
An Abstraction-Refinement Framework
for Trigger Querying

Guy Avni and Orna Kupferman

School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel

Abstract. Trigger querying is the problem of finding, given a system M and an
LTL formula ϕ, the set of scenarios that trigger ϕ in M ; that is, the language L
of finite computations of M such that all infinite computations that have a pre-
fix in L continue with a suffix that satisfies ϕ. For example, the trigger query
M |=? 7→ F err asks for the set of scenarios after which err aught to eventu-
ally happen. Trigger querying thus significantly extends query checking, which
seeks propositional solutions, and is an extremely useful methodology for system
exploration and understanding. The weakness of trigger querying lies in the fact
that the size of the solution is linear in the size of the system. For trigger querying
to become feasible in practice, we must offer solutions to cope with systems of
big, and possibly infinite, state spaces.
In this paper we describe an abstraction-refinement framework for trigger query-
ing. The general idea is to replace the reasoning about M by reasoning about
an abstraction MA of M , and return to the user two languages, Ll and Lu, that
under- and over-approximate L, respectively. We consider predicate abstraction,
and the languages Ll and Lu are defined with respect to the set of predicates.
The challenge in defining the approximating languages is that trigger querying
does not have a clear polarity, and the definition of Ll and Lu has to combine the
upper- and over-approximations of M . We describe an automata-theoretic ap-
proach for refining and reducing Lu \ Ll. While refinement for model checking
is lengthwise, in the sense that it is based on counterexamples, here we suggest
both lengthwise and widthwise refinement, where the latter is based on cuts in an
automaton for Lu \Ll and thus can symbolically handle batches of counterexam-
ples. We show that our framework is robust and can be applied also for classical
query checking as well as variants and extensions of trigger querying.

1 Introduction

The field of formal verification developed from the need to verify that a system satisfies
its specification. In practice, formal-verification methodologies are used not only for
ensuring correctness of systems but also for understanding systems and exploring their
models [20]. In [6], Chan suggested to formalize model exploration by means of query
checking. The input to the query-checking problem is a model M and a query ϕ, where
a query is a temporal-logic formula in which some sub-formula is the place-holder “?”.
A solution to the query is a propositional assertion that, when replaces the place-holder,
results in a formula that is satisfied in M . For example, if the query is AG(? → ack),
then the set of solutions includes all assertions θ for which M |= AG(θ → ack). A
query checker should return the strongest solutions to the query (strongest in the sense

that they are not implied by other solutions).1 The work of Chan was followed by further
work on query checking, studying its complexity, cases in which only a single strongest
solution exists, the case of multiple (possibly related) place-holders, and more [5, 8, 9,
25].

A serious shortcoming of query checking is the fact that the solutions are propo-
sitional assertions. Thus, query checking is restricted to questions regarding one point
in time, whereas most interesting questions about systems involve scenarios that de-
velop over time. For example, solutions to the query AG(? → ack) are propositional
assertions that imply ack in all the states of the system. Such assertions are clearly less
interesting than scenarios after which ack is valid. As another example, consider a pro-
grammer trying to understand the code of some software. In particular, the programmer
is interested in situations in which some function is called with some parameter value.
The actual state in which the function is called is by far less interesting than the scenario
that has lead to it. Query checking does not enable us to reveal such scenarios.

In [21], the authors introduce and study trigger querying, which addresses the short-
coming described above. Given a modelM and a temporal behavior ϕ, trigger querying
is the problem of finding the set of scenarios that trigger ϕ in M . That is, scenarios that
are feasible in M and for which if a computation of M has a prefix that follows the
scenario, then its suffix satisfies ϕ.2

Kupferman and Lustig formalized trigger querying using the temporal operator 7→
(triggers). The trigger operator was introduced in SUGAR (the precursor of PSL [4],
called suffix implication there), and it plays an important role also in popular industrial
specification formalisms like ForSpec [1] and System Verilog Assertions (SVA) [26].
Consider a system M with a set P of atomic propositions. A word w over the alphabet
2P triggers an LTL formula ϕ in the system M , denoted M |= w 7→ ϕ, if at least one
computation of M has w as a prefix, and for every computation π of M , if w is a prefix
of π, then the suffix of π from position |w| satisfies ϕ (note that there is an “overlap”
and the |w|-th letter of π participates both in the prefix w and in the suffix satisfying
ϕ). The solution to the trigger query M |=? 7→ ϕ is then the set of words w that trigger
ϕ in M . Since, as shown in [21], the solution is regular, trigger-querying algorithms
return the solution by means of a regular expression or an automaton on finite words.
The weakness of trigger querying lies in the fact that the size of the solution is linear
in the size of the system. For trigger querying to become feasible in practice, we must
offer solutions to cope with systems of big, and possibly infinite, state spaces.

In this paper we describe an abstraction-refinement framework for trigger querying.
Abstraction is a well known approach for coping with the huge, and possibly infinite,
state space of systems [2, 13]. 3 In particular, in the context of model checking, the
counterexample guided abstraction-refinement (CEGAR) method has proven to be very
effective [11, 12, 22]. Recall that the solution to the trigger query M |=? 7→ ϕ is a reg-

1 Note that a query may not only have several solutions, but may also have several strongest
solutions.

2 The definition in [21] is a bit different and allows also vacuous triggers: scenarios that are not
feasible in M are considered solutions too.

3 A different approach to cope with the complexity of trigger querying is studied in [24]. There,
the user approximates the trigger by a statistical analysis of traces in the system.

2

ular language L over the alphabet 2P . The general idea of our framework is to replace
the reasoning about M by reasoning about an abstraction MA of M , and return to the
user two languages, Ll and Lu, that under- and over-approximate L. In more detail, we
consider predicate abstraction, where the state space of MA is 2Φ, for a set Φ of propo-
sitional assertions on P . The abstraction MA is a modal transition system [23], and has
two types of transitions: may transitions, which over-approximate the transitions of M ,
and must transitions, which under-approximate them. The approximating languages Ll
and Lu are over the alphabet 2Φ, and they satisfy Ll ⊆ L ⊆ Lu, with an appropriate
adjustment of ⊆ to the different alphabets.

