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Abstract� Principal Component Analysis �PCA� is one of the most pop	
ular techniques for dimensionality reduction of multivariate data points
with application areas covering many branches of science
 However� con	
ventional PCA handles the multivariate data in a discrete manner only�
i
e
� the covariance matrix represents only sample data points rather than
higher	order data representations

In this paper we extend conventional PCA by proposing techniques for
constructing the covariance matrix of uniformly sampled continuous re	
gions in parameter space
 These regions include polytops de�ned by
convex combinations of sample data� and polyhedral regions de�ned by
intersection of half spaces
 The applications of these ideas in practice
are simple and shown to be very e�ective in providing much superior
generalization properties than conventional PCA for appearance	based
recognition applications


� Introduction

Principal Component Analysis �PCA������ also known as Karhunen�Loeve trans�
form� has proven to be an exceedingly useful tool for dimensionality reduction of
multivariate data with many application areas in image analysis� pattern recog�
nition and appearance�based visual recognition� data compression� time series
prediction� and analysis of biological data 	 to mention a few


The typical de�nition of PCA calls for a given set of vectors a�� ���� ak in
an n�dimensional space� with zero mean� arranged as the columns of an n � k
matrix A
 The output set of principal vectors u�� ����uq are an orthonormal set
of vectors representing the eigenvectors of the sample covariance matrix AA�

associated with the q � n largest eigenvalues
 The matrix UU� is a projection
onto the principal components space with the property that �i� the projection
of the original sample is �faithful
 in a least�square sense� i
e
�

min

kX
i��

j ai � UU�ai j��
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�ii� equivalently� that the projection of the sample set onto the lower dimensional
space maximally retains the variance� i
e
� the �rst principal vector u� maximizesP

i j A�u� j�� and so forth
 The representation of a sample point ai in the lower
dimensional feature space is de�ned by xi � U�ai� and �iii� the covariance ma�
trix Q �

P
i xix

�
i of the reduced dimension representation is diagonal� i
e
� PCA

decorrelates the sample data �thus� if the sample data is drawn from a normal
distribution then the variables in the feature space are statistically independent�


The strength of PCA for data analysis comes from its e�cient computational
mechanism� the fact that it is well understood� and from its general applicability

For example� a sample of applications in computer vision includes the represen�
tation and recognition of faces ���� ��� ��� ��� recognition of �D objects under
varying pose ����� tracking of deformable objects ��� and for representations of
�D range data of heads ���


Over the years there have been many extensions to conventional PCA
 For
example� Independent Component Analysis �ICA� ��� �� is the attempt to ex�
tend PCA to go beyond decorrelation and to perform a dimension reduction
onto a feature space with statistically independent variables
 Other extensions
address the situation where the sample data live in a low�dimensional �non�
linear� manifold in an e�ort to retain a greater proportion of the variance using
fewer components �cf
 ��� ��� ��� ��� ��� ����� and yet other �related� extensions
derive PCA from the perspective of density estimation �which facilitate model�
ing non�linearities in the sample data� and the use of Bayesian formulation for
modeling the complexity of the sample data manifold ����


In this paper we propose a di�erent kind of extension to conventional PCA�
which is orthogonal to the extensions proposed in the past� i
e
� what we propose
could be easily retro�tted to most of the PCA�extensions
 The extension we
propose has to do with the representation of the sample data
 Rather than
the data consist of points alone we allow for representation of continuous regions
described by �i� convex combinations of sample points �polytops�� and �ii� convex
regions de�ned by intersection of half�spaces
 In other words� we show how to
construct the covariance matrix of a uniformly sampled polytop described by
a �nite set of sampled points �the generators of the polytop�� and a uniformly
sampled polyhedral de�ned by intersection of half�spaces
 In the former case� the
integration over the polytop region boils down to a very simple modi�cation of
the original covariance matrix of the sampled point set� replace AA� with A�A�

