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Abstract 
Image resolution can be improved when the relative 

displacements in image sequences is known accurately, and 
some knowledge of the imaging process is available. The 
proposed approach is similar to back-projection used in 
tomography. Examples of improved image resolution are 
given, with computation of the unknown image displace- 
ments. 

1 Introduction 
Image resolution depends on the physical characteristics 
of the sensor: the optics and the density and spatial re- 
sponse of the detector elements. Increasing the resolution 
by sensor modification may not be an available option. An 
increase in the sampling rate could, however, be achieved 
by obtaining more samples of the scene from a sequence 
of displaced pictures. An estimate of the sensor’s spatial 
response helps obtain a sharper image. 

An iterative algorithm to increase image resolution is 
described in this paper. Examples are shown for low res- 
olution gray-level pictures, with an increase of resolution 
clearly observed after only a few iterations. The same 
method can also be used for deblurring a single blurred 
image. 

Earlier research on super resolution was carried out by 
Tsai and Huang [6], who used frequency domain methods. 
Their work disregarded the blur in the imaging process, and 
only attempted to handle loss of data due to decimation by 
using translated images. 

Gross [3] assumed that the imaging process is known, 
and that the relative shifts of the input pictures are known 
precisely. By merging the low resolution pictures over a 
finer grid using interpolation, he obtained a single blurred 
picture of higher spatial sampling rate. The merged picture 
was then deblurred by convolvingit with a restoration filter, 
obtained by applying pseudo-inverse techniques to a matrix 
representing the blur operator. Similar to the work of Tsai 
and Huang [6], only translations are considered. 

Peleg and Keren [ll, 93 estimated an initial guess for 
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the higher resolution image, and simulated the imaging pro- 
cess (assumed to be known) to obtain a set of simulated low 
resolution images. They defined an error function between 
the actual and simulated low resolution images, which they 
minimized iteratively until no further improvement was ob- 
tained, or until the maximum number of allowed iterations 
was reached, This method gave good results for noise-free 
images, but was highly sensitive to noise and slow to con- 
verge. 

The approach described in this paper is based on the 
resemblance of the presented problem to the reconstruction 
of a 2-D object from its 1-D projections in Computer-Aided 
Tomography (CAT) [4]. In tomography, images are recon- 
structed from their projections in many directions. In the 
super resolution case, each low resolution pixel is a “projec- 
tion” of a region in the scene whose size is determined by 
the imaging blur. The high resolution image is constructed 
using an approach similar to the back-projection method 
used in CAT. 

Accurate knowledge of the relative scene locations 
sensed by each pixel in the observed images is necessary 
for super resolution. This information is available in im- 
age regions where local deformation can be described by 
some parametric function. Such functions can describe, for 
example, perspective transformation. In this paper we as- 
sume that local motion can be described by translations 
and rotations only, but the approach is applicable also for 
other image motion models. 

The imaging process, yielding the observed image se- 
quence { g k } ,  is modeled by: 

where 
gk(m,n) =bk(h(f(x,Y)) -t T]k(Z,Y)),  

gk is the k th  observed image frame, 
0 f is the original scene, 
0 h is a blurring operator, 

T]k is an additive noise term, 
0 b k  is a non linear function which digitizes and deci- 

mates the image into pixels and quantizes the resulting 
pixels values from intensities into gray levels. b k  also 
includes the displacement of the kth frame, 
(z ,y)  is the center of the receptive field (in f) of the 
detector whose output is gk(m, n). 

The receptive field (in f) of a detector whose output 
is gs(m, n) is defined uniquely by its center (2, y) and its 
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shape. The shape is determined by the region of support 
of the blurring operator h. Under the assumption that the 
displacement is a combination of translations and rotations, 
as done throughout this paper, the scene location (x,y) of 
the center of the receptive field for the observed location 
(m,  n )  is computed by: 

x = x i  + s3 m cos o k  - sy n sin o k  (1) 
y =  y j j + s , m s i n ~ k + s ,  ncosok, 

where 
(xi, yg) is the translation of the k th  frame, 

0 6% is the rotation of the kth frame about the origin, 
s3 and sy are the sampling rates in the z and y direc- 
tions respectively. 