While Ll and Lu under- and over-approximate L, finding them combines both the
under- and over-approximations of M . Intuitively, it follows from the fact that the
solution to a trigger query does not have a clear polarity: it is not hard to see that
M |= w 7→ ϕ if the set of the states of M that are reachable by tracing w is not
empty and all the states in it satisfy Aϕ. When we consider an abstraction that under-
approximates the transitions of M , two contradicting things happen: (1) we make it
harder for words to make it into the solution, as fewer computations can trace w, and
(2) we make it easier for words to make it into the solution, as more states satisfy Aϕ.
Similar and dual difficulties arise when we try to work with an abstraction that over-
approximates M or when we search for Lu.4

The smaller is the gap between Ll and Lu is, the more informative our approxi-
mating trigger languages are. Given a set of predicates Φ, refinement amounts to ex-
tending Φ so that Lu \ Ll is reduced. We suggest two approaches for refinement. Both
approaches are based on a deterministic automaton C for Lu \ Ll. As we show, the
construction of C is based on an analysis of the reasons for lack of information, and
avoids the complementation of Ll. The first approach, lengthwise refinement, is similar
to the one performed in CEGAR, and is based on clinging to a single word τ ∈ (2Φ)∗

accepted by C, and refining both the transitions that C traverses in its accepting run
on τ as well as the accepting state that the run on τ reaches. The second approach,
widthwise refinement, is possible thanks to the fact C accepts all the words in Lu \ Ll.
Widthwise refinement iteratively reduces the language of C by clinging to a cut in its
underlying graph. As we elaborate in the paper, C has cuts of special interest – these
that correspond to may transitions that are not must transitions in MA. An advantage
of widthwise refinement is that it manipulates sets of states and thus has a simple sym-
bolic implementation. We also suggest a hybrid approach that combines lengthwise and
widthwise refinements, by basing the refinement on a sub-language of Lu \ Ll, and is
also symbolic. All the three approaches are complete, in the sense that, unless we start
with an infinite-state system, repeated application of them results in Ll = L = Lu.

We show that our framework is robust and can handle variants and extensions of
trigger querying: classical query checking (in fact, the abstraction-refinement frame-
work there is much simpler), constrained trigger querying (where the input also includes
a regular expression, which restricts the range of solutions), and necessary conditions
(where the goal is to characterize necessary conditions on the triggers; this problem is
only NLOGSPACE-complete in the system).

4 A different combination of may and must transitions, whose goal is to combine verification
and falsification, is suggested also in [17].

3

Beyond making trigger-querying and its variants feasible in practice, we find the
framework interesting from a theoretical point of view as it involves several conceptual
differences from CEGAR, and thus involves new general ideas about abstraction and
refinement. As we elaborate in Section 6, we believe that these ideas are useful also in
other abstraction-refinement methodologies.

Due to the lack of space, some proofs and examples are omitted from this version
and can be found in the full version, in the authors’ homepages.

2 Preliminaries

We model systems over a set P of atomic propositions by a Kripke structure M =
〈P, S, S0, R〉, where S = 2P is the set of states, S0 ⊆ S is a set of initial states,
and R ⊆ S × S is a total transition relation. Since we take the set of states to be
2P , we do specify a labeling function: the set of atomic propositions that hold in state
s ∈ 2P is simply s. Note that our Kripke structures are deterministic (see Remark 2).
A computation of M is a (finite or infinite) sequence of states π = s1, s2, . . . such that
s1 ∈ S0 and R(si, si+1) for every i ≥ 1. For an index i ≥ 1, we use π[1..i] to denote
the prefix s1, . . . , si of π and use πi to denote the suffix si, si+1, . . . of π. Note that a
word over the alphabet 2P corresponds to at most one computation inM . The language
of M , denoted L(M), is the set of all computations of M .

For a Kripke structureM , a set of states S, and an LTL formula ϕ, we use (M,S) |=
ϕ to indicate that all the computations that start in states in S satisfy ϕ. When S = S0,
we write M |= ϕ. Also, when S = {s} is a singleton, we write (M, s) |= ϕ. We denote
by JϕK the set of states that satisfy ϕ. I.e., for every s ∈ 2P we have that s ∈ JϕK iff
(M, s) |= ϕ.

2.1 Trigger querying

A wordw ∈ (2P)∗ triggers an LTL formula ϕ in a Kripke structureM , denotedw 7→ ϕ,
if w is a computation of M and for every infinite computation π ∈ L(M), if w is a
prefix of π, then the suffix of π from position |w| satisfies ϕ. Formally, M |= w 7→ ϕ
iff for every computation π of M , if π[1..|w|] = w then π|w| |= ϕ. Note that there is
an “overlap” and the |w|-th position in π participates in both the prefix w and the suffix
satisfying ϕ. Trigger querying was introduced and studied in [21]. The solution of the
trigger query M |=? 7→ ϕ is the language of all words triggering ϕ in M .

Let us consider an example. Assume thatM models a hardware design with a signal
err that is raised whenever an error occurs. We might be interested in characterizing the
scenarios after which the signal err is raised. These scenarios are the solution to the
trigger query M |=? 7→ err. It may also be the case that we are really interested in
characterizing the scenarios after which err aught to be raised. The difference is that
now we are interested in “crossing the point of no return”; that is, the point from which
err would eventually (possibly in the distant future) be raised. The set of such scenarios
are the solution to the trigger query M |=? 7→ F err.

Remark 1. Our definition is a variant of the one defined in [21]. There, M |= w 7→ ϕ
iff for every infinite computation π ∈ L(M) if π[1 . . . |w|] = w then π|w| |= ϕ. Thus,

4

all words not in L(M) vacuously trigger all LTL formulas. As discussed in [21], the
variants are technically similar. We find the variant with no vacuous solutions more
appealing in practice.

The definition of trigger querying refers to computations, rather than states, in M .
It is more convenient to work with an equivalent definition, which is state based:

Lemma 1. [21] For a Kripke structure M , an LTL formula ϕ, and a finite word w =
s1, . . . , sn, it holds that M |= w 7→ ϕ iff w ∈ L(M) and sn ∈ JϕK.

By Lemma 1, triggering a formula is the same as triggering the set of states that
satisfy this formula. Accordingly, we are going to use the notation M |= w 7→ T , for
a set T ⊆ S. Also, by Lemma 1, the language of triggers is simply the language of
M when viewed as an automaton with JϕK being the set of accepting states. As also
follows from Lemma 1, our framework can be extended to additional, more expressive
universal formalisms, such as ∀CTL?.

2.2 Predicate abstraction

Consider a concrete Kripke structure MC = 〈P, 2P , S0C
, RC〉 and a set of predicates

Φ = {θ1, . . . , θm} such that θi is a Boolean formula over P . Given MC and Φ, we
construct an abstract Kripke structure MA by merging concrete states that agree on the
predicates in ϕ into a single abstract state. Thus, the set of states of MA is 2Φ and
a concrete state is mapped to an abstract state if it satisfies exactly all the predicates
associated with the abstract state.

