Principal Component Analysis Over Continuous
Subspaces and Intersection of Half-spaces*

Anat Levin and Amnon Shashua

Computer Science Department,
Stanford University,
Stanford, CA 94305

Abstract. Principal Component Analysis (PCA) is one of the most pop-
ular techniques for dimensionality reduction of multivariate data points
with application areas covering many branches of science. However, con-
ventional PCA handles the multivariate data in a discrete manner only,
i.e., the covariance matrix represents only sample data points rather than
higher-order data representations.

In this paper we extend conventional PCA by proposing techniques for
constructing the covariance matrix of uniformly sampled continuous re-
gions in parameter space. These regions include polytops defined by
convex combinations of sample data, and polyhedral regions defined by
intersection of half spaces. The applications of these ideas in practice
are simple and shown to be very effective in providing much superior
generalization properties than conventional PCA for appearance-based
recognition applications.

1 Introduction

Principal Component Analysis (PCA)[12], also known as Karhunen-Loeve trans-
form, has proven to be an exceedingly useful tool for dimensionality reduction of
multivariate data with many application areas in image analysis, pattern recog-
nition and appearance-based visual recognition, data compression, time series
prediction, and analysis of biological data — to mention a few.

The typical definition of PCA calls for a given set of vectors aj,...,a; in
an n-dimensional space, with zero mean, arranged as the columns of an n x &
matrix A. The output set of principal vectors ui,...,u, are an orthonormal set
of vectors representing the eigenvectors of the sample covariance matrix AAT
associated with the ¢ < n largest eigenvalues. The matrix UU T is a projection
onto the principal components space with the property that (i) the projection
of the original sample is “faithful” in a least-square sense, i.e.,
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(ii) equivalently, that the projection of the sample set onto the lower dimensional
space maximally retains the variance, i.e., the first principal vector u; maximizes
>, | ATuy |?, and so forth. The representation of a sample point a; in the lower
dimensional feature space is defined by x; = U "a;, and (iii) the covariance ma-
trix Q@ =3, x;x; of the reduced dimension representation is diagonal, i.e., PCA
decorrelates the sample data (thus, if the sample data is drawn from a normal
distribution then the variables in the feature space are statistically independent).

The strength of PCA for data analysis comes from its efficient computational
mechanism, the fact that it is well understood, and from its general applicability.
For example, a sample of applications in computer vision includes the represen-
tation and recognition of faces [25,26,16,3], recognition of 3D objects under
varying pose [17], tracking of deformable objects [6] and for representations of
3D range data of heads [1].

Over the years there have been many extensions to conventional PCA. For
example, Independent Component Analysis (ICA) [8,5] is the attempt to ex-
tend PCA to go beyond decorrelation and to perform a dimension reduction
onto a feature space with statistically independent variables. Other extensions
address the situation where the sample data live in a low-dimensional (non-
linear) manifold in an effort to retain a greater proportion of the variance using
fewer components (cf. [7,11,10,13,27,21]); and yet other (related) extensions
derive PCA from the perspective of density estimation (which facilitate model-
ing non-linearities in the sample data) and the use of Bayesian formulation for
modeling the complexity of the sample data manifold [28].

In this paper we propose a different kind of extension to conventional PCA,
which is orthogonal to the extensions proposed in the past, i.e., what we propose
could be easily retrofitted to most of the PCA-extensions. The extension we
propose has to do with the representation of the sample data. Rather than
the data consist of points alone we allow for representation of continuous regions
described by (i) convex combinations of sample points (polytops), and (ii) convex
regions defined by intersection of half-spaces. In other words, we show how to
construct the covariance matrix of a uniformly sampled polytop described by
a finite set of sampled points (the generators of the polytop), and a uniformly
sampled polyhedral defined by intersection of half-spaces. In the former case, the
integration over the polytop region boils down to a very simple modification of
the original covariance matrix of the sampled point set: replace AAT with AGAT
where @ is a symmetric positive definite matrix which is described analytically
per region. We show that despite the simplicity of the result the approach has
a significant effect on the generalization properties of PCA in appearance-based
recognition — especially when the raw data is not uniformly sampled. In the
case of polyhedral regions described by intersections of half-spaces we show that
although the concept of integration over the bounded region is not obvious it
can be done at a cost of O(n?) in certain cases where the half-spaces are defined
by inequalities over pairs of variables forming a tree structure. We demonstrate
the application of this concept to intensity-ratio representations in appearance-



based recognition and show a much superior generalization over conventional
PCA.

