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Constitutive laws for the matrix-logarithm of the conformation tensor
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Abstract

We show how to transform a large class of differential constitutive models into an equation for the (matrix) logarithm of the conformation
tensor. Under this transformation, the extensional components of the deformation field act additively, rather than multiplicatively. This
transformation is motivated by numerical evidence that the high Weissenberg number problem may be caused by the failure of polynomial-
based approximations to properly represent exponential profiles developed by the conformation tensor. The potential merits of the new
formulation are demonstrated for a finitely-extensible fluid in a two-dimensional lid-driven cavity at Weissenberg numberWi = 5.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Polymeric fluids are governed by momentum equations
upplemented with a constitutive law: a relation between
he state of stress of a fluid element—a second-order tensor
= τ(x, t)—and the deformation experienced by that ele-
ent. This relation is in general nonlocal in time; the stress in
fluid element may depend on the entire deformation history.
he constitutive law is often formulated in terms of the con-

ormation tensorσ(x, t), which is an approximate measure
f the micro-structural state of the liquid. The eigenvalues
nd eigenvectors of the conformation tensor provide infor-
ation on the local expectation value of the state of strain of
n ensemble of flowing polymer molecules.

Most differential constitutive models are of the following
eneral form:

∂σ

∂t
+ (u · ∇)σ − (∇u)σ − σ(∇u)T = g(σ)

Wi
P(σ), (1)

hereu = u(x, t) is the velocity field,g(σ) is a scalar func-
ion, andP(σ) is a polynomial. The left-hand side is the upper-
onvected time derivative, which accounts for the advection

∗

and the deformation of the conformation tensor by the
field. The right-hand side accounts for sources and relaxa
both being possibly nonlinear. The dimensionless param
Wi is the Weissenberg number, which is a ratio betwee
elastic relaxation time and a time associated with the loca
of deformation. A high Weissenberg number means tha
history dependence of the conformation, or the stress is
ifest. The Oldroyd-B, Giesekus, and the finitely-extens
Chilcott–Rallison models, for example, are instances o(1)
[1–3].

Together with the momentum equations and the inc
pressibility constraint,(1) constitutes a highly nonline
model. Much of its usefulness relies on numerical solv
which, however, are severely limited by the high Weissen
number problem (hwnp)—a numerical breakdown that o
curs at moderately large values of the Weissenberg nu
Numerical evidence relates this breakdown to the emerg
of large stress gradients, i.e., to a loss of resolution. T
is growing evidence that this breakdown may be relate
the inappropriateness of polynomial-based approximatio
represent the stress (or conformation) tensor profiles, w
are exponential in regions of high deformation rate, or
stagnation points.

An important property of(1) is that it preserves the po
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conformation tensor is expressed as a convolution of the
positive-definite Finger tensor and a positive exponential ker-
nel). This observation suggests that some of the difficulties
associated with exponential stress profiles can be remedied
by operating instead on the (matrix) logarithm of the con-
formation tensor, logσ (recall that any symmetric positive-
definite matrixA can be diagonalized,A = RΛRT, and that
logA = R logΛRT; numerical algorithms for the computa-
tion of matrix-logarithms can be found in[6]). Moreover, the
manifestation of thehwnp was seen in many cases to coincide
with the loss of positivity of the conformation tensor[4,5];
positivity is guaranteed by a formulation based on logσ.

In general, knowing the rate of change of a second-order
tensor does not imply that a simple explicit equation can be
written for its logarithm. It turns out that equations of the
form (1) have a simple enough structure to allow for such a
transformation. The gist of this transformation is an appro-
priate decomposition of the velocity gradient,∇u, into exten-
sional and rotational components. The rotational component
operates on logσ in the same way as it operates onσ; the ex-
tensional component operates on logσ additively. The trans-
formation of the advection and the source terms is relatively
straightforward. Our result is summarized byTheorem 1. The
potential power of a log-based formulation is demonstrated
by a numerical example atWi = 5. A detailed account of a
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This can be proved by a dimensional argument. The map-
ping Ñ �→ 1

2(ÑΛ−1 −Λ−1Ñ) is a linear mappingA �→ S,
with:

1
2(ÑΛ−1 −Λ−1Ñ)ij = 1

2(Λ−1
jj −Λ−1

ii )Ñij.

Since, by assumption, all the diagonal elements ofΛ are
non-zero and distinct, this transformation has a null kernel,
and its range has dimension dimA = 1

2n(n− 1). Moreover,
its range consists of matrices that have vanishing diagonal
elements, from which we conclude that:

dimD⊕ {1
2(ÑΛ−1 −Λ−1Ñ) : N ∈ A}

= 1
2n(n− 1) + n = dimS.

