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Abstract

We present a second-order finite-difference scheme for viscoelastic flows based on a
recent reformulation of the constitutive laws as equations for the matrix logarithm of
the conformation tensor. We present a simple analysis that clarifies how the passage
to logarithmic variables remedies the high-Weissenberg numerical instability. As a
stringent test, we simulate an Oldroyd-B fluid in a lid-driven cavity. The scheme is
found to be stable at large values of the Weissenberg number. These results support
our claim that the high Weissenberg numerical instability may be overcome by the
use of logarithmic variables. Remaining issues are rather concerned with accuracy,
which degrades with insufficient resolution.
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1 Introduction

The high-Weissenberg number problem (hwnp) has been the major obstacle
in computational rheology since the early 1970’s (see [1,2] for recent reviews on
current challenges in computational rheology). It was diagnosed as a numerical
phenomenon that causes all computations to break down at frustratingly low
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values of the Weissenberg number. Most of the work in computational rheology
has focused on steady two-dimensional creeping flows using finite element
methods (fem) (see [3] for an early reference and [4] for a recent review).
Then, the hwnp usually manifests as a lack of convergence of an iterative
system. It is remarkable that although the hwnp has played such a central role
for three decades, its origins has remained somewhat of a mystery. Even the
fundamental question whether the hwnp is a purely numerical phenomenon,
or rather a breakdown of the constitutive laws has remained, to some extent,
under debate.

In this article, we identify the mechanism responsible for the hwnp. In sum-
mary, the stress experiences a combination of deformation and convection,
which gives rise to steep exponential profiles. Even for moderate Weissenberg
numbers, these spatial profiles are poorly approximated by numerical schemes,
which are based (either explicitly as in fem or implicitly as in finite-differences)
on polynomial interpolation. The failure to properly balance the deformation
with the convection yields a numerical instability. This is a fundamental insta-
bility present in all constitutive models that satisfy Oldroyd’s frame invariance
principle, and shared by all standard numerical methods.

Since the hwnp is due to the inadequacy of polynomial interpolation to ap-
proximate exponential profiles, two possible remedies come to mind: either to
use exponential basis functions for the stress variables, or to make a change of
variables into new variables that scale logarithmically with the stress. In ei-
ther case, this requires the stress field τ (x, t) to remain strictly positive, which
cannot be guaranteed. A physical quantity, directly related to the stress, that
preserves positivity is the conformation tensor, σ(x, t), which is symmetric
positive-definite (spd). As such, the conformation tensor has a well-defined
matrix-logarithm, which we denote by ψ(x, t) = logσ(x, t). We claim that
the hwnp can be remedied if ψ(x, t) is approximated, rather than τ (x, t) or
σ(x, t). To be more precise, the logarithmic transformation removes the insta-
bility that has caused numerical computations to blowup, or linear solvers not
to converge; less catastrophic effects, like the spurious instabilities observed
in the simulation of viscometric flows at high Weissenberg numbers [5,6] seem
to be caused by a different mechanism.

In [7] we reformulated a class of differential constitutive models as equations
for ψ(x, t). We call the transformed system the log-conformation represen-
tation (lcr). The work [7] was supplemented with preliminary numerical
results exhibiting stability at parameter regimes far beyond the breakdown
threshold reported in the literature. The fact that the hwnp is only due to
a poor treatment of the convection is further supported in [8], where we de-
velop a second-order finite-difference scheme for σ(x, t), but use a logarithmic
change of variables back-and-forth to implement the convection. This alterna-
tive method was tested for planar contraction flow, and was found stable for
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very high Weissenberg numbers. Preliminary results indicate that the same
stabilizing effect occurs with fem as well [9].

In this paper, we present a second-order finite-different scheme based on the
log-conformation representation of the constitutive laws. The scheme is ap-
plicable to a large variety of differential constitutive laws in two and three
dimensions. We implement our method for creeping flow of an Oldroyd-B fluid
in a lid-driven cavity. While this system is not normally used as a benchmark,
it is known as a very stringent test problem [10].

We next introduce notations. We have already defined the fields τ (x, t), σ(x, t),
and ψ(x, t). The Eulerian velocity field is denoted by u(x, t) and the pressure
field by p(x, t). For creeping flows, the momentum balance equation is

−∇p+ νs∇2u+ νp∇ · τ = 0, (1.1)

supplemented with the continuity equation,

∇ · u = 0.

Here νs and νp are the respective solvent and polymer viscosities, and the
stress tensor τ (x, t) is assumed of the form

τ =
g(σ)

We
(σ − I),

where We is the Weissenberg number, and g(σ) is a scalar-valued function,
which only depends on the invariants of σ. The constitutive equation, written
as an evolution equation for the conformation tensor, is

∂σ

∂t
+ (u ·∇)σ − (∇u)σ − σ(∇u)T =

g(σ)

We
P (σ), (1.2)

where P (z) is a polynomial. For an Oldroyd-B fluid g(σ) = 1 and P (z) = 1−z.