where � is a symmetric positive de�nite matrix which is described analytically
per region
 We show that despite the simplicity of the result the approach has
a signi�cant e�ect on the generalization properties of PCA in appearance�based
recognition 	 especially when the raw data is not uniformly sampled
 In the
case of polyhedral regions described by intersections of half�spaces we show that
although the concept of integration over the bounded region is not obvious it
can be done at a cost of O�n�� in certain cases where the half�spaces are de�ned
by inequalities over pairs of variables forming a tree structure
 We demonstrate
the application of this concept to intensity�ratio representations in appearance�



based recognition and show a much superior generalization over conventional
PCA


��� Region�based PCA � De�nition and Motivation

We will start with a simple example
 Given two arbitrary points a�� a� in the
two�dimensional plane� the �rst principal component u �a unit vector� maximizes
the scatter� �a�� u�

� � �a�� u�
�� which is the �rst eigenvector �associated with the

largest eigenvalue� of the ��� matrix a�a
�
� �a�a

�
� 
 Consider the case where we

would like the entire line segment �a�������a�� � � � � � to be sampled� how
would that change the direction of the principal component u� In other words�
if W is a polytop de�ned by the convex combination of a set of points �in this
case W is a line segment�� one is looking for the evaluation of the integral�

max
juj��

Z
a�W

j a�u j� da � u�
�Z

a�W

aa�da

�
u ���

By substituting �a� � ��� ��a� for a in the integral
R
aa� and noting that

Z �

�

��d� �

Z �

�

��� ���d� �
�

�
�

Z �

�

���� ��d� �
�

�
�

we obtain the optimization problem�

max
juj��

u��a�a
�
� � a�a

�
� �

�

�
�a�a

�
� � a�a

�
� ��u

Therefore� the �rst principal component u is the largest� eigenvector of the
matrix�

A

�
� ���
��� �

�
A� � A�A� ���

where A � �a�� a�� the matrix whose columns consists of the sample points

In the following section we will generalize this simple example and handle any
polytop �represented by its vertices�
 Once we have that at hand it is simple to
accommodate a collection of polytops or a combination of points and polytops
as input to the PCA process


The motivation for representing ploytopes in a PCA framework arises from
the fact that in many instances in visual recognition it is known apriori that
the data resides in polytopes� probably the most well known example is the case
of varying illumination over Lambertian surfaces
 There are both empirical and
analytic justi�cations to the fact that a relatively small number of images are
necessary to model the image variations of human faces under di�erent lighting
conditions
 In this context� a number of researchers have raised the issue of
how to optimally construct the subspace using a sample of images which may
be biased
 Integration over the polyhedral de�ned by a sample� even though it

� We mean by 
largest� the eigenvector associated with the largest eigenvalue




is a biased sample� would be a way to construct the image subspace
 This is
addressed in Section �
� of this paper


In the second part of the paper we consider polyhedrals de�ned by the inter�
section of half�spaces
 Let the variables of a data point be denoted by x�� ���� xn
where the range of each variable is �nite �say� denote pixel values� and consider
the polyhedral de�ned by the relations�

�ijxj � xi � �ijxj

for a number of pairs of variables
 Each inequality de�nes a pair of half�spaces
�area on side of a hyperplane� thus a �su�cient and consistent� collection of
inequalities will de�ne a polyhedral cone whose apex is at the origin
 As before�
we would like to represent the entire bounded region in the PCA analysis 	 and
we will show how this could be done in the sequel


Our motivation for considering regions de�ned by inequalities comes from
studies in visual recognition showing that the ratio alone between pre�selected
image patches provides a very e�ective mechanism for matching under variabil�
ity of illumination
 For example� ���� ��� propose a graph representation �see
Fig
 �b for an example� where regions in the image correspond to nodes in the
graph and the edges connect neighboring regions which have a consistent rela�
tion �the average image intensity of node i is between �
�� and �
�� of node j
�
for instance
 A match between a test image and the model reduces to a graph
matching problem
 In this paper we show that the idea of a graph representa�
tion could be embedded into the PCA framework by looking for the principal
components which best describe the region in space bounded by the hyperplanes
associated with those inequalities
 In other words� it is possible to recast data
analysis problems de�ned by inequalities within a PCA framework 	 whatever
the application may be


