D point positions, here the
notion of time is represented as well (since the point con-
figuration changes relative positions as a function of time).
We will derive the single view “shape+motion” invariants
starting from the 3D affine projection model, then the full
3D projective (perspective) model, then consider reduced
configurations and apply these models to the case of mul-
tiply moving points along straight line paths with constant
velocity and second-order paths (the latter only for the full
3D projective model).

We have implemented and tested the indexing functions
and applied them to the task of matching against classes of
objects characterized both by their shape and motion. The
classes we selected in this paper include human gait recog-
nition, people making a “sitting” motion (from upright posi-
tion to a full sitting position), and hand gesture recognition.
Using the indexing function we were able to match a sin-
gle view of (a person walking, sitting, or hand gesture) to
the correct class, i.e., is this an image of a person walking?
sitting? or what class of hand gesture is it? Although the ex-
periments are not intended to introduce a complete system
for hand gesture recognition or human gait classification,
they do demonstrate the relevance of the dynamic indexing
functions we derive to real applications of interest.



1.1 Related Work

The closest work to ours is the use of view-consistency con-
straints for human gait recognition by matching image se-
quences [7]. The classical view consistency constraint, also
known as “recognition polynomials™ [3, 4] is based on the
following principle. Recall that the shape tensors arise from
an elimination process in which given sufficiently many
points in a single view, the camera parameters can be alge-
braically eliminated leaving constraints which involve the
3D coordinates and the 2D coordinates alone. The process
of elimination can continue by having a number of views
until we are left with constraints involving image coordi-
nates alone. These constraints, known as view consistency
constraints, express the fact that those number of views
of those number of points are the projections of the same
3D object. The second step of elimination is unwieldy un-
der general projective setting and has therefore not received
much attention, however, is relatively manageable under or-
thographic or scaled orthographic projection. Under ortho-
graphic projection two views of four points are sufficient
for a constraint which was first derived in [3, 4]. For scaled
orthographic projection, two views of five points are neces-
sary for a constraint which was recently derived in [7].

The 5-point view consistency constraint of [7] was in-
troduced for human gait recognition by comparing two se-
quences of the same person walking — each sequence from
a different viewing position. The view consistency con-
straint was evaluated for every pair of frames, one from each
sequence, thus creating a “sequence consistency matrix”
whose entries are the residual of the view consistency con-
straint (low residual reflects good consistency). Thus, the
diagonal of the matrix should have low numbers if indeed
the two sequences are of the same person. In other words,
the role of a sequence in this approach is to add a statisti-
cal component on top of the basic two-view algebraic con-
sistency expression. Thus, this approach is fundamentally
different from the task set out in this paper which is to de-
fine a new single-view shape contraint of ”structured” non-
rigid phenomena, in which the structuring takes the form of
multiply moving points along straight-line (or second order
curves) paths with constant velocity.

2 Space-time Single-view Con-

straints

Consider a 3D point configuration P, ...P, which move
along straight line paths with constant velocity V,..V,,.
The position of the ¢’th point at time j = 0,1,...,m is
P; + jV;. Let M; denote the 3 x 4 camera matrix pro-
jecting all points P; + jV; onto the j’th image plane, and let
pij = (Tij,Yij, 1) T be the projection of P; + jV; at view j,

thus we have:
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pij = [Mj] ( 1

Our goal is that given a sufficient number of image points in
a single view to algebraically eliminate the camera param-
eters leaving constraints which involve the 3D coordinates
P;, the velocity vectors V;, powers of the time parameter j
and the image coordinates. We will start doing so for the
3D affine camera model and then proceed to the general
perspective model.

2.1 Affine Cameras

For the affine camera model (projection rays are parallel and
meet the image plane at some oblique angle), the camera
matrix has the following form:

aj
Mj = bj Sj
0" 1

4 3x4
The projection equation 1 can be further manipulated:
a;
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Given 5 such points, we take A, B to be:

[ PlT +j‘/1—r 1 iL‘lj i
A= I .
L P5T +j‘/5—r 1 iL‘5j d5xs
[P+ 1 gy
B= I o
L P5T+jV5T 1 Ysi 15xs
Since: ~ _
a;
A ’I"j =0
L 1 =
_ bj
B Sj =0
L 1 -

We conclude that det(A) = 0 and det(B) = 0. The deter-
minant expansions of det(A) and det(B) are polynomials

fl(plj, ...,p5j,j) and fg(plj, ...,p5j,j) in the five image



points and j (the time parameter), whose coefficients are
functions of the (maybe unknown) shape and direction pa-
rameters P; and V.