The structure of this paper is as follows: In Section 2 we analyze the high-
Weissenberg number instability, which can be mimicked by a simple one-
dimensional linear toy model. In Section 3 we review the log-conformation
representation of the constitutive laws. In Section 4 we present our numerical
scheme, which is based on a two-step backward differentiation formula (bdf)
for time stepping, and second-order spatial discretization. Numerical results
are presented in Section 5. We present results for intermediate and high Weis-
senberg numbers, supported by numerical convergence analyses. Our scheme
is found to be immune to high-Weissenberg numerical instabilities, although,
as expected, accuracy problems emerge at insufficient resolution. A discussion
follows in Section 6.
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2 The high-Weissenberg instability

When one tries to solve, say, the upper-convected Maxwell (ucm) equations
at moderately large values of We, using any standard provably-stable method,
the numerical solution diverges in time. A more detailed examination of this
blowup reveals that the conformation tensor grows unbounded exponentially
fast. The only term in the ucm equation that can lead to exponential growth
of the conformation tensor is the deformation term in the upper-convected
derivative. For a sufficiently large deformation rate, this term cannot be bal-
anced by the relaxation, and thus, the only term that can balance this growth
is the convection; there is no blowup because the stretched fluid elements are
eventually convected away from the stretching region.

This situation can be mimicked by a “cartoon model”: a one-dimensional linear
equation for φ = φ(x, t), x ∈ [0, 1],

∂φ

∂t
+ a(x)

∂φ

∂x
− b(x)φ = − 1

We
φ, (2.1)

with a(x), b(x) > 0 and boundary condition φ(0, t) = 1. This equation rep-
resents a field φ(x, t) that is convected to the right with velocity a(x) and
grows exponentially at a rate b(x) −We−1. With reference to the ucm equa-
tion, a(x) plays the role of the flow field u(x, t), and b(x) plays the role of the
deformation rate ∇u(x, t).

The solution to (2.1) reaches a steady state,

φ(x) =
∫ x

0
exp

(
b(x′)−We−1

a(x′)

)
dx′.

Suppose we solve (2.1) numerically using, for example, a first-order upwind
scheme [11],

φn+1
j = φn

j −
aj ∆t

∆x

(
φn

j − φn
j−1

)
+ ∆t

(
bj −

1

We

)
φn

j ,

where aj = a(xj), bj = b(xj). Rewriting this scheme as

φn+1
j =

[
1− aj ∆t

∆x
+ ∆t

(
bj −

1

We

)]
φn

j +
[
aj ∆t

∆x

]
φn

j−1,

it is easily seen that the numerical solution diverges in time unless

1− aj ∆t

∆x
+ ∆t

(
bj −

1

We

)
≤ 1,
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which implies that either We < 1/bj or

∆x ≤ aj

bj −We−1 . (2.2)

This condition has to hold at all mesh points j. This is a restriction on the
spatial mesh size; it is not a CFL restriction on the time step. This stability
criterion has the following interpretation: the spatial profile of φ(x, t) is ex-
ponential, therefore every convection scheme that is based on a polynomial
reconstruction of fluxes underestimates the flux at the right edge of every
computational cell. Thus, the rate at which the field φ is removed from the
computational cell fails to balance its multiplicative growth rate, resulting in
numerical blowup. This scenario remains unchanged if the first-order upwind
scheme is replaced by a higher-order method; a higher-order scheme increases
the critical mesh size by, at most, an order one factor. The use of implicit
schemes does not help either.

To generalize the above analysis to viscoelastic flows, assume a fixed velocity
field u(x) (as would be attained by a stable steady state), and consider the
ucm equation,

∂σ

∂t
+ (u ·∇)σ − (∇u)σ − σ(∇u)T =

1

We
(I − σ).

This is a linear tensor-valued hyperbolic equation, which can be solved by the
method of characteristics. Doing so, one obtains a tensor-valued equation in
one space dimension of the form

∂σ

∂t
+ u(x)

∂σ

∂x
− (∇u)σ − σ(∇u)T =

1

We
(I − σ), (2.3)

where x is the arclength along the characteristic and u(x) = |u(x)|. In the ab-
sence of stagnation points, u(x) has fixed sign, which without loss of generality
is assumed to be positive.

Consider a first order upwind scheme for solving (2.3):

σn+1
j =

1

2

[
I − uj ∆t

∆x
I + ∆t

(
2∇uj −

I

We

)]
σn

j

+
1

2
σn

j

[
I − uj ∆t

∆x
I + ∆t

(
2∇uj −

I

We

)]T

+
[
uj ∆t

∆x

]
σn

j−1 +
∆t

We
I.

This is a linear difference equation with a block lower-diagonal transition
matrix. The solution remains bounded in time if the three eigenvalues of this
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matrix, which are

1−∆t
(
uj

∆x
+

1

We

)
, 1−∆t

(
uj

∆x
+

1

We

)
± 2∆t

√
− det(∇uj),

j = 1, 2, . . . , are all inside the unit disc. Note that det(∇u) is negative unless
the flow is strongly rotational. For det ∇u < 0, we obtain a stability condition
that generalizes (2.2):

∆x ≤ |u|
2
√
− det(∇u)−We−1

(2.4)

(as in the scalar model, there is no restriction on ∆x if the denominator is neg-
ative). The stability condition (2.4) may be very restrictive when convection is
weak (small numerator) and in the presence of large deformation rates (large
denominator). Regions near stagnation points and strong deformation rates
(e.g., near geometric singularities) are prone to such numerical instability. We
emphasize that the issue is not a lack of convergence in the strict sense—even
the first order upwind scheme does converge as ∆x,∆t → 0; it is rather an
issue of stiffness due to sharp spatial gradients.