� PCA over Polytops De�ned by Convex Combinations

Let W denote a polytop de�ned by the convex combinations of a set of linearly
independent points a�� ���� ad� and let Dd be the d� � dimensional manifold

Dd � f� � ���� ���� �dg � Rd j
X
i

�i � �� �i � �g�

and let V �Dd� �
R
Dd

�d� be the volume of Dd
 The principal components are
the eigenvectors of the covariance matrix�

Cov�W � �
�

V �W �

Z
a�W

aa�da�

where V �W � denotes the volume of the polytop W � and the inverse volume
outside the integral indicates that we have assumed a uniform density function
when sampling the points a � W 
 Let A � �a�� ���� ad� be the n� d matrix whose
columns are the generators of W � then for every vector � � Dd we have that



A� � W 
 Therefore� the covariance matrix representing the dense �uniform�
sampling of the polytop W takes the form�

Cov�W � �
�

V �Dd�
A

�Z
��Dd

���d�

�
A� � A�dA

�� ���

Note that the matrix �d � ��	V �Dd��
R
���d� does not depend on the choice

of the generators a�� ���� ad� thus the integral needs to be evaluated only once for
every choice of d


Note that since Dd is symmetric under the group of permutations of d letters�
then

R
�i�jd� �

R
����d� for all i �� j and

R
��i d� �

R
���d�
 Thus� the matrix

�d has the form�

�d �
�

V �Dd�

�
�����

�d �d � � � �d
�d �d � � � �d
� � � � � �
� � � � � �
�d �d � � � �d

�
����� �

where �d �
R
���d� and �d �

R
����d�
 We are therefore left with the task of

evaluating three integrals �d� �d and V �Dd�
 By induction on d one can evaluate
those integrals �derivation is omitted due to lack of space� and obtain�

V �Dd� �

Z
Dd

�d� �
�

�d� ���
� �d �

Z
Dd

�
�

�d� �
�

�d� ���
� �d �

Z
Dd

����d� �
�

�d� ���

We therefore obtain the following result�

Theorem �� The covariance matrix of the uniformly sampled polytop W de�ned

by the convex linear combinations of a set of d points a�� ���� ad� arranged as the

columns of a n� d matrix A� has the form�

Cov�W � �
�

V �W �

Z
a�W

aa�da �
�

d�d � ��
A�I � ee��A�� ���

where e � ��� �� ���� �� and �I� is the identity matrix�

There are few points worth noting
 First� when the data consists of a single
polytop� then centering the data� i
e
� subtracting the mean such that Ae � ��
then the discrete covariance matrix AA� over the vertices of W is the same
the covariance matrix cov�W � of the entire polytop
 Therefore� the integration
makes a di�erence only when there are a number of polytops


Second� the matrix �d � I � ee� can be factored as QdQ
�
d �

I � ee� � �I � cee���I � cee��� � QdQ
�
d �

where

c �

p
d� �� �

d
�

This property can be used to perform PCA on a d � d matrix instead of the
n � n covariance matrix when d �� n� as follows
 Denote �A � AQd �an n � d



matrix�� thus �A �A� � A�dA
�
 In case d �� n then let y be an eigenvector of

�A� �A �d � d matrix�� then �Ay is the corresponding eigenvector of �A �A�
 The
importance of this property is that the computational complexity of recovering
the principal vectors is proportional to the dimension of the polytop rather than
the dimension n of the vector space


The third point to note is that the covariance matrix of two uniformly sam�
pled polytops of dimensions d� � � and d� � � is the sum of the covariance ma�
trices corresponding to each polytop separately
 In other words� let a�� ���� ad� �
arranged as columns of a matrix A� be the generators of the �rst polytop� and
let b�� ����bd� � arranged as columns of a matrix B� be the generators of the
second polytop
 The covariance matrix of the data covering the uniform sam�
pling of both polytops is simply A�d�A