We can simplify the above determinants by selecting a
2D affine canonical basis for the j'th images plane where
the first 3 points are pr; = (0,0,1) 7, po; = (1,0,1) T, and
p3j = (0,1,1) 7. Thus, the polynomials f; (), f2() are func-
tions of the 4’th and 5’th image points and the parameter j
alone. For example, the matrix A has the form:

PI+V7 1 0
Pl +jVy 1 1
A=| P+, 1 0 )
Pl +jVi 1
P5T+j‘/5—r 1 Ts5j 5%5
and fi(z4j,%55,j) = det(A) is linear in the image co-

ordinates z4;,2s; and order 3 in j. Therefore the non-
vanishing terms contain the elements of the Cartesian prod-
uct [z4j, 255, 1] ® [1, 4,52, 73] and, likewise, the non van-
ishing terms in det(B) are elements of [y4;,ys5;,1] ®
[L,4,4% 5°].

This implies that f; (), f2() have 12 non vanishing coef-
ficients each. However, since the coefficients of z5; is iden-
tical to that of y5; (which is det(A1_4,1—4)) — and likewise
the coefficient of x4; is identical to that of y4; — there are
only 16 distinct coefficients for fi, fo together. Since each
image frame provides 2 constraints (f1 (245, Z5;, j) = 0 and
f2(ya;,Ys5,7) = 0), then 8 frames suffice to solve for the
unknown coefficients of the polynomials fi, fo. We sum-
marize this in the claim below:

Claim 1 A single view of 5 general dynamic points P;+ jV;
provide two affine invariants which are linear in the image
coordinates and of order 3 in the time parameter j. The
two invariants together have 16 distinct view-independent
coefficients which are a function of P;, V; and which can be
recovered linearly from 8 views.

The process of single-view indexing proceeds as follows.
Given 8 views of the configuration of 5 dynamic points, the
16 view-independent coefficients can be recovered linearly.
For any novel view of the configuration P; + jV;, for some
unknown j, the functions f; (), f2() are polynomials of or-
der3in j, ie., ag + anj + azj? + asj® = 0 (with known
coefficients ayp, ..., @3). Since we have two polynomials in
7 from each group of 5 points taken from the object, a min-
imum of two distinct groups of 5 points would be sufficient
for (linear) consistency verification (intersection of planes
in 3D). A necessary condition for the image of these point-
configurations to belong to the object class P; + jV; is that
the collections of planes (two for each group of 5 points)
intersect at a single point, i.e., there is a consistent time pa-
rameter j at the intersection. A single configuration (two

polynomials) may also be sufficient by intersecting the fi-
nite solutions for j from each polynomial — a necessary
condition for the configuration to belong to the class is that
the intersection is not null.

2.2 General Perspective Camera

Generalizing the affine space-time view-independent func-
tions introduced above to full projective requires a mini-
mum of 6 points, as follows. Let [;;,1;; in the j’th image
be lines coincident with the point p;;, and denote by A the
matrix:

li ® [P+ W, 117
1; ® [P+ 5V, 17

le; @ [Ps + jVs,1] 7
lg; © [Ps + jVe,1]"

12x12
The determinant of A vanishes since:
T
™
Ar2x12 mglj =0,
mg;
12x1

where mq;, ma;, ms; are the rows of the camera matrix
M;. We can simplify the determinant expansion by se-
lecting a canonical basis for the first four image points
bij = (0707 1)T’ b2; = (07 170)T’ p3; = (17070)T and
pij = (1,1,1)7 leaving a function f(p5j,p6]-,j') =0
where j = [1,7,...,5°] (note that j appears only in 9 of
the columns of A) which is bilinear in the 5’th and 6’th im-
age points and of order 9 in the time parameter j. Thus,
the constraint, viewed as a tensor, has 3 x 3 x 10 ele-
ments. The contraction of this tensor 7 ¢ with Ds;,D6j
and j = [1,4,...,7°] vanishes whenever those points and
time index arise from the desired configuration.

