
EgoSampling: Fast-Forward and Stereo for Egocentric Videos

Yair Poleg
The Hebrew University

Jerusalem, Israel

Tavi Halperin
The Hebrew University

Jerusalem, Israel

Chetan Arora
IIIT

Delhi, India

Shmuel Peleg
The Hebrew University

Jerusalem, Israel

Abstract

While egocentric cameras like GoPro are gaining popu-
larity, the videos they capture are long, boring, and difficult
to watch from start to end. Fast forwarding (i.e. frame sam-
pling) is a natural choice for faster video browsing. How-
ever, this accentuates the shake caused by natural head mo-
tion, making the fast forwarded video useless.

We propose EgoSampling, an adaptive frame sampling
that gives more stable fast forwarded videos. Adap-
tive frame sampling is formulated as energy minimization,
whose optimal solution can be found in polynomial time.

In addition, egocentric video taken while walking suffers
from the left-right movement of the head as the body weight
shifts from one leg to another. We turn this drawback into a
feature: Stereo video can be created by sampling the frames
from the left most and right most head positions of each
step, forming approximate stereo-pairs.

1. Introduction
With the increasing popularity of GoPro [10] and the in-

troduction of Google Glass [9] the use of head worn ego-
centric cameras is on the rise. These cameras are typically
operated in a hands-free, always-on manner, allowing the
wearers to concentrate on their activities. While more and
more egocentric videos are being recorded, watching such
videos from start to end is difficult due to two aspects: (i)
The videos tend to be long and boring; (ii) Camera shake
induced by natural head motion further disturbs viewing.
These aspects call for automated tools to enable faster ac-
cess to the information in such videos. An exceptional tool
for this purpose is the “Hyperlapse” method recently pro-
posed by [15]. While our work was inspired by [15], we
take a different, lighter, approach to address this problem.

Fast forward is a natural choice for faster browsing of
egocentric videos. The speed factor depends on the cogni-
tive load a user is interested in taking. Naı̈ve fast forward
uses uniform sampling of frames, and the sampling den-
sity depends on the desired speed up factor. Adaptive fast
forward approaches [25] try to adjust the speed in differ-
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Figure 1. Frame sampling for Fast Forward. A view from above on
the camera path (the line) and the viewing directions of the frames
(the arrows) as the camera wearer walks forward during a couple
of seconds. (a) Uniform 5× frames sampling, shown with solid ar-
rows, gives output with significant changes in viewing directions.
(b) Our frame sampling, represented as solid arrows, prefers for-
ward looking frames at the cost of somewhat non uniform sam-
pling.

ent segments of the input video so as to equalize the cog-
nitive load. For example, sparser frame sampling giving
higher speed up is possible in stationary scenes, and denser
frame sampling giving lower speed ups is possible in dy-
namic scenes. In general, content aware techniques adjust
the frame sampling rate based upon the importance of the
content in the video. Typical importance measures include
scene motion, scene complexity, and saliency. None of
the aforementioned methods, however, can handle the chal-
lenges of egocentric videos, as we describe next.

Most egocentric videos suffer from substantial camera
shake due to natural head motion of the wearer. We bor-
row the terminology of [26] and note that when the cam-
era wearer is “stationary” (e.g, sitting or standing in place),
head motions are less frequent and pose no challenge to
traditional fast-forward and stabilization techniques. How-
ever, when the camera wearer is “in transit” (e.g, walking,
cycling, driving, etc), existing fast forward techniques end
up accentuating the shake in the video. We therefore focus
on handling these cases, leaving the simpler cases of a sta-
tionary camera wearer for standard methods. We use the
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Figure 2. Representative frames from the fast forward results on ‘Bike2’ sequence [14]. The camera wearer rides a bike and prepares to
cross the road. Top row: uniform sampling of the input sequence leads to a very shaky output as the camera wearer turns his head sharply
to the left and right before crossing the road. Bottom row: EgoSampling prefers forward looking frames and therefore samples the frames
non-uniformly so as to remove the sharp head motions. The stabilization can be visually compared by focusing on the change in position of
the building (circled yellow) appearing in the scene. The building does not even show up in two frames of the uniform sampling approach,
indicating the extreme shake. Note that the fast forward sequence produced by EgoSampling can be post-processed by traditional video
stabilization techniques to further improve the stabilization.

method of [26] to identify with high probability portions of
the video in which the camera wearer is not “stationary”,
and operate only on these. Other methods, such as [13, 22]
can also be used to identify a stationary camera wearer.

