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The result of the PAC model (also known as the ”formal” learning model) is that if the
concept class C is PAC-learnable then the learning strategy must simply consist of gathering a
sufficiently large training sample S of size m > mo(ε, δ), for given accuracy ε > 0 and confidence
0 < δ < 1 parameters, and finds a hypothesis h ∈ C which is consistent with S. The learning
algorithm is then guaranteed to have a bounded error err(h) < ε with probability 1− δ. The error
measurement includes data not seen by the training phase.

This state of affair also holds (with some slight modifications on the sample complexity bounds)
when there is no consistent hypothesis (the unrealizable case). In this case the learner simply needs
to minimize the empirical error ˆerr(h) on the sample training data S, and if m is sufficiently large
then the learner is guaranteed to have err(h) < Opt(C) + ε with probability 1 − δ. The measure
Opt(C) is defined as the minimal err(g) over all g ∈ C. Note that in the realizable case Opt(C) = 0.
More details in Lecture 10.

The property of bounding the true error err(h) by minimizing the sample error ˆerr(h) is very
convenient. The fundamental question is under what conditions this type of generalization property
applies? We saw in Lecture 10 that a satisfactorily answer can be provided when the cardinality of
the concept space is bounded, i.e. |C| < ∞, which happens for Boolean concept space for example.
In that lecture we have proven that:

mo(ε, δ) = O(
1
ε

ln
|C|
δ

),

is sufficient for guaranteeing a learning model in the formal sense, i.e., which has the generalization
property described above.

In this lecture and the one that follows we have two goals in mind. First is to generalize the
result of finite concept class cardinality to infinite cardinality — note that the bound above is
not meaningful when |C| = ∞. Can we learn in the formal sense any non-trivial infinite concept
class? (we already saw an example of a PAC-learnable infinite concept class which is the class
of axes aligned rectangles). In order to answer this question we will need to a general measure
of concept class complexity which will replace the cardinality term |C| in the sample complexity
bound mo(ε, δ). It is tempting to assume that the number of parameters which fully describe the
concepts of C can serve as such a measure, but we will show that in fact one needs a more powerful
measure called the Vapnik-Chervonenkis (VC) dimension. Our second goal is to pave the way and
provide the theoretical foundation for the large margin principle algorithm (SVM) we derived in
lectures 6,7.

11.1 The VC Dimension

The basic principle behind the VC dimension measure is that although C may have infinite cardi-
nality, the restriction of the application of concepts in C to a finite sample S has a finite outcome.
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This outcome is typically governed by an exponential growth with the size m of the sample S —
but not always. The point at which the growth stops being exponential is when the ”complexity”
of the concept class C has exhausted itself, in a manner of speaking.

We will assume C is a concept class over the instance space X — both of which can be infinite.
We also assume that the concept class maps instances in X to {0, 1}, i.e., the input instances are
mapped to ”positive” or ”negative” labels. A training sample S is drawn i.i.d according to some
fixed but unknown distribution D and S consists of m instances x1, ...,xm. In our notations we will
try to reserve c ∈ C to denote the target concept and h ∈ C to denote some concept. We begin
with the following definition:

Definition 1
ΠC(S) = {(h(x1), ..., h(xm) : h ∈ C}

which is a set of vectors in {0, 1}m.

ΠC(S) is set whose members are m-dimensional Boolean vectors induced by functions of C. These
members are often called dichotomies or behaviors on S induced or realized by C. If C makes a full
realization then ΠC(S) will have 2m members. An equivalent description is a collection of subsets
of S:

ΠC(S) = {h ∩ S : h ∈ C}

where each h ∈ C makes a partition of S into two sets — the positive and negative points. The
set ΠC(S) contains therefore subsets of S (the positive points of S under h). A full realization will
provide

∑m
i=0

(m
i

)
= 2m. We will use both descriptions of ΠC(S) as a collection of subsets of S and

as a set of vectors interchangeably.

Definition 2 If |ΠC(S)| = 2m then S is considered shattered by C. In other words, S is shattered
by C if C realizes all possible dichotomies of S.

Consider as an example a finite concept class C = {c1, ..., c4} applied to three instance vectors
with the results:

x1 x2 x3

c1 1 1 1
c2 0 1 1
c3 1 0 0
c4 0 0 0

Then,

ΠC({x1}) = {(0), (1)} shattered
ΠC({x1,x3}) = {(0, 0), (0, 1), (1, 0), (1, 1)} shattered
ΠC({x2,x3}) = {(0, 0), (1, 1)} not shattered

With these definitions we are ready to describe the measure of concept class complexity.

