
1

EgoSampling: Wide View Hyperlapse from
Single and Multiple Egocentric Videos

Tavi Halperin Yair Poleg Chetan Arora Shmuel Peleg

Abstract—The possibility of sharing one’s point of view makes use of wearable cameras compelling. These videos are often long,
boring and coupled with extreme shake as the camera is worn on a moving person. Fast forwarding (i.e. frame sampling) is a natural
choice for faster video browsing. However, this accentuates the shake caused by natural head motion in an egocentric video, making
the fast forwarded video useless. We propose EgoSampling, an adaptive frame sampling that gives more stable, fast forwarded,
hyperlapse videos. Adaptive frame sampling is formulated as energy minimization, whose optimal solution can be found in polynomial
time. We further turn the camera shake from a drawback into a feature, enabling the increase of the field-of-view. This is obtained when
each output frame is mosaiced from several input frames. Stitching multiple frames also enables the generation of a single hyperlapse
video from multiple egocentric videos, allowing even faster video consumption.

F

1 INTRODUCTION

WHILE the use of egocentric cameras is on the rise,
watching raw egocentric videos is awkward. These

videos, captured in an ‘always-on’ mode, tend to be long
and boring. Video summarization [1], [2], [3], temporal seg-
mentation [4], [5] and action recognition [6], [7] methods can
help consume and navigate through large amounts of ego-
centric video. However, these algorithms must make strong
assumptions in order to work properly (e.g. faces are more
important than unidentified blurred images). The informa-
tion produced by these algorithms helps the user skip most
of the input video. Yet, the only way to watch a video from
start to end, faster and without making strong assumptions,
is to play it in a fast-forward manner. However, the natural
camera shake gets amplified in fast-forward playing (i.e.
frame sampling). An exceptional tool for generating stable
fast forward video is the recently proposed “Hyperlapse”
method [8]. While our work was inspired by [8], we take a
different, lighter, approach to address this problem.

Fast forward is a natural choice for faster browsing
of egocentric videos. The speed factor depends on the
cognitive load a user is interested in taking. Naı̈ve fast
forward uses uniform sampling of frames, and the sampling
density depends on the desired speed up factor. Adaptive
fast forward approaches [9] try to adjust the speed in
different segments of the input video so as to equalize
the cognitive load. For example, sparser frame sampling
giving higher speed up is possible in stationary scenes, and
denser frame sampling giving lower speed ups is possible
in dynamic scenes. In general, content aware techniques
adjust the frame sampling rate based upon the importance
of the content in the video. Typical importance measures
include scene motion, scene complexity, and saliency. None
of the aforementioned methods, however, can handle the
challenges of egocentric videos, as we describe next.

Most egocentric videos suffer from substantial camera

This research was supported by Israel Ministry of Science, by Israel Science
Foundation, by DFG, by Intel ICRI-CI, and by Google.
Tavi Halperin, Yair Poleg and Shmuel Peleg are with The Hebrew University
of Jerusalem, Israel.
Chetan Arora is with IIIT Delhi, India.

Walking Direction

(a)

Walking Direction

(b)

Fig. 1. Frame sampling for Fast Forward. A view from above on the
camera path (the line) and the viewing directions of the frames (the
arrows) as the camera wearer walks forward during a couple of seconds.
(a) Uniform 5× frames sampling, shown with solid arrows, gives output
with significant changes in viewing directions. (b) Our frame sampling,
represented as solid arrows, prefers forward looking frames at the cost
of somewhat non uniform sampling.

shake due to head motion of the wearer. We borrow the
terminology of [4] and note that when the camera wearer is
“stationary” (e.g, sitting or standing in place), head motions
are less frequent and pose no challenge to traditional fast-
forward and stabilization techniques. However, when the
camera wearer is “in transit” (e.g, walking, cycling, driving,
etc), existing fast forward techniques end up accentuating
the shake in the video. We, therefore, focus on handling
these cases, leaving the simpler cases of a stationary camera
wearer for standard methods. We use the method of [4] to
identify with high probability portions of the video in which
the camera wearer is not “stationary”, and operate only on
these. Other methods, such as [1], [6] can also be used to
identify a stationary camera wearer.

Several methods were recently proposed to generate
stabilized fast forward videos from shaky egocentric videos
[8], [10], [11]. in [8] it was proposed to generate hyperlapse
egocentric videos by 3D reconstruction of the input camera

ar
X

iv
:1

60
4.

07
74

1v
1

 [
cs

.C
V

]
 2

6
A

pr
 2

01
6

2

Fig. 2. An output frame produced by the proposed Panoramic Hyper-
lapse. We collect frames looking into different directions from the video
and create mosaics around each frame in the video. These mosaics
are then sampled to meet playback speed and video stabilization re-
quirements. Apart from fast forwarded and stabilized, the resulting video
now also has wide field of view. The white lines mark the different
original frames. The proposed scheme turns the problem of camera
shake present in egocentric videos into a feature, as the shake helps
increasing the field of view.

path. A smoother camera path is calculated, and new frames
are rendered for this new path using the frames of the orig-
inal video. Generated video is very impressive, but it may
take hours to generate minutes of hyperlapse video. More
recent papers [10], [11] suggested to avoid 3D reconstruction
by smart sampling of the input frames. Frame selection is
biased in favor of forward looking frames, and frames that
might introduce shake are dropped.

We propose to model frame sampling as an energy min-
imization problem. A video is represented as a directed a-
cyclic graph whose nodes correspond to input video frames.
The weight of an edge between nodes, e.g. between frame t
and frame t+k, represents a cost for the transition from t to
t+ k. For fast forward, the cost represents how “stable” the
output video will be if frame t is followed by frame t + k
in the output video. This can also be viewed as introducing
a bias, favoring a smoother camera path. The weight addi-
tionally indicates how suitable k is to the desired playback
speed. In this formulation, the problem of generating a
stable fast forwarded video becomes equivalent to that of
finding a shortest path in a graph. We keep all edge weights
non-negative and note that there are numerous, polynomial
time, optimal inference algorithms available for finding a
shortest path in such graphs. The proposed frame sam-
pling approach, which we call EgoSampling, was initially
introduced in [11]. We show that sequences produced with
EgoSampling are more stable and easier to watch compared
to traditional fast forward methods.

Frame sampling approach like EgoSampling described
above, as well as the ones mentioned in [8], [10], drop
frames to give stabilized video. Dropped frames may view
valuable information. In addition, a stabilization post pro-
cess is commonly applied to the subset of selected frames,
a process which further reduces the field of view. We
propose an extension of EgoSampling, in which instead
of dropping unselected frames, these frames are used to
increase the field of view of the output video. We call the
proposed approach Panoramic Hyperlapse. Fig. 2 shows
a frame from an output Panoramic Hyperlapse generated

with our method. Panoramic Hyperlapse video is easier
to comprehend than [10] because of its increased field of
view. Panoramic Hyperlapse can also be extended to handle
multiple egocentric videos, such as recorded by a groups of
people walking together. Given a set of egocentric videos
captured at the same scene, Panoramic Hyperlapse collects
content from various such videos into its panoramic frames,
generating a stabilized panoramic video for the whole set.
The combination of multiple videos into a Panoramic Hy-
perlapse increases the browsing efficiency.

The contributions of this work are as follows: i) We
propose a new method to consume a video of an egocentric
camera. The generated wide field-of-view, stabilized, fast
forward output videos are easier to comprehend than only
stabilized or only fast forward videos. ii) We extend the
technique to consume multiple egocentric video streams by
collecting frames from such input streams taken by the same
or different camera, and create a video having larger field of
view, allowing users to watch more egocentric videos in less
time.