� � B�d�B
�
 Thus� for example� given

a collection of triplets of images of a class of �D objects �say� frontally viewed
human faces� where the i�th triplet� represented by a n � � matrix Ai� spans
the illumination cone of the i�th object� then the covariance matrix of the entire
class is simply

P
iAi��A

�
i 
 In case the number of triplets k �� n the cost of

computing the principal vectors is proportional to �k rather than to n by not�
ing that one can compute the eigenvectors of the �k � �k matrix B�B where
B � �A�Q�� ���� AkQ�� is an n� �k matrix


��� Demonstrating the Strength of Results

In this section we will provide one example to illustrate the strength of our result

The simplicity of our result� replace AAT by A�A�� may be somewhat mislead�
ing 	 the procedure is indeed trivial� but its e�ects could be very signi�cant as
we show next


As mentioned in the introduction� empirical and analytic observations on
the class of human faces have shown that a relatively small number of sample
images of a Lambertian object are su�cient to model the image space of the
object under varying lighting conditions
 Early work showed that when no surface
point is shadowed� as little as three images su�ce ���� ���
 Empirical results
have shown that even with cast and attached shadows� the set of images is
still well approximated by a low dimensional space ���
 Later work has shown
that the set of all images form a polyhedral cone which is well approximated
�for human faces� by a low dimensional linear subspace ���� and more recently
that the illumination cone �for convex Lambertian objects� can be represented
by a ��dimensional linear subspace ��� ���
 In this context� researchers ���� ���
have also addressed the issue of how to construct the illumination cone from
sample images� i
e
� what would be the best representative sample�
 A biased set
of samples would produce a PCA space which is not e�ective for recognition

Closest to our work� ���� proposed a technique for integration over any three
images employing a spherical parameterization of the �D space� which in turn is
speci�c to ��dimensional subspaces


Therefore� the problem of �relighting
 provides a good testing grounds for
the integration over polytops idea
 The integration can turn a biased sample into
non�biased 	 and this is exactly the nature of the experiment below




Consider a training set of images of human frontal faces covering di�erent
people and covering various illumination conditions �direction of light sources�

One would like to represent the training set by a small number of principal
components ���� ��
 The fact that the image space of a �D object with matte
�Lambertian� surface properties is known to occupy a small dimensional sub�
space suggests that the collection of training images per person forms a polytop
which will be uniformly sampled when creating the covariance matrix of the
entire training set
 In other words� the training set would consist of a collec�
tion of polytops 	 one per person� where each polytop is de�ned by the convex
combinations of the set of images of that person


In order to appreciate the di�erence between representing the polytops versus
representing the sample data points alone� we constructed a biased set of images
with respect to the illumination
 We used the training set provided by Yale
University�s �illumination dome
 where for each of the �� objects we sampled
�� images� �� of them illuminated from light sources in the left hemisphere and
only � from light sources located at the right hemisphere


Since each of the faces is represented by a �biased� sample of �� images�
whereas the polytop we wish to construct is only ��dimensional we do the
following
 For each PCA�plane corresponding to the sample of a face� we re�
parameterize the space such that all the �� images are represented with respect
to their �rst � principal components� i
e
� each image is represented by a ��
coordinate vector
 Those vectors are normalized thus they reside on a sphere

The normalized �D coordinates then undergo a triangulation procedure
 Let Ai

be the n � � matrix representing the i�th triangle� then Ai��A
�
i represents to

covariance matrix of the uniformed sampled triangle
 As a result�
P

iAi��A
�
i

represents the covariance matrix of the continuous space de�ned by the �� sample
images of the face
 This is done for each of the �� faces and the �nal covariance
matrix is the sum of all the individual covariance matrices