We revert our attention to the scalar equation (2.1). The restriction on the
mesh size is removed at once by a change of variables ψ = log φ, in which case
ψ(x, t) satisfies the equation

∂ψ

∂t
+ a(x)

∂ψ

∂x
− b(x) = − 1

We
, (2.5)

with boundary condition ψ(0, t) = 0. Now, even a first-order upwind scheme,

ψn+1
j = ψn

j −
aj ∆t

∆x

(
ψn

j − ψn
j−1

)
+ ∆t

(
bj −

1

We

)
, (2.6)

no longer imposes practical restrictions on the size of ∆x. While this stable
behaviour may be attributed to the transformation of multiplicative growth
into additive growth, the reason for stability should rather be attributed to
the improved treatment of convection. To see this, exponentiate (2.6) to regain
an equation for φn

j ,

φn+1
j = (φn

j )(1−aj∆t/∆x) (φn
j−1)

aj∆t/∆x · e∆t(bj−We−1),

and expand the multiplicative source, exp(b∆t) ∼ 1 + b∆t, to get, to first
order in space and time,

φn+1
j = (φn

j )(1−aj∆t/∆x) (φn
j−1)

aj∆t/∆x + ∆t
(
bj −

1

We

)
φn

j . (2.7)

The transformation back and forth to a logarithmic scale results in a convec-
tion scheme that uses geometrical weights rather than algebraic weights, as

6



all standard schemes do. Although (2.7) involves multiplicative growth, it is
subject to the much weaker stability constraint: ∆x ≤ a/ log(b−We−1).

3 The log-conformation representation

In order for the logarithm of a second-rank tensor to exist, the tensor needs to
be positive definite. This is the reason we choose to formulate the constitutive
law (1.2) in terms of the conformation tensor, although the more popular
form is in terms of the stress tensor. lcr replaces (1.2) by an equivalent
equation for ψ(x, t) = logσ(x, t). (Recall that an spd matrix A can always
be diagonalized, A = RΛRT , and that logA = R log ΛRT .)

Differential constitutive laws dictate the dynamics of the conformation tensor
as a composition of convection, deformation and relaxation. When a tensor
field is convected by an incompressible flow, any continuous function of this
tensor satisfies the same convection equation. It is also a relatively easy task
to rewrite the relaxation equation for σ(x, t) as a relaxation equation for its
matrix-logarithm. The main effort is to transform the deformation terms. This
is easy to do once the deformation has been decomposed as a composition of
pure extension and pure rotation. For that we need the following decomposi-
tion rule, proven in [7]:

Proposition: Let u(x) be a divergence-free velocity field and let σ(x) be a
symmetric positive-definite tensor field. Then the velocity gradient ∇u can be
decomposed as

∇u = Ω +B +Nσ−1, (3.1)

where Ω and N are anti-symmetric, and B is symmetric, traceless, and com-
mutes with σ.

Substituting the decomposition (3.1) into the constitutive law (1.2), theNσ−1-
term cancels by anti-symmetry, and thus

∂σ

∂t
+ (u ·∇)σ − (Ωσ − σΩ)− 2Bσ =

g(σ)

We
P (σ). (3.2)

The tensor B generates a pure (area preserving) extension, as it commutes
with σ, and Ω generates a pure rotation. The passage to an equation for ψ is
now straightforward (see [7] for details),

∂ψ

∂t
+ (u ·∇)ψ − (Ωψ −ψΩ)− 2B =

g(eψ)

We
e−ψP (eψ). (3.3)

Like in (2.5), the extensional component becomes additive as a result of the
logarithmic transformation. Equation (3.3) is the equation we are going to
approximate.
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Two-dimensional case The decomposition (3.1) is particularly simple
in two dimensions. If σ is proportional to the unit tensor then simply set
B = 1

2
[(∇u) + (∇u)T ] and Ω = 0. Otherwise, calculate the diagonalizing

transformation:

σ = R

λ1 0

0 λ2

RT ,

and set m11 m12

m21 m22

 = RT (∇u)R.

It is easily verified that

N = R

 0 n

−n 0

RT , B = R

m11 0

0 m22

RT ,

Ω = R

 0 ω

−ω 0

RT ,

with n = (m12 +m21)/(λ
−1
2 −λ−1

1 ), and ω = (λ2m12 +λ1m21)/(λ2−λ1), satisfy
the required properties.

