
Image and Video Upscaling from Local Self-Examples

GILAD FREEDMAN and RAANAN FATTAL
Hebrew University of Jerusalem

We propose a new high-quality and efficient single-image upscaling tech-
nique that extends existing example-based super-resolution frameworks. In
our approach we do not rely on an external example database or use the
whole input image as a source for example patches. Instead, we follow
a local self-similarityassumption on natural images and extract patches
from extremely localized regions in the input image. This allows us to
reduce considerably the nearest-patch search time without compromising
quality in most images. Tests, that we perform and report, showthat the
local-self similarity assumption holds better for small scaling factors where
there are more example patches of greater relevance. We implement these
small scalings using dedicated novel non-dyadic filter banks, that we de-
rive based on principles that model the upscaling process. Moreover, the
new filters are nearly-biorthogonal and hence produce high-resolution im-
ages that are highly consistent with the input image without solving implicit
back-projection equations. The local and explicit nature of our algorithm
makes it simple, efficient and allows a trivial parallel implementation on a
GPU. We demonstrate the new method ability to produce high-quality reso-
lution enhancement, its application to video sequences withno algorithmic
modification, and its efficiency to perform real-time enhancement of low-
resolution video standard into recent high-definition formats.
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1. INTRODUCTION

Increasing image resolution, orimage upscaling, is a challeng-
ing and fundamental image-editing operation of high practical and
theoretical importance. While nowadays digital cameras produce
high-resolution images, there are tremendously many existing low-
resolution images as well as low-grade sensors, found in mobile
devices and surveillance systems, that will benefit resolution en-
hancement. At its essence, image upscaling requires the predic-
tion of millions of unknown pixel values based on the input pixels,
which constitute a small fraction of that number. This difficult task
challenges our understanding of natural images and the regulari-
ties they exhibit. Upscaling is also intimately related to a variety
of other problems such as image inpainting, deblurring, denoising,
and compression.

Perhaps the simplest form of single-image upscaling predicts the
new pixels using analytical interpolation formulae, e.g., the bilin-
ear and bicubic schemes. However, natural images contain strong
discontinuities, such as object edges, and therefore do not obey
the analytical smoothness these methods assume. This results in
several noticeable artifacts along the edges, such as ringing, stair-
casing (also known as ‘jaggies’), and blurring effects. An alterna-
tive approach, suggested by by Freeman et al. [2000; 2002], uses
an example-based Markov random model to relate image pixels at
two different scales. This model uses a universal set of example
patches to predict the missing upper frequency band of the upsam-
pled image. While this approach is capable of adding detail and
sharpening edges in the output image, it also produces considerable
amount of noise and irregularities along the edges due to shortage
in relevant examples and errors in the approximate nearest-patch
search. Based on prior research on image compression, Ebrahimi
and Vrscay [2007] suggest to use the input image itself as the
source for examples. While this typically provides a limited num-
ber of examples, compared to a universal database, it contains much
morerelevantpatches.

In this paper we propose a new high-quality and efficient single-
image upscaling technique that extends existing example-based
super-resolution frameworks in several aspects. We point out and
exploit a local scale invariance in natural images where small
patches are very similar tothemselvesupon small scaling factors.
This property holds for various image singularities such as straight
and corner edges, as shown in Figure 1. We use this observation
to take the approach of Ebrahimi and Vrscay one step farther and
search for example patches at extremelylocalized regionsin the
input image. We compare this localized search with other alterna-
tives for obtaining example patches and show that it performs sig-
nificantly better in terms of both computation time and matching
error.
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Fig. 1: Image upscaling by exploiting local scale-similarity in natural images. The patches (yellow) when downscaled are very similar to
their cropped version (red). This relation holds for various types of singularities.

Further tests, we report here, show that the scale invariance assump-
tion holds better for small scaling factors, where more example
patches of a greater relevance are found. Therefore, we perform
multiple upscaling steps of small scaling factors to achieve the
desired magnification size. We implement these non-dyadic scal-
ings using dedicated novel filter banks which we derive for gen-
eralN+1:N upsampling and downsampling ratios. The new fil-
ters are designed based on several principals that we use to model
the upscaling process. Among these principals is the requirement
that the filters have to be nearly-biorthogonal such that the upsam-
pled image is consistent with the input image at an early stage,
before the missing high-frequency band is predicted. This exploits
better the input data by reducing the amount of prediction needed
at the example-based learning stage and, as we show, leads to an
increased visual realism. While previous methods impose this re-
quirement by solving large systems of back-projection equations,
the new filter banks achieve this consistency via explicit and thus
efficient computation.

We demonstrate the new method ability to produce high-quality
resolution enhancement, compare it to existing state-of-the-art
methods, and show that its applies to video sequences with no mod-
ifications in the algorithm. We also show how the localized searches
and explicit filter computations permit very efficient implementa-
tion and report real-time GPU performance when enhancing low-
resolution video to high-definition format.

2. PREVIOUS WORK

Image upscaling was studied extensively by the computer graphics,
machine vision, and image processing communities. The methods
developed over the years differ in their formulation and underline
prior image model and the input data they use. Here we briefly
describe the main approaches to the problem and the principles be-
hind them. We focus on single-image upscaling methods which is
the assumed settings of our new method.

The classic and simplest approach uses linear interpolation in order
to predict intermediate pixels values. This method is usually imple-
mented using linear filtering, such as the bilinear and bicubic filters,
and it is commonly found in commercial software. These interpola-
tion kernels are designed for spatially smooth or band-limited sig-
nals which is often not the case in natural image. Real-world im-
ages often contain singularities such as edges and high-frequency
textured regions. As a result, these methods suffer from various

edge-related visual artifacts such as ringing, aliasing, jaggies, and
blurring. Thevenaz et al. [2000] provide a more elaborate survey of
these methods and their evaluation.

