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Figure 1: Two views of the graph of the same edge-avoiding wavelet centered at the shoulder of the Cameraman. The support of the wavelet
is confined within the limits set by the strong edges around the upper body.

Abstract

We propose a new family of second-generation wavelets con-
structed using a robust data-prediction lifting scheme. The sup-
port of these new wavelets is constructed based on the edge con-
tent of the image and avoids having pixels from both sides of an
edge. Multi-resolution analysis, based on these newedge-avoiding
wavelets, shows a better decorrelation of the data compared to com-
mon linear translation-invariant multi-resolution analyses. The re-
duced inter-scale correlation allows us to avoid halo artifacts in
band-independent multi-scale processing without taking any spe-
cial precautions. We thus achieve nonlinear data-dependent multi-
scale edge-preserving image filtering and processing at computa-
tion times which arelinear in the number of image pixels. The new
wavelets encode, in their shape, the smoothness information of the
image at every scale. We use this to derive a new edge-aware in-
terpolation scheme that achieves results, previously computed by
solving an inhomogeneous Laplace equation, through anexplicit
computation. We thus avoid the difficulties in solving large and
poorly-conditioned systems of equations.

We demonstrate the effectiveness of the new wavelet basis for var-
ious computational photography applications such as multi-scale
dynamic-range compression, edge-preserving smoothing and detail
enhancement, and image colorization.

Keywords: wavelets, lifting scheme, data-dependent interpola-
tion, constraint propagation, edge-preserving filtering

1 Introduction

Filtering lies behind almost every operation on images. Explicit
linear translation-invariant (LTI) filtering, i.e., convolution, is used
extensively in a wide range of applications including noise re-
moval, resolution enhancement and reduction, blurring and sharp-
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ening, edge detection, and image compression [Gonzalez and
Woods 2001]. Data-dependent filtering with, e.g., the bilateral fil-
ter [Tomasi and Manduchi 1998], adjusts the filter stencils at each
pixel based on its surrounding. This robust filtering does not av-
erage together pixels across edges, thereby avoiding edge-related
halo artifacts that plague many image operations that rely on LTI
filtering. In addition, switching to such data-dependent filtering
requires little or no further algorithmic modifications, making it a
very poplar tool in computational photography.

Both the LTI and data-dependent filtering can be used in implicit
formulations, where the unknown image appears convolved, al-
lowing to define images through their filtering. The gradient do-
main [Weiss 2001; Fattal et al. 2002; Pérez et al. 2003] process-
ing, where images are computed from their derivatives, is one pop-
ular example for implicit translation-invariant filtering. This ap-
proach provides a transparent way of manipulating edges in the im-
age without worrying about the global adjustments involved, yet
comes at the cost of solving a Poisson equation. As we discuss in
the next section, the inhomogeneous Laplace and Poisson equations
can be interpreted as implicit formulations of data-dependent filter-
ing where the requirements over the image derivatives areweighted
differently in space, based on the input datum. These formulations
proved to be useful for edge-aware interpolation of sparse user in-
put and as high-quality edge-preserving smoothing operators, but
are costly to compute; they require solving large systems of poorly-
conditioned equations.

Multi-resolution analysis (MRA) via wavelet transform [Burrus
et al. 1998; Mallat 1999] is widely known as an extremely effec-
tive and efficient tool for computing LTI multi-scale decomposi-
tions offering a good space/frequency localization trade-off. More
specifically, efficient filtering with kernel size proportional to the
image dimensions [Burt 1981], detecting edges both in space and
scale [Burt and Adelson 1983], bypassing the need for implicit LTI
formulations and avoiding the associated costs of solving large lin-
ear systems [Li et al. 2005], and preconditioning these systems [Co-
hen and Masson 1999], canall be achieved inlinear-timecomputa-
tions. In contrast to these results, data-dependent filtering requires
performingO(N logN) operations in the number of image pix-
els N since subsampling is avoided [Fattal et al. 2007], solving
multiple linear systems [Farbman et al. 2008], coping with the re-
sulting poorly-conditioned systems [Szeliski 2006], or introducing
additional dimensions and additional memory cost due to their dis-
cretization [Paris and Durand 2006].

In this paper we construct new data-dependentsecond-generation
wavelets[Sweldens 1998] based on the edge content of the image.
This construction uses ideas from data-dependent filtering, men-



tioned above, to design wavelets with a support that does not con-
tain pixels from both sides of an edge, as shown in Figure 1. Multi-
scale decompositions using these new wavelets show a diminished
response to strong edges at the transformed coordinates which re-
sults in a reduced inter-scale correlation. This allows to avoid
halo artifacts in band-independent multi-scale processing, freeing
us from taking any special precautions, as in [Li et al. 2005]. The
new wavelets encode, in their shape, the edge structure of the image
at every scale. We show how this can be used to implement an edge-
aware interpolation, normally solved via implicit data-dependent
formulations, at the cost of performing two transforms and their in-
verse. By that we avoid the need to solve numerically-challenging
linear systems arising from inhomogeneous Laplace and Poisson
equations. Altogether, with this new construction of wavelets we
achievenonlinear data-dependent multi-scale decomposition and
processing throughexplicit computations running inlinear time
O(N), and match the performance typical to LTI filtering. We
demonstrate the effectiveness of this new MRA on various com-
putational photography applications such as multi-scale dynamic-
range compression, edge-preserving smoothing and detail enhance-
ment, and image colorization.