For a concrete state c ∈ 2P and an abstract state a ∈ 2Φ we say that c |= a iff c
satisfies exactly all the predicates in a. Formally, c |= ∧

θ∈a θ ∧
∧
θ/∈a ¬θ. We then

also say that c ∈ a. Thus, for convenience, we are going to view an abstract state both
as a set of predicates (and use the notation θ ∈ a, for θ ∈ Φ) and as a set of concrete
states (and use c ∈ a). Note that the predicates in Φ need not be independent. Thus,
some subsets of Φ may be inconsistent, in which case no concrete state corresponds to
them.

Typically, Φ is much smaller than P . Consequently, moving to the state space 2Φ

involves loss of information and calls for an approximation of M ’s transition relation.
The abstract structureMA (also known as a modal transition system [23]) has two types
of transitions: may transitions, which over-approximate these of M , and must transi-
tions, which under-approximate them. Formally, MA = 〈P, 2Φ, S0A

,→may,→must〉,
where S0A

,→may , and→must are defined as follows.

– a ∈ S0A
iff there exists c ∈ a ∩ S0C

,
– a→may a

′ iff there exists c ∈ a and c′ ∈ a′ such that RC(c, c′), and
– a→must a

′ iff for all c ∈ a there exists c′ ∈ a′ with RC(c, c′).

A may computation is a sequence of states of MA in which every two consecutive
states have a may transition between them. Formally, π = a0, a1, . . . is a may compu-
tation if for every i ≥ 0 it holds that ai →may ai+1. A must computation is defined

5

in a similar way, with ai →must ai+1. Note that every must computation is a may
computation, but not vise versa.

Consider an LTL formula ϕ over Φ and an abstract state a. We distinguish between
may satisfaction and must satisfaction. We say that (MA, a) |=may ϕ if for every infi-
nite may computation π that starts in a, we have π |= ϕ. Must satisfaction is defined
similarly. Since may computations over-approximate the set of concrete computations,
and must computations under-approximate them, and since the more computations there
are, the less likely it is to satisfy an LTL formula, we have the following.

Lemma 2. [16] Consider an LTL formula ϕ over Φ.

1. If (MA, a) |=may ϕ then for every c ∈ a it holds that (MC , c) |= ϕ.
2. If (MA, a) 6|=must ϕ then for every c ∈ a it holds that (MC , c) 6|= ϕ.

For a concrete Kripke structure MC and a set Φ of predicates, we denote by MC(Φ)
the abstract Kripke structure with state space 2Φ that is induced by MC .

Remark 2. Recall that our Kripke structures are deterministic. It is possible to define
trigger querying also for nondeterministic systems – this is also the setting in [21],
which make the trigger-querying problem PSPACE-complete in the size of the system.
As in LTL model checking, abstraction is essential also when the complexity is only
NLOGSPACE in the system. We will discuss the nondeterministic setting further in
Remark 3.

2.3 Relating concrete and abstract languages

We relate words over predicates with words over atomic propositions. We define two
functions: abs : 2P → 2Φ and conc : 2Φ → 22P

. For c ∈ 2P , we define abs(c) = {θ ∈
Φ : c |= θ}. For a ∈ 2Φ we define conc(a) = {c ∈ 2P : c |= a}. Thus, abs(c) is the
abstract state to which c belongs, and conc(a) is the set of concrete states that belong
to a.

We extend the definition of conc and abs to words. For a finite or infinite word
w = w1, w2, . . . over 2P we define abs(w) to be the word τ = τ1, τ2, . . . over 2Φ of
the same length as w such that for every i ≥ 1 it holds that abs(wi) = τi. For a word
τ = τ1, τ2, . . . over 2Φ we define the language conc(τ) as the set of words w such that
τ = abs(w). That is, for every w = w1, w2, . . . ∈ conc(τ) and i ≥ 1 it holds that
wi ∈ conc(τi).

For an abstract structure MC(Φ) and an abstract may or must computation τ =
τ1, τ2, .. of MA, we say that τ has a matching concrete computation iff there is a com-
putation w ∈ conc(τ) ∩ L(MC). Note that if τ is a must computation then it always
has a matching concrete computation, but if τ is a may computation, it need not have a
matching concrete computation.

We relate languages over predicates with languages over atomic propositions. For
languages L ⊆ (2P)∗ and T ⊆ (2Φ)∗ we say that L ⊆ T iff for every w ∈ L it
holds that abs(w) ∈ T . Defining language containment in the other direction is more
involved, as conc(τ), for τ ∈ (2Φ)∗, contains many concrete computations and not
all of them may be of interest. Therefore, in addition to the usual T ⊆ L relation, we

6

define a variant of containment that has a concrete Kripke structureMC as an additional
parameter. For a single word τ ∈ (2Φ)∗ and a language L ⊆ (2P)∗, we say that τ is
in L with respect to MC , denoted τ ∈MC

L, if conc(τ) ∩ L(MC) ⊆ L and conc(τ) ∩
L(MC) 6= ∅. That is, for every concrete word w ∈ conc(τ), if w ∈ L(MC) then w in
L, and there is a word w ∈ conc(τ) that satisfies this condition non-vacuously. Now,
for languages T ⊆ (2Φ)∗ and L ⊆ (2P)∗, we say that T ⊆MC

L if for every τ ∈ T , it
holds that τ ∈MC

L.

3 Approximating Triggers

Let MC be a concrete Kripke structure, Φ a set of predicates, and ϕ an LTL formula
over Φ. Also, let MA = MC(Φ) and Lc ⊆ (2P)∗ be the solution to the trigger query
MC |=? 7→ ϕ. That is, for a word w over 2P , it holds that w ∈ Lc iff MC |= w 7→ ϕ.
As discussed above, a nondeterministic automaton for Lc is exponential in the size of
MC , and our goal is to replace it by approximating languages by reasoning about MA.
Thus, given MC , Φ, and ϕ, our goal is to find two languages Ll, Lu ⊆ (2Φ)∗ such that
Ll ⊆MC

Lc ⊆ Lu.
We distinguish between may-triggering and must-triggering. Consider an abstract

Kripke structure MA. For a word τ = a1, . . . , an over 2Φ and a set of states S ⊆ 2Φ

we say that τ 7→may S iff τ is a may computation of MA and an ∈ S. Similarly,
τ 7→must S iff τ is a must computation of MA and an ∈ S.

We use MA |= τ 7→α JϕKβ , where α, β ∈ {may,must}, to denote that τ α-
triggers the set of states that β-satisfy ϕ.

We define the two languages Ll, Lu ⊆ (2Φ)∗ as follows:

– Ll = {τ ∈ (2Φ)∗ : MA |= τ 7→must JϕKmay}.
– Lu = {τ ∈ (2Φ)∗ : MA |= τ 7→may JϕKmust}.