The original Hyperlapse paper [8] and our EgoSampling-
paper [11] have appeared Earlier. The paper [10] also uses
light weight frame sampling strategy as prescribed by us
in [11]. In the present work, we extend our EgoSampling
strategy to Panoramic Hyperlapse, allowing wide field of
view hyperlapse. Extension of our approach to multiple
input video scenario is also a novelty of the present work.

The rest of the paper is organized as follows. Relevant
related work in described in Section 2. The EgoSampling
framework is briefly described in in Section 3. In Section
4 we formulate the sampling framework, and in Sections 5
and 6 we introduce the generalized Panoramic Hyperlapse
for single and multiple videos, respectively. We report our
experiments in Section 7, and conclude in Section 8.

2 RELATED WORK

The related work to this paper can be broadly categorized
into four categories.

2.1 Video Summarization

Video Summarization methods scan the input video for
salient events, and create from these events a concise output
that captures the essence of the input video. This field has
many new publications, but only a handful address the
specific challenges of summarizing egocentric videos. In [2],
[13], important keyframes are sampled from the input video
to create a story-board summarization. In [1], subshots that
are related to the same “story” are sampled to produce a
“story-driven” summary. Such video summarization can be
seen as an extreme adaptive fast forward, where some parts
are completely removed while other parts are played at
original speed. These techniques require a strategy for deter-
mining the importance or relevance of each video segment,
as segments removed from summary are not available for
browsing. As long as automatic methods are not endowed
with human intelligence,

3

Time

Fig. 3. Representative frames from the fast forward results on ‘Bike2’ sequence [12]. The camera wearer rides a bike and prepares to cross the
road. Top row: uniform sampling of the input sequence leads to a very shaky output as the camera wearer turns his head sharply to the left and
right before crossing the road. Bottom row: EgoSampling prefers forward looking frames and therefore samples the frames non-uniformly so as to
remove the sharp head motions. The stabilization can be visually compared by focusing on the change in position of the building (circled yellow)
appearing in the scene. The building does not even show up in two frames of the uniform sampling approach, indicating the extreme shake. Note
that the fast forward sequence produced by EgoSampling can be post-processed by traditional video stabilization techniques to further improve the
stabilization.

2.2 Video Stabilization

There are two main approaches for video stabilization. One
approach uses 3D methods to reconstruct a smooth camera
path [14], [15]. Another approach avoids 3D, and uses
only 2D motion models followed by non-rigid warps [16],
[17], [18], [19], [20]. A naı̈ve fast forward approach would
be to apply video stabilization algorithms before or after
uniform frame sampling. As noted also by [8], stabilizing
egocentric video doesn’t produce satisfying results. This can
be attributed to the fact that uniform sampling, irrespective
of whether done before or after the stabilization, is not able
to remove outlier frames, e.g. the frames when the camera
wearer looks at their shoe for a second while walking.

An alternative approach that was evaluated in [8],
termed “coarse-to-fine stabilization”, stabilizes the input
video and then prunes frames from the stabilized video
a bit. This process is repeated until the desired playback
speed is achieved. Being a uniform sampling approach,
this method does not avoid outlier frames. In addition, it
introduces significant distortion to the output as a result of
repeated application of a stabilization algorithm.

EgoSampling differs from traditional fast forward as
well as traditional video stabilization. We attempt to ad-
just frame sampling in order to produce an as-stable-
as-possible fast forward sequence. Rather than stabilizing
outlier frames, we prefer to skip them. While traditional
stabilization algorithms must make compromises (in terms
of camera motion and crop window) in order to deal with
every outlier frame, we have the benefit of choosing which
frames to include in the output. Following our frame sam-
pling, traditional video stabilization algorithms [16], [17],
[18], [19], [20] can be applied to the output of EgoSampling
to further stabilize the results.

Traditional video stabilization methods aim to eliminate
camera shake by applying individual transformations and
cropping to each input frame, leading to a possibility of
important content getting removed to favor stable looking
output. In attempt to reduce the cropping size, Matsushita

et. al [21] suggest to perform inpainting of the video bound-
ary, based on information from previous and future frames.
Even the frame sampling approaches [8], [10] as well as
EgoSampling prefers to drop sideways looking frames. We
suggest Panoramic Hyperlapse to counter the shortcoming.
The technique, while generating stable fast forward videos,
also utilizes side-looking frames in order to increase the
field of view by creating panoramic output frames, thereby
minimizing the loss of content in the output video.

2.3 Hyperlapse
Kopf et al. [8] have suggested a pioneering hyperlapse
technique to generate stabilized egocentric videos using a
combination of 3D scene reconstruction and image based
rendering techniques. A new and smooth camera path is
computed for the output video, while remaining close to
the input trajectory. The results produced are impressive but
may be less practical because of the large computational re-
quirements. In addition, 3D recovery from egocentric video
may often fail. A similar paper to our EgoSampling ap-
proach, [10] avoids 3D reconstruction by posing hyperlapse
as a frame sampling problem, optimizing some objective
function. Similar to EgoSampling strategy, the objective is
to produce a stable fast forward output video by dropping
frames that introduce shake to the output video, while giv-
ing the desired playback speed. The formulation produces
stabilized fast forward egocentric video at a fraction of
the computational cost compared to [8], and can even be
performed in real time.

Sampling-based hyperlapse for either EgoSampling pro-
posed by us or by [10], bias the frame selection towards
forward looking views. This selection has two effects: (i) The
information available in the skipped frames, likely looking
sideways, is lost; (ii) The cropping which is part of the
subsequent stabilization step, further reduces the field of
view. We propose to extend the frame sampling strategy by
Panoramic Hyperlapse, using the information in the outlier
frames that were discarded by the frame sampling methods.

4

2.4 Multiple Input Videos
The hyperlapse techniques described earlier address only
a single egocentric video. For curating multiple non-
egocentric video streams, Jiang and Gu [22] suggested
spatial-temporal content-preserving warping for stitch-
ing multiple synchronized video streams into a single
panoramic video. Hoshen et. al [23] and Arev et. al [24] pro-
duce a single output stream from multiple egocentric videos
viewing the same scene. This is done by selecting only a
single input video, best representing each time period. The
criterion for selecting the one video to display is importance,
which require strong assumptions of what is interesting and
what is not.

Panoramic Hyperlapse, proposed in this paper, supports
multiple input videos, and fuses input frames from multiple
videos into a single output frame having a wide field of
view.

3 MOTION COMPUTATION

Most egocentric cameras are usually worn on the head.
While this gives an ideal first person view, it also leads to
significant shake of the camera due to the wearer’s head
motion. Camera Shake is stronger when the person is “in
transit” (e.g. walking, cycling, driving, etc.). In spite of
the shaky original video, we would prefer for consecutive
output frames in the fast forwarded video to have similar
viewing directions, almost as if they were captured by a
camera moving forward on rails. In this paper we propose a
frame sampling technique which selectively picks frames
with similar viewing directions, resulting in a stabilized
fast forward egocentric video. See Fig. 3 for a schematic
example.

3.1 Head Motion Prior
As noted by [2], [4], [6], [25], the camera shake in an
egocentric video, measured as optical flow between two
consecutive frames, is far from being random. It contains
enough information to recognize the camera wearer’s ac-
tivity. Another observation made in [4] is that when “in
transit”, the mean (over time) of the instantaneous optical
flow is always radially away from the Focus of Expansion
(FOE). The interpretation is simple: when “in transit”, our
head might be moving instantaneously in all directions
(left/right/up/down), but the physical transition between
the different locations is done through the forward looking
direction (i.e. we look forward and move forward). This
motivates us to use a forward orientation sampling prior.
When sampling frames for fast forward, we prefer frames
looking to the direction in which the camera is translating.