The algorithm presented in this paper attempts to re- 
construct a higher resolution image, f ,  which approximates 
f as accurately as possible. It is assumed that the accelera- 
tion of the camera while imaging a single frame is negligible. 

2 The Imaging Process 
This section describes the two preliminary tasks of obtain- 
ing the parameters of the imaging process. The relative 
displacements of the input images at subpixel accuracy are 
computed, as well as the blur in the imaging process. 

2.1 Image Registrat ion 
Keren and Peleg [9] used the following method, based on 
[lo],  which has been found to be the most accurate for our 
purposes. Horizontal shift a, vertical shift b and rotation 
angle t9 between images g1 and g2 can be written as: 

gz(z, y) = g1 (z cos 6’ - ysin 0 + a,  y cos 0 + z sin 0 + b). 

It has been shown [9] that solving the following equa- 
tion for (a, b, 0)  minimizes the difference between the image 
g2 and the image g1 warped by ( a ,  b,O): 

w h e r e g , = ~ , g , = ~ , g t  =g2-g1 ,andA=xgy-ygt .  
The motion parameters a ,  b and 0 will be computed by 
solving this set of linear equations. The above equations 
were obtained under assumptions which are valid only for 
small displacements. 

2.2 Iterative Refinement 
As images are recorded in discrete time intervals, the dis- 
placements between them may not be sufficiently small for 
the motion recovery method of Equations (2). We therefore 
iterate the following process for two given images 91 and g2 
[91: 

Initially assume no motion between the frames. 
Compute approximations to the motion parameters by 
solving Equations (2). Add the computed motion to 
the existing motion estimate. 
Warp frame g2 towards g1 using the current motion 
estimates, and return to Step 2 with the warped image 
QZ . 

g2 gets closer to g1 at every iteration, and as the resid- 
ual corrections to ( a ,  b, 0) computed in Step 2 get smaller, 
the motion parameters become more accurate. The process 
terminates when the corrections to  ( a ,  b, 0) approach zero. 

Since frame g1 remains unchanged, nine of the twelve 
coefficients in the set of equations are computed only once, 
and only three coefficients, depending on 92, need to be 
recomputed every iteration. This saves time in the iterative 
process. 

In order to  speed up the process and improve accuracy, 
a Gaussian Pyramid data structure is used [12]. First, the 
motion parameters are computed for a reduced resolution 
image in the pyramid, where even large translations become 
small. The computed motion parameters are then interpo- 
lated into a larger image, the motion estimate is corrected 
through a few iterations, and again interpolated to the next 
resolution level. This process is continued until the original 
full-size image is reached. 

2.3 Recovering the Blur 
Some knowledge of the digitization process is necessary to 
simulate the imaging process. Images used in our experi- 
ments were imaged by a flatbed scanner, and its blurring 
function was evaluated by scanning a small white dot on a 
black background. 

When the imaging process cannot be applied to control 
images, similar to the above mentioned white dot, the blur 
can be estimated from the degradation of features that are 
originally small points or sharp edges. 

3 Super Resolution 
In this section the super resolution algorithm is described 
in detail, with noise and stability analysis. Experimental 
results are also given. 

The presented algorithm for solving the super resolu- 
tion problem is iterative. Starting with an initial guess 
f(’) for the high resolution image, the imaging process is 
simulated to obtain a set of low resolution images {gp)} 
corresponding to the observed input images {%}. Iff(’) 
were the correct high resolution image, then the simulated 
images {g:)} should be identical to the observed images 
{gk}. The difference images {gk -g(ko)} are then computed, 
and used to  improve the initial guess by “back-projecting’’ 
each value in the difference images onto its receptive field 
in f(’). This process is repeated iteratively to  minimize the 
error function 
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Low-resolution = w  
obruved low-rerol~ 

Figure 1: Schematic diagram of the super resolution 
algorithm. 

The algorithm is described schematically in Figure 1. 

Definition 3.1 A low resolution pixel y' is influenced by a 
high resolution pixel 35, if Z is in a ' s  receptive field. 