More sophisticated methods adapt the interpolation weights based
on the image content. For example, Li et al. [2001] adapt the inter-
polation weights according to the local edge orientations and Su et
al. [2004] choose three out of the four nearest pixels for linear inter-
polation. This allows to reduce the ringing effects and obtain some-
what sharper edges. Non-quadratic smoothness functionals yield a
different type of non-linear image regularization which can be used
for upscaling. For example, Aly and Dubois [2005] enlarge images
by minimizing the total variation functional. Shan et al. [2008]
minimize a similar metric using a sophisticated feedback-control
framework that keeps the output image consistent with the input
image when downscaling it to the input resolution.

Inspired by recent studies of natural image statistics, several meth-
ods use random Markov field models to define a probability den-
sity over the space of upscaled images. The output image, in many
cases, is computed by maximizing these models. These approaches
can be divided to two main classes; ones that define non-parametric
example-based models and ones that are based on analytical image
modeling.

Example-based image enlargement is explored by Freeman et
al. [2000] and further developed in [Freeman et al. 2002]. This im-
age prediction model relies on a database of example patches that
are decomposed into their a low-frequency band, i.e., a smoothed
version, and the residual higher frequency band. The input im-
age is interpolated to a higher resolution using analytic interpo-
lation and the missing high-frequency band is then predicted from
the example patches. The matching is performed according to the
low-frequency component of the example patches. This approach
is capable of producing plausible fine details across the image,
both at object edge and in fine-textured regions. However, lack
of relevant examples in the database results in fairly noisy im-
ages, that show irregularities along curved edges. The use of larger
databases is more time consuming due to the added comparisons
in the nearest-neighbor searches. The use of approximate nearest
neighbor searches offers a limited solution, as it introduces its own
errors. Tappen et al. [2004] also use a patch-based model and re-
quire the output to be consistent with the input.

Motivated by earlier works that study the fractal nature of im-
ages and its application to image compression [Barnsley 1988],
Robert et al. [1997] and Vrscay et al. [2002] interpolate images
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using fractal compression schemes which contain extra decoding
steps. This approach suffers from strong block artifacts which can
be reduced using overlapping range blocks [Reusens 1994; Poli-
dori and Dugelay 1995]. Based on these works, Ebrahimi and
Vrscay [2007] use the input image at multiple smaller scales as
the source for example patches, relying on self-similarity in small
patches. While this offers an example database of a limited size
compared to universal databases, as we show later, this example
data is considerably morerelevant to the input image being en-
larged. Suetake et al. [2008] also use the input image to compute an
example codebook which is later used to estimate the missing high-
frequency band, in a framework similar to [Freeman et al. 2002].

Recently, several parametric image models were proposed for up-
scaling. These methods fit analytical models to describe various
image features that show statistical dependency at different scales.
Fattal [2007] models the relation between edge descriptors, ex-
tracted from the input, and gradients at a higher resolution. A fully
analytical prior for the reconstructed edge profile is used by Sun et
al. [2008]. These approaches are considerably faster than their
example-based counterparts and are capable of reproducing sharp
edges with no apparent noise. Nevertheless, the resulting images
tend to appear somewhat unrealistic as they are made of generic
edges that often separate color plateaus. Sun et al. [2003] describe
a Markov random field that combines example-based and paramet-
ric modeling together.

Besides single image upscaling, many works deal with multi-frame
super-resolution where multiple shots of the same scene, taken at
translational offsets, are used to generate a single high-resolution
image of the scene. Farsiu et al. [2004] review this literature and
propose to use robust regularization to deal with the noise that
limits this operation [Lin and Shum 2004]. Given high-resolution
photographs of a static scene Bhat et al. [2007] enhance videos
of that scene by rendering pixels from the photographs. Recently,
Glasner et al. [2009] unify the multi-frame and example-based
super-resolution techniques and derive a single-image method. This
method uses the formalism of multi-frame super-resolution yet re-
lies on self-similarities in the image to obtain samples differing by
sub-pixel offsets.

3. UPSCALING SCHEME

The basic upscaling scheme we use is closely related to the frame-
work previously used by Freeman et al. [2002] and others [Tappen
et al. 2004; Suetake et al. 2008]. However, we replace most of the
components it uses with novel, application-specific, components
that we describe here. The first contribution is an alternative source
of example patches that we propose to use. In Section 3.1 we dis-
cuss and measure a refined scale similarity property in natural im-
ages. The similarity assumptions used by existing methods exploit
similarities across the image and at multiple scales of it. We refine
this assumption and observe that various singular features in natural
images are similar tothemselvesunder small scaling factors. This
property, which we calllocal self-similarity, allows us to search
and find relevant example patches in very restricted neighborhoods
around the same relative coordinates in the input image. This ap-
proach reduces substantially the nearest-patch retrieval times com-
pared to global image searches or searching in external databases.
This is achieved at no apparent visual compromise in the majority
of images that do not contain exact repetitions at multiple scales.

input

upsampled

low-freq. band

high-freq. band

Fig. 2: Upscaling scheme. A patch of lower frequency band from the upsam-
pled image is matched (green arrow) with its nearest patch within a small
window in the low-passed input image (purple). The upper frequency band
of the matched patch in the input is used (red arrow) to fill in the missing
upper band in the output upsampled image.

In our experiments we validate that very relevant patches can be
found in the restricted relative neighborhoods in the input image
when applying scaling atsmallfactors. Therefore, in order to make
this approach effective, we maximize the amount of data present
in the example patches and its relevance by scaling the image in
multiple steps of small magnification factors. This is done using by
our second new component; new dedicatednon-dyadicfilter banks.
These filter banks, which we describe in Section 3.2, define the in-
terpolation and smoothing operatorsU andD that perform scalings
at factors smaller than two. Another desirable property these new
filter banks achieve is consistency with the input image through ex-
plicit computations, without solving the back-projection equations
as previous methods do.