1.1 Region-based PCA — Definition and Motivation

We will start with a simple example. Given two arbitrary points a;,as in the
two-dimensional plane, the first principal component u (a unit vector) maximizes
the scatter: (a] u)? + (aj u)?, which is the first eigenvector (associated with the
largest eigenvalue) of the 2 x 2 matrix a;a; +asa, . Consider the case where we
would like the entire line segment Aa; + (1 —A)az, 0 < A < 1 to be sampled, how
would that change the direction of the principal component u? In other words,
if W is a polytop defined by the convex combination of a set of points (in this
case W is a line segment), one is looking for the evaluation of the integral:

max/ |la’u|>da=u’ {/ aaTda] u (1)
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By substituting Aa; + (1 — A)a for a in the integral [aa’ and noting that
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we obtain the optimization problem:
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Therefore, the first principal component u is the largest! eigenvector of the
matrix: L0
: T T
A[O.E’) 1 }A = APA (2)
where A = [a;, a] the matrix whose columns consists of the sample points.
In the following section we will generalize this simple example and handle any
polytop (represented by its vertices). Once we have that at hand it is simple to
accommodate a collection of polytops or a combination of points and polytops
as input to the PCA process.

The motivation for representing ploytopes in a PCA framework arises from
the fact that in many instances in visual recognition it is known apriori that
the data resides in polytopes: probably the most well known example is the case
of varying illumination over Lambertian surfaces. There are both empirical and
analytic justifications to the fact that a relatively small number of images are
necessary to model the image variations of human faces under different lighting
conditions. In this context, a number of researchers have raised the issue of
how to optimally construct the subspace using a sample of images which may
be biased. Integration over the polyhedral defined by a sample, even though it

! We mean by “largest” the eigenvector associated with the largest eigenvalue.



is a biased sample, would be a way to construct the image subspace. This is
addressed in Section 2.1 of this paper.

In the second part of the paper we consider polyhedrals defined by the inter-
section of half-spaces. Let the variables of a data point be denoted by x4, ..., x,
where the range of each variable is finite (say, denote pixel values) and consider
the polyhedral defined by the relations:

iy < xp < ﬁijxj

for a number of pairs of variables. Each inequality defines a pair of half-spaces
(area on side of a hyperplane) thus a (sufficient and consistent) collection of
inequalities will define a polyhedral cone whose apex is at the origin. As before,
we would like to represent the entire bounded region in the PCA analysis — and
we will show how this could be done in the sequel.

Our motivation for considering regions defined by inequalities comes from
studies in visual recognition showing that the ratio alone between pre-selected
image patches provides a very effective mechanism for matching under variabil-
ity of illumination. For example, [24, 18] propose a graph representation (see
Fig. 3b for an example) where regions in the image correspond to nodes in the
graph and the edges connect neighboring regions which have a consistent rela-
tion “the average image intensity of node i is between 0.35 and 0.75 of node j”,
for instance. A match between a test image and the model reduces to a graph
matching problem. In this paper we show that the idea of a graph representa-
tion could be embedded into the PCA framework by looking for the principal
components which best describe the region in space bounded by the hyperplanes
associated with those inequalities. In other words, it is possible to recast data
analysis problems defined by inequalities within a PCA framework — whatever
the application may be.

2 PCA over Polytops Defined by Convex Combinations

Let W denote a polytop defined by the convex combinations of a set of linearly
independent points ay, ..., a4, and let Dy be the d — 1 dimensional manifold

Dq={p=(p,-..,ua} € R"| Z,Ui =1, >0},

(3

and let V(Dy) = fDd 1dp be the volume of Dy. The principal components are
the eigenvectors of the covariance matrix:

Cov(W) = %/ WaaTda,
ac

where V(W) denotes the volume of the polytop W, and the inverse volume
outside the integral indicates that we have assumed a uniform density function
when sampling the points a € W. Let A = [ay,...,a4] be the n x d matrix whose
columns are the generators of W, then for every vector u € Dy we have that



Ap € W. Therefore, the covariance matrix representing the dense (uniform)
sampling of the polytop W takes the form:

1

Cov(W) = X Dd)A [ /u . Mﬁdu} AT = AP AT, (3)

Note that the matrix &4 = (1/V(Dq)) [ pu" du does not depend on the choice
of the generators ay, ..., a4, thus the integral needs to be evaluated only once for
every choice of d.