Note that Ll and Lu are defined by MA when viewed as a deterministic automa-
ton. For Ll, the automaton follows the must transitions and its accepting states are
JϕKmay . For Lu, it follows may transitions and its accepting states are JϕKmust. Thus,
the complexity is still linear in the system, but now it is the abstract system, which is
considerably smaller.

Recall that Lc = {w ∈ (2P)∗ : MC |= w 7→ JϕK}. Intuitively, Ll under-
approximates Lc as words τ in Ll should pass two criteria that are more difficult to
pass than these that words in Lc should: First, the word has to be a must (rather than
concrete) computation. Second, the last state in the path should may satisfy (rather than
satisfy) ϕ. Likewise, Lu over-approximates Lc as words τ in Lu should pass two crite-
ria that are less difficult to pass than these that words in Lc should: the word has to be
a may computation and the last state in the path should must satisfy ϕ. We now prove
this intuition formally.

Theorem 1. Ll ⊆MC
Lc.

Proof: Let τ = a1, . . . , an ∈ Ll. We show that τ ∈MC
Lc. Thus, L(MC) ∩ conc(τ)

is not empty and for every w ∈ L(MC)∩ conc(τ) it holds that MC |= w 7→ ϕ. We first

7

prove that L(MC) ∩ conc(τ) is not empty. Recall that τ is a must computation and so
there must be a valid concrete computation w = c1, . . . , cn such that for all 1 ≤ i < n
it holds that ci ∈ ai. Clearly, w ∈ conc(τ) and w ∈ L(MC).

Next we prove that for every w ∈ L(MC) ∩ conc(τ) it holds that MC |= w 7→ ϕ.
Consider a word w = c1, . . . , cn ∈ L(MC) ∩ conc(τ). We show that (MC , cn) |= ϕ.
Since τ ∈ Ll, we know that τ is a must computation in MA. By definition, for 1 ≤ i ≤
n it holds that ci ∈ ai. By Lemma 2, an ∈ JϕKmay implies that for every c ∈ an it
holds that (MC , c) |= ϕ, in particular (MC , cn) |= ϕ, and we are done.

Theorem 2. Lc ⊆ Lu.

Proof: Consider a word w ∈ Lc. We prove that abs(w) ∈ Lu. That is, for the word
τ = abs(w), it holds that τ 7→may JϕKmust. By definition, w ∈ Lc implies that w ∈
L(MC). Let w = c1, . . . , cn. Consider the sequence τ = a1, . . . , an of MA, where for
every 1 ≤ i ≤ |w| it holds that ai = abs(ci). Since for every 1 ≤ i < n it holds that
RC(ci, ci+1), then ai →may ai+1. By definition, w ∈ Lc also implies that cn |= ϕ. By
Lemma 2, this implies that an ∈ JϕKmust. We conclude that τ 7→may JϕKmust, and we
are done.

For a word τ ∈ (2Φ)∗, we say that Φ is informative for τ if τ 6∈ Lu or τ ∈ Ll.
Thus, refining MA with respect to Φ is sufficient in order to know whether the words
in conc(τ) ∩ L(MC) trigger ϕ in MC : either τ 6∈ Lu, in which case they all do not,
or τ ∈ Ll, in which case they do. In Example 1 and 2 we show words that are un-
informative.

Remark 3. The proofs of Theorems 1 and 2 depend on MC being deterministic. As
we demonstrate in the full version, the theorems are not valid in the nondeterministic
setting. In the full version we also suggest an alternative definition for Ll and Lu, with
which the theorems are valid. Since the added technical difficulties are orthogonal to
the ones addressed in this paper, we prefer to focus on the deterministic setting. We
still describe below the alternative definitions. First, for the lower bound, we define
Lnd
l to be {τ ∈ (2Φ)∗ : τ 7→may JϕKmay} ∩ Lmust(MA). Informally, τ is in Lnd

l iff
every may computation that induces τ ends in a state that may-satisfies ϕ, and there is
a must computation that induces τ . Now, for the upper bound, we define Lnd

u to be all
the words τ ∈ (2Φ)∗ such that there is a may computation a1, ..., an that induces τ and
(MA, an) |=must ϕ. Note that when applied to deterministic systems, we have that Lnd

l

and Lnd
u coincide with Ll and Lu, respectively.

4 Refinement

The search for approximated triggers starts with a set of predicates Φ and two languages
Ll and Lu. During the refinement process we iteratively close the gap between Ll and
Lu by adding predicates to Φ. In this section we analyze the reasons why Φ need not be
informative with respect to some words, and describe an automata-theoretic approach
for characterizing the non-informative words and refinement.

8

a1 a2

a3

a4 a5

c1

c2

c3

c4 c5

c6

c7

c8

c9
M1

M2 a1 a2

c1

c2

c3

c4

c5

a3

c6

a4

a1

a3

a4 a5

c1

c2

c3

c4 c5

c6

c7

c8

c9M ′
1

M ′
2

c1

c2

c3

c4

c5

a3

c6

a4

a1
1

a2
1

a1
2

a2
2

a1
2

a2
2

Fig. 1. Information loss in Lu and Ll.

4.1 Between the over and under approximations

We start with examples explaining four different types of “misses” in the approximating
languages.

Example 1. In this example we demonstrate the case where the word τ triggers ϕ in
MC but is not in the under-approximation. Formally, τ ∈MC

Lc and τ /∈ Ll.
Consider the Kripke structure M1 appearing in Figure 1. Let MA

1 be its abstraction
with state space {a1, . . . , a5}. Consider the formula ϕ1 = FGa3 ∧ G¬a5 and the
word τ1 = a1a2a3. Note that conc(τ1) ∩ L(MC) = {c1c4c5, c2c4c5}, and that both
computations trigger ϕ1. Indeed, they both end in c5 and the only computation that
starts in c5 satisfies ϕ1. Hence, τ1 ∈M1 Lc. On the other hand, τ1 /∈ Ll, as τ1 is a may
computation that is not a must computation in MA

1 .
Consider now the word τ2 = a1a2. Note that conc(τ2)∩L(M1) = {c1c4, c2c4}, and

that both computations trigger ϕ1. Indeed, they both end in c4 and the only computation
that starts in c4 satisfies ϕ1. Hence, τ2 ∈M1 Lc. On the other hand, τ2 /∈ Ll. While it is
a must computation in MA

1 , it ends in the state a2, which does not may satisfy ϕ1.