We begin by describing the new upscaling scheme, depicted in Fig-
ure 2. Given an input imageI0, defined on a coarse grid of pixels
G0, we start off by interpolating it to a finer gridG1 using our lin-
ear interpolation operatorU that maps images fromGl to Gl+1,
whereGl are rectangular pixel grids with resolutions that increase
by the scaling factor (that grow withl). This initial upsampled
imageL1 = U(I0) lacks a fraction of its upper frequency band,
proportional to the scaling factor. This missing band is then pre-
dicted using a non-parametric patch-based model that does not rely
on external example databases but rather exploits thelocal self-
similarity assumption as follows. Example patches are extracted
from a smoothed version of the input imageL0 = U

(

D(I0)
)

,
whereD is a downsampling operator that maps images fromGl

to Gl−1 and is also defined by our dedicated filter bank. The high-
frequency prediction is done by first matching every patchp⊂G1

in the upsampled imageL1 with its most-similar patchq(p)⊂ G0

in the smoothed inputL0. This search isnot performed against ev-
ery patch inL0, but rather against restricted small windows (purple
window in the Figure 2) centered around the same relative coordi-
nates inG0 as the center coordinates of the query patchp in G1.
As we explain later, this requires the two images to be spectrally
compatible which we ensure when designingU andD. The com-
plement high-frequency content in the input image at the matched
patch,H0(q) = I0(q)−L0(q), is used to fill-in the missing higher
frequency band in the upsampled image by simply pasting it, i.e.,
I1(p) = L1(p)+H0(q(p)). Different accounts for the same pixel,
due to overlaps between nearby patches are averaged together. The
particularities of this scheme are detailed in the next sections.
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Fig. 3: Graph showing the error in localized searches when upsampling an
image at different scaling factors.

3.1 Local Self-Similarity

Freeman et al. [2002] use a universal example database of small
patches taken from arbitrary natural images. Barnsley [1988] and
others [Vrscay 2002; Freeman et al. 2000; Ebrahimi and Vrscay
2007; Suetake et al. 2008; Glasner et al. 2009] rely on self simi-
larities within the image; small patches in natural images tend to
repeat themselves within the image and across its scales. This al-
lows to replace the external database with the input image itself,
taken at smaller scales, as the source for example patches. While
this provides a limited number of example patches, compared to
external databases of an arbitrary size, the patches found within the
input image are morerelevantfor upscaling it. Thus, in many cases
one can use less examples and obtain the same or even better re-
sults while reducing the time cost involved in the nearest-neighbor
searches which is known to be the major bottleneck of nonparamet-
ric example-based image models.

We refine the self-similarity observation in natural images and
show that various singularities such as edges, which commonly
appear in natural images and require resolution enhancement, are
invariant to scaling transformations and are hence similar tothem-
selvesat an instance basis. We call this propertylocal self-similarity
since it implies that that relevant example patches can be found at
a very restricted set of patches; for every patch in the image, very
similar patches can be found in its downscaled (or smoothed) ver-
sion at localized regions around the same relative coordinates. This
is the case for patches containing discontinuities in intensity, i.e.,
edges in the image, discontinuous first derivative, i.e., shading of
faceted surfaces. These isolated singularities can appear at differ-
ent geometrical shapes, e.g., lines, corners, T-junction, arcs, etc.,
as shown in Figure 1. We exploit this local similarity to reduce the
work involved in the nearest-patch search from being dependent on
the number of image pixels, down to being extremely small and
fixed. We describe here several experiments that quantify the ex-
tent to which the local self-similarity holds and compare its use
with other patch search methods.

In the first experiment, we attempt to quantify how well the lo-
cal self-similarity holds at various scaling factors. In Figure 3 we
show meanL1 error between query and retrieved patches, com-
puted in RGB color space (pixel values between zero and one) af-
ter normalizing each color channel by its average intensity. The
query patches are windows of5-by-5 pixels and the search was
performed in windows of10-by-10 pixels. The graph in the figure
shows clearly that error increases as the scaling ratio grows larger.
This can be explained as follows. Large scaling factors involves
stronger smoothing when computing the example image. This is

Fig. 4: Comparison between different scaling steps, used to achieve a final
magnification factor of 3. The scaling sequences used are: (left) 2:1, 3:2,
(middle) 5:4, 5:4, 4:3, 3:2, and (right) 5:4 repeated five times. The 2:1
scaling were performed usingBior 6.8 wavelets.
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Fig. 5: Graph showing the error versus the time cost of various search
strategies: local searches within windows of10-by-10 pixels (Local), win-
dows of20-by-20 pixels (Localx2), exact nearest search in the input im-
age (Nearest Neighbor) and an external database (External), and approxi-
mate nearest-neighbor search in the entire image (ANN) at different error
bounds. These tests were performed with scaling factor of 5:4. Note that the
time axis of the graph is shown in logarithmic scale.

equivalent to (and implemented by) downscaling the input image
by large factors. In this process, image features will become closer
to one another and the example patches will no longer contain pure
isolated singularities that obey the scale invariance assumption. In
Figure 4 we show how different scaling steps effect the final up-
scaled image. The artifacts produced by large factors, dyadic in
this case, are clear. Given this, we upscale images by performing
multiple scaling steps of small factors to achieve the desired final
magnification. In the next section we describe how we implement
these small non-dyadic scalings using dedicated filter banks that we
design.

In the second experiment we compare the quality of the patches re-
trieved by various approaches as well as the running times. Here
also, we use patches of5-by-5 pixels in normalized RGB color
space and report the mean values estimated from six test images
upscaled by a factor of5:4. Figure 5 shows the results obtained us-
ing: local searches within windows of10-by-10 pixels, windows of
20-by-20 pixels, and exact nearest search and approximate nearest-
neighbor1 searches in the entire input image. The graph shows

1We used the ANN package by Mount & Ayra, found at:
http://www.cs.umd.edu/~ mount/ANN to perform the approxi-
mate nearest-neighbor searches.
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Fig. 6: Images upscaled by a factor of 3 using nearest search in an external
database (Ext. DB), nearest patch within the entire image (NN), and using
our localized search (LSS).

that the local search we propose is more accurate and consider-
ably faster than the use of kd-based approximate nearest-neighbor
search algorithm set to various error bounds. Searching for the near-
est patch exhaustively, in the entire input image, does not achieve a
significant gain in accuracy compared to the localized searches—in
fact there is an 80% agreement between the two. Figure 6 confirms
that indeed no visual difference is found between these two search
strategies. Searching within windows larger than10-by-10 pixels
does not achieve a significant gain in quality yet takes more than
four times longer to compute.

