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Abstract

We show how to transform a large class of differential constitutive models into an equation for the (matrix) logarithm of the conformation
tensor. Under this transformation, the extensional components of the deformation field act additively, rather than multiplicatively. This
transformation is motivated by numerical evidence that the high Weissenberg number problem may be caused by the failure of polynomial-
based approximations to properly represent exponential profiles developed by the conformation tensor. The potential merits of the new
formulation are demonstrated for a finitely-extensible fluid in a two-dimensional lid-driven cavity at Weissenberg iirabgr
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and the deformation of the conformation tensor by the flow
field. The right-hand side accounts for sources and relaxation,
Polymeric fluids are governed by momentum equations both being possibly nonlinear. The dimensionless parameter
supplemented with a constitutive law: a relation between Wi is the Weissenberg number, which is a ratio between the
the state of stress of a fluid element—a second-order tensotelastic relaxation time and a time associated with the local rate
T = 7(x, r)—and the deformation experienced by that ele- of deformation. A high Weissenberg number means that the
ment. This relation is in general nonlocal in time; the stress in history dependence of the conformation, or the stress is man-
afluid element may depend on the entire deformation history. ifest. The Oldroyd-B, Giesekus, and the finitely-extensible
The constitutive law is often formulated in terms of the con- Chilcott—Rallison models, for example, are instanceLdf
formation tensow(x, ¢), which is an approximate measure [1-3].
of the micro-structural state of the liquid. The eigenvalues  Together with the momentum equations and the incom-
and eigenvectors of the conformation tensor provide infor- pressibility constraint(1) constitutes a highly nonlinear
mation on the local expectation value of the state of strain of model. Much of its usefulness relies on numerical solvers,

an ensemble of flowing polymer molecules. which, however, are severely limited by the high Weissenberg
Most differential constitutive models are of the following number problemgwnr)—a numerical breakdown that oc-
general form: curs at moderately large values of the Weissenberg number.
9o . g Numerical evidence_relate; this breakdown to the emergence
m 4+ (u-V)o — (Vu)o —a(Vu)' = Wi P(0), Q) of large stress gradients, i.e., to a loss of resolution. There

. o . is growing evidence that this breakdown may be related to
whereu = u(x, 1) is the velocity fieldg(o) is a scalar func-  the inappropriateness of polynomial-based approximations to
tion, andP (o) is a polynomial. The left-hand side isthe upper- represent the stress (or conformation) tensor profiles, which
convected time derivative, which accounts for the advection are exponential in regions of high deformation rate, or near
stagnation points.
* Corresponding author. N An im_pprtant property of1) is that it. preserves the pos-
E-mail addressraananf@cs.huiji.ac.il (R. Fattal), raz@math.hujiac.il itive definiteness of the tenser (the simplest way to see
(R. Kupferman). it, is through the equivalent integral formulation, where the
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conformation tensor is expressed as a convolution of the This can be proved by a dimensional argument. The map-
positive-definite Finger tensor and a positive exponential ker- ping N +— %(NA—l — A1N) is a linear mappingd — S,
nel). This observation suggests that some of the difficulties with:
associated with exponential stress profiles can be remedied
by operating instead on the (matrix) logarithm of the con- 3(NA~! — A7IN); = (A5 — A7HN;.
formation tensor, log (recall that any symmetric positive-
definite matrixA can be diagonalizedy = RART, and that Since, by assumption, all the diagonal elementsAcére
logA = R log AR"; numerical algorithms for the computa- non-zero and distinct, this transformation has a null kernel,
tion of matrix-logarithms can be found jé]). Moreover, the and its range has dimension difn= %n(n — 1). Moreover,
manifestation of thewnpwas seen in many casesto coincide its range consists of matrices that have vanishing diagonal
with the loss of positivity of the conformation tenddr5]; elements, from which we conclude that:

ositivity is guaranteed by a formulation based ondo . ~ ~
P In ge)r/1errgl, knowing th)é rate of change of a secon%-ordermmp@ {%(NA P ATIN) N e A)
tensor does not imply that a simple explicit equation can be  _ ;n(n —1)+n = dims.
written for its logarithm. It turns out that equations of the
form (1) have a simple enough structure to allow for such a Note that this proof is constructive as:
transformation. The gist of this transformation is an appro-

priate decomposition of the velocity gradievil, into exten- M= Mij + Mji By = M.
sional and rotational components. The rotational component ! A]le — A;l
operates on log in the same way as it operates®rthe ex- ]

tensional component operates on éogdditively. The trans-
formation of the advection and the source terms is relatively
straightforward. Our resultis summarizedtyeorem 1The
potential power of a log-based formulation is demonstrated
by a numerical example & = 5. A detailed account of a
numerical scheme as well as an extensive numerical valida-
tion will be presented in a subsequent article.

Lemma 2. Let S be am x n symmetric positive-definite
(spp) matrix. Thenanyn x n matrix M has a decomposition

M=RQ+B+NS L

wheref2, N € Aand B € S commutes with.S

Proof. Since S is spp it assumes a decompositiofi=
RART, whereR is orthogonal. We will prove this lemma
2. A matrix decomposition theorem for the generic case whert hasn distinct eigenvalues; the
other cases require some adaptation. Note, however, that in
We start by deriving some facts about the decomposition the extreme case whe&is proportional to the unit matrix
of tensor fields. this lemma is satisfied trivially wittv = 0.
Let RTMR = 2 + B + N A~1 satisfy the decomposition

Lemmal. LetA be anon-degeneratex n diagonal matrix of Lemma 1 then setting:

with distinct non-zero entrie§hen anyn x n matrix M has
a unique decomposition O — RORT B — RBRT N = RNRT

M=Q+B+NAt 2 L : .
tEt ’ ) it is easily verified that:

where$2 and N are anti-symmetric and is diagonal (1) M= 2+ B+ NSL.

s, (2) 2,N e A.