Note that since Dy is symmetric under the group of permutations of d letters,
then [ pipjdp = [ pipodu for all i # j and [ p?dp = [ pdu. Thus, the matrix
@, has the form:

Qg Ba - B

1 Bdad"'ﬂd
ECnE N A

Ba Ba -+ ad

where aq = [ pidp and B4 = [ pipedu. We are therefore left with the task of
evaluating three integrals ag, 34 and V (Dy). By induction on d one can evaluate
those integrals (derivation is omitted due to lack of space) and obtain:

1 ) 2 1
V(Dq) = / ldp = , Qd =/ pidp = , Ba= / papedp = ———s
- (d—1)! D, (d+1)! - (d+1)!

We therefore obtain the following result:

Theorem 1. The covariance matriz of the uniformly sampled polytop W defined
by the convez linear combinations of a set of d points ay, ...,ay, arranged as the
columns of a n x d matriz A, has the form:

1 1
Cov(W) = vaon) /aewaaTda = mA(I+eeT)AT, (4)

where e = (1,1,...,1) and “I” is the identity matriz.

There are few points worth noting. First, when the data consists of a single
polytop, then centering the data, i.e., subtracting the mean such that Ae = 0,
then the discrete covariance matrix AAT over the vertices of W is the same
the covariance matrix cov(W) of the entire polytop. Therefore, the integration
makes a difference only when there are a number of polytops.

Second, the matrix #; = I +ee' can be factored as QdQ}:

I+ee =(I+cee')(I+cee') =QuQ,,
where
vd+1-1
y :

This property can be used to perform PCA on a d x d matrix instead of the
n X n covariance matrix when d << n, as follows. Denote A = AQq (an n x d



matrix), thus AAT = A®4AT. In case d << n then let y be an eigenvector of
ATA (d x d matrix), then Ay is the corresponding eigenvector of AAT. The
importance of this property is that the computational complexity of recovering
the principal vectors is proportional to the dimension of the polytop rather than
the dimension n of the vector space.

The third point to note is that the covariance matrix of two uniformly sam-
pled polytops of dimensions d; — 1 and dy — 1 is the sum of the covariance ma-
trices corresponding to each polytop separately. In other words, let ay,...,aq,,
arranged as columns of a matrix A, be the generators of the first polytop, and
let by,...,bg,, arranged as columns of a matrix B, be the generators of the
second polytop. The covariance matrix of the data covering the uniform sam-
pling of both polytops is simply A®4, AT + Bd4, BT. Thus, for example, given
a collection of triplets of images of a class of 3D objects (say, frontally viewed
human faces) where the i’th triplet, represented by a n x 3 matrix A;, spans
the illumination cone of the i’th object, then the covariance matrix of the entire
class is simply >, A;®3A] . In case the number of triplets k& << n the cost of
computing the principal vectors is proportional to 3k rather than to n by not-
ing that one can compute the eigenvectors of the 3k x 3k matrix BT B where
B =[A1Qs, ..., A Q3] is an n x 3k matrix.

2.1 Demonstrating the Strength of Results

In this section we will provide one example to illustrate the strength of our result.
The simplicity of our result, replace AAT by ABAT, may be somewhat mislead-
ing — the procedure is indeed trivial, but its effects could be very significant as
we show next.

As mentioned in the introduction, empirical and analytic observations on
the class of human faces have shown that a relatively small number of sample
images of a Lambertian object are sufficient to model the image space of the
object under varying lighting conditions. Early work showed that when no surface
point is shadowed, as little as three images suffice [23,22]. Empirical results
have shown that even with cast and attached shadows, the set of images is
still well approximated by a low dimensional space [9]. Later work has shown
that the set of all images form a polyhedral cone which is well approximated
(for human faces) by a low dimensional linear subspace [4], and more recently
that the illumination cone (for convex Lambertian objects) can be represented
by a 9-dimensional linear subspace [2,19]. In this context, researchers [29,14]
have also addressed the issue of how to construct the illumination cone from
sample images, i.e., what would be the best representative sample?. A biased set
of samples would produce a PCA space which is not effective for recognition.
Closest to our work, [29] proposed a technique for integration over any three
images employing a spherical parameterization of the 3D space, which in turn is
specific to 3-dimensional subspaces.