Definition 3.2 A low resolution image g i s  influenced by 
a high resolution pixel 35, if g contains a pixel y' such that a 
is influenced by 35. 

The following notation is used: 
f - The target high resolution image to be constructed 

0 f(") - The approximation of f obtained after n itera- 

0 gk - The kth  observed low resolution image, 
g(kn) - The low resolution image obtained by applying 
the simulated imaging process to f'"). Iff '") is the 
correct high resolution, we expect &) = g k ,  

0 hPSF - The point spread function of the imaging blur, 

(unknown), 

tions, 

0 h B p  - A back-projection kernel (the choice of hBP is 

0 Z denotes a high resolution pixel, 
y' denotes a low resolution pixel (influenced by 3). 

referred to later), 

Let Zg denote the center of the receptive field of in fin), 
computed by (1). The imaging process is then expressed 
by: 

d 

The iterative update scheme to estimate the high resolu- 
tion image f is expressed by: 

d E U k Y k , t  where 
Yk,z denotes the set {$E gk I y'is influenced by Z}, 
c is a (constant) normalizing factor, 

0 h,BSP = hBP(1C'- Zg) . 

Equation (3) computes the following: the value of fl") 
at each high resolution pixel 35 is updated according to all 
low resolution pixels y' which it influences. The contribution 
of the low resolution pixel a of an input image gk is the error 

(gk(y') - gp)(y')) multiplied by a factor of e. Therefore, 
strongly influenced low resolution pixels also strongly influ- 
ence flnt')(Z), while weakly influenced low resolution pix- 
els hardly influence fl"+')(Z). Since receptive fields of dif- 
ferent low resolution pixels overlap, f (n+l) (~) 's  new value is 
influenced by several low resolution pixels. All corrections 
generated by the various low resolution pixels are combined 
by taking their weighted average, using the coefficients of 
hBP as weights. 

It is important to bear in mind that the original high 
resolution frequencies may not always be fully restored. For 
example, if the blurring function is an ideal low pass filter, 
and its Fourier transform has zero values at high frequen- 
cies, it is obvious that the frequency components which 
have been filtered out cannot be restored. In such cases, 
there is more than one high resolution image which gives 
the same low resolution images after the imaging process. 
Therefore, there are several possible solutions, and the al- 
gorithm may either converge to  one of them, or oscillate 
among some of them. The choice of initial guess does not 
influence the performance of the algorithm (speed or sta- 
bility). It may, however, influence which of the possible 
solutions is reached first. A good choice of initial guess 
is the average of the low resolution images. The average 
image is computed by registering all the low resolution im- 
ages over a fixed finer grid. Each high-resolution pixel in 
the fine grid is taken to be the average of all the low resolu- 
tion pixels stacked above it.  Such an initial guess leads the 
algorithm to a smooth solution, which is usually a desired 
one. 

Another issue is the choice of hBp.  Unlike hPSF, which 
represents properties of the sensor, hBP can be chosen ar- 
bitrarily. A possible choice of h B p  is hBP = h P S F ,  but a 
closer observation of the mathematical analysis shows that 
more than one choice of hBp may lead to convergence. The 
choice of h B p  does, however, affect the characteristics of the 
solution reached when there are several possible solutions. 
hBP may therefore be utilized as an additional constraint, 
so that the solution reached is smooth, or has other desired 
properties. Additional considerations for the choice of hBP 
appear in Section 4. 

h B p  
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This super resolution algorithm performs well both on 
real and computer simulated images. Improvement in res- 
olution is clearly observed even when a very small num- 
ber of low resolution images are available. The algorithm 
converges rapidly (usually within less than 5 iterations), 
and is very stable. The complexity of the algorithm is low: 
O ( K N  min{M, log N }  ) operations per iteration, where N 
is the size of the high resolution image f, M is the size of 
the blurring kernel and K is the number of low resolution 
pictures. Since the number of iterations is very small, this 
is also a good estimate of the complexity of the complete 
algorithm. Proof of convergence at an exponential rate is 
given in [8] for the special (and simpler) case of deblurring. 
The algorithm has parallel characteristics: the contribu- 
tions (to be averaged) of the low resolution pixels to  the 
high resolution pixels, within a single iteration, may all be 
computed independently. Synchronization is needed only 
at the end of each iteration, when the values have to  be 
averaged to obtain the new value. 