We propose to model frame sampling as an energy min-
imization problem. A video is represented as a directed a-
cyclic graph whose nodes correspond to input video frames.
The weight of an edge between nodes, e.g. between frame t
and frame t+k, represents a cost for the transition from t to
t+ k. For fast forward, the cost represents how “stable” the
output video will be if frame t is followed by frame t + k
in the output video. This can also be viewed as introducing
a bias favoring a smoother camera path. The weight will
additionally indicate how suitable k is to the desired play-
back speed. In this formulation, the problem of generating
a stable fast forwarded video becomes equivalent to that of
finding a shortest path in a graph. We keep all edge weights
non-negative and note that there are numerous, polynomial
time, optimal inference algorithms available for finding a
shortest path in such graphs. We show that sequences pro-
duced with our method are more stable and easier to watch
compared to traditional fast forward methods.

An interesting phenomenon of a walking person is the
shifting of body weight from one leg to the other leg, caus-
ing periodic head motion from left to right and back. Given
an egocentric video taken by a walking person, sampling
frames from the left most and right most head positions
gives approximate stereo-pairs. This enables generation of
a stereo video from a monocular input video.

The contributions of this papers are: (i) A novel and
lightweight approach for creating fast forward videos for
egocentric videos. (ii) A method to create stereo sequences

from monocular egocentric video.
The rest of this paper is organized as follows. We sur-

vey related works in Section 2. Proposed frame sampling
method for fast forward and problem formulation are pre-
sented in Sections 3 and 4 respectively. In Section 5 we de-
scribe our method for creating perceptual stereo sequences.
Experiments and user study results are given in Section 6.
We conclude in Section 7.

2. Related Work
Video Summarization: Video Summarization methods
sample the input video for salient events to create a concise
output that captures the essence of the input video. This
field has seen many new papers in the recent years, but
only a handful address the specific challenges of summa-
rizing egocentric videos. In [16, 29], important keyframes
are sampled from the input video to create a story-board
summarizing the input video. In [22], subshots that are re-
lated to the same “story” are sampled to produce a “story-
driven” summary. Such video summarization can be seen
as an extreme adaptive fast forward, where some parts are
completely removed while other parts are played at original
speed. These techniques are required to have some strategy
for determining the importance or relevance of each video
segment, as segments removed from summary are not avail-
able for browsing. As long as automatic methods are not en-
dowed with human intelligence, fast forward gives a person
the ability to survey all parts of the video.

Video Stabilization: There are two main approaches for
video stabilization. One approach uses 3D methods to re-



construct a smooth camera path [17, 19]. Another approach
avoids 3D, and uses only 2D motion models followed by
non-rigid warps [11, 18, 20, 21, 8]. A naı̈ve fast forward
approach would be to apply video stabilization algorithms
before or after uniform frame sampling. As noted by [15]
also, stabilizing egocentric video doesn’t produce satisfy-
ing results. This can be attributed to the fact that uniform
sampling, irrespective of whether done before or after the
stabilization, is not able to remove outlier frames, e.g. the
frames when camera wearer looks at his shoe for a second
while walking in general.

An alternative approach that was evaluated in [15],
termed “coarse-to-fine stabilization”, stabilizes the input
video and then prunes frames from the stabilized video a bit.
This process is repeated until the desired playback speed is
achieved. Being a uniform sampling approach, this method
does not avoid outlier frames. In addition, it introduces sig-
nificant distortion to the output as a result of repeated appli-
cation of a stabilization algorithm.