Therefore, the problem of “relighting” provides a good testing grounds for
the integration over polytops idea. The integration can turn a biased sample into
non-biased — and this is exactly the nature of the experiment below.



Consider a training set of images of human frontal faces covering different
people and covering various illumination conditions (direction of light sources).
One would like to represent the training set by a small number of principal
components [26,9]. The fact that the image space of a 3D object with matte
(Lambertian) surface properties is known to occupy a small dimensional sub-
space suggests that the collection of training images per person forms a polytop
which will be uniformly sampled when creating the covariance matrix of the
entire training set. In other words, the training set would consist of a collec-
tion of polytops — one per person; where each polytop is defined by the convex
combinations of the set of images of that person.

In order to appreciate the difference between representing the polytops versus
representing the sample data points alone, we constructed a biased set of images
with respect to the illumination. We used the training set provided by Yale
University’s “illumination dome” where for each of the 38 objects we sampled
42 images: 40 of them illuminated from light sources in the left hemisphere and
only 2 from light sources located at the right hemisphere.

Since each of the faces is represented by a (biased) sample of 42 images,
whereas the polytop we wish to construct is only 3-dimensional we do the
following. For each PCA-plane corresponding to the sample of a face, we re-
parameterize the space such that all the 42 images are represented with respect
to their first 3 principal components, i.e., each image is represented by a 3-
coordinate vector. Those vectors are normalized thus they reside on a sphere.
The normalized 2D coordinates then undergo a triangulation procedure. Let A;
be the n x 3 matrix representing the i’th triangle, then A4;®3A; represents to
covariance matrix of the uniformed sampled triangle. As a result, >, A; b3 A
represents the covariance matrix of the continuous space defined by the 42 sample
images of the face. This is done for each of the 38 faces and the final covariance
matrix is the sum of all the individual covariance matrices.

Fig. 1a.1-6 shows a sample of images of a person in the training set. In row
c.1-3 we show the first three principal vectors when the covariance matrix is con-
structed in the conventional way (i.e., AA” where the columns of A contain the
entire training set). Note that the first principal vector (which typically repre-
sents the average data) has a strong shadow on the right hand side of the face. In
row c.4-6, on the other hand, we show the corresponding principal vectors when
the covariance matrix is constructed by summing up the individual covariance
matrices one for each polytop (as described above). Note that the principal vec-
tors represent an un-baised illumination coverage. The effect of representing the
polytops is very noticeable when we look at the projection of novel images onto
the principal vector set. In row b.1-4 we consider four novel images, two images
per person. The projections of the novel images onto the subspace spanned by
the first 40 principal vectors are shown in row b.5-8 for conventional PCA and
in row b.9-12 when polytops are represented. The difference is especially striking
when the illumination of the novel image is to the right (where the original train-
ing sample was very small). One can clearly see that the region-based PCA has
a much superior generalization property than the conventional approach — de-
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Fig. 1. Representing polytops constructed by images of different people, each person
sampled by a biased collection of light source directions. (a.1-6) a sample of training
images, (c.1-3) the first three principal vectors of the raw data — notice that the light
source is biased compared to the principal vectors in (c.4-6) computed from the polytop
representations. (b.1-4) novel images of two persons (test images), and their projections
on the principal space: (b.5-8) when computed from the raw data, and (b.9-12) when
computed from the polytop representation. Note that the latter has much superior
generalization performance.

spite the fact that a very simple modification was performed to the conventional
construction of the covariance matrix.

3 PCA over Polyhedrals Defined by Inequalities

In this section we turn our attention to polyhedrals defined by intersection of
half spaces. Specifically, we will focus on the family of polyhedrals defined by
the inequalities:

aijry < xp < Bijag, (5)

where z1, ..., 2, are the coordinates of the vector space representing the input
parameter space, and ayj, 3;; are scalars. Each such inequality between a pair
of variables x;, x; represents a pair of hyperplanes, passing through the origin,
bounding the possible data points in the desired (convex) polyhedral. These type



of inequalities arise in appearance-based visual recognition where only ratios
among certain key regions are considered when matching an image to a class of
objects. Fig. 3b illustrates a sketch of a face image with the key regions marked
and the pairs of regions for which the ratio of the average grey value is being
considered for matching. In the following section we will discuss in more detail
this type of application.