Note that this proof is constructive as:

Ñij = M̃ij + M̃ji

Λ−1
jj −Λ−1

ii

, B̃ii = M̃ii.

�
Lemma 2. Let S be ann× n symmetric positive-definite
(spd)matrix.Then,anyn× nmatrixM has a decomposition:

M = Ω+ B +NS−1,
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umerical scheme as well as an extensive numerical va
ion will be presented in a subsequent article.

. A matrix decomposition theorem

We start by deriving some facts about the decompos
f tensor fields.

emma1. LetΛbeanon-degeneraten× ndiagonalmatrix
ith distinct non-zero entries.Then, anyn× nmatrixM̃ has
unique decomposition:

˜ = Ω̃+ B̃ + ÑΛ−1, (2)

hereΩ̃ andÑ are anti-symmetric and̃B is diagonal.

roof. We denote byS the subspace of symmetric matric
yA the subspace of anti-symmetric matrices, and byD the
ubspace of diagonal matrices. Separating(2) into symmetric
nd anti-symmetric parts, we need to show the existen

˜ , Ñ ∈ A, B̃ ∈ D, such that:

B̃ + 1
2(ÑΛ−1 −Λ−1Ñ) = 1

2(M̃ + M̃T),

Ω̃+ 1
2(ÑΛ−1 +Λ−1Ñ) = 1

2(M̃ − M̃T).

learly, we only need to establish the existence and un
ess of̃B, Ñ, asΩ̃ is then determined by the second equat
his is guaranteed if:

= D⊕ {1
2(ÑΛ−1 −Λ−1Ñ) : Ñ ∈ A}.
hereΩ,N ∈ A andB ∈ S commutes with S.
roof. Since S is spd it assumes a decompositionS =
ΛRT, whereR is orthogonal. We will prove this lemm

or the generic case whereΛ hasn distinct eigenvalues; th
ther cases require some adaptation. Note, however, t

he extreme case whereS is proportional to the unit matr
his lemma is satisfied trivially withN = 0.

LetRTMR = Ω̃+ B̃ + ÑΛ−1 satisfy the decompositio
f Lemma 1, then setting:

= RΩ̃RT, B = RB̃RT, N = RÑRT,

t is easily verified that:

1) M = Ω+ B +NS−1.
2) Ω,N ∈ A.
3) B is symmetric and commutes withS.

his completes the proof. �
Since for incompressible flows the velocity gradient,∇u,

s a traceless second-order tensor, we immediately obta
ollowing decomposition rule.

orollary 1. Let u be a divergence-free velocity field a
et σ be the positive-definite conformation tensor. Then, the
elocity gradient∇u can be(locally) decomposed as:
u = Ω+ B +Nσ−1, (3)

here Ω = Ω(∇u, σ) and N = N(∇u, σ) are anti-
ymmetric(pure rotations), andB = B(∇u, σ) is symmetric,
raceless, and commutes with the conformation tensorσ.
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Example.Consider the two-dimensional case. Ifσ is pro-
portional to the unit tensor then simply setB = 1

2[(∇u) +
(∇u)T] andΩ = 0. Otherwise, calculate the diagonalizing
transformation:

σ = R

(
λ1 0

0 λ2

)
RT,

and set(
m̃11 m̃12

m̃21 m̃22

)
= RT(∇u)R.

Then,

N = R

(
0 n

−n 0

)
RT, B = R

(
m̃11 0

0 m̃22

)
RT,

Ω = R

(
0 ω

−ω 0

)
RT,

with n = (m̃12 + m̃21)/(λ
−1
2 − λ−1

1 ), and ω = (λ2m̃12 +
λ1m̃21)/(λ2 − λ1).

When the decomposition(3) is substituted into the constitu-
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Indeed, the solution forσ(t) is:

σ(t) = eΩtσ(0)e−Ωt hence ψ(t) = eΩt ψ(0) e−Ωt,

and(6) follows.
(3) Extension:if the velocity gradient commutes withσ, then

it operates additively on its logarithm:

∂σ

∂t
= 2Bσ implies

∂ψ

∂t
= 2B. (7)

Here, we have:

σ(t) = e2Btσ(0) hence ψ(t) = ψ(0) + 2Bt,

where we have used the fact thatσ(0) andB commute.
(4) Sources: the source term is assumed to commute withσ,

hence
∂σ

∂t
= g(σ)P(σ)

implies that:

ψ(t) = log{σ(0) + t g(σ(0))P(σ(0))} + O(t2)