EgoSampling differs from traditional fast forward as
well as traditional video stabilization. We attempt to adjust
frame sampling in order to produce a stable-as-possible fast
forward sequence. Rather than stabilizing outlier frames,
we prefer to skip them. While traditional stabilization algo-
rithms must make compromises (in terms of camera motion
and crop window) in order to deal with every outlier frame,
we have the benefit of choosing which frames to include in
the output. Following our frame sampling, traditional video
stabilization algorithms [11, 18, 20, 21, 8] can be applied to
the output of EgoSampling to further stabilize the results.

Hyperlapse: A recent work [15], dedicated to egocentric
videos, proposed to use a combination of 3D scene recon-
struction and image based rendering techniques to produce
a completely new video sequence, in which the camera path
is perfectly smooth and broadly follows the original path.
The results of Hyperlapse are impressive. However, the
scene reconstruction and image based rendering methods
are not guaranteed to work for many egocentric videos, and
the computation costs involved are very high. Hyperlapse
may therefore be less practical for day-long videos which
need to be processed at home. Unlike Hyperlapse, EgoSam-
pling uses only raw frames sampled from the original video.

3. Proposed Frame Sampling

Most egocentric cameras are usually worn on the head or
attached to eyeglasses. While this gives an ideal first person
view, it also leads to significant shaking of the camera due to
the wearer’s head motion. Camera Shaking is higher when
the person is “in transit” (e.g. walking, cycling, driving,
etc.). In spite of the shaky original video, we would prefer
for consecutive output frames in the fast forward video to

have similar viewing directions, almost as if they were cap-
tured by a camera moving forward on rails. In this paper
we propose a frame sampling technique, which selectively
picks frames with similar viewing directions, resulting in a
stabilized fast forward egocentric video. See Fig. 1 for a
schematic example.

Head Motion Prior As noted by [26, 13, 16, 27], the
camera shake in an egocentric video, measured as opti-
cal flow between two consecutive frames, is far from be-
ing random. It contains enough information to recognize
the camera wearer’s activity. Another observation made
in [26] is that when “in transit”, the mean (over time) of
the instantaneous optical flow is always radially away from
the Focus of Expansion (FOE). The interpretation is sim-
ple: when “in transit” (e.g., walking/cycling/driving etc),
our head might be moving instantaneously in all directions
(left/right/up/down), but the physical transition between the
different locations is done through the forward looking di-
rection (i.e. we look forward and move forward). This mo-
tivates us to use a forward orientation sampling prior. When
sampling frames for fast forward, we prefer frames looking
to the direction in which the camera is translating.

Computation of Motion Direction (Epipole) Given N
video frames, we would like to find the motion direction
(Epipolar point) between all pairs of frames, It and It+k,
where k ∈ [1, τ ], and τ is the maximum allowed frame
skip. Under the assumption that the camera is always trans-
lating (when the camera wearer is “in transit”), the displace-
ment direction between It and It+k can be estimated from
the fundamental matrix Ft,t+k [12]. Frame sampling will
be biased towards selecting forward looking frames, where
the epipole is closest to the center of the image. Recent
V-SLAM approaches such as [5, 7] provide camera ego-
motion estimation and localization in real-time. However,
these methods failed on our dataset after a few hundreds
frames. We decided to stick with robust 2D motion models.