2 Background

Explicit LTI filtering is used in numerous image processing appli-
cations, see [Gonzalez and Woods 2001] for a good survey. Implicit
formulations define an image through its filtering, e.g., the deriva-
tives, and require solving systems of linear equations, e.g., Poisson
equation. This is used for shadow removal [Weiss 2001; Finlayson
et al. 2002], dynamic-range compression [Fattal et al. 2002], seam-
less image editing [Ṕerez et al. 2003], image completion [Shen et al.
2007], and alpha matting [Sun et al. 2004].

Data-dependent filtering such as the bilateral filter [Tomasi and
Manduchi 1998] adjusts the averaging weight of each pixel based
on its distance, both in space and intensity, from the center pixel.
This operation is nonlinear and does not correspond to filtering in
the strict sense of the word, however it serves the same purpose as
its LTI counterpart; both operations target the data through a pre-
scribed locality in space and frequency, i.e., they can blur the im-
age or extract its fine-scale detail. Other prototypical methodolo-
gies for computing data-dependent filtering include the anisotropic
diffusion [Perona and Malik 1990], robust smoothing [Black et al.
1998], and digital total variation [Chan et al. 2001]. In the past
two decades or so, these filters became very popular for their abil-
ity to smooth an image while keeping its salient edges intact, and
became known asedge-preserving smoothingfilters. One of the
main advantages of this property is avoiding the well-known halo
artifacts typical to image operations that rely on LTI filtering. Edge-
preserving smoothing is used in numerous recent computational
photography applications such as smoothing color images [Tomasi
and Manduchi 1998], edge-preserving noise removal [Chan et al.
2001; Choudhury and Tumblin 2005], dynamic-range compres-
sion [Tumblin and Turk 1999; Durand and Dorsey 2002], flash and
no-flash photography [Petschnigg et al. 2004], image editing [Khan
et al. 2006], and mesh denoising [Fleishman et al. 2003].

Data-dependent filtering also has an implicit counterpart, the inho-
mogeneous Laplace and Poisson equations. As shown in [Farbman
et al. 2008], the inhomogeneous Poisson equation expresses the
steady-state condition of linear anisotropic diffusion process and
therefore acts as an edge-preserving smoothing operator. Much like
the analogy between LTI filtering and Poisson-based image gener-
ation, the inhomogeneous Laplace and Poisson equations compute
a least squares solution overweightedimage derivatives [Farbman
et al. 2008] and can therefore be regarded as a weighted filtering of
the output image. This is used for regulating deblurring operation

of noisy images [Lagendijk et al. 1988], manipulating the detail and
contrast of images [Farbman et al. 2008], and regulating estimated
transmission in hazy scenes [Fattal 2008]. A similar formalism is
used in the image colorization [Levin et al. 2004] and tonal adjust-
ment [Lischinski et al. 2006] methods, where sparse user strokes
of color or adjustment parameters are propagated across the im-
age in an edge-aware fashion. This results in a spatially-dependent
Laplace equation and used for other applications such as mate-
rial [Pellacini and Lawrence 2007] and appearance [An and Pel-
lacini 2008] editing, and in [Li et al. 2008] this edge-aware interpo-
lation is boosted via a classification step.

Traditional MRA [Burrus et al. 1998; Mallat 1999] which we
briefly review1 in [Fattal 2009] is, in its essence, a linear translation-
invariant filtering. This results from a uniform notion of smooth-
ness throughout space, defined by asingle pair of scaling and
wavelet functions, and reveals itself as the convolution operation
in the wavelet transform, see [Fattal 2009]. While this analysis
excels in separating weak variations based on their scale, it fails
to isolate large-magnitude jumps in the data, such as the ones en-
countered across edges. As indicated in previous reports [Schlick
1994; Tumblin and Turk 1999; Li et al. 2005; Farbman et al. 2008],
strong edges respond to filters atseveralscales thus producing mul-
tiple ‘reads’ in multi-scale decomposition. Processing the differ-
ent scales independently can easily violate the delicate relation-
ship within this multiplicity and result in haloing and other arti-
facts around the strong edges in the reconstructed image [Tumblin
and Turk 1999]. Avoiding these artifacts, within the framework of
LTI multi-scale decompositions, requires taking special precautions
when processing the different bands [Li et al. 2005].

Very recently, several multi-scale constructions were proposed in
the context of data-dependent image filtering. Paris et al. [2006]
exploit the facts that the bilateral filter is an LTI filter in the ex-
tended neighborhood, consisting of both space and pixel-intensity
range [Barash and Comaniciu 2004], and that linear filtering can
be computed efficiently through a multi-level strategy [Burt 1981],
to achieve a linear-time implementation of bilateral filtering with
arbitrarily large kernels. This comes at a memory cost where addi-
tional dimensions (intensity ranges) must be discretized. A multi-
scale decomposition, based on the dyadic wavelet transform [Mal-
lat 1999] and bilateral filter, is proposed in [Fattal et al. 2007] and
operates inO(N logN) time. This decomposition runs the bilat-
eral filter repeatedly and results in oversharpened edges that persist
in the coarsest scales, independently of the feature size and may
lead to gradient reversals when used for image processing [Farb-
man et al. 2008]. Farbman et al. [2008] show that the weighted
least squares, i.e., inhomogeneous Poisson equation, can be used
for computing edge-preserving smoothing at multiple scales. This
approach requires solving large numerically-challenging linear sys-
tems at each scale. Szeliski [2006] proposes a locally-adapted hier-
archical basis for preconditioning this type of linear systems. More
recently, Fattal et al. [2009] propose an adaptive edge-based image
coarsening for tone-mapping operations. In this approach the image
is represented by fewer degrees of freedom than the original num-
ber of pixels. While it avoids certain bleeding artifacts, this reduced
representation supports a limited number of image operations. For
example, it does not provide a scale separation and cannot be used
to manipulate image details.