3.2 Computation of Motion Direction (Epipole)
Given N video frames, we would like to find the motion
direction (Epipolar point) between all pairs of frames, It and
It+k, where k ∈ [1, τ], and τ is the maximum allowed frame
skip. Under the assumption that the camera is always trans-
lating (when the camera wearer is “in transit”), the displace-
ment direction between It and It+k can be estimated from
the fundamental matrix Ft,t+k [26]. Frame sampling will
be biased towards selecting forward looking frames, where

source sink

time

≈
Fig. 4. We formulate the joint fast forward and video stabilization problem
as finding a shortest path in a graph constructed as shown. There is a
node corresponding to each frame. The edges between a pair of frames
(i, j) indicate the penalty for including a frame j immediately after frame
i in the output (please refer to the text for details on the edge weights).
The edges between the source/sink and the graph nodes allow to skip
frames from start and end. The frames corresponding to nodes along
the shortest path from the source to the sink are included in the output
video.

the epipole is closest to the center of the image. Recent V-
SLAM approaches such as [27], [28] provide camera ego-
motion estimation and localization in real-time. However,
these methods failed on our dataset after a few hundreds
frames. We decided to stick with robust 2D motion models.

3.3 Estimation of Motion Direction (FOE)
We found that the fundamental matrix computation can
fail frequently when k (temporal separation between the
frame pair) grows larger. Whenever the fundamental matrix
computation breaks, we estimate the direction of motion
from the FOE of the optical flow. We do not compute
the FOE from the instantaneous flow, but from integrated
optical flow as suggested in [4] and computed as follows:
(i) We first compute the sparse optical flow between all
consecutive frames from frame t to frame t + k. Let the
optical flow between frames t and t + 1 be denoted by
gt(x, y). (ii) For each flow location (x, y), we average all
optical flow vectors at that location from all consecutive
frames. G(x, y) = 1

k

∑t+k−1
i=t gi(x, y). The FOE is computed

from G according to [29], and is used as an estimate of the
direction of motion.

The temporal average of the optical flow gives a more
accurate FOE since the direction of translation is relatively
constant, but the head rotation goes to all directions, back
and forth. Averaging the optical flow will tend to cancel
the rotational components, and leave the translational com-
ponents. In this case the FOE is a good estimate for the
direction of motion. For a deeper analysis of temporally
integrated optical flow see “Pixel Profiles” in [19].

3.4 Optical Flow Computation
Most available algorithms for dense optical flow failed for
our purposes, but the sparse flow proposed in [4] for ego-
centric videos worked relatively well. The 50 optical flow
vectors were robust to compute, while allowing to find the
FOE quite accurately.

4 EGOSAMPLING FORMULATION

We model the joint fast forward and stabilization of egocen-
tric video as graph energy minimization.

5

N
aï

ve
 1

0
x

O
u

rs

(1
st

 O
rd

er
)

O
u

rs

(2
n

d
 O

rd
er

)

Fig. 5. Comparative results for fast forward from naı̈ve uniform sampling (first row), EgoSampling using first order formulation (second row) and
using second order formulation (third row). Note the stability in the sampled frames as seen from the tower visible far away (circled yellow). The
first order formulation leads to a more stable fast forward output compared to naı̈ve uniform sampling. The second order formulation produces even
better results in terms of visual stability.

4.1 Graph Representation

The input video is represented as a graph, with a node cor-
responding to each frame in the video. There are weighted
edges between every pair of graph nodes, i and j, with
weight proportional to our preference for including frame j
right after i in the output video. There are three components
in this weight:

1) Shakiness Cost (Si,j): This term prefers forward
looking frames. The cost is proportional to the dis-
tance of the computed motion direction (Epipole or
FOE) from the center of the image.

2) Velocity Cost (Vi,j): This term controls the playback
speed of the output video. The desired speed is
given by the desired magnitude of the optical flow,
Kflow, between two consecutive output frames.
This optical flow is estimated as follows: (i) We
first compute the sparse optical flow between all
consecutive frames from frame i to frame j. Let
the optical flow between frames t and t + 1 be
gt(x, y). (ii) For each flow location (x, y), we sum
all optical flow vectors at that location from all
consecutive frames. G(x, y) =

∑j−1
t=i gt(x, y). (iii)

The flow between frames i and j is then estimated
as the average magnitude of all the flow vectors
G(x, y). The closer the magnitude is to Kflow, the
lower is the velocity cost.
The velocity term samples more densely periods
with fast camera motion compared to periods with
slower motion, e.g. it will prefer to skip stationary
periods, such as when waiting at a red light. The
term additionally brings in the benefit of content
aware fast forwarding. When the background is
close to the wearer, the scene changes faster com-
pared to when the background is far away. The
velocity term reduces the playback speed when
the background is close and increases it when the
background is far away.

3) Appearance Cost (Ci,j): This is the Earth Movers
Distance (EMD) [30] between the color histograms
of frames i and j. The role of this term is to prevent

large visual changes between frames. A quick rota-
tion of the head or dominant moving objects in the
scene can confuse the FOE or epipole computation.
This term acts as an anchor in such cases, preventing
the algorithm from skipping a large number of
frames.

The overall weight of the edge between nodes (frames) i
and j is given by:

Wi,j = α · Si,j + β · Vi,j + γ · Ci,j , (1)

where α, β and γ represent the relative importance of
various costs in the overall edge weight.

With the problem formulated as above, sampling frames
for stable fast forward is done by finding a shortest path
in the graph. We add two auxiliary nodes, a source and a
sink in the graph to allow skipping some frames from start
or end. We add zero weight edges from start node to first
Dstart frames and from last Dend nodes to sink, to allow
such skip. We then use Dijkstra’s algorithm [31] to compute
the shortest path between source and sink. The algorithm
does the optimal inference in time polynomial in the number
of nodes (frames). Fig. 4 shows a schematic illustration of
the proposed formulation.

We note that there are content aware fast forward and
other general video summarization techniques which also
measure importance of a particular frame being included
in the output video, e.g. based upon visible faces or other
objects. In our implementation we have not used any bias
for choosing a particular frame in the output video based
upon such a relevance measure. However, the same could
have been included easily. For example, if the penalty of
including a frame, i, in the output video is δi, the weights of
all the incoming (or outgoing, but not both) edges to node i
may be increased by δi.

4.2 Second Order Smoothness
The formulation described in the previous section prefers to
select forward looking frames, where the epipole is closest
to the center of the image. With the proposed formulation, it
may so happen that the epipoles of the selected frames are

6

𝐼𝑡+𝜏, 𝐼𝑡+𝜏+1

𝐼𝑡+𝜏, 𝐼𝑡+𝜏+2

…

𝐼𝑡+𝜏, 𝐼𝑡+𝜏+𝜏

𝐼𝑡+2, 𝐼𝑡+2+1

𝐼𝑡+2, 𝐼𝑡+2+2

…

𝐼𝑡+2, 𝐼𝑡+2+𝜏

𝐼𝑡+1, 𝐼𝑡+1+1

𝐼𝑡+1, 𝐼𝑡+1+2

…

𝐼𝑡+1, 𝐼𝑡+1+𝜏

𝐼𝑡 , 𝐼𝑡+1

…

𝐼𝑡 , 𝐼𝑡+𝜏

𝐼𝑡 , 𝐼𝑡+2

Fig. 6. The graph formulation, as described in Fig. 4, produces an output
which has almost forward looking direction. However, there may still be
large changes in the epipole locations between two consecutive frame
transitions, causing jitter in the output video. To overcome this we add a
second order smoothness term based on triplets of output frames. Now
the nodes correspond to pairs of frames, instead of single frames in the
first order formulation described earlier. There are edges between frame
pairs (i, j) and (k, l), if j = k. The edge reflects the penalty for including
frame triplet (i, k, l) in the output. Edges from source and sink to graph
nodes (not shown in the figure) are added in the same way as in the first
order formulation to allow skipping frames from start and end.

close to the image center but on the opposite sides, leading
to a jitter in the output video. In this section we introduce
an additional cost element: stability of the location of the
epipole. We prefer to sample frames with minimal variation
of the epipole location.