Estimation of Motion Direction (FOE) We found that
the fundamental matrix computation can fail frequently
when k (temporal separation between the frame pair) grows
larger. Whenever the fundamental matrix computation
breaks, we estimate the direction of motion from the FOE
of the optical flow. We do not compute the FOE from the
instantaneous flow, but from integrated optical flow as sug-
gested in [26] and computed as follows: (i) We first com-
pute the sparse optical flow between all consecutive frames
from frame t to frame t + k. Let the optical flow between
frames t and t + 1 be denoted by gt(x, y). (ii) For each
flow location (x, y), we average all optical flow vectors
at that location from all consecutive frames. G(x, y) =
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Figure 3. We formulate the joint fast forward and video stabiliza-
tion problem as finding a shortest path in a graph constructed as
shown. There is a node corresponding to each frame. The edges
between a pair of frames (i, j) indicate the penalty for including
a frame j immediately after frame i in the output (please refer
to the text for details on the edge weights). The edges between
source/sink and the graph nodes allow to skip frames from start
and end. The frames corresponding to nodes along the shortest
path from source to sink are included in the output video.
1
k

∑t+k−1
i=t gi(x, y). The FOE is computed from G accord-

ing to [28], and is used as an estimate of the direction of
motion.

The temporal average of optical flow gives a more ac-
curate FOE since the direction of translation is relatively
constant, but the head rotation goes to all directions, back
and forth. Averaging the optical flow will tend to cancel
the rotational components, and leave the translational com-
ponents. In this case the FOE is a good estimate for the
direction of motion. For a deeper analysis of temporally
integrated optical flow see “Pixel Profiles” in [21].

Optical Flow Computation Most available algorithms
for dense optical flow failed for our purposes, but the very
sparse flow proposed in [26] for egocentric videos worked
relatively well. The fifty optical flow vectors were robust to
compute, while allowing to find the FOE quite accurately.

4. Problem Formulation and Inference
We model the joint fast forward and stabilization of ego-

centric video as an energy minimization problem. We repre-
sent the input video as a graph with a node corresponding to
every frame in the video. There are weighted edges between
every pair of graph nodes, i and j, with weight proportional
to our preference for including frame j right after i in the
output video. There are three components in this weight:

1. Shakiness Cost (Si,j): This term prefers forward look-
ing frames. The cost is proportional to the distance of
the computed motion direction (Epipole or FOE) from
the center of the image.

2. Velocity Cost (Vi,j): This term controls the playback
speed of the output video. The desired speed is given
by the desired magnitude of the optical flow, Kflow,
between two consecutive output frames. This opti-
cal flow is estimated as follows: (i) We first compute

the sparse optical flow between all consecutive frames
from frame i to frame j. Let the optical flow be-
tween frames t and t + 1 be gt(x, y). (ii) For each
flow location (x, y), we sum all optical flow vectors at
that location from all consecutive frames. G(x, y) =∑j−1

t=i gt(x, y). (iii) The flow between frames i and j
is then estimated as the average magnitude of all the
flow vectors G(x, y). The closer the magnitude is to
Kflow, the lower is the velocity cost.

The velocity term samples more densely periods with
fast camera motion compared to periods with slower
motion, e.g. it will prefer to skip stationary periods,
such as when waiting at a red light. The term addi-
tionally brings in the benefit of content aware fast for-
warding. When the background is close to the wearer,
the scene changes faster compared to when the back-
ground is far away. The velocity term reduces the play-
back speed when the background is close and increases
it when the background is far away.

3. Appearance Cost (Ci,j): This is the Earth Movers Dis-
tance (EMD) [24] between the color histograms of
frames i and j. The role of this term is to prevent large
visual changes between frames. A quick rotation of the
head or dominant moving objects in the scene can con-
fuse the FOE or epipole computation. The terms acts
as an anchor in such cases, preventing the algorithm
from skipping a large number of frames.

The overall weight of the edge between nodes (frames) i
and j is given by:

Wi,j = α · Si,j + β · Vi,j + γ · Ci,j , (1)

where α, β and γ represent the relative importance of vari-
ous costs in the overall edge weight.

With the problem formulated as above, sampling frames
for stable fast forward is done by finding a shortest path
in the graph. We add two auxiliary nodes, a source and a
sink in the graph to allow skipping some frames from start
or end. We add zero weight edges from start node to first
Dstart frames and from last Dend nodes to sink, to allow
such skip. We then use Dijkstra’s algorithm [4] to compute
the shortest path between source and sink. The algorithm
does the optimal inference in time polynomial in the number
of nodes (frames). Fig. 3 shows a schematic illustration of
the proposed formulation.