The 90 elements of the tensor are not independent as
there are 40 linear constraints among the elements of the
tensor. These constraints arise as follows. Let e; =
(1,0,0),...,e4 = (1,1,1) denote the standard basis. Con-
sider the camera matrix whose 2’th column consists of e;
and all the remaining entries vanish. Then, M maps the 3D
projective space either to (0,0, 0) or to e;, therefore, regard-
less of the positions of the 3D point configuration and their
velocities, ps; = pg; = e; (or they vanish), thus det(A4) =
0. Therefore, for any 3D configuration and for any time j,
the contraction of the tensor with e;, e;, [1, 7, ..., 7°] (where
e; is one of the 4 basis points) must vanish. Since this is true
for all j we can conclude that the contraction of the tensor
with e;, e; would give us a vector of ten zeros. As a result,
the tensor contains only 50 parameters (up to scale). Since
each view provides one (linear) constraint for the 50 param-
eters, we will need 49 views (of the 6 dynamic points) in



order to recover the shape tensor. This is summarized be-
low:

Claim 2 In a projective frame, a single view of 6 dynamic
points P; 4+ jV; provide a projective view-independent in-
variant which is bilinear in the image coordinates and of
order 9 in the time parameter j. The invariant function is
a 3 x 3 x 10 tensor whose contraction with the 5’th and
6’th image points and the vector (1, j, ..., j°) vanishes. The
tensor is defined by 50 parameters up to scale (90 entries
of the tensor minus 40 linear constraints among the tensor
elements), thus 49 views are required for computing the in-
variant function.

The process of single-view indexing proceeds in the
same manner as in the affine case. For every configuration
of 6 points, one can recover the view-independent tensor
(from 49 views). For any novel view of each such config-
uration, the contraction with the tensor yields a 9’th degree
polynomial in the time parameter j. Thus with at least two
such configurations one can intersect the solutions for j —
a necessary condition that the configurations of points arise
from P + i + jV; is that the intersection is not null.

The constraints above, however, are not stable numeri-
cally as they contain large exponents of the frame number
7. In many practical situations the non-rigidity can be de-
scribed by motion which is less general then the 3D con-
stant velocity model. In these cases we are able to derive
smaller tensors which are more numerically stable to com-
pute. Simplifications can be made by limiting the generality
of the position of 3D points at one hand, or by limiting the
generality of the directions of the motion on the other hand.
Some examples are described below.

2.2.1 Coplanar Trajectories

In case dim span{V;} = 2, we can assume up to affine
transformation that all the velocities lie in the XY plane.
i.e The Z component of V; vanishes. Let A be as defined
in equation 2.2. The time index j appears only in 6 of the
columns of A. The highest exponent of j in the determinant
expansion of A becomes 6. The size of the resulting tensor
in this case would be 32 x 7 = 63 out of which 35 are lin-
early independent (i.e., 34 views are necessary to compute
the model).

2.2.2 Coplanar points, 3D velocities

Consider the case where at least on one time along the ac-
tion, all the points become coplanar. In this case we can
assume (up to affine transformation) that the third coordi-
nate of each point P; to vanish. Three columns of A now
contain only multiplications of j. The exponent of 5 would
rise from 3 to 9, as j would appear at least three times in
every monomial of the determinant expansion. Since 5° is

shared among all the factors, we can view j° as a common
scale factor of our tensor. So the resulting constraint would
contain only the powers of j from zero to six. The size of
the resulting tensor would be 63. Of these 63 elements only
35 would be independent.

2.2.3 Coplanar points, Collinear velocities

Assume that, in addition to the above, all points move in
the same direction, which is not contained in the plane of
the point configuration. Up to affine transformation, we can
assume that this direction is along the Z axis. Thus, only
3 of the columns of A contain multiplications with j (the
3 columns matching the Z coordinate), and they contains
only multiplications with j. Since ;2 is shared among all
the factors, we can view j3 as a common scale factor of
our tensor, which does not affect the vanishing of the de-
terminant. Therefore the tensor derived in this case is time
independent, and contains only 3 x 3 elements (Of these 9
elements only 5 would be independent).

To summarize, the tensor size corresponding to the vari-
ous reduced configurations are displayed in the table below.

dim span(P;) = 3 | dimspan(P;) =2
dim span(V;) = 3 32 x 10 3 x7
dim span(V;) = 2 3 x7 3% x4
dim span(V;) =1 3% x4 3?