In this paper we construct a new data-dependent MRA by com-
bining robust smoothing with thelifting scheme[Sweldens 1995],
an efficient second-generation wavelets construction framework
which we review next.

1In this auxiliary material which accompanies this paper, and available
at www.cs.huji.ac.il/˜raananf/projects/eaw/sup text.pdf, we briefly review a
few basic terms in wavelets theory which we mention throughoutthe paper.



2.1 Second-Generation Wavelets

Wavelets bases that do not consist of translates and dilates of a
single pair of scaling and wavelet functions, allowing them to
change according to local spatial particularities, exist [Dahmen
1994; Donoho 1994; Schröder and Sweldens 1995; Lounsbery et al.
1997; Sweldens 1998; Claypoole et al. 1998; Secker and Taubman
2003; Peyŕe and Mallat 2005], and are known assecond-generation
wavelets[Sweldens 1998]. These constructions are used for image
compression, dealing with irregular sampling, constructing MRA
over complicated geometries, adapting wavelets on finite intervals
to the boundary, and refining unstructured meshes. Here, as done
for image compression [Claypoole et al. 1998; Secker and Taub-
man 2003], we construct wavelets that depend on thecontentof
the input datum and combine this with ideas borrowed from robust
smoothing. The new construction scheme builds on data predic-
tion schemes by Harten [1996] and the wavelet lifting scheme by
Sweldens [1995] which we briefly review here.

Lifting Scheme. The lifting scheme is an efficient implementation
of the fast wavelet transform and more importantly, it provides a
methodology for constructing biorthogonal wavelets through space,
without the aid of Fourier transform. This makes it a well-suited
framework for constructing second-generation wavelets that adapt
to the spatial particularities of the data. In this construction one
starts off with some given simple and often translation-invariant
biorthogonal basis and performs a sequence of modifications that
adapt and improve the wavelets. Sweldens [1995] divides this
scheme into three steps: split, predict, and update which we briefly
describe here.Split. Given the input signal data at the finest level
a0[n], where the superscripts denote the level, the split step con-
sists of formally dividing the data variablesa0[n] into two disjoint
setsC andF , which define coarse and fine data points respectively.
We denote the signal values restricted to these sets bya0

C [n] and
a0
F [n] (but keep the same index numberingn). This operation is

also known as theLazy wavelettransform and one simple and pop-
ular choice is, in 1D, splitting the data into sets of even and odd grid
points. Predict. Next, we use the coarse data pointsa0

C to predict
the finea0

F . Denote this prediction operator byP : C 7→ F , and
define the prediction error by

d1[n] = a0
F [n]− P

(
a0
C

)
[n], (1)

at everyn ∈ F . This abstract form obscures the fact that the coarse
and fine variables are intermixed in space and every fine variable
a0
F [n] has a few neighboring variables withina0

C that are relevant
for its prediction, assuming of course local correlation in the im-
age. The prediction errorsd1[n], n ∈ F are the wavelet or detail
coefficients of the wavelet transform of the next level, see [Fattal
2009]. Update. The coarse variablesaj

C [n] are usually not taken
as the next-level approximation coefficients, since this would cor-
respond to a naive subsampling of the original data and may suf-
fer severe aliasing. Typically, the lifting scheme makes sure that
the overall sum of the approximation coefficients

∑

n
aj [n] is pre-

served at all levels. This is achieved by an additional update oper-
atorU : F 7→ C that introduces averaging with the fine variables
a0
F throughd1, i.e,

a1[n] = a0
C [n] + U(d1)[n], (2)

at everyn ∈ C. These new variablesa1[n] are the approximation
coefficients of the next level of the wavelet transform, which is now
complete. As in the traditional fast wavelet transform, the following
levels are computed recursively by repeating these three steps over
the approximation coefficientsaj [n], j ≥ 1. It is easy to see that
by applying these steps in the reverse order and replacing additions
with subtractions and vice verse, the prefect-reconstructing inverse
transformation is obtained.

(a) (b)

(c) (d)
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Figure 2: Wavelets prediction schemes. (a) Illustrates the predic-
tion along thex-axis of the separable CDF wavelets, and (b) along
the y-axis. (c) Illustrates how red pixels are predicted from the
black pixels at the first step of the weighted red-black wavelet con-
struction, and (d) the second step where the light-gray pixels are
predicted from the dark-gray ones which correspond to the loca-
tions of the next-level approximation variables. The update steps
(not shown) correspond to reverse arrows where coarse variables
are updated from the detail variables located at the fine pixels.

To make this construction more concrete, we will describe a partic-
ular example, taken from [Sweldens 1995], which we use as a start-
ing point for deriving our new scheme in the next section. Consider
a 1D image signala0[n] and the splitting step that takes the odd-
indexed pixels as the coarse variables and the even-indexed as the
fine. Every even-indexed pixel is predicted by its two odd-indexed
neighbors using a simple linear interpolation formula

P
(
a0
C

)
[n] =

(
a0
C [n−1] + a0

C [n+1]
)
/2, (3)

for everyn ∈ F (even), thusn−1, n+1 ∈ C (odd). Next, by
choosing the following update operator

U
(
d1
)
[n] =

(
d1[n−1] + d1[n+1]

)
/4, (4)

defined overn ∈ C, the approximation average is preserved
throughout the different levels (see [Sweldens 1995]). This con-
struction corresponds to the well-known (2,2)-Cohen-Daubechies-
Feauveau (CDF) biorthogonal wavelets [Cohen et al. 1992] where
both the primal and dual wavelets have two vanishing moments.