To compute this cost, nodes now represent two frames,
as can be seen in Fig. 6. The weights on the edges depend
on the change in epipole location between one image pair
to the successive image pair. Consider three frames It1 , It2
and It3 . Assume the epipole between Iti and Itj is at pixel
(xij , yij). The second order cost of the triplet (graph edge)
(It1 , It2 , It3), is proportional to ‖(x23−x12, y23−y12)‖. This
is the difference between the epiople location computed
from frames It1 and It2 , and the epipole location computed
from frames It2 and It3 .

This second order cost is added to the previously com-
puted shakiness cost, which is proportional to the distance
from the origin ‖(x23, y23)‖. The graph with the second
order smoothness term has all edge weights non-negative
and the running-time to find an optimal solution to shortest
path is linear in the number of nodes and edges, i.e. O(nτ2).
In practice, with τ = 100, the optimal path was found in all
examples in less than 30 seconds. Fig. 5 shows results ob-
tained from both first order and second order formulations.

As noted for the first order formulation, we do not use
importance measure for a particular frame being added to
the output in our implementation. To add such measure, we
can use the same method as described in Sec. 4.1.

5 PANORAMIC HYPERLAPSE OF A SINGLE VIDEO

Sampling based hyperlapse techniques (hereinafter referred
to as ‘sampled hyperlapse’), such as EgoSampling, or as
given in [10], drop many frames for output speed and stabil-
ity requirements. Instead of simply skipping the unselected
frames which may contain important events, we suggest
“Panoramic Hyperlapse”, which uses all the frames in the
video for building a panorama around selected frames.
There could be several different approaches for creating a
Panoramic Hyperlapse, but we found the following steps to
give best results:

M1 M2

V1
V2 V3V2

V1

M3

V3 V4

V2

M4

V4

V5
V3

M5

V5 V6

V4

M6

V6 V7
V5

M7

V7 V8
V6

M8

V8 V9

V7

M9

V9

V7

V8

V7

P1 P2 P3

V1 V2 V3 V4
Input
video:

V5 V6 V7 V8 V9

Full
mosaic
video:

Output
video:

Fig. 7. Panoramic Hyperlapse creation. At the first step, for each input
frame vi a mosaic Mi is created from frames before and after it. At the
second stage, a Panoramic Hyperlapse video Pi is sampled from Mi

using sampled hyperlapse methods such as [10] or EgoSampling.

1) A panorama is created around each frame in the in-
put video, using frames from its temporal neighbor-
hood. In our experiments we used 50 input frames
for each panorama. This corresponds to about two
steps when walking.

2) A subset of these panoramas is selected using the
traditional sampled hyperlapse.

The approach is illustrated in Fig. 7. Panoramic Hyperlapse
has the following benefits over sampled hyperlapse:

1) Information in the sideways looking frames is in-
cluded, creating a larger field of view hyperlapse
video.

2) While the shake in the output video remains the
same, the increased field of view reduces the
proportion of shake compared to the frame size.
This leads to increased perception of stability of
Panoramic Hyperlapse compared to sampled hyper-
lapse.

Generating a panorama for each input frame as sug-
gested above is time consuming, and may also be wasteful
as most panoramas will be discarded in the hyperlapse
process. In the approach describe in the next section we
avoid creating panoramas before they are used, since it is
possible to compute the necessary features of the panoramas
without generating them.

5.1 Creating Panoramas

Every panorama starts with a central frame, and all other
frames are warped towards it. This is a common approach
in mosaicing, and can be seen as far back as [32]. It is recom-
mended in [32] that reference view for the panorama should
be ”the one that is geometrically most central” (p. 73). In
order to choose the best central frame, we take a window of
ω frames around each input frame and track feature points
through this temporal window. The (coarse) displacement
of each frame can be determined by the locations of the
feature points. Let fi,t be the displacement of feature point
i ∈ {1 . . . n} in frame t relative to its location in the first
frame of the temporal window. The displacement of frame

7

Input Frame Number

O
ut

pu
t P

an
or

am
a

N
um

be
r

1680 1700 1720 1740 1760 1780

290

295

300

305

Fig. 8. An example for mapping input frames to output panoramas from
sequence ‘Running’. Rows represent generated panoramas, columns
represent input frames. Red panoramas were selected for Panoramic
Hyperlapse, and gray panoramas were not used. Central frames are
indicated in green.

t relative to the first frame is defined as the mean of the
displacements of all its tracked points:

post =
1

n

n∑
i=1

fi,t (2)

The frame whose displacement is closest to the mean dis-
placement of all frames is selected as the central frame.
The central frame selection strategy described above prefers
forward looking frames as central frames.

After the central frame is determined, all other frames
in the temporal neighborhood are aligned with the central
frame using a homography, and are stitched together. In the
examples shown in this paper we use the ”joiners” method
of [33], where central frames are on top and peripheral
frames are at the bottom. More sophisticated stitching and
blending, e.g. min-cut and Poisson blending, can be used to
improve the appearance of the panorama.

5.2 Sampling Panoramas
In the previous section we generated a panorama for each
frame. In the second step we need to select a small subset
of panoramas for the hyperlapse video. The strategy to
select best panoramas is similar to the process described
in Section 4, that selected best subset of frames. Follow-
ing the same terminology, we create a graph where every
node corresponds to a generated panorama, which can
possibly be used in the Panoramic Hyperlapse. There is an
edge corresponding to every possible transition from one
panorama to another in the output video. A weight on an
edge represents the cost of the transition from panorama p
to panorama q, and is defined as:

Wp,q = α · Sp,q + β · Vp,q + γ · FOVp, (3)

where the shakiness Sp,q and the velocity Vp,q are measured
between the central frames of the two panoramas.

The FOV is the size of the panorama, counted as the
number of pixels painted by all frames participating in that
panorama. We prefer larger panoramas having wider field
of view. For efficiency the FOV is calculated without really
warping the frames to the canvas, but only by determining
which pixels will be covered.

After creating the graph using the edge weights as men-
tioned above, we run the shortest path algorithm to select

Fig. 9. The same scene as in Fig. 2. The frames were warped to remove
lens distortion, but were not cropped. The mosaicing was done on
the uncropped frames. Notice the increased in FOV compared to the
panorama in 2.

the sampled frames. We favored the shortest path algorithm
over dynamic programming of [10], as it allows “branches”,
eg. when a group of camera wearers splits, the hyperlapse
should choose which video to continue with, based on the
quality of the produced hyperlapse. We explain more about
such cases in the next section.

Fig. 8 shows the participation of input frames in the
panoramas for one of the sample sequence. We show in gray
the candidate panoramas before sampling, and the finally
selected panoramas are shown in red. The span of each row
shows the frames participating in each panorama.

5.3 Stabilization

In order to show the strength of the panoramic effect, we
performed only minimal alignment between panoramas.
We aligned each panorama towards the one before it using
only a rigid transformation between the central frames of
the panoramas. When feature tracking was lost we placed
the next panorama at the center of the canvas and started
tracking from that frame.