Furthermore, we tested the use of an external database, consisting
on the six images used by Freeman et al. [2002] enriched by an-
other highly-detailed image containing the same number of total
pixels. Despite having more example patches and the use of an ac-
curate nearest-neighbor search, this option resulted in noticeable
higher errors, as shown in Figure 6. Besides the lower relevance of
this database, compared to the image itself, nearest patches com-
puted based on low-frequency band may be ambiguous. Indeed,
Freeman et al. match patches also based on the high-frequency
component which is being built. This solution introduces spatial
dependencies when searching for patches, which undermines the
locality and explicitness of computation.

Relation to existing approaches. The local self-similarity we
present validate and exploit in this work is one of the main novel-
ties we propose for example-based image upscaling. Our tests show
that the local searches, this similarity allows, achieve a significant
speedup at almost no quality cost compared to searching the en-
tire image. However, Glasner et al. [2009] show that by searching
within the entire input image andacrossscales, different instances
of the same feature may be found. Figure 7 shows a case where
such repetitions are found and exploited. In order to find these rep-
etitions in the data Glasner et al. perform a thorough search at mul-
tiple scales that differ by small non-dyadic factors and small trans-
lational offsets. While this approach increases the nearest-patch
search efforts, this type of repetitions is scarce compared to the

Fig. 7: Image with repetitions. Top images shows the input bottom images
show: (left) input pixels, (middle) output produced by our method, and
(right) the results of Glasner et al. [2009].

local self-similarities found along most of the edges in general nat-
ural images. In addition, in the approach of Glasner et al. the output
image is computed by solving the super-resolution as well as back-
projection systems of large linear equations. As we describe in the
next sections, we synthesize the upscaled image using custom fil-
ter banks that consist of local and explicit calculations. Altogether,
our approach acts locally, both when searching for example patches
and when constructing the output image, and allow a fully parallel
implementation, as we describe in Section 4.

3.2 Non-Dyadic Filter Banks

The main conclusion from the tests described above is that small
localized patch searches are effective as long as the scaling factors
are small. Therefore, we perform multiple upscaling steps of small
factors to achieve the desired magnification. The upscaling scheme,
described in Section 3, uses analytical linear interpolationU and
smoothingD operators to compute the initial upsampled image and
the smoothed input image, used for generating the example patches.
We show here that the choice of these operators is consequential for
our application and point out several conditions these filter banks
should obey in order to model the image upscaling process.

Dyadic image upscaling, where the image dimensions are dou-
bled, typically consists of interpolating the image by adding ze-
ros between every two pixels followed by a filtering step. Dyadic
downscaling consists of filtering the image first and then subsam-
pling every other pixel. The downscaling operation is identical to
the computation of the coarser level approximation coefficients
in the forward wavelet transform, and the upscaling corresponds
to the inverse wavelet transform, applied without adding any de-
tail (wavelet) component. In fact, wavelet theory [Mallat 1999]
is primarily concerned with the design and analysis of such scal-
ing schemes and filter banks. This vast literature offers a countless
number of filter banks, obeying all or most of the requirements we
are about to discuss here, for computing dyadic transformations.
However, very little is available for non-dyadic case, where the
scaling factor is other than two. Xiong et al. [2006] use the lifting
scheme to compute a3:2 scaling for image coding. Their construc-
tion maps a linear function to the same values it contained, while
skipping every third value. Hence it does not reconstruct first-order
polynomials which, as we shall discuss below, is very important
for our application. Pollock et al. [2007] describe orthogonal sym-
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Fig. 8: Grid relation and filter placements. Left illustration shows a coarse grid (bottom) placed against the finer grid (top) in a 5:4 ratio.
The placement of the non-zero coefficients on the fine grid is shown in red. At the right we illustrate the profiles of two filters in a 3:2 scaling
factor.

metric Shannon-like wavelets that are infinite and hence do not fit
our needs. While wavelet packets analysis [Mallat 1999] general-
izes the spectral tiling tree, it is still largely implemented in the
common dyadic spatial setting.

Here we derive the formalism that extends the dyadic scaling of
wavelet transforms toN+1:N scaling factors. Figure 8 illustrates
this for the cases ofN =2 andN =4. As shown in the figure, the
relative placement of the coarseGl and fineGl+1 grid points has a
periodicity ofN . Besides the dyadic case,N =1, there is no rea-
son to expect the filters to be strictly translation invariant; they can
differ within each period. For example, if we require the filters to
map a linear ramp function sampled at one grid to the same func-
tion sampled at a coarser (or finer) grid, the filters weights will have
to adapt to the different relative offsets between the grids (seen in
the figure) and therefore be different within each period ofN fil-
ters. Therefore, with no further spatial dependency, theN+1 :N
transformations consist of filtering which is translation invariant to
periods ofN +1 grid points and hence requireN distinct filters in
order to handle the irregular grids relation. In practice, this means
that the downscaling operator can be computed usingN standard
translation-invariant filtering operations, performed inGl+1, fol-
lowed by subsampling each filtered image everyN + 1 pixels to
produce the total ofN values inGl. Formally, this is given by

D(I)(n) = (I∗d̄p)
(

(N+1)q + p
)

, (1)

wherep = n mod N , q = (n − p)/N , the filtersd1, .., dN are
the N distinct smoothing filters, the filter mirroring is given by
d̄[n] = d[−n], and∗ denotes the discrete convolution. The ana-
log extension of the dyadic case applies to the upsampling step;
every sample within the period ofN is filtered with a different up-
sampling filter,u1, .., uN . These filtered images are then summed
as following,

U(I)(n) =

N
∑

k=1

(↑I∗ ūk)(n), (2)

where the zero upsampling operator is defined by(↑I)[(N+1)n] =
I[n] and zero otherwise.