Example 2. In this example we demonstrate the case where the word τ does not trigger
ϕ in MC but is in the over-approximation. Formally, τ ∈ Lu and τ /∈MC

Lc.
Consider the Kripke structure M2 appearing in Figure 1. Let MA

2 be its abstraction
with state space {a1, . . . , a4}. Consider the formula ϕ2 = Ga2 ∨ Ga3 and the word
τ3 = a1a2a3. Since τ3 is a may computation in MA

2 that ends in a3, which must
satisfies Ga3, we have that τ3 ∈ Lu. Nevertheless, there is no concrete computation
that matches τ3, so τ3 /∈M2 Lc.

Consider now the word τ4 = a1a2. Again, since τ4 is a may computation and
a2 must satisfies ϕ2, we have that τ4 ∈ Lu. Note that (M2, c4) 6|= ϕ2 because the
concrete computation c4cω6 does not satisfy ϕ2. Since c2c4 ∈ conc(τ4) ∩ L(M2) we
have τ4 /∈M2 Lc.

9

Note that, for technical convenience, in both examples we use c1, c2, . . . and a1, a2,
Nevertheless, the structures can be generated using “real” propositions and predicates.
For example, consider the following assignment of propositions to the variables in
M2. Let P = {a, b, c, d}, c1 = {a, c}, c2 = {a, c, d}, c3 = {a, b}, c4 = {a, b, d},
c5 = {a, d}, and c6 = {d}. By setting Φ = {d∧¬a, a∧ c, a∧ b} we get: a1 = {a∧ c},
a2 = {a ∧ b}, a3 = ∅, and a4 = {d ∧ ¬a}.

Our refinement procedure is based on a deterministic automaton C over the alphabet
2Φ that accepts exactly all the words with respect to which Φ is not informative. In other
words,L(C) = Lu\Ll. Rather than constructing C by taking the product of the automata
for Lu and Ll, we construct it according to an analysis of words with respect to which Φ
is not informative. While the examples above demonstrate four possibilities for a word
τ = a1, . . . , an ∈ (2Φ)∗ to be in Lu \ Ll, we shall prove that we can group them into
two types: Either τ is a may computation that is not a must computation in MA and
an |=must ϕ, or τ is a must computation in MA and an |=must ϕ but an 6|=may ϕ.

Accordingly, C maintains two copies of MA. In the first copy, C follows the must
transitions of MA, and it accepts words that end in a state that must satisfies but does
not may satisfy ϕ. The automaton C moves from the first copy to the second one when
it follows a may transition that is not a must transition. In the second copy, C follows
may transitions, and it accepts words that end in a state that must satisfies ϕ. Formally,
C = 〈2Φ, (2Φ × {1, 2}) ∪ {ainit}, δC , {ainit}, FC〉, where δC and FC are defined as
follows (when the condition does not hold, there is no transition and the run gets stuck):

– δC(ainit, a′) = 〈a′, 1〉, if a′ ∈ S0A
.

– δC(〈a, 1〉, a′) = 〈a′, 1〉, if a→must a
′. Note that this implies that a→may a

′ too.
– δC(〈a, 1〉, a′) = 〈a′, 2〉, if a→may a

′ and a 6→must a
′.

– δC(〈a, 2〉, a′) = 〈a′, 2〉, if a→may a
′.

– FC = ((JϕKmust \ JϕKmay)× {1}) ∪ (JϕKmust × {2}).
Lemma 3. L(C) = Lu \ Ll.

4.2 The refinement algorithm

Before we turn to describe how we use C in the process of refinement, let us review the
classical counterexample guided abstract refinement (CEGAR) methodology for veri-
fication of LTL properties (see [11]). The methodology is based on the fact that if an
abstraction that over-approximates the concrete structure MC satisfies an LTL formula,
then so does MC , and if the abstraction does not satisfy the LTL formula, then a coun-
terexample for the satisfaction can be used for refining the abstraction. Formally, in
CEGAR we model check MA with may transition only. If MA |= ϕ, then we are guar-
anteed that MC |= ϕ, and we are done. If MA 6|= ϕ, then we get a computation π in
L(MA) such that π 6|= ϕ and check whether π corresponds to a concrete computation.
If it does, we conclude that MC 6|= ϕ and we are done. Otherwise, the abstract com-
putation π is spurious and we use it in order to refine MA to a new abstract structure
M ′A that no longer has π as a computation. In the case of predicate abstraction, the
refinement is done by adding predicates.

Consider the over and under approximations Lu and Ll of Lc. Let us use the nota-
tions Lu(Φ), Ll(Φ), and C(Φ) in order to indicate that Lu, Ll, and C have been defined

10

with respect to the set Φ of predicates. The objective of the refinement algorithms is to
tighten the gap between Lu and Ll. That is, we start with an initial set of predicates Φ
and we refine the set to Φ′ so that Lu(Φ′) \ Ll(Φ′) is smaller than (in fact, strictly con-
tained in) Lu(Φ) \Ll(Φ). In the case of CEGAR, refinement is lengthwise, in the sense
that it is based on one counterexample that forms a path in the graph ofMA. In our case,
we introduce, in addition to lengthwise refinement, also widthwise refinement. This is
possible thanks to the automaton C, which maintains all the words in Lu \ Ll, and thus
constitutes a compact presentation of all “counterexamples”. We also suggest a hybrid
approach that combines lengthwise and widthwise refinements. Below we describe the
three approaches in detail.

Describing the approaches, we use the split operator, defined below. Consider two
sets of predicates Φ and Φ′ such that Φ ⊆ Φ′. That is, Φ′ extends Φ. For a state a ∈ 2Φ

we denote by split(a, Φ′) the refinement of awith respect toΦ′. Formally split(a, Φ′) =
{a′ ∈ 2Φ

′
: a′ ∩Φ = a}. Thus, all the sets in split(a, Φ′) agree with a on the predicates

in Φ and differ on the predicates in Φ′ \Φ. We extend the definition of the split operator
to words. For τ = a1, . . . , an ∈ (2Φ)∗ we define split(τ, Φ′) = {a′1, . . . , a′n ∈ (2Φ

′
)n :

a′i ∈ split(ai, Φ) for all 0 ≤ i ≤ n}.

Lengthwise refinement The lengthwise refinement procedure, refineWord, gets as
input a concrete Kripke structure MC , a set of predicates Φ, and a word τ ∈ (2Φ)∗ such
that Φ is not informative with respect to τ . It then refines MC(Φ) according to τ . Thus,
the output is a set Φ′ ⊃ Φ such that Φ′ is informative with respect to all computations
τ ′ ∈ split(τ, Φ′). We note that the procedure can get as input also a concrete word
w ∈ (2P)∗. It then executes refineWord with respect to abs(w).