Fig
 �a
��� shows a sample of images of a person in the training set
 In row
c
��� we show the �rst three principal vectors when the covariance matrix is con�
structed in the conventional way �i
e
� AAT where the columns of A contain the
entire training set�
 Note that the �rst principal vector �which typically repre�
sents the average data� has a strong shadow on the right hand side of the face
 In
row c
���� on the other hand� we show the corresponding principal vectors when
the covariance matrix is constructed by summing up the individual covariance
matrices one for each polytop �as described above�
 Note that the principal vec�
tors represent an un�baised illumination coverage
 The e�ect of representing the
polytops is very noticeable when we look at the projection of novel images onto
the principal vector set
 In row b
��� we consider four novel images� two images
per person
 The projections of the novel images onto the subspace spanned by
the �rst �� principal vectors are shown in row b
��� for conventional PCA and
in row b
���� when polytops are represented
 The di�erence is especially striking
when the illumination of the novel image is to the right �where the original train�
ing sample was very small�
 One can clearly see that the region�based PCA has
a much superior generalization property than the conventional approach 	 de�
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�� �a
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�b
�� �b
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�� �b
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�� �b
�� �b
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�� �b
��� �b
��� �b
���
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�� �c
�� �c
��

Fig� �� Representing polytops constructed by images of di�erent people� each person
sampled by a biased collection of light source directions
 �a
�	�� a sample of training
images� �c
�	�� the �rst three principal vectors of the raw data � notice that the light
source is biased compared to the principal vectors in �c
�	�� computed from the polytop
representations
 �b
�	�� novel images of two persons �test images�� and their projections
on the principal space� �b
�	�� when computed from the raw data� and �b
�	��� when
computed from the polytop representation
 Note that the latter has much superior
generalization performance


spite the fact that a very simple modi�cation was performed to the conventional
construction of the covariance matrix


� PCA over Polyhedrals De�ned by Inequalities

In this section we turn our attention to polyhedrals de�ned by intersection of
half spaces
 Speci�cally� we will focus on the family of polyhedrals de�ned by
the inequalities�

�ijxj � xi � �ijxj � ���

where x�� ���� xn are the coordinates of the vector space representing the input
parameter space� and �ij � �ij are scalars
 Each such inequality between a pair
of variables xi� xj represents a pair of hyperplanes� passing through the origin�
bounding the possible data points in the desired �convex� polyhedral
 These type



of inequalities arise in appearance�based visual recognition where only ratios

among certain key regions are considered when matching an image to a class of
objects
 Fig
 �b illustrates a sketch of a face image with the key regions marked
and the pairs of regions for which the ratio of the average grey value is being
considered for matching
 In the following section we will discuss in more detail
this type of application


In order to make the relation between a set of inequalities� as de�ned above�
and polyhedrals bounding a �nite volume in parameter space� it would be useful
to consider the following graph structure
 Let the graph G�V�E� be de�ned such
that the set of vertices V � fx�� ���� xng represent the coordinates of the parame�
ter space� and for each inequality relation between xi� xj there is a corresponding
edge eij � E coincident with vertices xi� xj in the graph
 Tree structures �con�
nected graph with n�� edges� are of particular interest because they correspond
to a convex polyhedral�

Claim� Let the associated graph of the set of inequalities of the type �ijxj �
xi � �ijxj form a tree
 Then� given that an arbitrary variable x� is bounded
� � x� � �� then all other variables are de�ned in a �nite interval� and as a
result the collection of resulting hyperplanes bound a �nite volume in space


Proof� Due to the connectivity and lack of cycles in the graph� one can chain the
inequality relations along paths of the graph leading to x� and obtain the set of
new inequalities of the form 
jx� � xj � �jx� for some scalars 
j � �j 
 Therefore�
the hyperplane x� � constant� which does not pass through the origin� bounds
a �nite volume because the range of all other variables is �nite


At this point� till the end of this section� we will assume that the associated
graph representing the set of input inequalities is a connected tree �i
e
� has n��
edges and has no cycles�
 Our goal is to compute the integral�Z

x�W

xx�dx� � � � dxn�

where W is the region bounded by the hyperplanes corresponding to the in�
equalities and the additional hyperplane corresponding to xo � � where xo is
one arbitrarily chosen variable �we will discuss how to choose xo later in the im�
plementation section�
 Since the entries of the matrix xx� are bilinear products
of the variables� we need to �nd a way of evaluating the integral on monomials
x��� � � � x�nn where �i are non�negative natural numbers
 For a single constraint
�ijxj � xi � �ijxj the integration over dxi is straightforward�

Z �ijxj

�ijxj

x��� � � � x�nn dxi �
�

�i � �
���i��ij � ��i��ij �x

�i��j��
j

Y
k ��i�j

x�kk ���

For multiple constraints our challenge is to perform the integration without
breaking W into sub�regions
 For example� consider the two inequalities below�

�ijxj � xi � �ijxj

�ikxk � xi � �ikxk



Then� the integration over the variable xi �which is bounded both by xj and by
xk� takes the form� Z minfbijxj�bikxkg

maxfaijxj �aikxkg

x��� � � � x�nn dxi

which requires breaking up the regionW into � pieces
 Alternatively� by noticing
that �ijxj � xi � �ijxj is equivalent to

�
�ij

xi � xj � �
�ij

xi the integration would

take the form� Z �ikxk

�ikxk

Z �
�ij

xi

�
�ij

xi

x��� � � � x�nn dxjdxi�

Therefore� in order to simplify the complexity of the integration process one must
permute the variables i � ��i� and switch the variables inside the inequalities
such that after the re�ordering we have the following condition� for every i� there
exist at most a single constraint �i��i�x��i� � xi � �i��i�x��i� where ��
�i�� �
��i�� i
e
� the integration over xi is performed before the integration over x��i�

In this case the integration over the region W takes the form�

Z �

�

Z ��n������n���

��n������n���

� � �
Z ���������

���������

xx�dx�� � � � dx�n ���

where �i stands for ��i�
 Before we explain how this could be achieved via the
associated graph� consider the following example for clari�cation
 Let n � � and
we are given the following inequalities�

x� � x� � �x�

x� � x� � �x�

x� � x	 � �x�

Since x� is bounded twice� we replace the �rst inequality with its equivalent
form�

�

�
x� � x� � x��

We therefore have 
��� � �� 
��� � � and 
��� � �
 Select the permutation ������
i
e
� ���� � �� ���� � �� ���� � � and ���� � �
 The integration of the monomial
x�� �for instance� over the bounded region W is therefore�

Z �

�

Z �x�

x�

Z x�

�
�x�

Z �x�

x�

x��dx	dx�dx�dx��

The integration over x	 is performed �rst�
R �x�
x�

x��dx	 � x�x
�
� �according to

eqn
 ��� then the integration over x� is performed�
R x�
��
x�

x�x
�
�dx� � �

�x
�
�x

�
��

followed by the integration over x��
R �x�
x�

�
�x

�
�x

�
�dx� �

�	
� x



� and �nally the inte�

gration over x� �the free variable��
R �
�

�	
� x



�dx� �

�
� 


The decision of which inequality to �turn around
 and how to select the
order of integration �the permutation ��i�� can be made through simple graph



algorithms� as follows
 We will assign directions to the edges of the graph G
with the convention that a directed edge xi � xj represents the inequality
�ijxj � xi � �ijxj 
 The condition that for every i there should exist at most
a single inequality �ijxj � xi � �ijxj is equivalent to the condition that the
associated directed graph will have at most one outgoing edge for every node

The algorithm for directing the edges of the undirected graph would start from
some degree�� node �a node with a single incident edge� and trace a path until
a degree�� node is reached again
 The direction of edges would then follow the
path
 The process repeats itself with a new degree�� node until no new nodes
remain
 Since G is a tree this process is well de�ned


The selection of the order of integration is then simply obtained by a topologi�

cal sort procedure
 The reason for that is that one can view every pair xi � xj as
a partial ordering �xi comes before xj�
 The topological sort provides a complete
ordering �which is not necessarily unique� which satis�es the partial orderings