5.4 Cropping

Panoramas are created on a canvas much larger than the size
of the original video, and large parts of the canvas are not
covered with any of the input images. We applied a moving
crop window on the aligned panoramas. The crop window
was reset whenever the stabilization was reset. In order to
get smooth window movement, while containing as many
pixels as possible we find crop centers cri which minimize
the following energy function:

E =
∑
‖cri −mi‖2 + λ

∑
‖cri −

cri−1 + cri+1

2
‖2, (4)

where mi is the center of mass of the ith panorama. This can
be minimized by solving the sparse set of linear equations
given by the derivatives:

cri =
λ(cri−1 + cri+1) +mi

2λ+ 1
(5)

5.5 Removing Lens Distortion

Removal of lens distortion for the creation of perspective
images is a common pre-processing step when creating

8

Algorithm 1: Single video Panoramic Hyperlapse
Data: Single video
Result: Panoramic Hyperlapse
for every temporal window do

find the central frame of the window;

for every panorama candidate with center c do
for each frame f participating in the panorama do

Calculate the transformation between f and c;
Calculate the cost for shakiness, FOV and
velocity;

Choose panoramas for the output using shortest path
in graph algorithm;
Construct the panoramas;
Stabilize and crop;

panoramas. Perspective images can be aligned and warped
using simple 2D transformations. An example of a cropped
panoramic image after removal of lens distortion is given
in Figure 9. We use the method of [34] to remove lens
distortion. Usually, frames are cropped after the lens dis-
tortion removal to a rectangle containing only valid pixels.
However, in the case of panoramas, the cropping may be
done after stitching the frames. This results in even larger
field of view.

We list the steps to generate Panoramic Hyperlapse in
Algorithm 1.

6 PANORAMIC HYPERLAPSE OF MULTIPLE
VIDEOS

Panoramic Hyperlapse can be extended naturally to mul-
tiple input videos. The first step in the process of creat-
ing Panoramic Hyperlapse from multiple videos is finding
corresponding frames across videos, followed by panorama
creation.

6.1 Correspondence Across Videos

As the first stage in multi-video hyperlapse, for every frame
in each video we try to find corresponding frames in all
other videos. When a group of people are walking together,
matching frames can be defined as those frames captured
at the same time. But in general such temporal alignment
is rare, and instead corresponding frames can be defined as
frames captured from the same location, or frames viewing
the same region.

For our experiments, we defined as matching frames
those frames having the largest region of overlap, measured
by the number of matching feature points between the
frames. We use coarse-to-fine method, i.e. given a frame
in one video we first find an approximate matching frame
in the second video, then narrowing the gap and finding
an exact match. Some frames in one video may not have
corresponding frame in the second video, since we required
a minimal number of corresponding feature points for cor-
respondence. In current experiments we required at least 10
corresponding points.

Output

video:

P1

V12

P2

V15

P4

V17 V18

V13

P3

V17

V11 V12 V13 V14

Input

videos:

V15 V16 V17 V18 V19

V21 V22 V23 V24 V25 V26 V27 V28 V29

V31 V32 V33 V34 V35 V36 V37 V38 V39

V21

V31

V33

V34

V35

V24 V29

V38 V36
V37

Fig. 10. Creating a multi-video Panoramic Hyperlapse. The first three
rows indicate three input videos with frames labeled Vij . Each frame Pi

in the output panoramic video is constructed by mosaicing one or more
of the input frames, which can originate from any input video.

Fig. 11. A multi-video output frame. All rectangles with white borders
are frames from the same video, while the left part is taken from
another. Notice the enlarged field of view resulting from using frames
from multiple videos.

We also maintain temporal consistency in the matching
process. For example, assuming x′ and y′ are the corre-
sponding frame numbers in the second video for frame
numbers x and y in the first video. If x > y, then we also
require that x′ > y′. Temporal consistency may reduce the
number of corresponding frames.

6.2 Creation of Multi-Video Panorama
Once the corresponding frames have been identified, we
initiate the process of selecting central frames. This process
is done independently for each video as described in Sec. 5.

Following the selection of central frames the panoramas
are constructed. In this step frames from all input videos
are used. Consider the scenario when we have n input
videos and we are creating a panorama corresponding to
a temporal window ω in one of the videos. Originally, all
frames of that video in the temporal window ω participated
in that panorama. In the multi video case each participating
frame brings together with it to the panorama also all frames
corresponding to it in other videos. In our example having n
videos, up to (n · |ω|) frames may participate in each mosaic.

The process of panorama creation is repeated for all
temporal windows in all input videos. Fig. 10 outlines the
relation between the Panoramic Hyperlapse and the input
videos.

6.3 Multi-Video Hyperlapse
After creating panoramas in each video, we perform a
sampling process similar to the one described in Sec. 5.2. The

9

Algorithm 2: Multi video Panoramic Hyperlapse
Data: Multiple videos
Result: Panoramic Hyperlapse
Preprocess: temporally align videos (if necessary);
calculate homographies between matching frames in
different videos;
for each video do

Find central frames and calculate cost similar to
the single video case;

Calculate cross-video cost ;
Choose panoramas for the output using shortest path
in graph algorithm;
for each panorama with center c do

for every frame f from c’s video participating in the
panorama do

warp f towards c;
for frames f ′ aligned with f in other videos do

warp f ′ towards c using chained
homography f ′-f -c;

Construct the panoramas;

Stabilize and crop;

difference being that the candidate panoramas for sampling
come from all the input videos. The graph creation process is
the same with the nodes now corresponding to panoramas
in all the videos. For the edge weights, apart from the costs
as mentioned in the last section, we insert an additional term
called cross-video penalty. Cross-video terms add a switching
penalty, if in the output video there is a transition from
panorama with central frame from one video to a panorama
with central frame that comes from some other video.

The shortest path algorithm then runs on the graph
created this way and chooses the panoramic frames from
all input videos. We show a sample frame from one of
the output videos generated by our method in Fig. 11.
Algorithm 2 gives the pseudo code for our algorithm.

7 EXPERIMENTS

In this section we give implementation details and show the
results for EgoSampling as well as Panoramic Hyperlapse.
We have used publicly available sequences [12], [35], [36],
[37] as well as our own videos for the demonstration. The
details of the sequences are given in Table 1. We used a
modified (faster) implementation of [4] for the LK [38] opti-
cal flow estimation. We use the code and calibration details
given by [8] to correct for lens distortion in their sequences.
Feature point extraction and fundamental matrix recovery
is performed using VisualSFM [39], with GPU support. The
rest of the implementation (FOE estimation, energy terms
and shortest path etc.) is in Matlab. All the experiments have
been conducted on a standard desktop PC.

7.1 EgoSampling
We show results for EgoSampling on 8 publicly available
sequences. For the 4 sequences for which we have camera
calibration information, we estimated the motion direction
based on epipolar geometry. We used the FOE estimation

TABLE 1
Sequences used for the fast forward algorithm evaluation. All

sequences were shot in 30fps, except ’Running’ which is 24fps and
’Walking11’ which is 15fps.

Name Src Resolution Num
Frames

Walking1 [12] 1280x960 17249
Walking2 [40] 1920x1080 2610
Walking3 [40] 1920x1080 4292
Walking4 [40] 1920x1080 4205
Walking5 [37] 1280x720 1000
Walking6 [37] 1280x720 1000
Walking7 – 1280x960 1500
Walking8 – 1920x1080 1500
Walking9 [40] 1920x1080 2000
Walking11 [37] 1280x720 6900
Walking12 [4] 1920x1080 8001
Driving [36] 1280x720 10200
Bike1 [12] 1280x960 10786
Bike2 [12] 1280x960 7049
Bike3 [12] 1280x960 23700
Running [35] 1280x720 12900

method as a fallback when we could not recover the fun-
damental matrix. For this set of experiments we fix the
following weights: α = 1000, β = 200 and γ = 3. We further
penalize the use of estimated FOE instead of the epipole
with a constant factor c = 4. In case camera calibration
is not available, we used the FOE estimation method only
and changed α = 3 and β = 10. For all the experiments,
we fixed τ = 100 (maximum allowed skip). We set the
source and sink skip to Dstart = Dend = 120 to allow
more flexibility. We set the desired speed up factor to 10×
by setting Kflow to be 10 times the average optical flow
magnitude of the sequence. We show representative frames
from the output for one such experiment in Fig.5. Output
videos from other experiments are given at the project’s
website: http://www.vision.huji.ac.il/egosampling/.