We note that there are content aware fast forward and
other general video summarization techniques which also
measure importance of a particular frame being included
in the output video, e.g. based upon visible faces or other
objects. In our implementation we have not used any bias
for choosing a particular frame in the output video based
upon such a relevance measure. However, the same could
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Figure 4. Comparative results for fast forward from naı̈ve uniform sampling (first row), EgoSampling using first order formulation (second
row) and using second order formulation (third row). Note the stability in the sampled frames as seen from the tower visible far away
(circled yellow). The first order formulation leads to a more stable fast forward output compared to naı̈ve uniform sampling. The second
order formulation produces even better results in terms of visual stability.
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Figure 5. The graph formulation, as described in Fig. 3, produces
an output which has almost forward looking direction. How-
ever, there may still be large changes in the epipole locations be-
tween two consecutive frame transitions, causing jitter in the out-
put video. To overcome this we add a second order smoothness
term based on triplets of output frames. Now the nodes correspond
to pair of frames, instead of single frame in first order formulation
described earlier. There are edges between frame pairs (i, j) and
(k, l), if j = k. The edge reflects the penalty for including frame
triplet (i, k, l) in the output. Edges from source and sink to graph
nodes (not shown in the figure) are added in the same way as in
first order formulation to allow skipping frames from start and end.

have been included easily. For example, if the penalty of
including a frame, i, in the output video is δi, the weights of
all the incoming (or outgoing, but not both) edges to node i
may be increased by δi.

4.1. Second Order Smoothness

The formulation described in the previous section prefers
to select forward looking frames, where the epipole is clos-
est to the center of the image. With the proposed formu-
lation, it may so happen that the epipoles of the selected
frames are close to the image center but on the opposite
sides, leading to a jitter in the output video. In this section
we introduce an additional cost element: stability of the lo-
cation of the epipole. We prefer to sample frames with min-
imal variation of the epipole location.

To compute this cost, nodes now represent two frames,

as can be seen in Fig. 5. The weights on the edges depend
on the change in epipole location between one image pair
to the successive image pair. Consider three frames It1 , It2
and It3 . Assume the epipole between Iti and Itj is at pixel
(xij , yij). The second order cost of the triplet (graph edge)
(It1 , It2 , It3), is proportional to ‖(x23 − x12, y23 − y12)‖.
This is the difference between the epiople location com-
puted from frames It1 and It2 , and the epipole location
computed from frames It2 and It3 .

This second order cost is added to the previously com-
puted shakiness cost, which is proportional to the distance
from the origin ‖(x23, y23)‖. The graph with the second or-
der smoothness term has all edge weights non-negative and
the running-time to find optimal solution to shortest path is
linear in the number of nodes and edges, i.e. O(nτ2). In
practice, with τ = 100, the optimal path was found in all
examples in less than 30 seconds. Fig. 4 shows results ob-
tained from both first order and second order formulations.

As noted for the first order formulation, we do not use
importance measure for a particular frame being added in
the output in our implementation. To add such, say for
frame i, the weights of all incoming (or outgoing but not
both) edges to all nodes (i, j) may be increased by δi, where
δi is the penalty for including frame i in the output video.

5. Turning Egocentric Video to Stereo
When walking, the head moves left and right as the body

shifts its weight from the left leg to the right leg and back.
Pictures taken during the shift of the head to the left and to
the right can be used to generate stereo egocentric video.
For this purpose we would like to generate two stabilized
videos: The left video will sample frames taken when the
head moved to the left, and the right video will sample
frames taken when the head moved to the right. Fig. 6
gives the schematic approach for generating stereo egocen-
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Figure 6. Frame sampling for Stereo: A view from above for the
camera path (the line) and the viewing directions of the frames
(numbered arrows). The camera wearer walks forward for a couple
of seconds. We pick the frames in which the wearer’s head is in the
right most position (frames 1,6,10) and left most position (frames
4,8,12) to form stereo pairs. Frame pairs (1,4), (6,8) and (10,12)
form the output stereo video.