The complete order is the desired permutation
 The example above is displayed
graphically in Fig
 �a where the directed ��node graph is shown and the topolog�
ical sort result x	� x�� x�� x� �note that x�� x	� x�� x� is also a complete ordering
which yields the same integration result�


To summarize� given a set of n � � inequalities that form a connected tree�
the covariance matrix of the resulting polyhedral is computed as follows


�
 Direct the edges of the associated graph so that there would be at most a
single outgoing edge from each node


�
 �turn around
 inequalities which do not conform to the edge direction con�
vention


�
 Perform a topological sort on the resulting directed tree

�
 Evaluate the integral in eqn
 � where the complete ordering from the topo�

logical sort is substituted for the permutation ��i�


The complexity of this procedure is O�n� for every entry of the n�n matrix
xx�


��� Experimental Details

In this section we illustrate the application of principal vectors de�ned by a set of
inequalities in the domain of representing a class of images by intensity ratios 	
an idea �rst introduced by ���� ���
 Consider a training set of human frontal faces�
roughly aligned� where certain key regions have been identi�ed
 For example� ����
illustrates a manual selection of key regions and a manual determination of the
inequalities on the average intensity of the key regions
 The associated graph
becomes the model of the class of objects and the matching against a novel
image is reduced to a graph matching procedure


In this section we will re�implement the intensity�ratio inequality approach�
but instead of using a graph matching procedure we will apply a PCA repre�
sentation on the resulting polyhedral de�ned by the associated tree
 There are
a number of advantages of doing so� for example� the PCA approach allows us
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Fig� �� �a
�	�� a sample of the training set from the AR dataset
 �b
�	�� the �rst four
principal vectors computed by integrating over the polyhedral region de�ned by the
inequalities� and �b
�	�� are the principal vectors computed from the raw point data
�in feature space�


to combine both raw data points� polytops de�ned by convex combinations of
raw data points� and the polyhedrals de�ned by the inequalities
 In other words�
rather than viewing the intensity ratio approach as the engine for classi�cation
it could be just another cue integrated in the global covariance matrix
 Second�
by representing the polyhedral by its principal vectors one can make �soft
 de�
cisions based on the projection onto the reduced space� which is less natural to
have in a graph matching approach


As for training set� we used ��� images from the AR set ���� representing
aligned frontal human faces �see Fig
 �a�
 The key regions were determined by
applying a K�means clustering algorithm on the covariance matrix� �ve clusters
were found and those were broken down based on connectivity to �� key regions

The average intensity value was recorded per region thus creating the vector
x � �x�� ���� x��� as the feature representation of the original raw images
 For
every pair of variables xi� xj we recorded the sine of the angle between the vectors
xi recorded over the entire training set and the vector xj over the training set 	
thus de�ning a complete associated graph with weights inversely proportional
to the correlation between the pairs of variables
 The minimal spanning tree of
this graph was selected as the associated tree
 Fig
 �b shows the key regions and
the edges of the associated tree
 Finally� for every pair of variables xi� xj which
has an incident edge in the associated tree we determined the upper and lower
bounds of the inequality by constructing the histogram of xi	xj and selected aij
to be at the lower ��� point of the histogram and bij to be at the upper ��� of
the histogram
 This completes the data preparation phase for the region�based
PCA applied to the polyhedral region de�ned by the associated tree


Fig
 �b
��� shows the �rst four principal vectors of the region�based PCA us�
ing the integration formulas described in the previous section� while Fig
 �b
���
show the principal vectors using conventional PCA on the feature space vectors