7.1.1 Running times
The advantage of EgoSampling is in its simplicity, robust-
ness and efficiency. This makes it practical for long unstruc-
tured egocentric videos. We present the coarse running time
for the major steps in our algorithm below. The time is
estimated on a standard Desktop PC, based on the imple-
mentation details given above. Sparse optical flow estima-
tion (as in [4]) takes 150 milliseconds per frame. Estimating
F-Mat (including feature detection and matching) between
frame It and It+k where k ∈ [1, 100] takes 450 milliseconds
per input frame It. Calculating second-order costs takes
125 milliseconds per frame. This amounts to total of 725
milliseconds of processing per input frame. Solving for the
shortest path, which is done once per sequence, takes up to
30 seconds for the longest sequence in our dataset (≈ 24K
frames). In all, running time is more than two orders of
magnitude faster than [8].

7.1.2 User Study
We compare the results of EgoSampling, first and second
order smoothness formulations, with naı̈ve fast forward
with 10× speedup, implemented by sampling the input

http://www.vision.huji.ac.il/egosampling/

10

TABLE 2
Fast forward results with desired speedup of factor 10 using

second-order smoothness. We evaluate the improvement as degree of
epipole smoothness in the output video (column 5). Please refer to the
text for details on how we quantify smoothness. The proposed method

gives huge improvement over naı̈ve fast forward in all but one test
sequence (‘Driving’), see Fig. 12 for details. Note that one of the
weaknesses of the proposed method is lack of direct control over

speedup factor. Though the desired speedup factor is 10, the actual
frame skip (column 4) differs a lot from target due to conflicting

constraint posed by stabilization.

Name Input
Frames

Output
Frames

Median
Skip

Improvement over
Naı̈ve 10×

Walking1 17249 931 17 283%
Walking11 6900 284 13 88%
Walking12 8001 956 4 56%
Driving 10200 188 48 −7%
Bike1 10786 378 13 235%
Bike2 7049 343 14 126%
Bike3 23700 1255 12 66%
Running 12900 1251 8 200%

video uniformly. For EgoSampling the speed is not directly
controlled but is targeted for 10× speedup by setting Kflow

to be 10 times the average optical flow magnitude of the
sequence.

We conducted a user study to compare our results with
the baseline methods. We sampled short clips (5-10 seconds
each) from the output of the three methods at hand. We
made sure the clips start and end at the same geographic
location. We showed each of the 35 subjects several pairs
of clips, before stabilization, chosen at random. We asked
the subjects to state which of the clips is better in terms
of stability and continuity. The majority (75%) of the sub-
jects preferred the output of EgoSampling with first-order
shakiness term over the naı̈ve baseline. On top of that, 68%
preferred the output of EgoSampling using second-order
shakiness term over the output using first-order shakiness
term.

To evaluate the effect of video stabilization on the
EgoSampling output, we tested three commercial video sta-
bilization tools: (i) Adobe Warp Stabilizer (ii) Deshaker 2 (iii)
Youtube’s Video stabilizer. We have found that Youtube’s
stabilizer gives the best results on challenging fast forward
videos 3. We stabilized the output clips using Youtube’s
stabilizer and asked our 35 subjects to repeat process de-
scribed above. Again, the subjects favored the output of
EgoSampling.

7.1.3 Quantitative Evaluation

We quantify the performance of EgoSampling using the
following measures. We measure the deviation of the output
from the desired speedup. We found that measuring the
speedup by taking the ratio between the number of input
and output frames is misleading, because one of the features
of EgoSampling is to take large skips when the magnitude

2http://www.guthspot.se/video/deshaker.htm
3We attribute this to the fact that Youtube’s stabilizer does not

depend upon long feature trajectories, which are scarce in sub-sampled
video as ours.

Fig. 12. A failure case for the proposed method. Two sample frames
from the sequence. Note that the frame to frame optical flow computed
for this sequence is misleading - most of the field of view is either far
away (infinity) or inside the car. In both cases, its near zero. However,
since the driver shakes his head every few seconds, the average optical
flow magnitude is relatively high. The velocity term causes us to skip
many frames until the desired Kflow is met, causing large frame skips
in the output video. Restricting the maximum frame skip by setting τ to
a small value leads to arbitrary frames being chosen looking sideways,
causing shake in the output video.

of the optical flow is rather low. We therefore measure the
effective speedup as the median frame skip.

Additional measure is the reduction in epipole jitter
between consecutive output frames (or FOE if F-Matrix
cannot be estimated). We differentiate the locations of the
epipole (temporally). The mean magnitude of the derivative
gives us the amount of jitter between consecutive frames in
the output. We measure the jitter for our method as well for
naive 10× uniform sampling and calculate the percentage
improvement in jitter over competition.

Table 2 shows the quantitative results for frame skip
and epipole smoothness. There is a huge improvement in
jitter by our algorithm. We note that the standard method to
quantify video stabilization algorithms is to measure crop
and distortion ratios. However since we jointly model fast
forward and stabilization such measures are not applicable.
The other method could have been to post process the
output video with a standard video stabilization algorithm
and measure these factors. Better measures might indicate
better input to stabilization or better output from preceding
sampling. However, most stabilization algorithms rely on
trajectories and fail on resampled video with large view
difference. The only successful algorithm was Youtube’s
stabilizer but it did not give us these measures.

7.1.4 Limitations
One notable difference between EgoSampling and tradi-
tional fast forward methods is that the number of output
frames is not fixed. To adjust the effective speedup, the
user can tune the velocity term by setting different values
to Kflow. It should be noted, however, that not all speedup
factors are possible without compromising the stability of
the output. For example, consider a camera that toggles
between looking straight and looking to the left every 10
frames. Clearly, any speedup factor that is not a multiple
of 10 will introduce shake to the output. The algorithm
chooses an optimal speedup factor which balances between
the desired speedup and what can be achieved in practice
on the specific input. Sequence ‘Driving’ (Figure 12) presents
an interesting failure case.

Another limitation of EgoSampling is to handle long
periods in which the camera wearer is static, hence, the
camera is not translating. In these cases, both the fundamen-
tal matrix and the FOE estimations can become unstable,
leading to wrong cost assignments (low penalty instead of

11

TABLE 3
One of the contributions of this paper is increased field of view (FOV)
over existing sampling methods. To measure the improvement in FOV,

we compare cropping of output frame by the proposed method for
single input video. The percentages indicate the average area of the

cropped image from the original input image, measured on 10 randomly
sampled output frames from each sequence. The same frames were
used to measure all five methods. The naive, EgoSampling(ES), and
Panoramic Hyperlapse(PH) outputs were stabilized using YouTube

stabilizer [16]. Real-time Hyperlapse [10] output was created using the
desktop version of the Hyperlapse Pro. app. The output of Hyperlapse
[8] is only available for their dataset. We observe improvements in all
the examples except ‘walking2’, in which the camera is very steady.

Name Exp. No. Naive [10] [8] ES PH

Bike3 S1 45% 32% 65% 33% 99%
Walking1 S2 52% 68% 68% 40% 95%
Walking2 S3 67% N/A N/A 43% 66%
Walking3 S4 71% N/A N/A 54% 102%
Walking4 S5 68% N/A N/A 44% 109%
Running S6 50% 75% N/A 43% 101%

high) to graph edges. The appearance and velocity terms are
more robust and help reduce the number of outlier (shaky)
frames in the output.

7.2 Panoramic Hyperlapse
In this section we show experiments to evaluate Panoramic
Hyperlapse for single as well as multiple input videos. To
evaluate the multiple videos case (Section 6), we have used
two types of video sets. The first type are videos sharing
similar camera path on different times. We obtained the
dataset of [40] suitable for this purpose. The second type are
videos shot simultaneously by number of people wearing
cameras and walking together. We scanned the dataset of
[37] and found videos corresponding to a few minutes of
a group walking together towards an amusement park. In
addition, we choreographed two videos of this type by our-
selves. We will release these videos upon paper acceptance.
The videos were shot using a GoPro3+ camera. Table 1 gives
the resolution, FPS, length and source of the videos used in
our experiments.