3 Motion Along Constrained Elliptic
Trajectories

We have discussed so far view-invariant polynomials for dy-
namic scenes which contain multiply moving points along
straight-line paths with constant velocity. It is possible
to obtain simple view-invariant polynomials also for some
constrained non-linear motions, such as multiply moving
points along elliptic trajectories with constant angular ve-
locity.

Let P; be 3D points moving along elliptic trajectories.
Let the centers of the trajectories be O;, and let the axes of
the ellipse be U;, V;. At time j, the 3D location of the point
is P; = O; + cos(Aj)U; + sin(Aj)V;.

Assume that all the points are coplanar at some time
along the motion, i.e., w.l.o.g the third coordinate of P; van-
ishes for all <. Also assume that one of the axes of each el-
lipse is perpendicular to the XY plane, i.e., U; = (0,0, u;)
and V; = (v;,0,0). In this case the matrix A of equation 2.2



becomes:

ll & [Xl + Sin(Aj)’U]_, }/17 COS()\j)Ul, 1]T
11 ® [X1 +sin(Aj)o1, Y1, cos(Aj)ur, 1]

A=

le; ® [Xe6 + sin(A\j)ve, Vs, cos(Aj)ug, 1] T
lIGJ ® [XG + Sin(Aj)UG;}/%;COS()‘j)UGJ 1]T

12x12
The determinant of A vanishes since:

myj
Araxia | ma;j =0.

m3j 112x1

Notice that A has six columns which do not contain any
function of j. Three columns of A contain only multipli-
cations of cos(\j), and therefore cos®()\j) can be seen as
a general scale factor. Another three columns contain mul-
tiplications of sin(\j) along with other elements (the first
coordinate of O;) . So the constraint which we get from
the determinant expansion of the matrix A, is multilinear
in the fifth, and six image points and a power series of
sin(\j) : 1,sin(\j), sin®(\j), sin®(\j).

One can reduce the type of elliptic motion even further
and thus obtain a simpler invariant — this time both view-
independent and time-independent. Assume that in addition
to the above there is a known constant ratio § between the
axis of the motion ellipse. i.e for every i, there exist o; such
thatVi=(a; 0 0) andU; = (0 0 6c;) . In this
case the matrix A takes the form:

1 ® [Xl + sin()\t)al, Yi, COS(/\t)(SOél, 1]T
I, ® [Xy + sin(At)ay, Y1, cos(At)da , 1] T

A=

le; ® [Xe + sin(At)as, Ys, cos(At)dag, 1] T

lg; ® [Xe + sin(At)as, Vs, cos(At)das, 1T |,

Three columns of A are multiplications of cos(At). There-
fore cos®(\t) is a global scale factor of the constraint
det(A) = 0. Every column which contains sin(At) can
be factored into a sum of the part which does not contain
sin(At) and the part which contains it. This situation occurs
in three columns, and by the multi-linearity of the determi-
nant expansion we factor it, along these sums, into a sum of
23 = 8 determinants. All the determinants which contain
a column which is a multiplication of sin(A¢) vanish, since
these columns are just a scalar times one of the columns
which are multiplications of cos(At). Thus, the only re-
maining part of the determinant is the part which does not
contain any sin(At) at all.

ll & [Xlayia(sala ]-]T
lij ® [Xl,Yl,éal, ].]T

det(A) = cos®(\t)

l6j X [XG;YvG;(saG) 1]T
léj ® [Xe,Ye,(sae, l]T

The resulting constraint is a multilinear expression in the
measurements ps, pg and is invariant to time.

4 Experiments

We have applied the view-invariant polynomials and tensors
for matching against classes of objects for which both shape
and motion form an integral part of their characterization
as a class. For example, the distinction between a person
making a walking movement or a sitting movement from an
upright position requires both shape (3D position of con-
trol points) and motion. Likewise, the distinction between
various classes of hand gestures also requires both the 3D
position of control points and their motion. In both cases,
we made the assumption the dynamic component can be
approximated by the non-rigidity assumed in this paper: for
the gait and sitting movement we assumed multiply moving
points along straight-line paths with constant velocity and
for the hand gestures we assumed constraint circular trajec-
tories with constant angular velocity.