Filters that constitute a mapping and its inverse are known as
biorthogonalfilters [Mallat 1999]. In our derivation this relation
can be required if we first upsample and then downsample, i.e.,

D
(

U(I)
)

= I. (3)

Applying the operators in the reverse order cannot be expected to
result in an identity mapping sinceGl andGl+1 are of different
space dimension. Formally, relation (3), between the operators, can

be expressed in terms of the filters by

〈ui[n], dj [n−(N + 1)k]〉 = δk · δi−j , (4)

for every integerk and1≤ i, j≤N , where〈·, ·〉 is the usual dot-
product andδ0 = 1 and zero otherwise. In Section 3.3 we discuss
the importance of producing an upsampled image that is consistent
with the input upon downsampling.

The lack of translation invariance, or the translation invariance in
periods ofN+1 grid points, introduces a minor complication when
generating low- and high-frequency example patches for the high-
frequency prediction step of our algorithm. Being different from
one another, theN distinct filters respond differently to the same
input signal. Therefore, their output must not be mixed in the high-
pass prediction step when comparing and pasting patches. To avoid
this, we search for examples in offsets ofN + 1 pixels, such that
the same filter responses are always aligned together. We then com-
pensate for this reduction in the number of example patches by cre-
ating multiple example imagesL0 = U

(

D(I0)
)

that are produced
by offsetting the input imageI0 by 1, .., N+1 pixels along each
axis. Thus, altogether the number of example patches remains the
same as if we searched in offsets of a single pixel and the filtered
values are not intermixed.

Connection to wavelet bases. This derivation does not include the
high-pass wavelet filters, which normally span the high frequency
subspace of the finer spaceGl+1 that is the complement of the space
spanned by the upsampling filtersui. The reason is that we do not
use them in our upscaling scheme; the high-pass prediction step
fills-in the high-pass layer directly, in pixel values and not detail
coefficients (that normally multiply the wavelet filters to get pixel
values). Working in pixel resolution avoids the loss of spatial res-
olution that the wavelet filters introduce and leads to better quality
results in the patch-based synthesis.

However, by not restricting the synthesis of the high-frequency
layer to the complement high-frequency wavelet space, the lower
frequency approximation layer will also be affected by this step,
i.e., the upsampled image spanned byui. Thus, the consistency
with the input will be undermined. However, our tests show that
the predicted high-frequency layer has an unnoticeable effect upon
downsampling and deviates the intensities of the synthesized image
from the input by about 1%.

3.3 Filter Design

Here we describe the guiding principles which we follow to design
the upsampling and downsampling filters such that they model the
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input upscaled downscaled (no prediction) x3 upsampling (our scheme)

not bior. near bior. not bior. near bior.

Fig. 9: A comparison between nearly biorthogonal filters and filters designed withno such consideration (omitting theOU
1 term at the (9)

in the Appendix). The left pair of images show the initial upsampled image, without running the high-frequency prediction step, after it is
downsampled to the input resolution, i.e.,D(U(I0)). The right pair shows the output of our upscaling scheme. The salient edges are well
reproduced in both cases however the lack of biorthogonality leads to a loss of fine details in the image which makes it appear less realistic.

image upscaling process. We do this by introducing several con-
ditions we believe image upscaling frameworks, similar to ours,
should obey in order to model properly the problem and allow ef-
ficient computing. This conditions are used, at the Appendix, for
designing the filtering operators we use in our upscaling scheme.
In this paper we demonstrate the results obtained by taking these
considerations into account. While it is hard to meet even all of the
presented conditions using compact filters, more considerations can
be incorporated to this framework.

(C1) Uniform scaling. When upscaling and downscaling an image
we want the resulting image to differ by a similarity transformation;
a spatially-uniform scaling transformation. Such a transformation
changes the distance between every two points by a fixed factor,
the scaling factor between the image grids. This property can be
imposed on our upsampling and downsampling operators by the
aid of linear functions. A linear function shows a fixed difference,
I(x + dx) − I(x), between points of a fixed distance,dx. There-
fore, we require our operators to preserve the shape of linear func-
tions, i.e., map a linear function defined atGl to a linear function
defined onGl+1 and vice versa. This condition of exactly repro-
ducing linear functions is the counterpart of the vanishing moments
condition, commonly used in the wavelet design literature [Mallat
1999].

(C2) Low frequency span. Cameras have a finite point spread
function as well as contain a blurring anti-aliasing filter. This is
used to restrict the bandwidth of a signal (scene) to approximately
satisfy the sampling theorem according to the sensor sampling rate.
This has implications on bothD andU . The downscaling operator
D should therefore model the difference in the amount of blurring,
needed before sampling signals atGl+1, and the stronger blurring
needed for a lower sampling rate ofGl. This lies behind the com-
mon practice of designingD to be a low-pass filter that transfers
the lower frequency band [Pratt 2001]. The length of this frequency
band is roughly proportional to the scaling ratio,N/(N +1) in our
case.

A similar condition applies to the interpolation operatorU . As dis-
cussed above, the camera filtering limits the signal’s spectrum ac-
cording to the low sampling rate of the input image. The initial
upsampled imageL1 should contain this data, rendered at a higher
sampling rate. Therefore, the reproducing kernels ofU must span
this low-frequency sup-space which spans the lowerN/(N + 1)
band of the spectrum.

(C3) Singularities preservation. The prediction of the missing
higher frequency band, and the proper reconstruction of the sin-
gularities, we discussed in Section 3.1, relies on properly matching
patches from the initial upsampled image with ones in a smoothed
version of the input. In order to obtain accurate matches, the sin-
gularities in the smoothed imageL0 = U(D(I0)) and the initial
upsampled imageL1 = U(I0) must have a similar shape. This, in
fact, poses a condition over the downsampling operatorD rather
than the upsampling operatorU , since bothL0 andL1 are con-
structed byU , meaning that any difference between the two cannot
be attributed toU . In practice, this condition is met if the down-
sampling operatorD preserves the shape of edge-like singularities,
appearing inI0, when producingI−1.

(C4) Consistent and optimal reproduction. Some of the exist-
ing approaches [Tappen et al. 2004; Fattal 2007; Shan et al. 2008;
Glasner et al. 2009] require that the final upsampled image should
be consistent with the input in the sense that if it is reduced back
to the input resolution, it must be identical to the input image. We
argue that this should also be the case at an earlier stage; the initial
upsampled imageL1 must already be consistent with the input, i.e.,
D(L1) = I0 as it contains the same information, held in a denser
grid. However, sinceL1 = U(I0), this condition boils down to
obeying the biorthogonality condition (4).