Figure 7. Two stereo results obtained from our method. The out-
put is shown as anaglyph composite. Please use cyan and red an-
glyph glasses and zoom to 800% for best view. Readers without
anaglyph glasses may note the observed disparity evident from red
separation at various pixels. There is higher disparity and larger
red separation on the objects near to observer. Stereo video output
for these examples are available in the project page1.

tric videos.
For generating the stereo streams we need to determine

the head location. We found the following to work well:
(i) Average all optical flow vectors in each frame, and keep
one scalar describing the average x-shift for that frame. (ii)
Compute for each frame the accumulated x-shift of all pre-
ceding frames starting from the first frame. The curve of
the accumulated x-shift is very similar to the camera path
shown in Fig. 6. Frames near the left peaks are selected for
the left video, and frames near the right peaks are selected
for the right video.

In perfect stereo pairs the displacement between the two
images is a pure sideways translation. In our case we also
have forward motion between the two views. The forward
motion can disturb stereo perception for objects which are
too close, but for objects farther away stereo output pro-
duced from the proposed scheme looks good. Fig. 7 shows
frames from a stereo video generated using proposed frame-
work.

6. Experiments
In this section we give implementation details and show

the results for fast forward as well as stereo. We use pub-
licly available sequences [14, 1, 2, 6] as well as our own

Name Src Resolution Camera
Num

Frames
Lens

Correction

Walking1 [14] 1280x960 Hero2 17249 3

Walking2 [14] 1280x720 Hero 6900

Walking3 [26] 1920x1080 Hero3 8001

Driving [2] 1280x720 Hero2 10200

Bike1 [14] 1280x960 Hero3 10786 3

Bike2 [14] 1280x960 Hero3 7049 3

Bike3 [14] 1280x960 Hero3 23700 3

Running [1] 1280x720 Hero3+ 12900

Table 1. Sequences used for the fast forward algorithm evalua-
tion. All sequences were shot in 30fps, except ‘Running1’ which
is 24fps and ‘Walking3’ which is 15fps.

videos (for the stereo only) for the demonstration. We used
a modified (faster) implementation of [26] for the LK [23]
optical flow estimation. We use the code and calibration
details given by [15] to correct for lens distortion in their
sequences. Feature point extraction and fundamental ma-
trix recovery is performed using VisualSFM [3], with GPU
support. The rest of the implementation (FOE estimation,
energy terms and shortest path etc.) is in Matlab. All the
experiments have been conducted on a standard desktop PC.

6.1. Fast Forward

We show results for EgoSampling on 8 publicly avail-
able sequences. The details of the sequences are given in
Table 1. For the 4 sequences for which we have camera cal-
ibration information (marked with checks in the ‘Lens Cor-
rection’ column), we estimated the motion direction based
on epipolar geometry. We used the FOE estimation method
as a fallback when we could not recover the fundamental
matrix. For this set of experiments we fix the following
weights: α = 1000, β = 200 and γ = 3. We further
penalize the use of estimated FOE instead of the epipole
with a constant factor c = 4. In case camera calibration is
not available, we used the FOE estimation method only and
changed α = 3 and β = 10. For all the experiments, we
fixed τ = 100 (maximum allowed skip). We set the source
and sink skip to Dstart = Dend = 120 to allow more flexi-
bility. We set the desired speed up factor to 10× by setting
Kflow to be 10 times the average optical flow magnitude of
the sequence. We show representative frames from the out-
put for one such experiment in Fig.4. Output videos from
other experiments are given in the supplementary material1.