4 The numerical scheme

4.1 Temporal discretization

Let un = (un, vn) and ψn denote the numerical approximations to the fields
u, ψ at the discrete time tn, with ∆tn = tn+1−tn. The temporal discretization
of the system (3.3) is based on a two-step backward differentiation formula
(bdf) with variable time step [12]. For a differential equation y′ = f(t, y), the
two-step bdf is

α0yn+1 + α1yn + α2yn−1 = f(tn+1, yn+1),

where

α0 =
2∆tn + ∆tn−1

∆tn(∆tn + ∆tn−1)
, α1 = −∆tn + ∆tn−1

∆tn∆tn−1

, α2 =
∆tn

∆tn−1(∆tn + ∆tn−1)
.

For fixed time steps these reduce to α0 = 3/2∆t, α1 = −2/∆t, and α2 =
1/2∆t. While this scheme has good stability properties, it is time consuming
due to its implicitness. A workaround is to use an implicit setting only for the
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linear terms on the right-hand side, whereas non-linear terms are discretized
by a two-step interpolation formula:

f(tn+1, yn+1) ≈ β1 f(tn, yn) + β2 f(tn−1, yn−1),

with

β1 =
∆tn + ∆tn−1

∆tn−1

, β2 = − ∆tn
∆tn−1

.

For fixed time steps, β1 = 2 and β2 = −1. (A similar temporal discretization
for Newtonian flows is used in [13].)

Specifically, the evolution of ψn is governed by the two-step difference equa-
tion:

α0ψ
n+1 + α1ψ

n + α2ψ
n−1 = β1N c(u

n,ψn) + β2N c(u
n−1,ψn−1)

+ 2
[
β1B(∇un,ψn) + β2B(∇un−1,ψn−1)

]
+
[
β1Ω(∇un,ψn) + β2Ω(∇un−1,ψn−1)

]
ψn+1

+ψn+1
[
β1Ω(∇un,ψn) + β2Ω(∇un−1,ψn−1)

]T
+ β1N r(ψ

n) + β2N r(ψ
n−1),

(4.1)

where B(∇u,ψ) and Ω(∇u,ψ) are the tensor fields that compose ∇u in
(3.1), and

N c(u,ψ) = −(u ·∇)ψ, N r(ψ) =
1

We
[exp(−ψ)− I],

are the nonlinear convection and relaxation terms.

For creeping flow, onlyψ(x, t) satisfies a dynamical evolution equation, whereas
the velocity and pressure are determined, given ψ(x, t), by the solution of an
elliptic system: at every time step tn the velocity un and pressure pn are
obtained by the solution of the Stokes system:

−∇pn + νs∇2un +
νp

We
∇ · [exp(ψn)− I] = 0

∇ · un = 0,
(4.2)

subject to the impermeability and no-slip boundary conditions at solid walls.
Inflow and outflow boundary conditions are treated as easily.
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ψ
i,j

u
i+1/2,j

vi,j+1/2

u
i−1/2,j

vi,j−1/2

(i,j)−cell

i,j

p

Fig. 4.1. The position of the variables in a computational cell.

4.2 Spatial discretization

We divide the domain into nx × ny rectangular cells of size ∆x × ∆y; for a
unit square nx∆x = ny∆y = 1. The cell labelled (i, j) is centered at the point

(xi, yj) =
(
(i+ 1

2
)∆x, (j + 1

2
)∆y)

)
,

with i = 0, 1, . . . , nx − 1, j = 0, 1, . . . , ny − 1.

The values of the log-conformation ψ and the pressure p are stored at cell
centers, and are denoted by

ψi,j =

 (ψxx)i,j (ψxy)i,j

(ψxy)i,j (ψyy)i,j

 (4.3)

and pi,j, respectively. For the velocity we use the so-called staggered, or Marker-
and-Cell (mac) discretization [14]; the discrete velocity variables are stored at
the centers of cell edges, such that only the normal component is defined at
each edge. Thus, the velocity component u is defined at the centers of left and
right edges and the velocity component v is defined at the centers of top and
bottom edges. The velocity variables associated with the cell (i, j) are denoted
by ui±1/2,j and vi,j±1/2, the indexing being self-explanatory. Note that the only
variables defined at the domain boundaries are normal velocities, which are
dictated by the boundary conditions. The geometry of the discrete variables
is illustrated in figure 4.1.

Equation (4.1) is a difference equation for the log-conformation ψ, and there-
fore needs to be prescribed as cell centers, i.e., at points (i, j); the same is also
true for the incompressibility constraint in (4.2), which is a “pressure-like”
equation. The momentum equations in (4.2) are equations for the velocity
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components u, v, and therefore need to be prescribed at the points (i± 1/2, j)
and (i, j ± 1/2), respectively. Values of u, v at the domain boundaries are
determined by the boundary conditions, and no equation needs to be solved
there.

We now specify one-by-one the spatial discretizations of the various terms in
(4.1), (4.2):

Velocity gradient The velocity gradient tensor ∇u needs to be com-
puted at cell centers. The diagonal components ∂u/∂x and ∂v/∂y are readily
obtained by compact stencils, which take advantage of the staggering,

(
∂u

∂x

)
i,j

=
ui+1/2,j − ui−1/2,j

∆x
,

(
∂v

∂y

)
i,j

=
vi,j+1/2 − vi,j−1/2

∆y
.