Consider a word τ ∈ Lu \ Ll. Thus, τ ∈ L(C). The procedure refineWord
proceeds in two steps. In the first step, we extend Φ to Φ̂ such that no computation in
split(τ, Φ̂) gets to the second copy of C. In the second step we extend Φ̂ to Φ′ so that
the accepting states in the first copy of C do not include states that are reachable by
computations in split(τ, Φ′).

For the first step, we initialize Φ̂ to Φ and extend it iteratively as follows. Let ainit,
〈a1, b1〉, . . ., 〈an, bn〉 be the accepting run of C(Φ) on τ . If bn = 2, then τ is a may
computation that is not a must computation. We then find the first index 1 ≤ i < n for
which bi+1 = 2. Note that ai →may ai+1 but ai 6→must ai+1. We add to Φ̂ a predicate
ρ that splits the abstract state ai into two abstract states: a1

i consists of the concrete
states that have outgoing edges into concrete states in ai+1, and a2

i consists of the states
that do not have outgoing edges into the concrete states in ai+1. Thus, after refining,
a1
i →must ai+1 and a2

i 6→may ai+1. Note that taking ρ =
∨
c∈ai: ∃c′∈ai+1 withRC(c,c′) c

achieves this goal. We continue with this step as long as there is a word in split(τ, Φ̂)
that C(Φ̂) accepts with a run that ends in the second copy.

We start the second step with Φ̂, so the runs of C(Φ̂) on all words in split(τ, Φ̂) end in
the first copy. Recall that the set of accepting states in this copy is (JϕKmust\JϕKmay)×
{1}. In order to remove a state 〈a, 1〉 from FC we use standard CEGAR, which studies
counterexamples to the may-satisfaction of ϕ in a. As in CEGAR, if the counterexample
is spurious, we use it to refine MA so that may-satisfaction is challenged. Unlike stan-
dard CEGAR, here the procedure does not terminate when we detect a counterexample

11

that is not spurious. Instead, such a counterexample witnesses that the must-satisfaction
of ϕ in a is due to under-approximation, and we use it in order to refine MA so that
must-satisfaction is challenged.

Example 3. As a first example, consider the Kripke structure M1 in Figure 1, its ab-
straction MA

1 , the formula ϕ1 = FGa3 ∧ G¬a5, and the computation τ1 = a1a2. As
shown in Example 1, τ1 ∈ Lu \ Ll. Since τ1 is a must computation, the accepting run
of C on τ1 ends in the state 〈a2, 1〉. Accordingly, we do not perform iterations in the
first step of refineWord and continue to the second step, where CEGAR methods
return the computation π1 = a2a4a

ω
5 . We then find the state a2 as a failure state and

return the predicate ρ1 = c3 (note that only c3 has an edge to states in a4). We split the
state a2 (see M ′1 on the right side of Figure 1). Note that all the computations starting
at a1

2 are concrete computations. It follows that a1
2 is no longer an accepting state and

we terminate the procedure. Note also that after the refinement, the word a1a
1
2, which

is the only word that is both in split(τ1, {a1, a
1
2, a

2
2, a3, a4, a5}) and a computation in

the final abstract structure, is in Ll as required.
As a second example, consider the Kripke structure M2 in Figure 1, its abstraction

MA
2 , the formula ϕ2 = Ga2∨Ga3, and the word τ2 = a1a2a3. As shown in Example 2,

τ2 ∈ Lu \Ll. Since τ2 is a may computation that is not a must computation, the accept-
ing run of C on τ2 ends in the state 〈a3, 2〉. We perform an iteration of the first step of
refineWord. The failure state is a1 and we add the predicate c2, which splits a1 into
a1
1 and a2

1. We continue to another iteration of the first step and find the word a1
1a2a3.

The run on it ends in the state 〈a3, 2〉. The failure state is a2 and we split it by adding
the predicate c3. We construct the abstract structure MA({a1

1, a
2
1, a

1
2, a

2
2, a3, a4}) (see

M ′2 on the right side of Figure 1). Since all the edges are now concrete edges, Ll = Lu,
and we skip the second step of refineWord.

Widthwise refinement For two sets of abstract states S, T ⊆ 2Φ, we say that the pair
〈S, T 〉 induces an interesting frontier in C if (1) all the states in S × {1} are reachable
in C from sinit, and (2) all the states in T × {2} can reach an accepting state in C.
Interesting frontiers are interesting indeed: if there are two states a ∈ S and a′ ∈ T such
that a →may a

′ but a 6→must a
′, then the transition from 〈a, 1〉 to 〈a′, 2〉 participates

in an accepting run of C. We refer to a pair 〈a, a′〉 as above as a bridge in 〈S, T 〉.
Widthwise refinement is based on a calculation of interesting frontiers and elimina-

tion of their bridges. The refinement procedure refineCut calculates frontiers that
are not only interesting but also constitute a cut in the graph of C: every accepting run
of C that ends in the second copy must contain a bridge. Thus, as C is deterministic,
elimination of bridges necessarily reduces the language of C.

Consider a set of abstract states P ⊆ 2Φ. We define post1C(P) as the set of states
in the first copy of C that have incoming edges from states in P . Formally, post1P (S) =
{a′ : there exists a ∈ P such that 〈a′, 1〉 ∈ δC(〈a, 1〉, a′)}. We define pre2C(P) as
the set of states in the second copy of C that have outgoing edges into states in P .
Formally, pre2C(P) = {a : there exists a′ ∈ P such that 〈a′, 2〉 ∈ δC(〈a, 2〉, a′}.
The procedure refineCut, described in Figure 2, starts with the interesting frontier
〈S0A, JϕKmust〉 (note that indeed, all states in S0A × {1} are reachable from the initial
state of C, and all the states in JϕKmust × {2} are accepting in C), and iteratively apply

12

post1C and pre2C on the sets found reachable so far. The sets can be maintained by
BDDs and their update is symbolic. The termination of refineCut is determined
by the user. In the description below we guard the iterations by a Boolean flag cont
that the user may update in the update(cont) procedure. Several updates are possible:
the procedure can run for a bounded number of iterations (which may be a parameter
to the procedure), until a fixed-point is reached (which guarantees that C(Φ′) accepts
only must computations, and is therefore typically too good), or until a desired number
of bridges is accumulated. The procedure also uses the procedure refine, which, as
described above, splits the states in the sources of bridges so that they are no longer
bridges.

Procedure refineCut;
Input: a set of predicates Φ
Output: a set of predicates Φ′

Φ′ ← Φ ; S ← S0A ; T ← JϕKmust ;
while cont do

S ← post1C(S) ∪ S;
T ← pre2C(T) ∪ T ;
update(cont);

end
B ← (S × T) ∩ (→may \ →must) ;
Φ′ ←refine(B,Φ);

Fig. 2. The symbolic refineCut procedure.