3 New Construction

Unlike many existing constructions of second generation wavelets
that depend on the irregularities and inhomogeneities of the do-
main and similarly to recent image compression schemes [Clay-
poole et al. 1998; Secker and Taubman 2003; Chan and Zhou 2003],
we construct the scaling and wavelet functions based on the content
of the input data. The main idea behind our new approach is mo-
tivated by robust smoothing [Perona and Malik 1990; Tomasi and
Manduchi 1998; Black et al. 1998] and consists of mixing pixels
depending continuously on their similarity. This is implemented in
the context of lifting by defining robust prediction operators that
weigh pixels based on their similarity to the predicted pixel. Thus,



instead of using data-independent regression formulae, we use pos-
teriori influence functions based on the similarity between the pre-
dicted pixel and its neighboring coarse variables. More specifically,
we use the edge-stopping function from [Lischinski et al. 2006] to
define the following prediction weights

wj
n[m] =

(∣
∣aj [n]− aj [m]

∣
∣
α
+ ε

)−1

, (5)

whereα is between0.8 and1.2 andε = 10−5, for images with
pixels values ranging from zero to one. We use these weights to
derive two different two-dimensional wavelet constructions.

Weighted CDF Wavelets (WCDF). Here we derive a two-
dimensional weighted prediction based on the (2,2)-CDF wavelet
transform, applied along each axis separately. Instead of using an
even average of the two coarse variables, we define the following
robust average

P
(
aj
C

)
[x, y] =

wj
x,y[x−1,y]a

j
C [x−1,y]+wj

x,y[x+1,y]a
j
C [x+1,y]

wj
x,y[x−1,y] + wj

x,y[x+1,y]
,

(6)
where, like in the 1D case and as shown in Figure 2,F =
{(x, y)|xeven} (white cells) andC = {(x, y)|xodd} (gray cells).
The next-level detail coefficients are computed according to (1),
i.e.,dj+1 = aj

F −P(aj
C), at the fine points inF . The update oper-

atorU is designed to smooth the next level approximation variables
aj+1
C when possible and, once again, we use a robust smoothing to

define

U
(
dj+1

)
[x, y] =

wj
x,y[x−1,y]d

j+1[x−1,y]+wj
x,y[x+1,y]d

j+1[x+1,y]

2
(
wj

x,y[x−1,y] + wj
x,y[x+1,y]

) ,

(7)
where(x, y) ∈ C. The next-level approximation coefficients are
computed according to (2), i.e.,aj+1 = aj

C + U(dj+1), at the
coarse points inC. The analog steps are repeated along they-image
axis. Note that uniform weights, obtained byα = 0 in (5), produce
a separable two-dimensional (2,2)-CDF wavelet transform.

Weighted Red-Black Wavelets (WRB). Here we construct non-
separable wavelets of a lower anisotropy based on the data-
independent LTI construction by Uytterhoeven et al. [1999]. This
is also a two-step construction that uses the red-black quincunx lat-
tice. At the first step we predict each red pixel by the following
weighted averages of its four nearest black pixels

Pred

(
aj
C

)
[x, y] =

∑

x′,y′∈Nx,y
wj

x,y[x
′, y′]aj

C [x
′, y′]

∑

x′,y′∈Nx,y
wj

x,y[x′, y′]
, (8)

whereC = {(x, y)|x+yeven} (red pixels),F = {(x, y)|x+yodd}
(black pixels) andNx,y = {(x+1,y), (x−1,y), (x, y−1), (x, y+1)}.
As before, this operator is used in (1) to computedj+1 in F . The
update operator is also defined by averaging the four nearest fine
points of every coarse point

Ured

(
dj+1

)
[x, y] =

∑

x′,y′∈Nx,y
wj

x,y[x
′, y′]dj+1[x′, y′]

2
∑

x′,y′∈Nx,y
wj

x,y[x′, y′]
, (9)

at every(x, y) ∈ C and as before, the approximation coefficients
are computed using this operator in (2) over pixels inC.

In the second step, illustrated in Figure 2, we predict the light-gray
variables of even coordinates based on their four diagonally-nearest
dark-gray neighbors of odd coordinates. The prediction formula
for Pblack(a

j
C′)[x, y] is the same as (8) withC′ = {(x, y)|x+

Figure 3: (top-left) Input image, (top-right) a few dual WRB scal-
ing functions, from the third level (j = 3), are shown with unique
colors, (bottom-left) translation-invariant red-black wavelet trans-
form, and (bottom-right) weighted red-black wavelet transform
(computed withα = 0.8).

y even, and x, y odd} (dark-gray pixels),F ′ = {(x, y)|x+
y even, and x, y even} (light-gray pixels), andNx,y = {(x+
1,y+1), (x−1,y+1), (x+1, y−1), (x−1, y−1)}. Based on this
prediction we computedj+1 = aj

F ′ −P(aj
C′) at every pixel inF ′.

The update operatorUblack averages at every pixelC′ using its four
diagonally nearestdj+1 in F ′ according to (9) and is used to com-
pute the final next-level approximation coefficientsaj+1 according
to (2). Note that uniform weights, obtained byα = 0 in (5), recover
the red-black wavelet transformation of [Uytterhoeven et al. 1999].

In both of these constructions the boundary is treated, typically to
the lifting scheme, quite easily. Both the prediction and update
operators are simply restricted to variables within the domain and
formulae (6), (7), (8) and (9) remain properly normalized. We
should note that although we started with schemes that preserve
the approximation average at all scales, this property is lost once
weighted averaging is introduced. However, constant images pro-
duce uniform weights which reproduce the original (2,2)-CDF and
red-black schemes and thus preserve the approximation averages at
all scales. When transforming general one-megapixel images we
observe that the fluctuations in the approximation average are be-
low 4%. The weighted schemes, we defined, can be executed as fast
as their original translation-invariant version using precomputed ta-
bles for evaluating the power function in (5).