These expressions hold everywhere in the domain, up to the boundary. Com-
pact stencils cannot be constructed for the off-diagonal components ∂u/∂y
and ∂v/∂x, which are discretized by central differences,

(
∂u

∂y

)
i,j

=
ūi,j+1 − ūi,j−1

2 ∆y

(
∂v

∂x

)
i,j

=
v̄i+1,j − v̄i−1,j

2 ∆x
,

where

ūi,j = 1
2

(
ui+1/2,j + ui−1/2,j

)
v̄i,j = 1

2

(
vi,j+1/2 + vi,j−1/2

)
.

In boundary cells, these stencils have to be modified to account for the bound-
ary conditions; we evaluate these derivative with one-sided stencils. With ∇u
at hand, the tensors B(∇u,ψ) and Ω(∇u,ψ) can be computed.

Convection We next turn to the convection term (u ·∇)ψ. We discretize
it with the Kurganov-Tadmor (kt) scheme for hyperbolic conservation laws
[15,16]. The kt scheme is a high-resolution central scheme, which assumes a
semi-discrete limit (i.e., reduces to a “method of lines” as ∆t → 0 [11]). In a
semi-discrete setting, the temporal discretization is independent of the spatial
discretization; this is particularly convenient in conjunction with our two-step
temporal discretization.

The kt scheme can be written in conservation form,

[(u ·∇)ψ]i,j =
Hx

i+1/2,j −Hx
i−1/2,j

∆x
+
Hy

i,j+1/2 −Hy
i,j−1/2

∆y
,
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where Hx
i±1/2,j and Hy

i,j±1/2 are numerical fluxes of the form,

Hx
i+1/2,j = ui+1/2,j

ψ+
i+1/2,j +ψ−

i+1/2,j

2
− c |ui+1/2,j|

(
ψ+

i+1/2,j −ψ
−
i+1/2,j

)
Hy

i+1/2,j = vi,j+1/2

ψ+
i,j+1/2 +ψ−

i,j+1/2

2
− c |vi,j+1/2|

(
ψ+

i,j+1/2 −ψ
−
i,j+1/2

)
,

and c is a smoothing factor. The tensors ψ+
i+1/2,j, ψ

−
i+1/2,j are (discontinuous)

evaluations of the log-conformation at cell edges, on the right and on the
left, respectively. Their construction, in a manner that does not introduce
spurious oscillations, can be done in several ways. We adopt the second-order
piecewise-linear reconstruction

ψ−
i+1/2,j = ψi,j + 1

2
minmod

(
ψi+1,j −ψi,j,ψi,j −ψi−1,j

)
ψ+

i+1/2,j = ψi+1,j − 1
2
minmod

(
ψi+2,j −ψi+1,j,ψi+1,j −ψi,j

)
,

where minmod(a, b) = 1
2
[sgn(a) + sgn(b)] ·min(|a|, |b|) is the min-mod limiter

(see e.g. [11] for an extensive reference on slope limiters and flux limiters).
In principle, the optimal choice for the smoothing factor is c = 1/2; our
calculations were found much better behaved for a value of c twice as large.
The need for a larger amount of smoothing is discussed further below.

Newtonian viscosity The Laplacian operator in (4.2) is discretized with
the standard five-point stencil. For example,

(∇2u)i+1/2,j =
ui+3/2,j − 2ui+1/2,j + ui−1/2,j

∆x2
+
ui+1/2,j+1 − 2ui+1/2,j + ui+1/2,j−1

∆y2
.

This expression is valid at all points, except for those at a distance ∆y/2
from the top or bottom lids, that is, except for when j = 0 and j = ny − 1.
There, boundary conditions are imposed by using “ghost cells”, and reflecting
the interior values with respect to the boundary values (i.e., the value at the
boundary is equal to the average of the values at the adjacent interior cell
and the ghost cell). A similar modification is needed for the Laplacian of the
vertical velocity components (∇2v)i,j+1/2 for i = 0 and i = nx − 1.

Pressure gradient The pressure gradient is evaluated at cell edges. It is
given by

(∇p)i+1/2,j =
pi+1,j − pi,j

∆x
(∇p)i,j+1/2 =

pi,j+1 − pi,j

∆y
.

The pressure gradient does not need to be evaluated at the boundary because
no equation is being solved there.

Velocity divergence The velocity divergence associated with the cell (i, j)
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is

(∇ · u)i,j =
ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆y
.

Since the normal velocity is prescribed at the boundary, the discrete divergence
is well defined at all cells.

Stress divergence The divergence of the stress ∇ · τ is a “velocity-like”
field, i.e., needs to be evaluated at cell edges. Take for example (∇ · τ )i+1/2,j:
the contribution from τxx exploits the staggering,

(τxx)i+1,j − (τxx)i,j

∆x
.

The contribution from τxy cannot be obtained by a compact stencil. As for
the off-diagonal terms of the velocity gradient we use a wide-stencil central
difference:

(τ̄xy)i+1/2,j+1 − (τ̄xy)i+1/2,j−1

2 ∆y
,

where

(τ̄xy)i+1/2,j = 1
2
[(τxx)i,j + (τxx)i+1,j] .