Figure 2 shows the result of applying the algorithm 
to three low resolution images recorded by a scanner and 
translated relative to  each other. The sampling rate was 
doubled in both directions. The relative displacements were 
computed as described in Section 2.1, and the blur was 
estimated as described in Section 2.3 . 

4 Deblurring 
Restoration of degraded images when a model of the degra- 
dation process is given, is considered as an ill-conditioned 
problem [l, 2, 5 ,  7, 131. In this section deblurring of a sin- 
gle image is shown to  be a special case of super resolution, 
and convergence conditions of the algorithm with stability 
analysis are given for this case. Deblurring a single image 
is achieved by applying the algorithm to a single input im- 
age, without increasing the sampling rate. Equation (3) 
then reduces to  

Using convolutions, this can be rewritten as: 

(4) 

where 

* is the convolution operator. 

(hBP)’ = h A U X .  

When the image blur is expressed by: 

g = f * h P S F ,  ( 5 )  

the following theorems show that the iterative super resolu- 
tion scheme is an effective deblurring operator. Full proofs 
can be found in [8] .  

Figure 2: Super resolution from three input real images. 

a) One of three original images. 
b) Initial guess - average of the three input images after 
registration. 
c) Improved resolution image. 
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Figure 3: Deblurring a synthetically blurred image. 
a) Original image. 
b) Blurred image. 
c) Restored image. 

Theorem 4.1 Let H P S F  and H A U X  denote the Fourier 
transforms of hPSF and h A u X ,  respectively. If: 

C (6) v3 0 < H P S F ( 3 ) H A U X  (3) < 1 

then the iterations converge to the original image f . 
It is clear that condition (6) does not hold for fre- 

quencies 3 for which H P S F ( 3 )  = 0. Those frequencies are 
completely lost and cannot be restored by any method. For 
any other 3, however, hAUX and c may be chosen so that 
condition (6) is fulfilled (recall that we are dealing with a 
finite space), and the original frequency is fully restored. 
The behavior of frequencies 3 for which H P S F ( 3 )  = 0 will 
be examined later. 

Theorem 4.2 Given condition (S), the algorithm con- 
verges at an exponential ratet, regardless of the choice of 
initial guess f(') . 

One of the main benefits of the algorithm is in the 
freedom of choice of the auxiliary filter hAUX and the nor- 
malizing constant c, so that condition (6) holds for as many 
frequencies as possible, ensuring optimal conditions for con- 
vergence. A sensible choice of hAUX and c increases nu- 
rnerical stability. The further the term is 
from its boundary limits (0 and I) ,  the more accurate the 
restored frequency is, and the less sensitive it, is to noise 
and errors. Since the speed of convergence is accelerated as 
the term approaches 1, there is a tradeoff between stability 
and speed of convergence. 

It should be emphasized that even if condition (6) in 
Theorem 4.1 does not hold for all fiequencies 3, the proof 
still holds for the frequencies that fulfill this condition. 

Following is an examination of the behavior of the 
algorithm when condition (6) does not hold [8]. This 
happens only when H P S F ( 3 )  = 0, as in any other case 
H A U X ( 3 )  and c can be chosen so that condition (6) does 
hold. An arbitrary choice of H A U X ( 3 )  causes F(")(3) 
to diverge as n -+ 00. However, if H A U X ( 3 )  = 0, then 
V n  F(")(G) = F ( ' ) ( 3 ) ,  that is, the algorithm preserves the 
component of 3 in the initial guess r('). This is one of the 
reasons for using the average of the input images as the 
initial guess. 

H P S F ( J ) H A U X ( J )  

C 

t ie . ,  the norm of the error converges to zero faster than q " 
for some 0 < p < 1. 

Figure 4: Deblurring a real input image, with an arbi- 
trary image as an initial guess. 

a) Input image. 
b) An arbitrary image used as the initial guess. 
c) Deblurred image. 