Note that refineCut is similar to step one of refineWord in that it only refines
paths that correspond to words in L(C). It does not refine the accepting states like step
two of refineWord (that is, such states may be refined as a result of moving to Φ′,
but they do not play a role in deciding which predicates to add).

Hybrid refinement Recall that lengthwise refinement clings to the transitions C tra-
verses when a single word is read. Dually, widthwise refinement clings to a cut in C
that contains a single transition in a run of many accepted words. Hybrid refinement
combines the two approaches by clinging to a language of words.

Hybrid refinement gets from the user a regular expression r over 2Φ of words he
wants the approximating languages to be informative about. As with lengthwise refine-
ment, the input can also be given as an expression over 2P , in which case we replace
c ∈ 2P by abs(c). The procedure refineLanguage then constructs a nondeter-
ministic automaton A for L(r) and runs refineCut on the product of C with A.
Accordingly, the frontier and bridges are limited to words accepted by both C and A.

13

5 Variants of Trigger Querying

In this section we consider several variants of trigger querying and show that our frame-
work is robust and can handle them too. We start with the classical (non-triggered)
query-checking problem, where an abstraction-refinement framework is quite straight-
forward.

5.1 Query checking

The input to the LTL query-checking problem is a model M over a set P of atomic
propositions and a query ϕ, where a query is an LTL formula in which some subformula
is the place-holder ? (e.g., AG?). The solution to the query-checking problem, denoted
QC(M,ϕ), is the set of strongest propositional assertions over P that, when replace the
place-holder, result in a formula that is satisfied by M . We use ϕ[?← θ] to denote that
formula obtained from ϕ by replacing ? by θ. So, θ ∈ QC(M,ϕ) iff M |= ϕ[? ← θ]
and for all propositional assertions ξ over P , if ξ → θ then M 6|= ϕ[?← ξ].

Note that we consider here queries in LTL. Adjusting the framework to branching
temporal logic is possible; it is more complicated, as it combines may and must transi-
tions, but the expected thing works, and we leave it out of the scope of our contribution.
In particular, for branching temporal logic, researchers have already found methods
to cope with the complexity of query checking [5, 19]. On the other hand, known algo-
rithms for solving LTL query checking do not do much better than checking all possible
solutions. A nice exception, based on integer linear programming, is presented in [10],
but it works only on a subclass of queries.

Abstraction for query checking For two sets of propositional assertions Γ1 and Γ2, we
say that Γ1 ⊆̃ Γ2 if for every θ ∈ Γ1, there exists ξ ∈ Γ2 such that ξ → θ (possibly
ξ = θ). Thus, all the propositional formulas in Γ1 are implied by these in Γ2. In the
abstract query-checking problem, we are given a concrete Kripke structure MC , a set
of predicates Φ, and an LTL query ϕ over Φ. The goal is to find two sets, Γl and Γu, of
propositional assertions over Φ that under- and over-approximate the set of solutions.
Formally, Γl ⊆̃ QC(MC , ϕ) ⊆̃ Γu.

As we show below, the straightforward thing to do, namely to reason about the over-
and under-approximations of MC , work. Formally, let Mmay

A = 〈Φ, 2Φ, S0A
,→may〉

and Mmust
A = 〈Φ, 2Φ, S0A

,→must〉. Then,

Theorem 3. QC(Mmay
A , ϕ) ⊆̃ QC(MC , ϕ) ⊆̃ QC(Mmust

A , ϕ).

Refinement for query checking Let Γl = QC(Mmay
A , ϕ) and Γu = QC(Mmust

A , ϕ).
As is the case with refinement for trigger querying, the goal of refinement is to decrease
Γu \ Γl. The refinement is based on a propositional assertion θ over Φ such that θ ∈
Γu \ Γl. We can choose θ arbitrarily, but typically the user provides assertions he finds
interesting.

Given a formula θ ∈ Γu \ Γl, there is ξ ∈ Γu such that ξ → θ. Since ξ /∈ Γl, it
follows that Mmay

A 6|= ϕ[? ← ξ]. Accordingly, refinement is similar to the one in CE-
GAR, which examines the counterexample for the satisfaction of ϕ[? ← ξ] in Mmay

A .

14

Unlike CEGAR, here we refine even when the counterexample is not spurious. Indeed,
predicates need to be added in order to split states along the counterexample so that
the corresponding concrete computation would match a must computation in the ab-
straction. The process can continue until Γl = QC(MC , ϕ) = Γu, but is typically
terminated earlier, when the gap between Γl and Γu is of less interest.

5.2 Constrained trigger querying

In this variant, the input to trigger querying contains also a regular expression r over 2P ,
and the set of solutions is restricted to ones in L(r). Let Cc = Lc∩L(r) be the solution
to the trigger querying with respect to the concrete structure. Given a setΦ of predicates,
our goal is to return two sets of abstract computations that approximate Cc from below
and above. Let abs(r) = {abs(w) : w ∈ L(r)} and abs(r) = {abs(w) : w 6∈ L(r)}.
The lower and upper bounds can now be obtained by restricting Ll and Lu according
to r. Formally, let Cl = Ll \ abs(r) and Cu = Lu ∩ abs(r).
Theorem 4. Cl ⊆MC

Cc ⊆ Cu.

We start the refinement by refining Ll and Lu. We use the algorithms described
in the previous sections. In particular, we suggest to use refineLanguage with the
input language L(r). Note that it is possible for τ ∈ Ll to have w,w′ ∈ conc(τ) with
w ∈ L(r) but w′ /∈ L(r). Such computations τ are in Cu \ Cl. Let τ = a1, . . . , an ∈
Ll∩ (Cu \Cl). We continue the refinement according to the regular expression r. Since
τ is a must computation, there must be at least two concrete computations w,w′ ∈
conc(τ) such that w ∈ L(r) and w′ /∈ L(r). We find the first index 1 ≤ i such that
wi 6= w′i. We add a predicate that splits the abstract state ai so that wi and w′i are
mapped to different abstract states. We continue until split(τ, Φ′) ∈ Cl.

5.3 Necessary Conditions

Trigger querying study sufficient conditions for ϕ to be triggered: if M |= w 7→ ϕ,
then after executing w, the suffix must satisfy ϕ. A dual problem is the one of finding
necessary conditions for ϕ to hold. For a Kripke structureM and an LTL formula ϕ, the
necessary condition for ϕ inM , denotedNC(M,ϕ), is a set of finite computations such
that for every π ∈ L(M), if πn |= ϕ then π[1..n] ∈ NC(M,ϕ). We requireNC(M,ϕ)
to be minimal. Thus, if w ∈ NC(M,ϕ) then there is a computation π ∈ L(M) such
that π|w| |= ϕ and π[1, . . . , |w|] = w.