In the vicinity of boundaries, one-sided modifications are used.

4.3 Other technical issues

Choice of spatial discretization The use of a staggered discretization
for the velocity variables is very convenient for a stable treatment of the Stokes
operator. In particular, it is immune to “checkerboard” pressure modes that in-
fect wide-stencil discretizations. The staggered setting also provides, in part, a
compact discretization of the velocity-stress interaction: the diagonal elements
of the velocity gradient and the stress divergence exploit the staggering. This
is not the case, however, with the off-diagonal elements, which are given by
wide-stencil central differences. This implies that the rotational components
of the system may be sensitive to numerical instabilities. A natural remedy
would have been to store the off-diagonal elements of the stress tensor at cell
corners. This cannot be done in our framework as the log-conformation ten-
sor is an entity whose tensorial nature is essential. Other choices of spatial
discretizations and their effect on stability will be studied elsewhere.

Linear solver The Stokes equation (4.2) is a linear system for the veloc-
ity and pressure, given the stress, or the log-conformation. It can be solved
by various methods. We used a multigrid solver. Multigrid solvers are iter-
ative methods. Their central pillar is a standard iterative scheme, such as
Jacobi or Gauss-Seidel. Iterative schemes are known to rapidly reduce high
frequency modes of the error, but perform poorly on the lower frequency
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modes; that is, they rapidly smooth the error, which is why they are often
called smoothers. The multigrid method reduces the lower frequency modes of
the error by transferring the residual equation to a lower resolution grid and
interpolating the obtained low-resolution solution back onto the original grid;
this process is repeated recursively. The transfer back and forth between two
levels of discretizations requires the definition of restriction (fine-to-coarse)
and prolongation (coarse-to-fine) operators. The solution of the Stokes equa-
tions by a multigrid method has received much attention in the literature. A
comprehensive description and numerous references may be found in [17]

Time step selection The constraint on the time step comes from the
hyperbolic cfl condition associated with the convection. For cavity flow the
maximal velocity is always u = 1, thus, the cfl condition is

∆t ≤ C∆x,

where C is the cfl constant. The kt scheme is stable for C ≤ 0.5 [15].

5 Numerical results

We implemented the above scheme for an Oldroyd-B fluid in a lid-driven
cavity. The fluid is confined in a unit square, (x, y) ∈ [0, 1]2, bounded by
solid walls, with the top boundary moving to the right. For Newtonian fluids,
the discontinuity of the flow field at the upper corners causes the pressure
to diverge, without affecting the well-posedness of the system. A viscoelastic
fluid cannot sustain deformations at a stagnation point, therefore the motion
of the lid needs to be regularized such that ∇u vanishes at the corners. Also,
to avoid errors resulting from an impulsive start, the motion of the lid was
started smoothly. Specifically, the velocity profile of the lid was taken to be

ulid(x, t) = 8
[
1 + tanh 8(t− 1

2
)
]
x2(1− x)2.

For t� 1
2
, the lid velocity attains its maximum, u = 1, at the center, x = 1/2.

In all our calculations we took νp = νs, i.e., equal contributions of solvent and
polymeric viscosities. Thus, the only remaining parameter is the Weissenberg
number.

5.1 We = 1.0

In Figure 5.1 we plot the L2-norm of the velocity field—the “kinetic energy”—
as function of time for We = 1.0 (properly speaking, a fluid without inertia
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Fig. 5.1. The L2 norm of the velocity (the “kinetic energy”) as function of time for
We = 1.0.

does not have kinetic energy). The kinetic energy grows as the upper lid accel-
erates, reaches a maximum at the end of the acceleration, and then decreases
toward a steady value as elastic energy builds up. At time t = 8 the solution
seems to have approached a steady state. The fields at the steady state are
displayed in Figure 5.2. The log-conformation exhibits steep gradients only in
the vicinity of the upper lid; ψxx has a thin boundary layer along the lid, and
all three components have large gradients near the upper corners. Note the
asymmetry of the stream function, which would have had left-right symmetry
for an inertia-less Newtonian fluid.

In Table 1 we display a mesh refinement analysis for the velocity component
u and the log-conformation component ψxx. We ran simulations for 64 × 64,
128 × 128, and 256 × 256 point grids. If φ(N) denotes the field φ computed
with an N ×N point grid, its relative error is estimated by comparison to the
most refined computation,

e(φ(N)) =
‖φ(N) − φ(256)‖2

‖φ(256)‖2

,

where ‖ · ‖2 is the L2 norm. The table shows second-order accuracy for short
times, but the estimated convergence rate deteriorates with time until it
reaches a value around 1.4 at the steady state. Note that both the velocity
and the log-conformation attain a similar rate of convergence. An examination
of the error reveals that it is mostly concentrated near the upper-right corner
of the cavity. The fluid enters this region after having experienced contrac-
tion along the x-direction, and exits after having been rotated clockwise by
90 degrees.