Discussion. In Figure 3 we show a few coarse-level (dual) scaling
functions obtained by the WRB construction. These functions are
smooth where the input image is flat, resembling the original pro-
files of the LTI red-black scaling function of [Uytterhoeven et al.
1999]. Near strong edges, however, they terminate abruptly, de-
pending onα in (5), and their support avoids both the edge and the
pixels past it. Since the wavelets are made of a linear combination
of scaling functions, see [Fattal 2009], they inherit these structural
properties, and as shown in Figure 1 they are also confined to only
one side of an edge. For this reason, we call these new wavelets



WCDF WRB

Figure 4: Left to right; (first) the result produced by Durand and Dorsey [2002], (second) by Farbman et al. [2008], (third) is our result
using WRB wavelets (withα = 0.8, β = 0.15, andγ = 0.7), and (fourth) a comparison between the WCDF and WRB.

edge-avoiding wavelets(EAW). The decoupling between scaling
functions across edges allows representing such discontinuities in
the data using the scaling functions or, in other words, such discon-
tinuous functions are well represented by the approximation spaces
of the MRA, see [Fattal 2009]. As a consequence, the wavelets re-
sponse to edges diminishes and, with it, the inter-scale correlation
of the detail coefficients. The latter, as we discussed earlier, is a
major source of haloing effects in LTI-based operations.

While we will show how this decorrelation or compaction of edge
response is useful for image manipulation, one must realize that our
scheme is useless for image compression. The ‘separation data,’
i.e., the different shapes of the edge-avoiding scaling and wavelet
functions, are encoded in the averaging weights used in the predic-
tion and update formulae (or alternatively, the spatially-changing
conjugate mirror filters, see [Fattal 2009]). This data must be
stored, along with the detail and approximation coefficients, dur-
ing the forward transform in order to compute its inverse. Since
these weights are between zero and one, we tested storing them us-
ing only 8 bits and observed no visual degradation (the transformed
coefficients are stored with floating-point precision). Image com-
pression methods that use the lifting scheme [Claypoole et al. 1998;
Secker and Taubman 2003; Chan and Zhou 2003] use fewer bits
for encoding this information (on top of quantizing the transformed
coefficients) and achieve data compression at the cost of the accu-
racy at which edges are approximated by the MRA approximation
spaces—a critical requirement for obtaining high-quality process-
ing and avoiding halos.

The work by Donoho [1994] aims to achieve a similar goal as our
construction—finding a multi-scale representation with low inter-
scale correlation. In his work, images are segmented into regions
which are analyzed through an independent multi-scale average-
interpolation scheme. Chan et al. [2003] use the lifting scheme to-
gether with a binary edge detection, based on analytical measures,
for both image denoising and compression. In our construction re-
gions, separated by an edge, are not entirely isolated; this is done
continuouslydepending on the edge magnitude and spread. This is
preferable for image processing since segmentation-based manipu-
lations are known to produce gradient reversals artifacts [Farbman
et al. 2008]. As we shall show in the next section, this makes our
construction also useful for edge-aware interpolation where, up to
a certain extent, dataneedsto propagate through edges.

4 Applications

We implemented both the WCDF and WRB wavelet transforma-
tions and the applications we are about to report in C++ and
give their running time on a 3.0GHz Intel Core 2 Duo machine.
Our main goal here is to demonstrate how various computational-
photography applications can be implemented using the new EAW

decomposition in a natural and conceptually-simple way, verify the
quality of the results against state-of-the-art methods on previously-
tested images, and measure the gain in computational performance.

4.1 Dynamic-Range Compression

High-dynamic range imaging became popular in recent years and
digital cameras are producing more significant bits per pixel than
before. Displaying and printing these images on conventional me-
dia requires reducing the range of their luma. This is the subject of
many recent works in the field, including [Tumblin and Turk 1999;
Durand and Dorsey 2002; Fattal et al. 2002; Li et al. 2005; Lischin-
ski et al. 2006; Farbman et al. 2008].

Using our new EAW decomposition we can achieve detail-
preserving dynamic-range compression by ‘flattening’ the approx-
imation coefficientsaJ at the coarsest levelJ as well as decrease
progressively the detail coefficientsdj ; more at the coarse scales
and less at the fine scales. More specifically, we switch to the YUV
color space, and operate on the logarithm of the luma channel,
Y (x, y). Given its EAW decomposition,log Y 7→ aJ , {dj}Jj=1,
we compute a dynamically-compressed luma componentY ′(x, y),
simply by scaling the different components before reconstruction
as follows,

βaJ ,
{
γjdj

}J

j=1
7→ log Y ′(x, y), (10)

whereβ ≤ 1 andγ ≤ 1 are the parameters controlling the amount
of compression and7→ refers to the forward and backward EAW
transform.

In figures 4 and 6 we compare our results to the ones obtained
by current state-of-the-art methods [Durand and Dorsey 2002]
and [Farbman et al. 2008]. This comparison shows that the im-
age quality produced by the EAW-based compression does not fall
much below the two alternatives. At this strong level of compres-
sion (higher than what is applied by the other two) we observe in
Figure 4 a weak darkening at the top-left door bar and some mild
ripples at the ceiling, and in Figure 6 there are some visible ir-
regularities at the dome. Using our implementation, it takes 12
milliseconds to compress the dynamic range of one-megapixel im-
age. This is more than 200 times faster than [Farbman et al. 2008]
which requires 3.5 seconds on a 2.2GHz machine and about five
times faster than [Durand and Dorsey 2002] which is a single-scale
compression and known to be limited to only fine scales [Farbman
et al. 2008]. In this figure we also compare the WCDF and WRB,
and see that the WCDF shows some weak ripple along the vertical
edges of the door which are much weaker in the result produced
by WRB. Figure 5 shows that even without taking any special pre-
cautions during compression in (10), such as smoothing the gain
control Li et al. [2005] do, the EAW-based compression produce
halo-free images.