Definition 3 (VC dimension) The VC dimension of C, noted as V Cdim(C), is the cardinality
d of the largest set S shattered by C. If all sets S (arbitrarily large) can be shattered by C, then
V Cdim(C) = ∞.

V Cdim(C) = max{d | ∃|S| = d, and |ΠC(S)| = 2d}
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The VC dimension of a class of functions C is the point d at which all samples S with cardinality
|S| > d are no longer shattered by C. As long as C shatters S it manifests its full ”richness” in
the sense that one can obtain from S all possible results (dichotomies). Once that ceases to hold,
i.e., when |S| > d, it means that C has ”exhausted” its richness (complexity). An infinite VC
dimension means that C maintains full richness for all sample sizes. Therefore, the VC dimension
is a combinatorial measure of a function class complexity.

Before we consider a number of examples of geometric concept classes and their VC dimension,
it is important clarify the lower and upper bounds (existential and universal quantifiers) in the
definition of VC dimension. The VC dimension is at least d if there exists some sample |S| = d
which is shattered by C — this does not mean that all samples of size d are shattered by C.
Conversely, in order to show that the VC dimension is at most d, one must show that no sample of
size d + 1 is shattered. Naturally, proving an upper bound is more difficult than proving the lower
bound on the VC dimension. The following examples are shown in a ”hand waiving” style and are
not meant to form rigorous proofs of the stated bounds — they are shown for illustrative purposes
only.

Intervals of the real line: The concept class C is governed by two parameters α1, α2 in the
closed interval [0, 1]. A concept from this class will tag an input instance 0 < x < 1 as positive if
α1 ≤ x ≤ α2 and negative otherwise. The VC dimension is at least 2: select a sample of 2 points
x1, x2 positioned in the open interval (0, 1). We need to show that there are values of α1, α2 which
realize all the possible four dichotomies (+,+), (−,−), (+,−), (−,+). This is clearly possible as one
can place the interval [α1, α2] such the intersection with the interval [x1, x2] is null, (thus producing
(−,−)), or to fully include [x1, x2] (thus producing (+,+)) or to partially intersect [x1, x2] such
that x1 or x2 are excluded (thus producing the remaining two dichotomies). To show that the VC
dimension is at most 2, we need to show that any sample of three points x1, x2, x3 on the line
(0, 1) cannot be shattered. It is sufficient to show that one of the dichotomies is not realizable:
the labeling (+,−,+) cannot be realizable by any interval [α1, α2] — this is because if x1, x3 are
labeled positive then by definition the interval [α1, α2] must fully include the interval [x1, x3] and
since x1 < x2 < x3 then x2 must be labeled positive as well. Thus V Cdim(C) = 2.

Axes-aligned rectangles in the plane: We have seen this concept class in Lecture 2 — a point
in the plane is labeled positive if it lies in an axes-aligned rectangle. The concept class C is thus
governed by 4 parameters. The VC dimension is at least 4: consider a configuration of 4 input
points arranged in a cross pattern (recall that we need only to show some sample S that can be
shattered). We can place the rectangles (concepts of the class C) such that all 16 dichotomies can
be realized (for example, placing the rectangle to include the vertical pair of points and exclude
the horizontal pair of points would induce the labeling (+,−,+,−)). It is important to note that
in this case, not all configurations of 4 points can be shattered — but to prove a lower bound it is
sufficient to show the existence of a single shattered set of 4 points. To show that the VC dimension
is at most 4, we need to prove that any set of 5 points cannot be shattered. For any set of 5 points
there must be some point that is ”internal”, i.e., is neither the extreme left, right, top or bottom
point of the five. If we label this internal point as negative and the remaining 4 points as positive
then there is no axes-aligned rectangle (concept) which cold realize this labeling (because if the
external 4 points are labeled positive then they must be fully within the concept rectangle, but
then the internal point must also be included in the rectangle and thus labeled positive as well).