One can see that the �rst principal vector �b
� and b
�� are very similar� yet
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Fig� �� �a� The associated tree of the n � � example
 �b� A graphical description of
the associated tree on the face detection experiment using inequalities
 �c� Typical
examples of true and false positives and negative detections on the leading technique
��rst row in table �� �d� Typical examples of the worst technique �third row in table
��

the remaining principal vectors are quite di�erent
 In table � we compare the
performance over various uses of PCA on the CMU ���� test set of faces �which
constitute postcards of people�
 The best technique was the product of the con�
ventional PCA score on the raw image representation and the region�based PCA
score
 The results are displayed in the �rst row of the table
 The false detections
�false positives� are measured as a fraction of the total number of faces in the
CMU test set
 The miss�detections �false negatives� are measured as the per�
centage of the total number of true faces in the test set
 Each column in the
table represents a di�erent tradeo� between the false positives and negatives 	
the better detection performance is at the expense of false positives
 Thus� for
example� when the detection rate was set to ��� �the highest possible in this
technique� the false detection rate was �
� the amount of the total number of
faces in the training set� whereas when the detection rate was set to ��� the false
detection rate went down to �
�� of the total number of faces
 In the second row
we use only conventional PCA� the score on the raw image representation mul�
tiplied with the score on the clustered image �feature vector of �� dimensions�




The reduced performance is noticeable and signi�cant
 The worst performance
is presented in the third row where only conventional PCA was used on the raw
image representation
 The region�based PCA performance is shown in the ��th
row� the performance is lower than the leading approach� but not much lower

And �nally� conventional PCA on the clustered representation ��� dimensional
feature vector� is shown in the ��th row� note that the performance compared to
the ��th row is signi�cantly reduced
 Taken together� the region�PCA approach
provides signi�cant superiority in generalization properties compared to the con�
ventional PCA � despite the fact that it is essentially a PCA approach
 The fact
that the relevant region of the parameter space is sampled correctly is the key
factor behind the superior performance


In Fig
 �c�d we show some typical examples of detections which contain true
detections� false positives and negatives on the leading technique ��rst row in
the table� and the worst technique �third row in table�


False detections ��� ��� ����

raw	PCA � region	PCA ��� ��� ���

raw	PCA � PCA���	dim� ��� ��� ���

raw	PCA ��� ��� ���

region	PCA ��� ��� ���

conventional	PCA���	dim� ��� ��� ���

Fig� �� Comparison of detection performance
 The false detections �false positives� are
measured as a fraction of the total number of faces in the CMU test set
 The mis	
detections �false negatives� are measured as the percentage of the total number of true
faces in the test set
 Each column in the table represents a di�erent tradeo� between
the false positives and negatives � the better detection performance is at the expense
of false positives
 The rows in the table represent the di�erent techniques being used

See text for further details


� Summary

The paper makes a number of statements which include� �i� in some data analysis
applications it becomes important to represent �uniform sampling of� continuous
regions of the parameter space as part of the global covariance matrix of the
data� �ii� in case where the continuous regions are polytops� de�ned by the
convex combinations of sample data� the construction of the covariance matrix
is extremely simple� replace the conventionalAA� covariance matrix with A�A�

where � is described analytically in this paper� and �iii� the general idea extends
to challenging regions such as those de�ned by intersections of half spaces 	
there we have derived the equations for constructing the covariance matrix where
the regions are formed by n � � inequalities on pairs of variables forming an
associated tree structure




The concepts laid down in this paper are not restricted to computer vision
applications and have possibly a wider range of applications 	 just as the con�
ventional PCA is widely applicable
 In the computer vision domain we have
shown that these concepts are e�ective in the domains of appearance�based vi�
sual recognition where continuous regions are de�ned by the illumination space
�Section �� 	 which are known to occupy low�dimensional subspaces 	 and
in intensity�ratio representations
 In the former case the regions form polytops
and we have seen that the representation of those polytops make a big e�ect in
the generalization properties of the principal vectors �Fig
 ��� yet the price of
applying the proposed approach is minimal
 In the case of intensity�ratio repre�
sentations� the notion of representing bounded spaces� de�ned by inequalities� by
integration over the bounded region is not obvious� but is possible and at a low
cost of O�n��
 We have shown that the application of this concept provides much
superior generalization properties compared to conventional PCA �Table ��


Future work on these ideas include non�uniform sampling of regions in the
case of polytops� handling the integration for general associated graphs �although
in general the amount of work is exponential with the size and number of cycles
in the graph� and exploring more applications for these basic concepts
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