Proof. We denote bys the subspace of symmetric matrice
(3) Bis symmetric and commutes wifh

by A the subspace of anti-symmetric matrices, an®iihe
subspace of diagonal matrices. Separa)gnto symmetric This completes the proof. 0
and anti-symmetric parts, we need to show the existence of

©.N e A BeD, suchthat: Since for incompressible flows the velocity gradievi,

is a traceless second-order tensor, we immediately obtain the
following decomposition rule.

Corollary 1. Letu be a divergence-free velocity field and
let o be the positive-definite conformation tensbhen the

velocity gradientVu can be(locally) decomposed as
Clearly, we only need to establish the existence and unique-

ness of3, N, as2 is then determined by the second equation. Y# = $2+ B+ No™, 3

This is guaranteed if: where 2= Q2(Vu,s) and N = N(Vu,s) are anti-
1~ L symmetrig¢pure rotation3, and B = B(Vu, a) is symmetric
S=D®{3(NA™1 - A7IN): N € A}. tracelessand commutes with the conformation tensor

B+i(Nat— ANy =11+ M),
Q2+ HNAT + ATIN) = 3 - 7).
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Example.Consider the two-dimensional case.olfis pro-
portional to the unit tensor then simply sBt= %[(Vu) +

(Vu)'] and £2 = 0. Otherwise, calculate the diagonalizing
transformation:

X 0
=R )R,
0 A2
and set

(ﬁl” ﬁm) = R"(Vu)R.

ma1 22

Then,

0 n RT, B— R mi1 ~O RT,
—n0 0 mpo

with n = (a2 + im21)/(ot — A7Y), and w = (o +
A1im21)/ (A2 — A1).

When the decompositiof8) is substituted into the constitu-
tive relation(1), the No—! term vanishes. Exploiting the fact
thatB ande commute we get:

do
ot

which represents the action of the deformation field@s a
composition of a pure rotatiof2, and a symmetric volume-
preserving deformatioB aligned with the principal axes of
Note that2 is in generahotthe vorticity tensor; it contains an
additional component arising from the deformation not being
aligned with the principal axes of the conformation tensor.

+@-V)o— (206 —082) — 2Bo = %g(a)P(a), 4)

3. Constitutive equation for logo

Lety = logo. Our goal is to derive frond) an evolution
equation fory. To do so, we decompogd) into its four
constituents:

(1) Advectionif ¢ is advected by an incompressible flow
field, so is every continuous function éf and in partic-
ular its logarithm:

0 N 0
—G+u-Vor=O implies —'/,+u-V1//=O. (5)
ot ot

(2) Rotation if the velocity gradient is a pure rotation, then

any tensor-valued function ef, in particular its loga-
rithm, rotates together wité:
do

= = (20 — 0£2)

oY

implies — =
P ot

(29 —¥$2). (6)
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Indeed, the solution far(r) is:
o(t) = €”5(0)e** hence ¥(t) = e y(0)e ¥,

and(6) follows.

(3) Extensionifthe velocity gradient commutes with then
it operates additively on its logarithm:
d . . ad
9 _ 2Bo implies 4 = 2B. (7
ot ot

Here, we have:
o() = €?'6(0) hence (1) = ¥(0)+ 2B,

where we have used the fact tlegD) andB commute.
Sourcesthe source term is assumed to commute with
hence

Y go)P()
implies that:
¥ (1) = log{o(0) + 1 g(¢(0))P(c(0))} + O()
= log{a(O){I + ¢ g(c(0))o(0)P(c(0))}} + O(r?)
= ¥(0) + 1 g(0(0))o ™ *(0)P(a(0)) + O(r?),

from which we conclude that:

Y do)Pe) W g o). @)
Since the time derivative af is a linear transformation of
the time derivative of (it is the Lie derivative of the matrix-
logarithm evaluated ad in the %—‘t’ direction [6]), then the
contributiong(5)—(8) can be added up, which leads us to our
main theorem.

Theorem 1. Leto be governed by a constitutive law of the
form (4) with 2 € A, B € S,andBs = o B, theny = logo
satisfies the following equation

oy

ot

“4)

implies

+ (- -V)Yy— (29 —yR)—2B = gisf)e‘”P(e'/’).
)

4. A numerical example

We propos€?9) as a starting point for numerical simula-
tions. To demonstrate the potential strength of our approach,
we show simulation results for a finitely-extensibiexEk)
Chilcott—Rallison fluid[3] in a two-dimensional lid-driven
cavity. In the Chilcott—Rallison model, the functiog(e) and
P(z) are given byg(o) = L2/(L? — Tro) andP(z) = z — 1.

Eqg. (9)is coupled to the momentum equation:

1-8
Re

B
Re Wi

Vu

du

_I_

V- g(0)(o —1).
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Fig. 1. Simulations results for a Chilcott—Rallison fluid in a lid-driven cavity with parametees 50, Wi = 5, 8 = 1/2, andL = 10. (a) Time evolution of
the kinetic energy; (b) contour lines of the stream function at time25; (c—e) the fieldg ., ¥,, andy,, at timer = 25.

wherep is the pressure and is the ratio of polymeric and  ttop(x. £) = 16v%(1 — x)? min(L, 7).

solvent viscosities. The displayed results are for a choice of

parametersRe = 50, Wi =5, B =1/2, andL = 10. The This is an interesting test problem, as the fluid in the vicin-
fluid is confined in a unit square, y € [0, 1], and the upper ity of the upper lid is subject to continual extension (due to
lid moves to the right with a velocity profile regularized both the regularized boundary conditions), while being advected
in space and time, at very low speed near the upper corners (the stress may even
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