Achieving this property implies that the prediction step is not re-
quired to undo the loss (or weakening) of data that would otherwise
occur. The importance of this optimal use of the original pixels is
demonstrated in Figure 9. The existing methods, mentioned above,
enforce this relation over the output imageI1 implicitly, by solving
D(I1) = I0 either using a linear solver or through a nonlinear itera-
tive scheme. By designing our filter banks such that they are nearly
biorthogonal, we approximate this condition overL1 through an
explicit and hence efficient computation. As explained in the previ-
ous section, the effect of the high-frequency prediction step inserts
an error of about 1% in the consistency betweenI1 andI0. In addi-
tion, the inexact biorthogonality mentioned here adds an additional
error of about 1%. Altogether, our testings show that the total de-
viation of D(I1) from I0 is of about 2% in pixel intensity value
which is visually unnoticeable.

In the Appendix we explain how we use these conditions to define
new non-dyadic filter banks. This requires addressing two main dif-
ficulties. The first arises from the fact that we need to define com-
pact filters, consisting of a small number of non-zero coefficients,
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in order to achieve ‘simple’ low- and high-frequency example im-
ages. Filters with large support suffer from interferences in their
response to different nearby edges. This undermines the separation
between the singularities which is essential for their scale invari-
ance. On the other hand, a small number of degrees of freedom
does not allow us to fully obey all the design conditions we listed
above. We treat this over-determinedness by relaxing some of the
requirements to objectives in an optimization problem rather than
treating them as hard constraints. The second difficulty stems from
the non-linearity of the biorthogonality condition (4). These equa-
tions make the filter design hard to solve or optimize for all the
unknown filter coefficients at the same time. We overcome this by
first computing the downsampling filtersdj with no regard to the
biorthogonality condition (4), and then computeui givendj while
taking into account the biorthogonality.

In Table 1, at the Appendix, we provide the optimal filters we ob-
tained using this framework and used to produceall our results.

4. RESULTS

We implemented our method in C++ and run it on an Intel Core
2 Quad CPU 2.8GHz machine. We perform the upscaling using
progressively larger scaling ratios for the following reason. As the
image size increases nearby singularities become more isolated, al-
lowing us to use stronger smoothing without undermining the scale
invariance property of image singularities, discussed in Section 3.1.
With this consideration in mind, we approximate the desired mag-
nification factor using the small factors that our filters support,
namely,5:4, 4:3, and3:2. For example, to achieve a magnifica-
tion of 3 we use5:4, 5:4, 4:3, and3:2, and for a factor of 4 we
use5:4, 5:4, 4:3,4:3, and3:2. We then use a simple bicubic down-
scaling to match the desired magnification factor accurately. We
implemented the scheme in the YCbCr color space, where we add
high frequencies only to the Y channel. This enables a speedup of
about a factor of three compared to using RGB color space. We did
not observe a decrease in quality for the scaling factors we tested.

It takes us 4 seconds to upscale an image of 200-by-200 pixels by
a factor of 4 along each axis when we run on a single core. Our
method is trivially parallel because the different regions in the im-
age are uncoupled in our explicit computation, implying that the
running time can be further divided by the number of cores. We
exploited this parallel nature of our algorithm and implemented it
also on an NvidiaTM GeforceTM 480GTX GPU, using Cuda 3.0,
with no changes in the algorithm. This implementation allows us to
upscale videos form 640x360 to 1920x1080 (a factor of 3) at 23.9
FPS (including display time). We used scaling steps of4:3, 3:2, and
3:2.

In Figure 11 we compare the quality of our upscaled images with
the results produced by current state-of-the-art methods as well as
a leading commercial product Genuine FractalsTM . The method of
Glasner et al. [2009] reconstructs edges that are somewhat sharper
than what our method does, but also produces a small amount of
ringing and jaggies. Our method performs considerably less com-
putations when searching patches and avoids solving large linear
systems and hence, even in a single core implementation, it runs
more than an order of magnitude faster. Despite being examples-
based method, our running times are also lower than the times re-
ported for methods that use analytical models [Fattal 2007; Shan
et al. 2008; Sun et al. 2008] on the same or stronger machines.

bicubic our

Fig. 10: Failure at cluttered fine-detailed areas, as appears in the the
koala’s fur. This region does not obey the self-similarity assumption and
our method produces false line-like edges. Image courtesy of [Glasner et al.
2009]

Video upscaling. We used our upscaling method with no further
modification to enlarge the resolution of video sequences. Simi-
larly to the method by Shan et al. [2008], no flickering artifacts are
observed between successive frames. In agreement with Shan et al.,
we found that once the consistency conditionC4 is obeyed and the
output video is stable at its low-frequency component, an overall
stability is achieved. In the supplemental material we compare our
method to their and obtain high quality results. Our running times,
in both the CPU and GPU implementations, are lower.

Limitations. Our method is capable of efficiently reconstructing
realistic looking edges and shows a decreased amount of jaggies
and ringings. However, fine-detailed cluttered regions, such as the
Koala fur in Figure 10, are not reproduced realistically and appear
somewhat faceted. One possible alternative is to carefully ‘turn-off’
our high-pass prediction and settle for smooth output in such areas.
We leave this option as a future work.