It is shown in [21] that the problem of finding NC(M,ϕ) can be solved in nonde-
terministic logarithmic space. Still, as in LTL model checking, abstraction would be of
great help in coping with large state spaces, and as with trigger querying, we are looking
for languages that approximate NC(M,ϕ) from above and below. As we show below,
such languages can be obtained by reasoning about the may and must abstraction ofM .

Theorem 5. NC(Mmust
A , ϕ) ⊆MC

NC(MC , ϕ) ⊆ NC(Mmay
A , ϕ).

The refinement algorithm for necessary conditions is similar to the one used in query
checking: given τ ∈ Nu \ Nl, the algorithm refines both the computation τ (in case it
is a may but not must computation) and the last state in it (in case it must-satisfies but
does not may-satisfy ϕ).

15

6 Discussion

We described an abstraction-refinement framework for trigger querying. Beyond mak-
ing trigger-querying and its variants feasible in practice, we find the framework inter-
esting from a theoretical point of view as it involves several conceptual differences from
CEGAR, and thus involves new general ideas about abstraction and refinement:

1. In CEGAR, the goal is to find a solution to a binary query: does the system sat-
isfy the specification. Here, we sought a solution to a query that is not binary: we
searched for the language Lc, and we approximated Lc from both above and below.
Consequently, the lack of information in the abstraction is reflected in the distance
between the approximating languages, and this distance can serve the user in the
refinement process. Furthermore, termination of the procedure is determined by the
user, when he finds the approximation satisfying.

2. In CEGAR, one needs to over-approximate the transitions of the system in order
to reason about universal properties and to under-approximate them in order to
reason about existential ones. For specification formalisms with both universal and
existential path quantifiers, CEGAR needs both may and must transitions [23], and
it is common to use a three-valued semantics in such cases [16]. Trigger querying
does not have a universal or existential polarity, and both types of approximations
are needed. However, the three-value semantics is refined to a precise measure of
the lack of information, by means of |Lu \ Ll|.

3. In CEGAR, we have to use the model-checking algorithm in order to generate coun-
terexamples, some of which may be spurious. The set of spurious counterexamples
in CEGAR corresponds to the set Lu\Ll in our setting. Unlike the case of CEGAR,
here it was possible to model this set easily by means of the automaton C, and it was
therefore possible to base the refinement process on C. In particular, it enabled both
lengthwise and widthwise refinement, and the fact the set of “counterexamples” is
regular enabled a symbolic refinement procedure.

These ideas are relevant and could be helpful in several variants of CEGAR: in model
checking of quantitative specifications, where the query is not binary [7], in a CEGAR
method for µ-calculus, where formulas need not have a universal or existential polarity
[18], in attempts to refine the three-valued semantics [3], and in algorithms that gather
batches of counterexamples before refining [14, 15].

References

1. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpec temporal logic: A new
temporal property-specification logic. In Proc. 8th TACAS, LNCS 2280, pages 196–211.
Springer, 2002.

2. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S.K.
Rajamani, and A. Ustuner. Thorough static analysis of device drivers. In EuroSys, 2006.

3. T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. In Proc. 17th CAV, LNCS
3576, pages 67–81. Springer, 2005.

16

4. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The temporal
logic Sugar. In Proc. 13th CAV, LNCS 2102, pages 363–367. Springer, 2001.

5. G. Bruns and P. Godefroid. Temporal logic query checking. In Proc. 16th LICS, pages
409–420. IEEE Computer Society, 2001.

6. W. Chan. Temporal-logic queries. In Proc. 12th CAV, LNCS 1855, pages 450–463. Springer,
2000.

7. K. Chatterjee, L. Doyen, and T. Henzinger. Quantative languages. In Proc. 17th CSL, pages
385–400, 2008.

8. M. Chechik, M. Gheorghiu, and A. Gurfinkel. Finding state solutions to temporal queries.
In Proc. Integrated Formal Methods, pages 273-292, 2007.

9. M. Chechik and A. Gurfinkel. TLQSolver: A temporal logic query checker. In Proc. 15th
CAV, LNCS 2725, pages 210–214. Springer, 2003.

10. H. Chockler, A. Gurfinkel, and O. Strichman. Variants of ltl query checking. In Haifa
Verification Conference, LNCS 6504, pages 76-92, 2010.

11. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM, 50(5):752–794, 2003.

12. E.M. Clarke, A. Gupta, and O. Strichman. Sat-based counterexample-guided abstraction
refinement. IEEE Trans. on CAD of Integrated Circuits and Systems, 23(7):1113–1123,
2004.

13. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static analysis
of programs by construction or approximation of fixpoints. In Proc. 4th POPL, pages 238–
252. ACM, 1977.

14. L. de Alfaro and P. Roy. Solving games via three-valued abstraction refinement. Inf. Comput.,
208(6):666–676, 2010.

15. M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M.Y. Vardi. Multiple-counterexample
guided iterative abstraction refinement: An industrial evaluation. In Proc. 9th TACAS, LNCS
2619, pages 176–191, 2003.

16. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.
In Proc. 14th CAV, LNCS 2404, pages 137–150, 2002.

17. P. Godefroid, A.V. Nori, S.K. Rajamani, and S. Tetali. Compositional may-must program
analysis: unleashing the power of alternation. In Proc. 37th POPL, pages 43–56, 2010.

18. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t know in the µ-calculus. In
Proc. 6th VMCAI, LNCS 3385, pages 233–249. Springer, 2005.

19. A. Gurfinkel, M. Chechik, and B. Devereux. Temporal logic query checking: A tool for
model exploration. IEEE Trans. Software Eng., 29(10):898–914, 2003.

20. U. Kühne, D. Große, and R. Drechsler. Property analysis and design understanding. In
DATE, pages 1246–1249, 2009.

21. O. Kupferman and Y. Lustig. What triggers a behavior? In Proc. 7th Int. Conf. on Formal
Methods in Computer-Aided Design, pages 146–153. IEEE Computer Society, 2007.

22. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press, 1994.

23. K.G. Larsen and G.B. Thomsen. A modal process logic. In Proc. 3rd LICS, 1988.
24. D. Lo and S. Maoz. Mining scenario-based triggers and effects. In Proc. 23rd ASE, pages

109–118, 2008.
25. M. Samer and H. Veith. Validity of ctl queries revisited. In Proc. 12th CSL, LNCS 2803,

pages 470–483. Springer, 2003.
26. S. Vijayaraghavan and M. Ramanathan. A Practical Guide for SystemVerilog Assertions.

Springer, 2005.

17