7.3 Implementation Details
We have implemented Panoramic Hyperlapse in Matlab and
run it on a single PC with no GPU support. For tracking
we use Matlab’s built in SURF feature points detector and
tracker. We found the homography between frames using
RANSAC. This is a time consuming step since it requires
calculating transformations from every frame which is a
candidate for a panorama center, to every other frame in
the temporal window around it (typically ω = 50). In
addition, we find homographies to other frames that may
serve as other panorama centers (before/after the current
frame), in order to calculate the Shakiness cost of a transition
between them. We avoid creating the actual panoramas
after the sampling step to reduce runtime. However, we
still have to calculate the panorama’s FOV as it is part
of our cost function. We resolved to created a mask of the
panorama, which is faster than creating the panorama itself.
The parameters of the cost function in Eq. (3) were set to

TABLE 4
Evaluation of the contribution of multiple videos to the FOV. The crop

size was measured twice: once with the single video algorithm, with the
video in the first column as input, and once with the multi video

algorithm.

Ours Number Ours
Name Exp. No. Single of Videos Multi

Walking2 M1 67% 4 140%
Walking5 M2 90% 2 98%
Walking7 M3 107% 2 118%

α = 1 · 107, β = 5 · 106, γ = 1 and λ = 15 for the crop
window smoothness. Our cross−video term was multiplied
by the constant 2. We used those parameters both for the
single and multi video scenarios. The input and output
videos are given at the project’s website.

7.4 Runtime
The following runtimes were measured with the setup
described in the previous section on a 640×480 resolution
video, processing a single input video. Finding the central
images and calculating the Shakiness cost takes 200ms per
frame, each. Calculating the FOV term takes 100ms per
frame on average. Finding the shortest path takes a few
seconds for the entire sequence. Sampling and panorama
creation takes 3 seconds per panorama, and the total time
depends on the speed up from the original video i.e. the
ratio between number of panoramas and length of the input.
For a typical ×10 speed this amounts to 300ms. The total
runtime is 1.5-2 seconds per frame with an unoptimized
Matlab implementation. In the multi-input video cases the
runtime grows linearly with the number of input sequences.

7.5 Evaluation
The main contribution of Panoramic Hyperlapse to the
hyperlapse community is the increased field of view (FOV)
over existing methods. To evaluate it we measure the output
resolution (i.e. the crop size) of the baseline hyperlapse
methods on the same sequence. The crop is a side-effect of
stabilization: without crop, stabilization introduces “empty”
pixels to the field of view. The cropping ensures to limit
the output frame to the intersection of several FOVs, which
can be substantially smaller than the FOV of each frame
depending on the shakiness of the video.

The crop size is not constant throughout the whole
output video, hence it should be compared individually
between output frames. Because of the frame sampling, an
output frame with one method is not guaranteed to appear
in the output of another method. Therefore, we randomly
sampled frames for each sequence until we had 10 frames
that appear in all output methods. For a panorama we
considered its central frame. We note that the output of
[8] is rendered from several input frames, and does not
have any dominant frame. We therefore tried to pick frames
corresponding to the same geographical location in the other
sequences. Our results are summarized in Tables 3 and
4. It is clear that in terms of FOV we outperform most
of the baseline methods on most of the sequences. The

12

(a) (b) (c) (d)

Fig. 13. Two results comparing FOV of hyperlapse frames, corresponding to approximately same input frames. For best viewing zoom to 800%.
Columns: (a) Original frame and output of EgoSampling. (b) Output of [8]. Cropping and rendering errors are clearly visible. (c) Output of [10]
suffering from strong cropping. (d) Output of our method, having the largest FOV. Top row: Frames from sequence ‘Bike1’. Bottom row: Frames from
sequence ‘Walking1’.

Fig. 14. Comparing field-of-view of panoramas generated from single (left) and multi (right) video Panoramic Hyperlapse. Multi video Panoramic
Hyperlapse is able to successfully collate content from different videos for enhanced field of view.

contribution of multiple videos to the FOV is illustrated in
Figure 14.

The naive fast forward, EgoSampling, and Panoramic
Hyperlapse outputs were stabilized using YouTube stabi-
lizer. Real-time Hyperlapse [10] output was created using
the desktop version of the Hyperlapse Pro. app. The output
of Hyperlapse [8] is only available for their dataset.

7.5.0.1 Failure case: On sequence Walking2 the
naive results get the same crop size as our method (see Table
3). We attribute this to the exceptionally steady forward
motion of the camera, almost as if it is not mounted on
the photographer head while walking. Obviously, without
the shake Panoramic Hyperlapse can not extend the field of
view significantly.

7.6 Panoramic Hyperlapse from Multiple Videos
Fig. 14 shows a sample frame from the output generated
by our algorithm using sequences ‘Walking 7’ and ‘Walk-
ing 8’. Comparison with panoramic hyperlapse generated
from single video clearly shows that our method is able
to assemble content from frames from multiple videos for
enhanced field of view. We quantify the improvement in
FOV using the crop ratio of the output video on various
publicly and self shot test sequences. Table 4 gives the
detailed comparison.

Multi Video Panoramic Hyperlapse can also be used to
summarize contents from multiple videos. Fig. 15 shows an
example panorama generated from sequences ‘Walking 5’
and ‘Walking 6’ from the dataset released by [37]. While
a lady is visible in one video and a child in another, both
persons appear in the output frame at the same time.

When using multiple videos, each panorama in the
Panoramic Hyperlapse is generated from many frames, as
much as 150 frames if we use three videos and a temporal
window of 50 frames. With this wealth of frames, we can fil-
ter out some frames with undesired properties. For example,
if privacy is a concern, we can remove from the panorama
all frames having a recognizable face or a readable license
plate.

8 CONCLUSION

We propose a novel frame sampling technique to produce
stable fast forward egocentric videos. Instead of the de-
manding task of 3D reconstruction and rendering used by
the best existing methods, we rely on simple computation
of the epipole or the FOE. The proposed framework is very
efficient, which makes it practical for long egocentric videos.
Because of its reliance on simple optical flow, the method

13

Fig. 15. Multi video Panoramic Hyperlapse can be used to summarize content from multiple videos. Left and middle are two input spatially
neighboring frames from different videos. Right is the output frame generated by Panoramic Hyperlapse. The blue lines indicate frames coming
from the same video as the middle frame (Walking6), while the white lines indicate frames from the other video (Walking5). Notice that while a lady
can be observed in one and a child in another, both are visible in the output frames. The stitching errors are due to misalignment of the frames. We
did not have the camera information for these sequences and could not perform lens distortion correction

can potentially handle difficult egocentric videos, where
methods requiring 3D reconstruction may not be reliable.

We also present Panoramic Hyperlapse, a method to
create hyperlapse videos having a large field-of-view. While
in EgoSampling we drop unselected (outlier) frames, in
Panoramic Hyperlapse, we use them to increase the field
of view in the output video. In addition, Panoramic Hyper-
lapse naturally supports the processing of multiple videos
together, extending the output field of view even further, as
well as allowing to consume multiple such videos in less
time. The large number of frames used for each panorama
also allows to remove undesired objects from the output.

REFERENCES

[1] Z. Lu and K. Grauman, “Story-driven summarization for egocen-
tric video,” in CVPR, 2013.

[2] Y. J. Lee, J. Ghosh, and K. Grauman, “Discovering important
people and objects for egocentric video summarization,” in CVPR,
2012.