Figure 5: (left) Result produced by Li et al. [2005], and (right)
is our result using WRB wavelets (withα = 0.8, β = 0.11, and
γ = 0.68).

4.2 Multi-Scale Detail Enhancement and Edge-
Preserving Smoothing

Detail enhancement and smoothing are basic and common image
processing operations, available in most image editing software.
Recently, several new approaches were proposed for performing
these operations while keeping the strong edges in tact and thus
avoiding halos and gradient-reversal artifacts. Here we show that
these operations can be computed in a simple and efficient way
using our new MRA which produce results that meet the quality
standards set by latest state-of-the-art methods.

Both the smoothing and enhancement are achieved by an operation
similar to the one we used to compress the dynamic range. We
transform the the logarithm of the luma component of the input
image and reconstruct the image according to (10) withβ = 1 and
{γj}Jj=1 determined by a cubic polynomialp(j). This polynomial
interpolates the amount of enhancement we want at the finest-scale
p(1), the mid-scalep(J/2), and the coarsest-scalep(J) which are
values set by the user. Smoothing is achieved by setting a small
p(1) whereas enhancing fine-scale detail is achieved with a large
p(1) and a mid-scale enhancement is obtained with a largep(J/2).

In Figure 7, we compare our method with [Fattal et al. 2007]
and [Farbman et al. 2008]. This test shows that our output is
halo-free with an increased fine-scale detail and does not show the
gradient-reversals seen in the result of [Fattal et al. 2007]. Fig-
ure 8 shows edge-preserving smoothing at two different scales as
well as another comparison with Farbman et al. [2008] where we
boost details at two different scales. While the resulting image
quality is comparable our method is much faster to compute, even
compared to Fattal et al. [2007] which computes every scale, of a
one-megapixel image, in 15 milliseconds. One-megapixel image
has about 7-8 relevant scales, meaning there is about one order of
magnitude time factor between the multi-scale bilateral filter, which
does not subsample the coarse levels, and ourO(N) EAW trans-
form that computesall the scales in 12 milliseconds.

4.3 Edge-Aware Interpolation

Optimization-based edge-aware interpolation became a very popu-
lar tool in computational photography [Levin et al. 2004; Lischinski
et al. 2006; Pellacini and Lawrence 2007; An and Pellacini 2008; Li
et al. 2008]. Typically it requires solving inhomogeneous Laplace
equations with the user input defining non-trivial boundary condi-
tions. These matrices are large (N -by-N ) and poorly-conditioned
due to the presence of weak and strong inter-pixel connections and
require preconditioning [Szeliski 2006]. Here we propose to use
EAW for edge-aware interpolationwithout the need to solve these

Figure 6: (left) Result produced by Durand and Dorsey [2002],
and (right) is our result using WRB wavelets (withα = 0.8, β =
0.125, andγ = 0.6).

numerically-challenging large linear systems altogether.

We use ideas from [Gortler et al. 1993] and [Gortler et al. 1996]
to derive a pull-push mechanism using the EAW. This interpola-
tion scheme is designed to spread a sparse set of data points, e.g.,
sparse user scribbles, over the entire domain through a smooth-
ing procedure. It consists of two steps: a first step where data
is ‘pulled’ into fewer points by computing the approximation of
the input imageI(x, y) in a coarser space, and a second step in
which the data is ‘pushed’ back to original image grid by evalu-
ating this approximation at this fine resolution. In the context of
wavelet transforms these steps have natural analog counterparts;
the pull step corresponds to computing the approximation coeffi-
cientsãj [x, y] which is the low-passed downsampled image com-
puted by the forward transform, and the push step corresponds to
the inverse transform without adding detail, see [Fattal 2009]. Note
that the detail coefficients arenot needed in this process. We use
thedual scaling function rather than the primal one when comput-
ing the forward transform (hence the tilde over the approximation
coefficientsãj [x, y]) for reasons we explain below. Analogously
to what Gortler et al. [1993] do, we perform this process at every
scale1 ≤ j ≤ J , and blend the results weighted by2−j . This
factor is meant to prefer information coming from shorter distances
over longer ones; allowing closer pixels to have a stronger effect
than farther ones. Mathematically, this operation is given by

Ī(x, y) =

J∑

j=1

2−j
∑

φ̃∈Ṽ j

φ̃(x, y)

Fwd. Trans. ãj [x,y]
︷ ︸︸ ︷
〈
I(x, y), φ̃(x, y)

〉

︸ ︷︷ ︸

Backward Transform

, (11)

where 〈·, ·〉 denotes the dot-product, the summation runs over
all dual scaling functions̃φ belonging to the dual approximation
spaces̃V j at every scalej. Readers unfamiliar with these terms are
referred to [Burrus et al. 1998; Mallat 1999] and [Fattal 2009]. We
use the dual scaling functioñφ rather than the primal one,φ, in the
forward transform, since both in the WCDF and WRB construc-
tions the dual scaling functions are non-negative (whileφ do have
negative values). This ensures a positive interpolation which is a
property required by most applications needing edge-aware inter-
polation. In the Appendix Section we derive the weights for com-
puting the approximation coefficients̃aj [x, y]. Finally, we provide