5. CONCLUSIONS

We presented a new example-based image upscaling method that
performs less nearest-patch computations and uses a custom de-
signed filter banks to synthesize the image explicitly. The faster
search is based on a local self-similarity observation that we point
out in natural images, where edges and other singularities are lo-
cally scale invariant. The tests we performed to measure this invari-
ance show that this assumption holds best for small scaling factors.
Comparisons show that the localized search, permitted by the lo-
cal scale invariance, outperform approximate global searches both
in quality and running time. We formulated and designed novel fil-
ter banks that allow us to perform such small, non-dyadic, image
scalings. These filter banks extend the common dyadic transforma-
tions and are designed to model the image upscaling process. With
these filters we achieve, using explicit computations, upscaled im-
age which is highly consistent with the input image. Altogether, we
propose a fully local high-quality upscaling algorithms that oper-
ates in real-time when implemented in a GPU.
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Similarly to image deblurring and denoising, we believe that more
thorough efforts should be invested in developing the theory and
implementation of image upscaling. The non-dyadic filter banks
introduced here motivates the construction of such filters for other
problems that will benefit finer scaling. In addition, we intend to
explore the use of the various elements presented here for other
application, e.g., exploiting self-similarities in geometric entities.

ACKNOWLEDGMENTS

The authors would like to thank Shmuel Peleg for his many use-
ful advices during the process of this work. We would also like
to thank Shachar Gelbourt and Eri Rubin for the many hours they
spent on the GPU implementation of our algorithm. This work was
supported in part by the Israel Science Foundation founded by the
Israel Academy of Sciences and Humanities as well as by the Mi-
crosoft New Faculty Fellowship Program.

REFERENCES

ALY, H. AND DUBOIS, E. 2005. Image up-sampling using total-variation
regularization with a new observation model.IEEE Trans. Image Pro-
cessing 14,10, 1647–1659.

BARNSLEY, M. 1988. Fractal modelling of real world images. InThe
Science of Fractal Images, H.-O. Peitgen and D. Saupe, Eds. Springer-
Verlag, New York.

BHAT, P., ZITNICK , C. L., SNAVELY, N., AGARWALA , A., AGRAWALA ,
M., CURLESS, B., COHEN, M., AND KANG, S. B. 2007. Using pho-
tographs to enhance videos of a static scene. InRendering Techniques
2007, J. Kautz and S. Pattanaik, Eds. Eurographics, 327–338.

EBRAHIMI , M. AND VRSCAY, E. R. 2007. Solving the inverse problem of
image zooming using self-examples. InProc. ICIAR 2007. Lecture Notes
in Computer Science, vol. 4633. Springer, 117–130.

FARSIU, S., ROBINSON, M., ELAD , M., AND M ILANFAR , P. 2004. Fast
and robust multiframe super resolution.Image Processing, IEEE Trans-
actions on 13,10 (Oct.), 1327–1344.

FATTAL , R. 2007. Image upsampling via imposed edge statistics.ACM
Trans. Graph. 26,3, 95.

FREEMAN, W. T., JONES, T. R., AND PASZTOR, E. C. 2002. Example-
based super-resolution.IEEE Comput. Graph. Appl. 22,2 (March), 56–
65.

FREEMAN, W. T., PASZTOR, E. C., AND CARMICHAEL , O. T. 2000.
Learning low-level vision. Int. J. Comput. Vision 40,1 (October), 25–
47.

GLASNER, D., BAGON, S.,AND IRANI , M. 2009. Super-resolution from
a single image. InICCV09. 349–356.

L I , X. AND ORCHARD, M. T. 2001. New edge-directed interpolation.
IEEE Trans. Image Processing 10,10, 1521–1527.

L IN , Z. AND SHUM , H.-Y. 2004. Fundamental limits of reconstruction-
based superresolution algorithms under local translation.IEEE Trans.
Pattern Anal. Mach. Intell. 26,1, 83–97.

MALLAT , S. 1999. A Wavelet Tour of Signal Processing, Second Edition
(Wavelet Analysis & Its Applications). Academic Press.

POLIDORI, E. AND DUGELAY, J.-L. 1995. Zooming using iterated func-
tion systems. InNATO ASI on image coding and analysis, July 8-17,
1995, Trondheim, Norway.

POLLOCK, S. AND CASCIO, I. 2007. Non-dyadic wavelet analysis.Opti-
misation, Econometric and Financial Analysis, 167–203.

PRATT, W. K. 2001. Digital Image Processing: PIKS Inside. John Wiley
& Sons, Inc., New York, NY, USA.

REUSENS, E. 1994. Overlapped adaptive partitioning for image coding
based on the theory of iterated functions systems. InAcoustics, Speech,
and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Con-
ference on. Vol. v. V/569–V/572 vol.5.

ROBERT, M. G.-A., DENARDO, R., TENDA, Y., AND HUANG, T. S. 1997.
Resolution enhancement of images using fractal coding. Inin Visual
Communications and Image Processing ’97. 1089–1100.

SHAN , Q., LI , Z., JIA , J., AND TANG, C.-K. 2008. Fast image/video
upsampling.ACM Trans. Graph. 27,5, 1–7.

SU, D. AND WILLIS , P. 2004. Image interpolation by pixel-level data-
dependent triangulation.Computer Graphics Forum 23,2, 189–202.

SUETAKE, N., SAKANO , M., AND UCHINO, E. 2008. Image super-
resolution based on local self-similarity.Journal Optical Review 15,1
(January), 26–30.

SUN, J.,NING ZHENG, N., TAO, H., AND YEUNG SHUM , H. 2003. Image
hallucination with primal sketch priors. InProceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 729–736.

SUN, J., XU, Z., AND SHUM , H.-Y. 2008. Image super-resolution using
gradient profile prior. InComputer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. 1–8.

TAPPEN, M. F., RUSSELL, B. C., AND FREEMAN, W. T. 2004. Efficient
graphical models for processing images. InProc. CVPR 2004. 673–680.

THVENAZ , P., BLU , T., AND UNSER, M. 2000. Image interpolation and
resampling. InHandbook of Medical Imaging, Processing and Analysis,
I. Bankman, Ed. Academic Press, San Diego CA, USA, 393–420.

VRSCAY, E. R. 2002.From Fractal Image Compression to Fractal-Based
Methods in Mathematics. The IMA Volumes in Mathematics and Its Ap-
plications. Springer-Verlag, New York.

X IONG, R., XU, J.,AND WU, F. 2006. A lifting-based wavelet transform
supporting non-dyadic spatial scalability. InImage Processing, 2006
IEEE International Conference on. 1861–1864.