Separating hyperplanes: Consider first linear half spaces in the plane. The lower bound on the
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VC dimension is 3 since any three (non-collinear) points in R2 can be shattered, i.e., all 8 possible
labelings of the three points can be realized by placing a separating line appropriately. By having
one of the points on one side of the line and the other two on the other side we can realize 3
dichotomies and by placing the line such that all three points are on the same side will realize the
4th. The remaining 4 dichotomies are realized by a sign flip of the four previous cases. To show
that the upper bound is also 3, we need to show that no set of 4 points can be shattered. We
consider two cases: (i) the four points form a convex region, i.e., lie on the convex hull defined by
the 4 points, (ii) three of the 4 points define the convex hull and the 4th point is internal. In the
first case, the labeling which is positive for one diagonal pair and negative to the other pair cannot
be realized by a separating line. In the second case, a labeling which is positive for the three hull
points and negative for the interior point cannot be realize. Thus, the VC dimension is 3 and in
general the VC dimension for separating hyperplanes in Rn is n + 1.

Union of a finite number of intervals on the line: This is an example of a concept class with
an infinite VC dimension. For any sample of points on the line, one can place a sufficient number
of intervals to realize any labeling.

The examples so far were simple enough that one might get the wrong impression that there is
a correlation between the number of parameters required to describe concepts of the class and the
VC dimension. As a counter example, consider the two parameter concept class:

C = {sign(sin(ωx + θ) : ω}

which has an infinite VC dimension as one can show that for every set of m points on the line
one can realize all possible labelings by choosing a sufficiently large value of ω (which serves as the
frequency of the sync function) and appropriate phase.

We conclude this section with the following claim:

Theorem 1 The VC dimension of a finite concept class |C| < ∞ is bounded from above:

V Cdim(C) ≤ log2 |C|.

Proof: if V Cdim(C) = d then there exists at least 2d functions in C because every function
induces a labeling and there are at least 2d labelings. Thus, from |C| ≥ 2d follows that d ≤ log2 |C|.

11.2 The Relation between VC dimension and PAC Learning

We saw that the VC dimension is a combinatorial measure of concept class complexity and we
would like to have it replace the cardinality term in the sample complexity bound. The first result
of interest is to show that if the VC dimension of the concept class is infinite then the class is not
PAC learnable.

Theorem 2 Concept class C with V Cdim(C) = ∞ is not learnable in the formal sense.

Proof: Assume the contrary that C is PAC learnable. Let L be the learning algorithm and m
be the number of training examples required to learn the concept class with accuracy ε = 0.1 and
1− δ = 0.9. That is, after seeing at least m(ε, δ) training examples, the learner generates a concept
h which satisfies p(err(h) ≤ 0.1) ≥ 0.9.
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Since the VC dimension is infinite there exist a sample set S with 2m instances which is shattered
by C. Since the formal model (PAC) applies to any training sample we will use the set S as follows.
We will define a probability distribution on the instance space X which is uniform on S (with
probability 1

2m) and zero everywhere else.
Because S is shattered, then any target concept is possible so we will choose our target concept

c in the following manner:

prob(ct(xi) = 0) =
1
2

∀xi ∈ S,

in other words, the labels ct(xi) are determined by a coin flip. The learner L selects an i.i.d. sample
of m instances S̄ — which due to the structure of D means that the S̄ ⊂ S and outputs a consistent
hypothesis h ∈ C. The probability of error for each xi 6∈ S̄ is:

prob(ct(xi) 6= h(xi)) =
1
2
.

The reason for that is because S is shattered by C, i.e., we can select any target concept for any
labeling of S (the 2m examples) therefore we could select the labels of the m points not seen by
the learner arbitrarily (by flipping a coin). Regardless of h, the probability of mistake is 0.5. The
expectation on the error of h is:

E[err(h)] = m · 0 · 1
2m

+ m · 1
2
· 1
2m

=
1
4
.

This is because we have 2m points to sample (according to D as all other points have zero proba-
bility) from which the error on half of them is zero (as h is consistent on the training set S̄) and
the error on the remaining half is 0.5. Thus, the average error is 0.25. Note that E[err(h)] = 0.25
for any choice of ε, δ as it is based on the sample size m. For any sample size m we can follow the
construction above and generate the learning problem such that if the learner produces a consistent
hypothesis the expectation of the error will be 0.25.