In order to make the relation between a set of inequalities, as defined above,
and polyhedrals bounding a finite volume in parameter space, it would be useful
to consider the following graph structure. Let the graph G(V, E) be defined such
that the set of vertices V' = {zy, ..., x, } represent the coordinates of the parame-
ter space, and for each inequality relation between x;, x; there is a corresponding
edge e;; € E coincident with vertices x;,z; in the graph. Tree structures (con-
nected graph with n—1 edges) are of particular interest because they correspond
to a convex polyhedral:

Claim. Let the associated graph of the set of inequalities of the type ayjz; <
z; < Bijz; form a tree. Then, given that an arbitrary variable z; is bounded
0 < 21 < 1, then all other variables are defined in a finite interval, and as a
result the collection of resulting hyperplanes bound a finite volume in space.

Proof: Due to the connectivity and lack of cycles in the graph, one can chain the
inequality relations along paths of the graph leading to x; and obtain the set of
new inequalities of the form d;21 < z; < ;2 for some scalars d;, ;. Therefore,
the hyperplane x; = constant, which does not pass through the origin, bounds
a finite volume because the range of all other variables is finite. []

At this point, till the end of this section, we will assume that the associated
graph representing the set of input inequalities is a connected tree (i.e., has n-1
edges and has no cycles). Our goal is to compute the integral:

/ xdeml s drgy,
xeW

where W is the region bounded by the hyperplanes corresponding to the in-
equalities and the additional hyperplane corresponding to z, = 1 where z, is
one arbitrarily chosen variable (we will discuss how to choose z, later in the im-
plementation section). Since the entries of the matrix xx " are bilinear products
of the variables, we need to find a way of evaluating the integral on monomials
xit - xhn where pu; are non-negative natural numbers. For a single constraint

ajjr; < x; < Bz, the integration over dz; is straightforward:
Bises 1 Un 1 pi+1 i1y pitpi+l K
xyt e aptdr; = m(ﬂij -y )T IT =& (6)
QaijTj v k#i,j

For multiple constraints our challenge is to perform the integration without
breaking W into sub-regions. For example, consider the two inequalities below:

ey < xp < Bija;

aipxr < o < BikTr



Then, the integration over the variable x; (which is bounded both by x; and by
xy) takes the form:
min{b;;z;,birxr}
/ R G o

max{a;;;,a;k Tk}
which requires breaking up the region W into 4 pieces. Alternatively, by noticing
that a;;o; < @; < Bija; is equivalent to B%xl <a; < %xz the integration would
take the form:

BikTk ﬁwz
122 S ) . .
/ /1 xy b drjde;.
QipTh le

Therefore, in order to simplify the complexity of the integration process one must
permute the variables ¢ — 7(i) and switch the variables inside the inequalities
such that after the re-ordering we have the following condition: for every ¢, there
exist at most a single constraint a;,;)T,;) < i < Bipgi)Tp(i) Where m(p(i)) >
7(i), i.e., the integration over x; is performed before the integration over z,(;.
In this case the integration over the region W takes the form:

1 B —1p(rp—1) Br1,po(m1) T
- xxday, - - ey, (7)
0 a a

Tn—1:P(Tn—1) m1,p(71)

where 7; stands for 7 (7). Before we explain how this could be achieved via the
associated graph, consider the following example for clarification. Let n = 4 and
we are given the following inequalities:

x2 <1 <272
r3 <21 < 373

r1 S wg <229

Since x; is bounded twice, we replace the first inequality with its equivalent
form:

1
> <y < 1.

We therefore have p(1) = 3, p(2) = 1 and p(4) = 1. Select the permutation (143),
ie, (1) =4,7(2) = 2,7(3) = 1 and 7(4) = 3. The integration of the monomial
x3 (for instance) over the bounded region W is therefore:

1 3x3 1 21
2
/ / / / xrzdrsdradrides.
0 Jag %961 1

. . . 2x .
The integration over x4 is performed first: le Y23dvy = x123 (according to

. . . xr
eqn. 6), then the integration over xs is performed: fO.El')zl ria3de, = faiad,

followed by the integration over zp, fj;g 1a323dr, = 2} and finally the inte-

3
gration over z3 (the free variable), fol Safdes = I
The decision of which inequality to “turn around” and how to select the
order of integration (the permutation 7 (7)) can be made through simple graph



algorithms, as follows. We will assign directions to the edges of the graph G
with the convention that a directed edge x; — z; represents the inequality
aijz; < x; < Bi52;. The condition that for every ¢ there should exist at most
a single inequality a;jx; < x; < Bi;x; is equivalent to the condition that the
associated directed graph will have at most one outgoing edge for every node.
The algorithm for directing the edges of the undirected graph would start from
some degree-1 node (a node with a single incident edge) and trace a path until
a degree-1 node is reached again. The direction of edges would then follow the
path. The process repeats itself with a new degree-1 node until no new nodes
remain. Since G is a tree this process is well defined.