A good choice of hAUX is usually not unique. In 
the common case of a real and symmetric h P S F ,  a pos- 
sible choice of hAUX is hAUX = h P S F .  This is a good 
choice, because for a real and symmetric h P S F ,  H P S F  is 
also a real function, therefore VG H P S F ( 3 ) H A U X ( 3 )  = 
( H p s " ( 3 ) ) 2  2 0. This means that for all non-zero fre- 
quency components, condition (6) holds if c is sufficiently 
large. Stability is achieved in this case because as H P S F ( 3 )  
tends to zero, so does H A U X ( 3 ) .  This prevents such fre- 
quency components from varying much in a few iterations, 
hence remaining similar to their initial value in f"). For 
the same reason, noise is not amplified by such frequency 
components. 

This method, therefore, has the advantage of being s t a  
ble even in neighborhoods of zero-valued frequency compo- 
nents of the blur. This compares well with other deblurring 
methods, such as inverse filtering, which tend to amplify 
noise. 

Figure 3 shows the result of deblurring an image which 
was blurred synthetically by convolving it with a 7 x 7 blur- 
ring kernel. 

Figure 4 shows the result of deblurring an image 
scanned by a flatbed scanner. The blurring function in this 
case was the measured point spread function of the scan- 
ner. The initial guess was some arbitrary image, to show 
the small effect of the initial guess on the result. 

5 Heuristic Improvements 
5.1 Fixing Stable Pixels 
To increase speed and stability of the algorithm, a high 
resolution pixel is fixed when i t  is assigned the same value 
(or nearly the same value) two successive iterations. This 
pixel will not be considered again in future iterations. 

This fixing process increases the speed of convergence, 
since at later iterations fewer pixels are examined. It also 
prevents harmful salt-and-pepper type of noise from con- 
taminating large surrounding areas. I t  is unlikely that a 
noisy pixel will be fixed since its gray level usually differs 
from those of its neighboring pixels. 

5.2 Noise Reduction 
Referring back to the updating scheme of Equation (3), 
the new value of a high resolution pixel in each iteration is 
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Figure 5: Super resolution from ten noisy images. 

a) One of the ten low-resolution images 
b) Initial guess - average of the low-resolution images 
after registration 
c) Improved resolution image 

computed by taking the average of all contributions of the 
various low resolution pixels. Taking an average in itself 
already handles additive noise. In order to  handle multi- 
plicative noise as well, contributions having extreme (high 
and low) values are eliminated before taking the average. 
Only contributions whose values are neither maximal nor 
minimal are averaged, eliminating both additive and multi- 
plicative noise. For such noise cleaning a reasonable number 
of low resolution images is needed. 

Figure 5 shows the result of applying the algorithm 
to ten low resolution images, contaminated by zero-mean 
gaussian noise of standard deviation 10. The sampling rate 
was doubled in each direction. 

6 Concluding Remarks 
Super resolution is shown to  be feasible for image sequences, 
when the relative displacements can be computed accu- 
rately, and with approximate knowledge of the imaging pro- 
cess. 

An iterative algorithm for computing super resolution 
has been presented. I t  was shown that when the algorithm 
is applied to  a single image without increasing the sampling 
rate, super resolution reduces to deblurring. 

The suggested algorithm performed well for both 
computer-simulated and real images, and has been shown, 
theoretically and practically, to  converge quickly. The al- 
gorithm can be executed in parallel for faster hardware im- 
plementation. 

Accurate knowledge of the relative displacements of 
scene regions is essential for using image sequences. In this 
paper we have assumed a simple uniform motion of trans- 
lation and rotation for the entire image, and implemented 
an accurate method far computing this displacement. This 
method, however. can also be applied to other types of mo- 
tion, such as perspective transformation, multiple motions 
in the image, etc. As long as the image can be divided 
into regions such that each region undergoes some uniform 
motion, resolution can be improved in the regions. 

All images used in this paper were digitized using uni- 
form sampling. This is, however, not necessary; the process 
can be applied to images sampled in any arbitrary non- 
uniform manner. Samples not on a uniform sampling grid 
can be accommodated, as well as blur which varies between 
sample locations. 
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