Although our objective in this work is not necessarily
to introduce the best algorithm for human gait recogni-
tion, or identification of action in general — these applica-
tions are introduced here only as a means to form interest-
ing and challenging testing platforms — it is worth noting
that the literature on understanding action — mostly related
to human motion understanding covering full body move-
ments like gait recognition up to facial expressions — is
vast in number and spans a variety of different technical ap-
proaches. An updated survey of the various techniques can
be found in [1, 11].

4.1 Indexing Into a ‘Sitting”> Motion

We applied the polynomials described for the Affine cam-
era model for the task of indexing into the motions of a
person performing a sitting movement. Recall that a sin-
gle view of 5 points gives rise to two view-invariant and
motion-invariant polynomials whose coefficients (a func-
tion of the positions P; and velocities V;) can be recovered
from 8 views of of the object in motion. Consider applying
this scheme to the matching points arising from a person
whose motion starts from an upright position and ends in a
crouching position (sitting on a chair, see Fig. 1(a.1-a.3)).
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Figure 1: (a.1-a.3) shows three images from a training set of 20.
The markers on the person were tracked automatically. (b.1-b.3)
matched images for a novel sequence corresponding to the same
“time” stamp j calculated from the image positions of the markers.

The first experiment is to recover the time j per frame
of the sequence. Recall that once we have recovered the
coefficients (using at least 8 views) every collection of 5
points from the image provides two 3’rd order polynomi-
als in j, thus j can be recovered per image (for this par-
ticular setup the polynomial is linear because the velocities
are mostly collinear). We consider a new sequence of an-
other person performing the same movement and apply the
polynomials from the reference person and calculate j. We
then match the images from the first sequence to the images
from the second sequence based on the computed j in order
to see whether we indeed get the same stage in the motion
sequence. Fig. 1(b.1-b.3) shows three such frames with es-
timated times j which match those of (a.1-a.3). We can see
that there is a good correspondence between the different
stages of the sitting action in the three pairs of images.

In the second experiment we display the computed j as it
changes over the sequence — we expect it to change mono-
tonically (since j represents time). Given sequence of an-
other person performing the same type of motion we expect
that the invariant polynomials recovered from the first se-
quence will generate a monotonically increasing j. This is
shown in Fig. 2a where the value of the recovered j of the
second sequence is plotted and is indeed monotonically in-
creasing. In Fig. 2b we see the plot of 5 of a person getting

up from a sitting position — in this case we expect to have a
monotonically decreasing graph. Finally, we expect that the
recovered j from a sequence of a different movement, say
a gait movement, would yield an inconsistent behavior of
7. This is shown in Fig. 2¢ for a walking movement — the
recovered j remains flat reflecting the value (zero) corre-
sponding to the upright position in the sequence of a person
making a sitting movement. Therefore, by the change pat-
tern of the value j one can match sequences of a class of
objects making a class of movements.

4.2 Dynamic Hand Gesture Recognition

We have created five action models — each action model
was created from a sequence. The first and last frame from
each sequence is displayed in the first two rows of Fig. 3.
Note that some of the actions involve only rigid motion (like
the hand waving in display b1 and b2) while others included
dynamic (non-rigid) movement (like the gesture in displays
al and a2). Each sequence of hand movement was taken
while the camera was in motion thus we had both change
of viewing position and change in shape (for those gestures
that involved shape change). The stage of model building
consisted of creating the indexing polynomials (the tensors)
described in Section 3. The results of single view classifi-
cation are presented in the graph plots. The x axis of each
plot runs over the test images, whereas the y axis represents
the classification values (residual of tensor contraction).

Fig. 3(f) shows the residuals for the motion shown in
figures 3(b.1,b.2). The five graphs represent the residuals
of the five indexing tensors. The indexing tensor match-
ing the motion captured is emphasized for clarity. Notice-
ably, the indexing tensor of the correct action has much
smaller residuals for most of the sequence. Fig. 3(g) shows
recognition performed on a sequence capturing the motion
in Fig. 3(c1,c2). In some part of this sequence the index-
ing function of the motion described in Fig. 3(d1,d2) show
lower residuals then the correct indexing function. The im-
ages corresponding to these results are indeed compatible
with both of the gestures. Fig. 3(h) shows the residuals for
a sequence of the motion showed in Fig. 3(el,e2). Two of
the indexing functions (matching the motions (a) and (e))
have the lowest residuals errors, This can be explained by
the fact that the motion (e) is a specific case of the motion
(a), therefore a classification is not possible.