Figure 7: (left) Results by the multi-scale bilateral filter Fattal et al. [2007], (middle) Farbman et al. [2008], and (right) using the WRB
edge-avoiding wavelets (withα = 1). The mountain blow-ups show the artifacts due to gradient-reversals in themulti-scale bilateral filter.

a fast-cascade algorithm for computingĪ givenI in the following
lines of pseudo-code:

set ã0
= I

for j=1 to J

compute the forward transform, ãj from ãj−1, and keep ãj−1 stored
(according to equation (13) or (16) at the Appendix Section)

end
for j=J to 1

compute a one-level inverse transform of ãj into t̃ (which belongs to level j−1)
set ãj−1

= ãj−1
+ t̃/2

end
set Ī = ã0

The fact that we use the edge-avoiding scaling functions to perform
this operation yields an edge-aware interpolation; edge-aware in-
terpolation means that pixels, not separated by an edge, should ex-
change information and vice verse. In the EAW construction pixels
that are not separated by an edge belong, at some scale, to the sup-
port of the same scaling function. Thus, the dot-product with this
scaling function will average the values of these pixels. Later, at the
inverse transform, when this scaling function is linearly combined
at the image-resolution, this averaged value reaches all these pixels
(its support). Pixels separated by an edge, on the other hand, do not
belong to the support of the same scaling function at any scale and
hence do not communicate in this process.

Ultimately, Ī corresponds to a blurred version ofI where non-zero
scribbles are spread acroses the domain, in an edge-aware fashion,
to arbitrary distances proportional to2J . Next, we explain how this
operation is used for computing edge-aware interpolations which
are similar to ones computed via inhomogeneous Laplace equations
and demonstrate its effectiveness with image colorization [Levin
et al. 2004].

Image Colorization. Given an input grayscale imageY (x, y) and
color user-stroke imagesU(x, y) andV (x, y), all given in the YUV
color coordinates, we wish to interpolate the color information
based onY ’s edge content. We do this by introducing a normal-
ization functionN(x, y) which is defined to be one at pixels where
user-scribbles are provided and zero otherwise. This function al-
lows us to keep track of how much color propagates to each pixel
in the image and normalize it accordingly. The image colorization
procedure using EAW is described by the following three steps:

1. GivenY , we compute the robust averaging weights of WCDF
or WRB wavelets which basically define the edge-avoiding
scaling functions. This is done by running the forward trans-
form described at the Appendix and storing all the weights.
The resulting approximation coefficients ofY are discarded
(the detail coefficients are not computed).

2. Given these weights, computed fromY , we computeŪ , V̄ ,

Figure 8: (top-left) Input image, (top-right) edge-preserving
smoothing using WRB wavelets at two different scales, (middle-
and bottom-left) edge-preserving detail enhancement at two scales
by Farbman et al. [2008], and (middle- and bottom-right) the re-
sults by our WRB edge-avoiding wavelets (withα = 1).

and N̄ from U, V , andN , as described in the pseudo-code
lines above.

3. Compute the normalized output color componentsÛ(x, y) =

Ū(x, y)/N̄(x, y) and V̂ (x, y) = V̄ (x, y)/N̄(x, y), which
define the output image.

The pointwise division, appearing at the third step, ensures an over-
all unit color contribution at every pixel in the image. This is a stan-
dard step used in many radial basis based scattered-data interpola-
tion schemes, e.g., [Shepard 1968]. This construction is positive
for positive input data and preserves its minima and maxima.

In compliance with [Levin et al. 2004], we do not use the weights
defined by (5) for this application, but rather the following expo-
nential weights,

wj
n[m] = e

−

(
aj [n]−aj [m]

)
2

/σ2

, (12)

and setσ2 = 15.



Figure 9: (top-row) Input images and user color strokes, (second
row) results produced by Levin et al. [2004], and (third row) is our
results using WRB wavelets (withσ2 = 15). At the bottom row we
show (left-to-right)N̄ , Ū , and the resultinĝU .

In Figure 9 we show the results obtained by this scheme next to
the ones computed by Levin et al. [2004] by solving an inhomo-
geneous Laplace equation. The images are surprisingly similar to
one another with mean-squared errors below4 × 10−4 (for image
values ranging between zero and one). Since there are about four
transforms involved, it takes our scheme 50 milliseconds to colorize
a one-megapixel image. Solving an inhomogeneous Laplace equa-
tion, as done in in [Levin et al. 2004], using the preconditioning
proposed by Szeliski [2006], takes about 2 seconds for setting up
the matrices and another 1.5 seconds for performing each precon-
ditioned conjugate-gradient iteration. Szeliski showed that one it-
eration is enough to obtain reasonable results, but this still involves
almost two orders of magnitude time factor compared to what is
required here. Yatiz et al. [2006] propose to solve this problem us-
ing efficient geodesic distance computations. The complexity of
their approach depends on the number of distinct chrominance val-
ues used, on top of the number of image pixels, and their reported
running times are comparable to Szeliski’s.

In Figure 10 we show a slightly different application,selective de-
colorization, where given an input color image the user indicates
regions which she wants to turn grayscale and ones to remain col-
ored. These user strokes define a functionC(x, y) which is zero
and one respectively and a normalization functionN(x, y) which
is one wherever the user has clicked and zero otherwise. We com-

Figure 10: (left) Input image with color (dark gray) and de-color
(bright gray) user strokes and (right) resulting selective decolored
image using our WRB wavelets (withσ2 = 15). Image courtesy of
Eric Jeschke.

puteĈ, exactly as we did above, and use it to modulate the chromi-
nance components, i.e., the output image given byĈ(x, y)U(x, y)

andĈ(c, y)V (x, y) and the unchanged luma channelY (x, y).