Appendix

As described in Section 3 we use two operators: the upscaling op-
eratorU , which is used to create the initial upscaled image, and the
downscaling operatorD, which together with the upscaling oper-
ator is used to smooth the input image. Each of these operators is
defined by its own set of filters. Here we describe how we design
these filters such that the principlesC1-4, discussed in Section 3.3,
are approximately obeyed. This design process consists of deriving
different terms that promote each of the condition in a way which
is easy to solve for, i.e., we restrict to quadratic terms which can be
solved linearly once Lagrange rule is applied.

As we explained in Section 3.3, the support of these filters should
be kept as compact as possible, in order to avoid mixing the re-
sponse of the filters to different image features. The design princi-
ples pose more conditions than the number of non-zero coefficients
we are willing to allocate to the filters. Therefore, we cannot fully
obey these conditions and relax some of the requirements to ob-
jectives in an optimization problem rather than treating them as
hard constraints. In addition, the biorthogonality conditionC4 cre-
ates a non-linear relation between the filters ofU andD and makes
their computation a difficult problem. We overcome this non- lin-
earity by splitting the filter design into two linear sub-problems as
follows. The downscaling operatorD models the physical image
acquisition process and can therefore be computed first, indepen-
dently ofU . The upsampling filters are computed in a second step
and ensure the biorthogonality as well as other properties.

In order to model the image acquisition process correctly the down-
scaling operatorD should perform spatially-uniform scaling. As
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we explained inC1 this can be required over linear functions; the
downscaling operator should map linear functions, defined over
Gl+1, to linear functions, defined overGl. Therefore, we define
L(x′) = x′/a, wherex′ ∈ Gl+1 and a is the scaling factor
(N + 1)/N , and require

D (L(x′)) (x) = D (x′/a) (x) = x. (5)

In addition to this requirement, we wantD to obey the singulari-
ties preservation principleC3, by making sure that a functionf ,
that models the singularities, is mapped correctly between the two
scales. We implement this by minimizing the distance between the
downscaledf and an analytically scaledf as follows

OD
1 =

1

M

∑

µ,σ,x

(

D
(

f
(

x′ − µ

σ

))

(x)− f
(

ax− µ

σ

)

)2

. (6)

We use a Gaussian,f(x) = e−x2

, to model singularities, shift it by
sub-pixel offsetsµ and stretch itσ to account for all the offsets and
scales the data may come in.M is a normalization factor equal to
the number of summed terms. Furthermore, we wantD to span low
frequencies, according toC2, and define the following objective

OD
2 =

1

N

N
∑

j=1

‖Ddj‖
2, (7)

where D is the discrete differentiation operator. This is equiva-
lent to minimizing the power spectrum of‖D̂(ω)‖2/ω2 in Fourier
domain, which are the eigenvalues of the Laplacian matrix. Alto-
gether, we get the following constrained optimization problem,

min.OD
1 + αDOD

2 s.t., D (x′/a) (x) = x, (8)

whereαD is used to prioritize the two objectives. By applying La-
grange multipliers rule, we obtain a small linear system of equa-
tions which we solve to getdj .

Given the computed the downscaling filtersdj , we can now com-
pute the upsampling filtersui in a similar way. The main difference
here, is that we optimize for biorthogonality conditionC4 and omit
the singularities preservation objective term. The biorthogonality
condition is achieved by relaxing (3) to the following objective

OU
1 =

1

M ′

∑

k

N
∑

i,j=1

(〈ui[n], dj [n−(N + 1)k]〉 − δk · δi−j)
2 ,

(9)
wherek spans the indices where adjacentdj overlapui, andM ′

is a normalization constant equal to the number of terms summed.
This term promotes a dot product of one between corresponding
downscaling and upscaling filters and zero otherwise.

As in the computation ofdj , we wantui to span low frequencies,
according toC2, and achieve this by a similar term,

OU
2 =

1

N

N
∑

i=1

‖Dui‖
2. (10)

We optimize both objectives subject to the uniform scaling con-
straintC1 which is, in this case,

U (L′(x′)) (x) = U (ax′) (x) = x, (11)

whereL′(x′) = ax′. The resulting optimization problem foruj is

min.OU
1 + αUOU

2 s.t., U (ax′) (x) = x, (12)

Table I. : Filter bank coefficients

ratio filter -3 -2 -1 0 1 2 3

5:4

d0 -0.013 -0.017 0.074 0.804 0.185 -0.045 0.011
d1 -0.005 0.032 -0.129 0.753 0.421 -0.09 0.017
d2 0.017 -0.09 0.421 0.753 -0.129 0.032 -0.005
d3 0.011 -0.045 0.185 0.804 0.074 -0.017 -0.013
u0 -0.028 -0.053 0.061 0.925 0.304 0.007 0.014
u1 0 0.038 -0.086 0.862 0.52 -0.128 0.062
u2 0.062 -0.128 0.52 0.862 -0.086 0.038 0
u3 0.014 0.007 0.304 0.925 0.061 -0.053 -0.028

4:3

d0 -0.015 -0.016 0.073 0.772 0.219 -0.044 0.01
d1 0 0.014 -0.093 0.578 0.578 -0.093 0.015
d2 0.01 -0.044 0.219 0.772 0.073 -0.016 -0.015
u0 -0.042 -0.041 0.069 0.928 0.365 -0.008 0.03
u1 0.029 -0.056 0.726 0.726 -0.056 0.0293 0
u2 0.03 -0.008 0.365 0.928 0.069 -0.041 -0.042

3:2

d0 0 0 -0.022 0.974 0.227 0 0
d1 0 0 0.227 0.974 -0.022 0 0
u0 0 -0.1 0.119 0.927 0.6 -0.047 0
u1 0 -0.047 0.6 0.927 0.119 -0.1 0

whereαU is used to prioritize the two objectives.

In Table I we provide the filters we constructed using these calcula-
tions. Note, that the filters used in the convolutions are the inverse
versions of these filters (i.e.ui[−n], anddi[−n])
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Fig. 11: A comparison between state-of-the-art methods and our. Images courtesy of [Glasner et al. 2009] and [Sun et al. 2008]
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