5 Summary

We have derived single-view (view-invariant) shape con-
straints for continuously changing 3D shapes where the no-
tion of “time” is integrated into the shape constraints. The
resulting expressions are a function of image coordinates,
3D coordinates of the corresponding points, the velocity
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Figure 2: (a) shows how the estimate “time” j (y-axis) changes throughout a sequence (x-axis) of a sitting motion. (b) shows the same plot
for a sequences of a person getting up. (c) the change in time for a sequence of a different class, in this case depicting a person walking.
Note that j remains constant (around zero) which corresponds to the upright position in the sitting motion class.

vectors (assuming that the shape evolution over time fol-
lows a constant velocity rule), and the frame number j. We
have shown that given a sufficient number of images, taken
from various viewing positions, of the evolving shape —
in the affine camera model 8 views are necessary — the
coefficients of these expressions can be linearly recovered
from the image measurements alone. Given a novel view of
the evolving shape, the invariant expression can be evalu-
ated leaving a polynomial in the frame number j (the time
stamp) which can then be recovered. We have introduced
these expressions for various camera models including 3D
affine and full projective and various constant velocity evo-
lutions models.

The experiments were conducted on sequences depict-
ing people making a “sitting” movement and walking (gait)
movements and hand gestures. In all these cases, the classes
of objects are characterized both by their shape and their
movement — therefore a view-invariant indexing model
which takes into account shape and motion seems to be
very useful. The experimental results have shown that in-
deed what can match various stages of the motion evolu-
tion across sequences of objects of the same class (Fig. 1),
and moreover, one can efficiently discriminate between se-
quences coming from different classes (Fig. 2), and also
make a discrimination from a single view to which class of
objects the image comes from (Fig. 3).
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against frame number of the sequences. The indexing tensor of the reference class is displayed with a double-stroke. Note that in all cases
the double-stroked curve has the lowest residual (modulo exceptions which are explained in the text).

and Applications. In Proceedings of the Fifth Europen Con-
ference of Computer Vision, Freiburg, June 1998, Springer-
Verlag.

[16] R.A. Manning and C.R. Dyer. Interpolating view and scene
motion by dynamic view morphing. In Proceedings of the
IEEFE Conference on Computer Vision and Pattern Recogni-
tion, pages 388-394, Fort Collins, Co., June 1999.

[17] L. Quan. Invariants of 6 points from 3 uncalibrated images.
In Proceedings of the European Conference on Computer Vi-
sion, Stockholm, Sweden, May 1994. Springer-Verlag, LNCS
801.

[18] A. Shashua and M. Werman. Trilinearity of three perspective
views and its associated tensor. In Proceedings of the Interna-
tional Conference on Computer Vision, June 1995.

[19] A. Shashua and L. Wolf. On the Structure and Properties of
the Quadrifocal Tensor. In Proceedings of the European Con-
ference on Computer Vision (ECCV), Dublin, Ireland, June
2000.

[20] A. Shashua and Lior Wolf. Homography tensors: On alge-
braic entities that represent three views of static or moving
planar points. In Proceedings of the European Conference on
Computer Vision, Dublin, Ireland, June 2000.

[21] B. Triggs. Matching constraints and the joint image. In Pro-
ceedings of the International Conference on Computer Vision,
pages 338-343, Cambridge, MA, June 1995.

[22] D. Weinshall. Model based invariants for 3-D vision. Inter-
national Journal of Computer Vision, 10(1):27-42, 1993.

[23] D. Weinshall, M. Werman, and A. Shashua. Duality of multi-
point and multi-frame geometry: Fundamental shape matrices
and tensors. In Proceedings of the European Conference on
Computer Vision, LNCS 1065, pages 217-227, Cambridge,
UK, April 1996. Springer-Verlag.

[24] Y. Wexler and A.Shashua. On the synthesis of dynamic
scenes from reference views. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, South
Carolina, June 2000.

[25] L. Wolf and A. Shashua. On Projection Matrices PF_ >
P2,k = 3,...,6, and their Applications in Computer Vision.
International Conference on Computer Vision (ICCV) Van-
couver, Canada, July, 2001 .