= log{σ(0){I + t g(σ(0))σ−1(0)P(σ(0))}} + O(t2)

= ψ(0) + t g(σ(0))σ−1(0)P(σ(0)) + O(t2),

from which we conclude that:

∂σ ∂ψ −1

S f
t -
l
c our
m
T the
f
s

4

la-
t ach,
w
C n
c
P

E

ive relation(1), theNσ−1 term vanishes. Exploiting the fa
hatB andσ commute we get:

∂σ

∂t
+ (u · ∇)σ − (Ωσ − σΩ) − 2Bσ = 1

Wi
g(σ)P(σ), (4)

hich represents the action of the deformation field onσ as a
omposition of a pure rotationΩ, and a symmetric volum
reserving deformationBaligned with the principal axes ofσ.
ote thatΩ is in generalnotthe vorticity tensor; it contains a
dditional component arising from the deformation not b
ligned with the principal axes of the conformation tens

. Constitutive equation for logσ

Letψ = logσ. Our goal is to derive from(4) an evolution
quation forψ. To do so, we decompose(4) into its four
onstituents:

1) Advection: if σ is advected by an incompressible fl
field, so is every continuous function ofσ, and in partic
ular its logarithm:

∂σ

∂t
+ u · ∇σ = 0 implies

∂ψ

∂t
+ u · ∇ψ = 0. (5)

2) Rotation: if the velocity gradient is a pure rotation, th
any tensor-valued function ofσ, in particular its loga
rithm, rotates together withσ:

∂σ

∂t
= (Ωσ − σΩ) implies

∂ψ

∂t
= (Ωψ − ψΩ). (6)
∂t
= g(σ)P(σ) implies

∂t
= g(σ)σ P(σ). (8)

ince the time derivative ofψ is a linear transformation o
he time derivative ofσ (it is the Lie derivative of the matrix
ogarithm evaluated atσ in the ∂σ

∂t
direction [6]), then the

ontributions(5)–(8)can be added up, which leads us to
ain theorem.
heorem 1. Letσ be governed by a constitutive law of
orm (4)withΩ ∈ A, B ∈ S, andBσ = σB, thenψ = logσ
atisfies the following equation:

∂ψ

∂t
+ (u · ∇)ψ − (Ωψ − ψΩ) − 2B = g(eψ)

Wi
e−ψP(eψ).

(9)

. A numerical example

We propose(9) as a starting point for numerical simu
ions. To demonstrate the potential strength of our appro
e show simulation results for a finitely-extensible (fene)
hilcott–Rallison fluid[3] in a two-dimensional lid-drive
avity. In the Chilcott–Rallison model, the functionsg(σ) and
(z) are given byg(σ) = L2/(L2 − Tr σ) andP(z) = z− 1.
q. (9)is coupled to the momentum equation:

∂u

∂t
+ (u · ∇)u+ ∇p = (1 − β)

Re
∇2u

+ β

ReWi
∇ · g(σ)(σ − I),
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Fig. 1. Simulations results for a Chilcott–Rallison fluid in a lid-driven cavity with parametersRe = 50,Wi = 5, β = 1/2, andL = 10. (a) Time evolution of
the kinetic energy; (b) contour lines of the stream function at timet = 25; (c–e) the fieldsψxx, ψxy, andψyy at timet = 25.

wherep is the pressure andβ is the ratio of polymeric and
solvent viscosities. The displayed results are for a choice of
parameters:Re = 50, Wi = 5, β = 1/2, andL = 10. The
fluid is confined in a unit square,x, y ∈ [0,1], and the upper
lid moves to the right with a velocity profile regularized both
in space and time,

utop(x, t) = 16x2(1 − x)2 min(1, t).

This is an interesting test problem, as the fluid in the vicin-
ity of the upper lid is subject to continual extension (due to
the regularized boundary conditions), while being advected
at very low speed near the upper corners (the stress may even
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grow unbounded in time for a model that does not limit exten-
sion). This calculation uses a finite-difference scheme based
on the Kurganov–Tadmor discretization for the hyperbolic
terms[7], and Chorin’s projection method (also known as
operator splitting) for the pressure[8].

The first graph inFig. 1shows the evolution of the kinetic
energy, which after a transient exhibit decaying oscillations.
The other images show the stream function and the three
components ofψ at timet = 25. From the point of view of
numericalstability, our numerical method does not seem lim-
ited at high Weissenberg numbers, which of course, does not
guarantee that accuracy is preserved. A detailed description
of the numerical scheme together with careful convergence
analyses and comparisons with benchmark results will be
presented in a subsequent publication.
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