5 Conclusions

In this paper we presented a new family of second-generation
wavelets constructed using robust data-prediction lifting schemes.
These new wavelets adapt to the edge content of the image and
avoid having, in their support, pixels from both sides of an edge.
This achieves a multi-scale decomposition which decorrelates data
better than the common linear translation-invariant multi-resolution
analyses. This nonlinear perfect-reconstructing data-dependent fil-
tering inherits the lifting scheme’s fast performance and is com-
puted in linear time, typical to LTI filtering. We showed that this
multi-scale representation can be used to speedup various edge-
preserving operations as well as manipulate the transformed vari-
ables without taking special precautions and result in halo-free im-
ages. The fact that the new MRA encodes the image edge structure
allowed us to derive an edge-aware interpolation scheme achieving,
through fast and explicit computation, results traditionally obtained
by implicit formulations requiring sophisticated linear solvers.

The approach we proposed here combines two successful method-
ologies, robust smoothing and the lifting scheme, to achieve a con-
ceptually simple, new, and natural scheme for performing multi-
scale data-dependent analysis and processing. One of the practi-
cal benefits of this elementariness is the algorithmic simplicity and
straightforward programming required to implement the lifting-
based transformation and the processing based on it. The results
we presented show that the image quality we obtain, with EAW-
based processing, on edge-preserving enhancement and smoothing
as well as image colorization is comparable to the ones produced
by recent state-of-the-art methods.

Limitations. While EAW can be used to accelerate the dynamic-
range compression of images, the quality of the resulting images
fall below the current state-of-the-art which contain several arti-
facts, pointed out in Section 4.1. The EAW are constructed based
on a given input image and define an MRA which isuniqueto that
image. This has a few limiting implications: (i) the new MRA re-
quires storing additional data, the averaging weights, and is there-
fore ill-suited for image compression, (ii) the in-place calculations,
ordinarily allowed by the lifting scheme, is lost due to the need to
compute the averaging weights based on the approximation values,
and (iii) the EAWs are tailored to the edges of the input image thus
this representation cannot be used for performing any geometric
operation, even as simple as copying and pasting pixels.



Aside of dealing with the remaining quality issues, in the future we
would like to understand what possibilities a three-dimensional ex-
tension of this work opens in video processing. Also, we would like
to explore the wide range of EAW that can be constructed and ways
to adapt them to specific problems such as alpha matte extraction.
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Appendix

In Section 4.3 we need to compute the approximation coefficients
based on the dual scaling functioñφ and not the primalφ which
is what the forward transform computes. In order to find the inter-
polation weights of the dual scaling functions we have to compute
the contribution of each coarse-level approximation coefficient to
each finer-level approximation coefficient. This is equivalent to
setting only oneaj [n] = δ[n − k], for each pixelk at a time,
and computing a one-level inverse transformwithout adding the
detail component. The inverse transform of the lifting scheme at
level j starts with the inverse action of the update step (2), i.e.,
aj−1
C [n] = aj [n] − U(dj)[n], which becomesaj−1

C [n] = aj [n]
since the detail coefficients are all set to zero. Then, it proceeds
with the inverse action of (1),a0

F [n] = d1[n] + P
(
a0
C

)
[n], which

givesa0
F [n] = P

(
a0
C

)
[n]with a null detail component. Altogether,

we get that every approximation coefficient in levelj contributes
one to every matching coarse data point in levelj− 1, i.e.,aj−1

C [n]

and any fine data pointaj−1
F [n] gets a contribution equal to the

amount used to predict it.

In Section 4.3 we need to use these weights to define a forward
transform, i.e., reduce resolution rather than interpolate it. This
means that we need to define new update-like steps that average the
approximation coefficients at one level to the next level approxima-
tion coefficients. Note that since no detail coefficient is needed in
this process, we define these steps directly based on the approxima-
tion coefficients rather than the detail coefficients as in (2).

In case of the weighted CDF dual scaling function we get the fol-
lowing update-like step,

ãj+1[x, y] = ãj [x,y]+ŵj
x−1,y[x,y]ã

j [x−1,y]+ŵj
x+1,y[x,y]ã

j [x+1,y],
(13)

at every(x, y) ∈ C = {(x, y)|x odd}, where

ŵj
x−1,y[x, y] = wj

x−1,y[x, y]/(w
j
x−1,y[x,y] + wj

x−1,y[x− 2,y]), (14)

ŵj
x+1,y[x, y] = wj

x+1,y[x, y]/(w
j
x+1,y[x,y] + wj

x+1,y[x+ 2,y]). (15)

Note that the weightsw are computed using the approximation co-
efficients computed here, i.e.,ãj inserted in (5). The analog for-
mula is applied to they-image axis.

The same consideration for the weighted red-black dual scaling
function gives

ãj+1[x, y] = ãj [x, y] +
∑

x′,y′∈Nx,y

ŵj
x′,y′ [x, y]ã

j [x′, y′], (16)

at every(x, y) ∈ C = {(x, y)|x+y even}. The neighborhood
Nx,y consists of the four nearest pixels, as in (8), and

ŵj
x′,y′ [x, y] = wj

x′,y′ [x, y] /
∑

x′′,y′′∈Nx′,y′

wj
x′,y′ [x

′′, y′′]. (17)

Also here, the weightsw are computed using̃aj inserted in (5).
And at the second WRB step we get a formula analog to (16) for
(x, y) ∈ F ′ = {(x, y)|x+y even, and x, y odd} with the diagonal
neighborhoodNx,y = {(x+1,y+1), (x−1,y+1), (x+1, y−1), (x−
1, y−1)}.

Note that it is easy to see that both (13) and (16) preserve positive-
ness and thus guarantee a positive interpolation in Section 4.3.