In Figure 5.3 we show selected profiles of the fields u, v, ψxx, and ψxy at the
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Fig. 5.2. (a) The stream function, (b)-(d) the three components of the
log-conformation at time t = 8 for We = 1.0.

t e(u(64)) e(u(128)) rate e(ψ(64)
xx ) e(ψ(128)

xx ) rate

1.0 2.2× 10−3 4.0× 10−4 2.35 7.8× 10−3 1.6× 10−3 2.28

2.0 1.2× 10−2 2.8× 10−3 2.08 3.8× 10−2 1.0× 10−2 1.85

4.0 1.8× 10−2 6.0× 10−3 1.60 8.8× 10−2 2.9× 10−2 1.60

8.0 1.5× 10−2 5.4× 10−3 1.48 9.9× 10−2 3.8× 10−2 1.38

Table 1
Mesh refinement analysis for the fields u and ψxx at various times for We = 1.0.

steady state. We compare results obtained from calculations at three different
resolutions; differences for u, v, and ψxx are hardly seen at the scale of the
graphs. The profiles of ψxy along the horizontal line y = 3/4 show that close
to the right wall the lowest resolution graph has somewhat larger errors than
the two higher resolution graphs.

To summarize, the calculations for We = 1.0 are convergent but the rate of
convergence is somewhat lower than the expected second order. Errors are
found to accumulate mostly in the upper-right part of the system.
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Fig. 5.3. Comparison between simulation results for a 64 × 64 point grid (dotted
lines), a 128×128 point grid (dashed lines), and 256×256 point grid (solid lines) at
time t = 8 for We = 1.0. The four graphs represent u(1/2, y), v(x, 3/4), ψxx(1/2, y),
and ψxy(x, 3/4).

5.2 We = 2.0

In Figure 5.4 we show the evolution of the kinetic energy for We = 2.0. The
three curves represent three mesh sizes. The numerical convergence analysis
in Table 2 indicates that the results are still convergent, but errors are larger
than for We = 1.0. In particular, there is a drastic drop in convergence rate
at intermediate times. The fields’ profiles displayed in Figure 5.6 confirm that
the errors are indeed larger than for We = 1.0, but yet convergent.
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Fig. 5.4. The L2 norm of the velocity as function of time for We = 2.0. The dotted
line corresponds to a 64× 64 point grid, the dashed line corresponds to a 128× 128
point grid, and the solid lines corresponds to a 256× 256 point grid.

t e(u(64)) e(u(128)) rate e(ψ(64)
xx ) e(ψ(128)

xx ) rate

4.0 2.5× 10−2 8.6× 10−3 1.55 1.0× 10−1 3.2× 10−2 1.69

8.0 1.8× 10−2 1.7× 10−2 0.10 1.2× 10−1 6.0× 10−2 1.05

16.0 3.3× 10−2 1.5× 10−2 1.11 1.0× 10−1 4.3× 10−2 1.22

32.0 3.7× 10−2 2.5× 10−2 0.56 1.1× 10−1 4.4× 10−2 1.27

Table 2
Mesh refinement analysis for the fields u and ψxx at various times for We = 2.0.

5.3 We = 3.0

For We = 3.0 the tendencies observed in the passage from We = 1.0 to We =
2.0 are further amplified. In Figure 5.7 we show the evolution of the kinetic
energy for three mesh sizes. The kinetic energy is found to be oscillatory.
An examination of the flow field reveals that these oscillations are caused by
vortices that are repeatedly created in the vicinity of the upper-right corner,
and propagate downwards until being eventually damped out. For the 64 ×
64 point grid (dotted line) the oscillations occur at intermediate times, but
the system tends eventually to a steady state, The 128 × 128 and 256 × 256
point computations exhibit persistent oscillations, although the oscillations
obtained at higher resolution have somewhat lower amplitude. The state of
the system at time t = 40 is displayed in Figure 5.8. The mesh refinement
analysis in Table 3 shows convergence; errors are larger although the estimated
convergence rate is higher than for We = 2.0. Larger errors are also apparent
in the profiles shown in Figure 5.9, notably in the upper-right part of the
system.
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Fig. 5.5. (a) The stream function, (b)-(d) the three components of the
log-conformation at time t = 40 for We = 2.0.

t e(u(64)) e(u(128)) rate e(ψ(64)
xx ) e(ψ(128)

xx ) rate

5.0 4.7× 10−2 2.2× 10−2 1.08 1.3× 10−1 5.0× 10−2 1.38

10.0 3.6× 10−2 1.9× 10−2 0.87 1.4× 10−1 6.3× 10−2 1.14

20.0 5.3× 10−2 1.3× 10−2 1.94 1.0× 10−1 4.2× 10−2 1.33

40.0 5.5× 10−2 2.6× 10−2 1.50 1.3× 10−1 4.4× 10−2 1.56

Table 3
Mesh refinement analysis for the fields u and ψxx at various times for We = 3.0.

5.4 Higher We

At even higher values of the Weissenberg number, the numerical solution
exhibits stronger oscillations, and we can no longer claim for convergence
(for example, we show in Figure 5.10 the evolution of the kinetic energy for
We = 5.0). On the other hand, the calculations are perfectly stable, show-
ing that the passage to logarithmic variables does indeed remedy the hwnp
instability.
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Fig. 5.6. Comparison between simulation results for a 64 × 64 point grid (dotted
lines), a 128×128 point grid (dashed lines), and 256×256 point grid (solid lines) at
time t = 40 for We = 2.0. The four graphs represent u(1/2, y), v(x, 3/4), ψxx(1/2, y),
and ψxy(x, 3/4).