[3] J. Xu, L. Mukherjee, Y. Li, J. Warner, J. M. Rehg, and V. Singh,
“Gaze-enabled egocentric video summarization via constrained
submodular maximization,” in CVPR, 2015.

[4] Y. Poleg, C. Arora, and S. Peleg, “Temporal segmentation of
egocentric videos,” in CVPR, 2014, pp. 2537–2544.

[5] Y. Poleg, A. Ephrat, S. Peleg, and C. Arora, “Compact CNN for
indexing egocentric videos,” in WACV, 2016. [Online]. Available:
http://arxiv.org/abs/1504.07469

[6] K. M. Kitani, T. Okabe, Y. Sato, and A. Sugimoto, “Fast unsuper-
vised ego-action learning for first-person sports videos,” in CVPR,
2011.

[7] M. S. Ryoo, B. Rothrock, and L. Matthies, “Pooled motion features
for first-person videos,” in CVPR, 2015, pp. 896–904.

[8] J. Kopf, M. Cohen, and R. Szeliski, “First-person hyperlapse
videos,” in SIGGRAPH, vol. 33, no. 4, August 2014.
[Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=230645

[9] N. Petrovic, N. Jojic, and T. S. Huang, “Adaptive video fast
forward,” Multimedia Tools Appl., vol. 26, no. 3, pp. 327–344, Aug.
2005.

[10] N. Joshi, W. Kienzle, M. Toelle, M. Uyttendaele, and M. F. Cohen,
“Real-time hyperlapse creation via optimal frame selection,” in
SIGGRAPH, vol. 34, no. 4, 2015, p. 63.

[11] Y. Poleg, T. Halperin, C. Arora, and S. Peleg, “Egosampling: Fast-
forward and stereo for egocentric videos,” in CVPR, 2015, pp.
4768–4776.

[12] J. Kopf, M. Cohen, and R. Szeliski, “First-person
Hyperlapse Videos - Supplemental Material.” [Online].
Available: http://research.microsoft.com/en-us/um/redmond/
projects/hyperlapse/supplementary/index.html

[13] B. Xiong and K. Grauman, “Detecting snap points in egocentric
video with a web photo prior,” in ECCV, 2014.

[14] F. Liu, M. Gleicher, H. Jin, and A. Agarwala, “Content-preserving
warps for 3d video stabilization,” in SIGGRAPH, 2009.

[15] S. Liu, Y. Wang, L. Yuan, J. Bu, P. Tan, and J. Sun, “Video
stabilization with a depth camera,” in CVPR, 2012.

[16] M. Grundmann, V. Kwatra, and I. Essa, “Auto-directed video
stabilization with robust l1 optimal camera paths,” in CVPR, 2011.

[17] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala, “Subspace
video stabilization,” in SIGGRAPH, 2011.

[18] S. Liu, L. Yuan, P. Tan, and J. Sun, “Bundled camera paths for
video stabilization,” in SIGGRAPH, 2013.

[19] ——, “Steadyflow: Spatially smooth optical flow for video stabi-
lization,” 2014.

[20] A. Goldstein and R. Fattal, “Video stabilization using epipolar
geometry,” in SIGGRAPH, 2012.

[21] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H. Shum, “Full-frame
video stabilization with motion inpainting,” IEEE Trans. PAMI,
vol. 28, no. 7, pp. 1150–1163, 2006.

[22] W. Jiang and J. Gu, “Video stitching with spatial-temporal content-
preserving warping,” in CVPR Workshops, 2015, pp. 42–48.

[23] Y. Hoshen, G. Ben-Artzi, and S. Peleg, “Wisdom of the crowd in
egocentric video curation,” in CVPR Workshops, 2014, pp. 587–593.

[24] I. Arev, H. S. Park, Y. Sheikh, J. K. Hodgins, and A. Shamir,
“Automatic editing of footage from multiple social cameras,” 2014.

[25] M. S. Ryoo and L. Matthies, “First-person activity recognition:
What are they doing to me?” in CVPR, 2013.

[26] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2003.

[27] J. Engel, T. Schps, and D. Cremer, “LSD-SLAM: Large-scale direct
monocular SLAM,” in ECCV, 2014.

[28] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” in ICRA, 2014.

[29] D. Sazbon, H. Rotstein, and E. Rivlin, “Finding the focus of
expansion and estimating range using optical flow images and
a matched filter.” Machine Vision Applications, vol. 15, no. 4, pp.
229–236, 2004.

[30] O. Pele and M. Werman, “Fast and robust earth mover’s dis-
tances,” in ICCV, 2009.

[31] E. Dijkstra, “A note on two problems in connexion with graphs,”
NUMERISCHE MATHEMATIK, vol. 1, no. 1, 1959.

[32] R. Szeliski, “Image alignment and stitching: A tutorial,” Founda-
tions and Trends in Computer Graphics and Vision, vol. 2, no. 1, pp.
1–104, 2006.

[33] L. Zelnik-Manor and P. Perona, “Automating joiners,” in Proceed-
ings of the 5th international symposium on Non-photorealistic animation
and rendering. ACM, 2007, pp. 121–131.

[34] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for
easily calibrating omnidirectional cameras,” in Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, Oct 2006,
pp. 5695–5701.

[35] “Ayala Triangle Run with GoPro Hero 3+ Black Edition.” [Online].
Available: https://www.youtube.com/watch?v=WbWnWojOtIs

[36] “GoPro Trucking! - Yukon to Alaska 1080p.” [Online]. Available:
https://www.youtube.com/watch?v=3dOrN6-V7V0

[37] A. Fathi, J. K. Hodgins, and J. M. Rehg, “Social interactions: A
first-person perspective,” in CVPR, 2012.

[38] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in IJCAI, vol. 2,
1981.

[39] “VisualSFM : A Visual Structure from Motion System,
Changchang Wu, http://ccwu.me/vsfm/.”

http://arxiv.org/abs/1504.07469
http://research.microsoft.com/apps/pubs/default.aspx?id=230645
http://research.microsoft.com/apps/pubs/default.aspx?id=230645
http://research.microsoft.com/en-us/um/redmond/projects/hyperlapse/supplementary/index.html
http://research.microsoft.com/en-us/um/redmond/projects/hyperlapse/supplementary/index.html
https://www.youtube.com/watch?v=WbWnWojOtIs
https://www.youtube.com/watch?v=3dOrN6-V7V0

14

[40] Y. Hoshen and S. Peleg, “An egocentric look at video
photographer identity,” in CVPR, 2016. [Online]. Available:
http://arxiv.org/abs/1411.7591

http://arxiv.org/abs/1411.7591

	1 Introduction
	2 Related Work
	2.1 Video Summarization
	2.2 Video Stabilization
	2.3 Hyperlapse
	2.4 Multiple Input Videos

	3 Motion Computation
	3.1 Head Motion Prior
	3.2 Computation of Motion Direction (Epipole)
	3.3 Estimation of Motion Direction (FOE)
	3.4 Optical Flow Computation

	4 EgoSampling Formulation
	4.1 Graph Representation
	4.2 Second Order Smoothness

	5 Panoramic Hyperlapse of a Single Video
	5.1 Creating Panoramas
	5.2 Sampling Panoramas
	5.3 Stabilization
	5.4 Cropping
	5.5 Removing Lens Distortion

	6 Panoramic Hyperlapse of Multiple Videos
	6.1 Correspondence Across Videos
	6.2 Creation of Multi-Video Panorama
	6.3 Multi-Video Hyperlapse

	7 Experiments
	7.1 EgoSampling
	7.1.1 Running times
	7.1.2 User Study
	7.1.3 Quantitative Evaluation
	7.1.4 Limitations

	7.2 Panoramic Hyperlapse
	7.3 Implementation Details
	7.4 Runtime
	7.5 Evaluation
	7.6 Panoramic Hyperlapse from Multiple Videos

	8 Conclusion
	References