The selection of the order of integration is then simply obtained by a topologi-
cal sort procedure. The reason for that is that one can view every pair z; = z; as
a partial ordering (z; comes before x;). The topological sort provides a complete
ordering (which is not necessarily unique) which satisfies the partial orderings.
The complete order is the desired permutation. The example above is displayed
graphically in Fig. 3a where the directed 4-node graph is shown and the topolog-
ical sort result x4, w2, x1, 23 (note that x2, x4, 21,23 is also a complete ordering
which yields the same integration result).

To summarize, given a set of n — 1 inequalities that form a connected tree,
the covariance matrix of the resulting polyhedral is computed as follows.

1. Direct the edges of the associated graph so that there would be at most a
single outgoing edge from each node.
2. “turn around” inequalities which do not conform to the edge direction con-
vention.
. Perform a topological sort on the resulting directed tree.
4. Evaluate the integral in eqn. 7 where the complete ordering from the topo-
logical sort is substituted for the permutation 7 ().

w

The complexity of this procedure is O(n) for every entry of the n x n matrix
=
XX .

3.1 Experimental Details

In this section we illustrate the application of principal vectors defined by a set of
inequalities in the domain of representing a class of images by intensity ratios —
an idea first introduced by [24, 18]. Consider a training set of human frontal faces,
roughly aligned, where certain key regions have been identified. For example, [24]
illustrates a manual selection of key regions and a manual determination of the
inequalities on the average intensity of the key regions. The associated graph
becomes the model of the class of objects and the matching against a novel
image is reduced to a graph matching procedure.

In this section we will re-implement the intensity-ratio inequality approach,
but instead of using a graph matching procedure we will apply a PCA repre-
sentation on the resulting polyhedral defined by the associated tree. There are
a number of advantages of doing so: for example, the PCA approach allows us
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Fig. 2. (a.1-6) a sample of the training set from the AR dataset. (b.1-4) the first four
principal vectors computed by integrating over the polyhedral region defined by the
inequalities, and (b.5-8) are the principal vectors computed from the raw point data
(in feature space).

to combine both raw data points, polytops defined by convex combinations of
raw data points, and the polyhedrals defined by the inequalities. In other words,
rather than viewing the intensity ratio approach as the engine for classification
it could be just another cue integrated in the global covariance matrix. Second,
by representing the polyhedral by its principal vectors one can make “soft” de-
cisions based on the projection onto the reduced space, which is less natural to
have in a graph matching approach.

As for training set, we used 100 images from the AR set [15] representing
aligned frontal human faces (see Fig. 2a). The key regions were determined by
applying a K-means clustering algorithm on the covariance matrix; five clusters
were found and those were broken down based on connectivity to 13 key regions.
The average intensity value was recorded per region thus creating the vector
x = (x1,...,w13) as the feature representation of the original raw images. For
every pair of variables x;, x; we recorded the sine of the angle between the vectors
x; recorded over the entire training set and the vector z; over the training set —
thus defining a complete associated graph with weights inversely proportional
to the correlation between the pairs of variables. The minimal spanning tree of
this graph was selected as the associated tree. Fig. 3b shows the key regions and
the edges of the associated tree. Finally, for every pair of variables x;,z; which
has an incident edge in the associated tree we determined the upper and lower
bounds of the inequality by constructing the histogram of z;/2; and selected a;;
to be at the lower 30% point of the histogram and b;; to be at the upper 30% of
the histogram. This completes the data preparation phase for the region-based
PCA applied to the polyhedral region defined by the associated tree.