6 Discussion

(1) Is the hwnp solved? Our claim is that we have elucidated the high Weis-
senberg number instability. Our numerical experiments indicate that it
is now possible to perform stable simulations at very large values of the
Weissenberg number. Yet, as one should expect, the change of variables
does not guarantee that accurate computations can be performed at ar-
bitrarily high We. The situation can be compared with classical cfd,
where one can perform stable calculations at arbitrarily large Reynolds
numbers, but accuracy is lost when the resolution becomes insufficient.
The analogy is in fact most appropriate given the recent identification of
so-called elastic turbulence [18].

(2) While the present paper describes an implementation of the lcr ap-
proach for an Oldroyd-B fluid, the lcr approach is applicable to a large
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Fig. 5.7. The L2 norm of the velocity as function of time for We = 3.0. The dotted
line corresponds to a 64× 64 point grid, the dashed line corresponds to a 128× 128
point grid, and the solid lines corresponds to a 256× 256 point grid.
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Fig. 5.8. (a) The stream function, (b)-(d) the three components of the
log-conformation at time t = 40 for We = 3.0.
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Fig. 5.9. Comparison between simulation results for a 64 × 64 point grid (dotted
lines), a 128×128 point grid (dashed lines), and 256×256 point grid (solid lines) at
time t = 40 for We = 3.0. The four graphs represent u(1/2, y), v(x, 3/4), ψxx(1/2, y),
and ψxy(x, 3/4).

class of differential constitutive models, and so is our numerical scheme.
The method can be generalized to three dimensions, nonlinear consti-
tutive models, and different systems of coordinates. Our scheme is also
easily augmented to fourth-order accuracy (a fourth-order scheme for
Newtonian fluids that uses compact stencils is developed in [13]). The
lcr approach is also easily implemented within the fem framework [9],
particle tracking methods, and various hybrid methods (e.g., Brownian
configuration fields [19,20]).

(3) Our computational method can also be applied to inertial flows. There,
the main computational difficulty is the need to use small time steps to
satisfy the cfl condition imposed by the elastic shear waves. This is a
serious limitation at low Reynolds numbers, Re � 1, as the characteristic
speeds scale like Re−1/2.

(4) Equation (2.4) provides a quantitative criterion for when a method, that
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Fig. 5.10. The L2 norm of the velocity as function of time for We = 5.0. The dotted
line corresponds to a 64× 64 point grid, the dashed line corresponds to a 128× 128
point grid, and the solid lines corresponds to a 256× 256 point grid.

does not use matrix logarithms, is expected to lead to numerical blowup.
Different schemes alter the criterion (2.4) by at most an order one prefac-
tor. It would be of interest to re-examine past results, and verify whether
the limiting Weissenberg number can indeed be related to such a stabil-
ity criterion. Moreover, past ambiguities for whether increased resolution
increases or reduces the maximum attainable Weissenberg number can
be understood in light of (2.4). While increased resolution seems to be
a stabilizing factor, it may cause the numerical estimate of the velocity
gradient to increase, thus being destabilizing.

(5) Having elucidated the fundamental hwnp instability, there remain prob-
lems of accuracy. As our results show, large errors and (possibly) spurious
oscillations are generated in regions of large stress and strong rotations.
The instability that results from under-resolution may be understood as
a “checkerboard instability”, caused by the wide stencils employed in the
calculation of the off-diagonal elements of the velocity gradient, and the
stress divergence. As pointed out above, it would have been more natu-
ral to associate the off-diagonal elements of tensor-valued fields with cell
corners, rather than cell centers (i.e., use a staggered setting for tensors
as well). Such a splitting between diagonal and off-diagonal elements is
problematic in a method that is heavily based on tensorial operations,
such as matrix exponentiation and diagonalization.

We believe that the loss of accuracy and the generation of spurious os-
cillations has the same origins as the (spurious) unstable modes observed
in numerical solutions of plane Couette flow [5]. In [6] various numerical
schemes were benchmarked for Couette flow. In particular, the authors re-
port that “a factor that influences the behavior of the DEVSS-G/SUPG
method seems a proper choice for the adaptive viscosity function”. In
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our case too, the formation of vortices was found very sensitive to the
amount of smoothing in the kt convection scheme. An understanding of
this numerical artifact is of fundamental importance, and is left for future
work.

(6) A similar passage to logarithmic variables may be of use in situations
other than computational rheology. Generally, such an approach could be
useful in any situation where a physical quantity that preserves positivity
is simultaneously convected and amplified (e.g., reactive flows). The use of
a logarithmic transformation is, by itself, not a novel idea in mathematics.
A classical example is the wkb expansion [21], where a power series
expansion is constructed for the logarithm of the sought solution. Another
example is the Cole-Hopf transformation that turns the nonlinear viscous
Burgers equation into a linear heat equation [22].
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