The result that E[err(h)] = 0.25 is not possible for the accuracy and confidence values we
have set: with probability of at least 0.9 we have that err(h) ≤ 0.1 and with probability 0.1 then
err(h) = β where 0.1 < β ≤ 1. Taking the worst case of β = 1 we come up with the average error:

E[err(h)] ≤ 0.9 · 0.1 + 0.1 · 1 = 0.19 < 0.25.

We have therefore arrived to a contradiction that C is PAC learnable.
We next obtain a bound on the growth of |ΠS(C)| when the sample size |S| = m is much larger

than the VC dimension V Cdim(C) = d of the concept class. We will need few more definitions:

Definition 4 (Growth function)

ΠC(m) = max{|ΠS(C)| : |S| = m}

The measure ΠC(m) is the maximum number of dichotomies induced by C for samples of size m.
As long as m ≤ d then ΠC(m) = 2m. The question is what happens to the growth pattern of
ΠC(m) when m > d. We will see that the growth becomes polynomial — a fact which is crucial
for the learnability of C.

Definition 5 For any natural numbers m, d we have the following definition:

Φd(m) = Φd(m− 1) + Φd−1(m− 1)
Φd(0) = Φ0(m) = 1
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By induction on m, d it is possible to prove the following:

Theorem 3

Φd(m) =
d∑

i=0

(
m

i

)

Proof: by induction on m, d. For details see Kearns & Vazirani pp. 56.
For m ≤ d we have that Φd(m) = 2m. For m > d we can derive a polynomial upper bound as

follows. (
d

m

)d d∑
i=0

(
m

i

)
≤

d∑
i=0

(
d

m

)i
(

m

i

)
≤

m∑
i=0

(
d

m

)i
(

m

i

)
= (1 +

d

m
)m ≤ ed

From which we obtain: (
d

m

)d

Φd(m) ≤ ed.

Dividing both sides by
(

d
m

)d
yields:

Φd(m) ≤ ed
(

m

d

)d

=
(

em

d

)d

= O(md).

We need one more result before we are ready to present the main result of this lecture:

Theorem 4 (Sauer’s lemma) If V Cdim(C) = d, then for any m, ΠC(m) ≤ Φd(m).

Proof: By induction on both d, m. For details see Kearns & Vazirani pp. 55–56.
Taken together, we have now a fairly interesting characterization on how the combinatorial

measure of complexity of the concept class C scales up with the sample size m. When the VC
dimension of C is infinite the growth is exponential, i.e., ΠC(m) = 2m for all values of m. On the
other hand, when the concept class has a bounded VC dimension V Cdim(C) = d < ∞ then the
growth pattern undergoes a discontinuity from an exponential to a polynomial growth:

ΠC(m) =

{
2m m ≤ d

≤
(

em
d

)d
m > d

}

As a direct result of this observation, when m >> d is much larger than d the entropy becomes
much smaller than m. Recall than from an information theoretic perspective, the entropy of a
random variable Z with discrete values z1, ..., zn with probabilities pi, i = 1, ..., n is defined as:

H(Z) =
n∑

i=0

pi log2

1
pi

,

where I(pi) = log2
1
pi

is a measure of ”information”, i.e., is large when pi is small (meaning that
there is much information in the occurrence of an unlikely event) and vanishes when the event is
certain pi = 1. The entropy is therefore the expectation of information. Entropy is maximal for
a uniform distribution H(Z) = log2 n. The entropy in information theory context can be viewed
as the number of bits required for coding z1, ..., zn. In coding theory it can be shown that the
entropy of a distribution provides the lower bound on the average length of any possible encoding
of a uniquely decodable code fro which one symbol goes into one symbol. When the distribution
is uniform we will need the maximal number of bits, i.e., one cannot compress the data. In the
case of concept class C with VC dimension d, we see that one when m ≤ d all possible dichotomies
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are realized and thus one will need m bits (as there are 2m dichotomies) for representing all the
outcomes of the sample. However, when m >> d only a small fraction of the 2m dichotomies
can be realized, therefore the distribution of outcomes is highly non-uniform and thus one would
need much less bits for coding the outcomes of the sample. The technical results which follow are
therefore a formal way of expressing in a rigorous manner this simple truth — If it is possible to
compress, then it is possible to learn. The crucial point is that learnability is a direct consequence of
the ”phase transition” (from exponential to polynomial) in the growth of the number of dichotomies
realized by the concept class.

In the next lecture we will continue to prove the ”double sampling” theorem which derives the
sample size complexity as a function of the VC dimension.