Fig. 2b.1-4 shows the first four principal vectors of the region-based PCA us-
ing the integration formulas described in the previous section, while Fig. 2b.5-8
show the principal vectors using conventional PCA on the feature space vectors.
One can see that the first principal vector (b.1 and b.5) are very similar, yet



Fig. 3. (a) The associated tree of the n = 4 example. (b) A graphical description of
the associated tree on the face detection experiment using inequalities. (c) Typical
examples of true and false positives and negative detections on the leading technique
(first row in table 4) (d) Typical examples of the worst technique (third row in table
4)

the remaining principal vectors are quite different. In table 4 we compare the
performance over various uses of PCA on the CMU [20] test set of faces (which
constitute postcards of people). The best technique was the product of the con-
ventional PCA score on the raw image representation and the region-based PCA
score. The results are displayed in the first row of the table. The false detections
(false positives) are measured as a fraction of the total number of faces in the
CMU test set. The miss-detections (false negatives) are measured as the per-
centage of the total number of true faces in the test set. Each column in the
table represents a different tradeoff between the false positives and negatives —
the better detection performance is at the expense of false positives. Thus, for
example, when the detection rate was set to 96% (the highest possible in this
technique) the false detection rate was 1.7 the amount of the total number of
faces in the training set, whereas when the detection rate was set to 89% the false
detection rate went down to 0.67 of the total number of faces. In the second row
we use only conventional PCA: the score on the raw image representation mul-
tiplied with the score on the clustered image (feature vector of 13 dimensions).



The reduced performance is noticeable and significant. The worst performance
is presented in the third row where only conventional PCA was used on the raw
image representation. The region-based PCA performance is shown in the 4’th
row: the performance is lower than the leading approach, but not much lower.
And finally, conventional PCA on the clustered representation (13 dimensional
feature vector) is shown in the 5th row: note that the performance compared to
the 4’th row is significantly reduced. Taken together, the region-PCA approach
provides significant superiority in generalization properties compared to the con-
ventional PCA - despite the fact that it is essentially a PCA approach. The fact
that the relevant region of the parameter space is sampled correctly is the key
factor behind the superior performance.

In Fig. 3c-d we show some typical examples of detections which contain true
detections, false positives and negatives on the leading technique (first row in
the table) and the worst technique (third row in table).

False detections 1.7 1.1 0.67
raw-PCA & region-PCA 96% 91% 89%
raw-PCA & PCA(13-dim)| _ 80% 6% 5%
raw-PCA 60% 52% 54%
region-PCA 90% 86% 83%
conventional-PCA (13-dim) 79% 76% 72%

Fig. 4. Comparison of detection performance. The false detections (false positives) are
measured as a fraction of the total number of faces in the CMU test set. The mis-
detections (false negatives) are measured as the percentage of the total number of true
faces in the test set. Each column in the table represents a different tradeoff between
the false positives and negatives — the better detection performance is at the expense
of false positives. The rows in the table represent the different techniques being used.
See text for further details.

4 Summary

The paper makes a number of statements which include: (i) in some data analysis
applications it becomes important to represent (uniform sampling of) continuous
regions of the parameter space as part of the global covariance matrix of the
data, (ii) in case where the continuous regions are polytops, defined by the
convex combinations of sample data, the construction of the covariance matrix
is extremely simple: replace the conventional AAT covariance matrix with AGAT
where @ is described analytically in this paper, and (iii) the general idea extends
to challenging regions such as those defined by intersections of half spaces —
there we have derived the equations for constructing the covariance matrix where
the regions are formed by n — 1 inequalities on pairs of variables forming an
associated tree structure.



The concepts laid down in this paper are not restricted to computer vision
applications and have possibly a wider range of applications — just as the con-
ventional PCA is widely applicable. In the computer vision domain we have
shown that these concepts are effective in the domains of appearance-based vi-
sual recognition where continuous regions are defined by the illumination space
(Section 2) — which are known to occupy low-dimensional subspaces — and
in intensity-ratio representations. In the former case the regions form polytops
and we have seen that the representation of those polytops make a big effect in
the generalization properties of the principal vectors (Fig. 1), yet the price of
applying the proposed approach is minimal. In the case of intensity-ratio repre-
sentations, the notion of representing bounded spaces, defined by inequalities, by
integration over the bounded region is not obvious, but is possible and at a low
cost of O(n3). We have shown that the application of this concept provides much
superior generalization properties compared to conventional PCA (Table 4).

Future work on these ideas include non-uniform sampling of regions in the
case of polytops, handling the integration for general associated graphs (although
in general the amount of work is exponential with the size and number of cycles
in the graph) and exploring more applications for these basic concepts.
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