Running times The advantage of the proposed approach
is in its simplicity, robustness and efficiency. This makes it
practical for long unstructured egocentric video. We present
the coarse running time for the major steps in our algo-

1http://www.vision.huji.ac.il/egosampling/



rithm below. The time is estimated on a standard Desk-
top PC, based on the implementation details given above.
Sparse optical flow estimation (as in [26]) takes 150 mil-
liseconds per frame. Estimating F-Mat (including feature
detection and matching) between frame It and It+k where
k ∈ [1, 100] takes 450 milliseconds per input frame It.
Calculating second-order costs takes 125 milliseconds per
frame. This amounts to total of 725 milliseconds of process-
ing per input frame. Solving for the shortest path, which
is done once per sequence, takes up to 30 seconds for the
longest sequence in our dataset (≈ 24K frames). In all,
running time is more than an order of magnitude faster than
[15].

User Study We compare the results of EgoSampling, first
and second order smoothness formulations, with naı̈ve fast
forward with 10× speedup, implemented by sampling the
input video uniformly. For EgoSampling the speed is not di-
rectly controlled but is targeted for 10× speedup by setting
Kflow to be 10 times the average optical flow magnitude of
the sequence.

We conducted a user study to compare our results with
the baseline methods. We sampled short clips (5-10 sec-
onds each) from the output of the three methods at hand.
We made sure the clips start and end at the same geographic
location. We showed each of the 35 subjects several pairs
of clips, before stabilization, chosen at random. We asked
the subjects to state which of the clips is better in terms of
stability and continuity. The majority (75%) of the subjects
preferred the output of EgoSampling with first-order shake-
ness term over the naı̈ve baseline. On top of that, 68% pre-
ferred the output of EgoSampling using second-order shak-
eness term over the output using first-order shakeness term.

To evaluate the effect of video stabilization on the
EgoSampling output, we tested three commercial video sta-
bilization tools: (i) Adobe Warp Stabilizer (ii) Deshaker
2 (iii) Youtube’s Video stabilizer. We have found that
Youtube’s stabilizer gives the best results on challenging
fast forward videos 3. We stabilized the output clips us-
ing Youtube’s stabilizer and asked our 35 subjects to repeat
process described above. Again, the subjects favored the
output of EgoSampling.

Quantitative Evaluation We quantify the performance
of EgoSampling using the following measures. We mea-
sure the deviation of the output from the desired speedup.
We found that measuring the speedup by taking the ratio
between the number of input and output frames is mislead-
ing, because one of the features EgoSampling is to take

2http://www.guthspot.se/video/deshaker.htm
3We attribute this to the fact that Youtube’s stabilizer does not depend

upon long feature trajectories, which are scarce in sub-sampled video as
ours.

Name
Input

Frames
Output
Frames

Median
Skip

Improvement over
Naı̈ve 10×

Walking1 17249 931 17 283%
Walking2 6900 284 13 88%
Walking3 8001 956 4 56%
Driving 10200 188 48 −7%
Bike1 10786 378 13 235%
Bike2 7049 343 14 126%
Bike3 23700 1255 12 66%
Running 12900 1251 8 200%

Table 2. Fast forward results with desired speedup of factor 10 us-
ing second-order smoothness. We evaluate the improvement as de-
gree of epipole smoothness in the output video (column 5). Please
refer to text for details on how we quantify smoothness. The pro-
posed method gives huge improvement over naı̈ve fast forward in
all but one test sequence (‘Driving’), see Fig. 8 for details. Note
that one of the weaknesses of the proposed method is lack of direct
control over speedup factor. Though the desired speedup factor is
10, the actual frame skip (column 4) differs a lot from target due
to conflicting constraint posed by stabilization.

large skips when the magnitude of optical flow is rather low.
We therefore measure the effective speedup as the median
frame skip.

Additional measure is the reduction in epipole jitter be-
tween consecutive output frames (or FOE if F-Matrix can-
not be estimated). We differentiate the locations of the
epipole (temporally). The mean magnitude of the derivative
gives us the amount of jitter between consecutive frames in
the output. We measure the jitter for our method as well for
naive 10× uniform sampling and calculate the percentage
improvement in jitter over competition.

Table 2 shows the quantitative results for frame skip and
epipole smoothness. There is a huge improvement in jit-
ter by our algorithm. We note that the standard method to
quantify video stabilization algorithms is to measure crop
and distortion ratios. However since we jointly model fast
forward and stabilization such measures are not applicable.
The other method could have been to post process the out-
put video with a standard video stabilization algorithm and
measure these factors. Better measures might indicate bet-
ter input to stabilization or better output from preceding
sampling. However, most stabilization algorithms rely on
trajectories and fail on resampled video with large view dif-
ference. The only successful algorithm was Youtube’s sta-
bilizer but it did not give us these measures.

Limitations One notable difference between EgoSam-
pling and traditional fast forward methods is that the num-
ber of output frames is not fixed. To adjust the effective
speedup, the user can tune the velocity term by setting dif-
ferent values to Kflow. It should be noted, however, that
not all speedup factors are possible without compromising



Figure 8. A failure case for the proposed method. Two sample
frames from the sequence. Note that the frame to frame optical
flow computed for this sequence is misleading - most of the field
of view is either far away (infinity) or inside the car. In both cases,
its near zero. However, since the driver shakes his head every
few seconds, the average optical flow magnitude is relatively high.
The velocity term causes us to skip many frames until the desired
Kflow is met, causing large frame skips in the output video. Re-
stricting the maximum frame skip by setting τ to a small value
leads to arbitrary frames being chosen looking sideways, causing
shake in the output video.

Name Resolution Camera
Input

Frames
Stereo Pairs
Extracted

Walking1 1280x960 Hero2 330 20
Walking4 1920x1080 Hero3 2870 116
Walking5 1920x1080 Hero3 1301 45

Table 3. Sequences used for stereo evaluation. The sequence
‘Walking1’ was shot by [14]. The other two were shot by us.

the stability of the output. For example, consider a camera
that toggles between looking straight and looking to the left
every 10 frames. Clearly, any speedup factor that is not a
multiple of 10 will introduce shake to the output. The al-
gorithm chooses an optimal speedup factor which balances
between the desired speedup and what can be achieved in
practice on the specific input. Sequence ‘Driving’ (Figure
8) presents an interesting failure case.

Another limitation of EgoSampling is to handle long pe-
riods in which the camera wearer is static, hence, the camera
is not translating. In these cases, both the fundamental ma-
trix and the FOE estimations can become unstable, leading
to wrong cost assignments (low penalty instead of high) to
graph edges. The appearance and velocity terms are more
robust and help reduce the number of outlier (shaky) frames
in the output.

6.2. Stereo

Table 3 gives the description of some of the sequences
we experimented with for generating stereo video from a
monocular egocentric camera. We use publicly available
[14] as well as sequences we shot ourselves. Fig. 7 shows
some stereo frames generated by our algorithm.

Registration failure and presence of moving objects pose
a significant challenge to the proposed stereo generation
framework. Objects present very close to the wearer also
disturb the stereo perception. Fig. 9 shows one such failure
instance where the disparity perception has been wrongly

Figure 9. Stereo failure case. The proposed framework is chal-
lenged by the presence of moving objects and registration fail-
ures. The disparity perception is presented incorrectly in the ex-
ample shown because of registration failure. The image shows
the anaglyph composition. Best viewed with red-cyan anaglyph
glasses at a zoom level of 800%

computed because of multiple registration failures.

7. Conclusion
We propose a novel frame sampling technique to pro-

duce stable fast forward egocentric videos. Instead of the
demanding task of 3D reconstruction and rendering used
by the best existing methods, we rely on simple computa-
tion of the epipole or the FOE. The proposed framework is
very efficient, which makes it practical for long egocentric
videos. Because of its reliance on simple optical flow, the
method can potentially handle difficult egocentric videos,
where methods requiring 3D reconstruction may not be re-
liable.

We have also presented an approach to use the head
motion for generation of stereo pairs. This turns a nuisance
into a feature.
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