
The Blow-Up in Translating LTL to

Deterministic Automata

Orna Kupferman and Adin Rosenberg

School of Computer Science and Engineering,
Hebrew University, Jerusalem 91904, Israel. {orna,adinr}@cs.huji.ac.il

Abstract. The translation of LTL formulas to nondeterministic au-
tomata involves an exponential blow-up, and so does the translation

of nondeterministic automata to deterministic ones. This yields a 22
O(n)

upper bound for the translation of LTL to deterministic automata. A
lower bound for the translation was studied in [KV05a], which describes

a 22
Ω(

√
n)

lower bound, leaving the problem of the exact blow-up open. In

this paper we solve this problem and tighten the lower bound to 22
Ω(n)

.

1 Introduction

The logic LTL (linear temporal logic) [Pnu81] is used for the specification of on-
going behaviors of reactive systems. Such behaviors can be specified also using
highly expressive second-order logics, but LTL offers two important advantages.
First, writing formulas in temporal logic is simpler. Second, decision procedures
for temporal logic are of elementary complexity. These advantages have made
temporal logic, and in particular LTL, useful in practice.

The key to the elementary complexity of the decision procedures for temporal
logics is their elementary translation to automata on infinite objects. In contrast,
the translation of monadic second order logic formulas to automata is nonele-
mentary [Büc62,Rab69]. In particular, given an LTL formula ψ of length n, it
is possible to translate ψ to a nondeterministic Büchi word automaton (NBW,
for short) with at most 2O(n) states [VW94]. The translation of LTL to NBW
has been a subject of extensive research, studying its theoretical complexity,
optimizations, and performance in practice (c.f., [GPVW95,EH00,SB00,GO01]).

NBWs are strictly more expressive than deterministic Büchi word automata
(DBWs, for short): a language L ⊆ Σω can be recognized by a DBW iff there
is a language R ⊆ Σ∗ such that for every word w ∈ Σω, we have that w ∈ L iff
w has infinitely many prefixes in R [Lan69]. All ω-regular languages, however,
and therefore also all LTL formulas, can be translated to deterministic word
automata with richer acceptance conditions, like Rabin or parity [Saf88,Pit06].
Such a translation is part of several decision procedures for LTL (e.g., synthesis
and control [PR89]), algorithms for translating LTL to other logics (e.g., LTL to
alternation-free µ-calculus [KV05a] and to general µ-calculus [Dam94]), as well
as decision procedures for other logics (e.g., satisfiability for CTL∗ [ES84]). The

blow-up that the translation involves plays a role even in algorithms that avoid
determinization [KV05b,Kup06].

Recall that the translation of LTL to NBW involves an exponential blow-up.
Determinization of NBWs also involves an exponential blow-up [Saf88,Pit06],
yielding a doubly-exponential upper bound for the translation of LTL to deter-
ministic automata. The doubly-exponential upper bound holds both for deter-
ministic automata with rich acceptance conditions as well as for DBWs. We note,
however, that the translation of LTL to DBW, when it exists, can avoid Safra’s
determinization and is much simpler [BK09]. In [KV05a], Kupferman and Vardi
studied a lower bound for the translation. They described a family of languages
L1, L2, . . . such that Ln is can be specified by an LTL formula of length O(n2)

yet the smallest DBW for it needs at least 22n states. This implies a 22Ω(
√
n)

lower bound for the translation, leaving the problem of the exact tight bound
open.

In this paper we solve this problem. We first describe a family of languages
L1, L2, . . . such that Ln can be specified by an LTL formula of length O(n log n)
yet the smallest DBW for it needs at least 22n states. The languages Ln are
defined with respect to an alphabet of a constant size (6 letters). We then show
that moving to an alphabet of size O(n) we can tighten the lower bound further
and describe a family L1, L2, . . . such that Ln can be specified by an LTL formula
of length O(n) yet the smallest DBW for it needs at least 22n states. This implies

a 22Ω(n)

lower bound for the translation, matching the known upper bound.
As in [KV05a], the languages we use are DBW-recognizable. By [KPB94], if
a deterministic Rabin automaton (DRW, for short) recognizes a language that
is DBW-recognizable, then a DBW for it can be defined on top of the same

structure. It follows that our results imply a tight 22Θ(n)

bound for the translation
of LTL to both DBW and DRW.

2 Preliminaries

2.1 Linear temporal logic

The logic LTL is a linear temporal logic [Pnu81]. Formulas of LTL are con-
structed from a set AP of atomic propositions using the usual Boolean operators
and the temporal operators X (“next time”) and U (“until”). Formally, an LTL
formula over AP is defined as follows:

– true, false, or p, for p ∈ AP .
– ¬ψ1, ψ1 ∧ ψ2, Xψ1, or ψ1Uψ2, where ψ1 and ψ2 are LTL formulas.

The logic LTL is used for specifying on-going behaviors of reactive systems.
Consider a computation π = π0, π1, π2, . . ., where for every j ≥ 0, the set πj ⊆
AP is the set of atomic propositions that hold in the j-th position of π. We
denote the suffix πj , πj+1, . . . of π by πj . We use π |= ψ to indicate that an LTL
formula ψ holds in the computation π. The relation |= is inductively defined as
follows:

– For all π, we have that π |= true and π 6|= false .
– For an atomic proposition p ∈ AP , we have that π |= p iff p ∈ π0.
– π |= ¬ψ1 iff π 6|= ψ1.
– π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.
– π |= Xψ1 iff π1 |= ψ1.
– π |= ψ1Uψ2 iff there exists k ≥ 0 such that πk |= ψ2 and πi |= ψ1 for all

0 ≤ i < k.

Each LTL formula ψ over AP defines a language L(ψ) ⊆ (2AP)ω of the
computations that satisfy ψ. Formally, L(ψ) = {π ∈ (2AP)ω|π |= ψ}.

We denote the size of an LTL formula ϕ by |ϕ| and we use the following
abbreviations in writing formulas:

– ∨,→, and ↔, interpreted in the usual way.
– Fψ = trueUψ (“eventually”).
– Gψ = ¬F¬ψ (“always”).

2.2 Automata over infinite words

For a finite alphabet Σ, an infinite word w = σ1 ·σ2 · · · is an infinite sequence of
letters from Σ. A property of a system with a set AP of atomic propositions can
be viewed as a language over the alphabet 2AP . We have seen in Section 2.1 that
LTL can be used in order to define properties. Another way to define properties
is using automata.

A nondeterministic Büchi automaton over infinite words is a tuple A =
〈Σ,Q,Q0, δ, α〉, where Σ is a finite nonempty alphabet, Q is a finite nonempty
set of states, Q0 ⊆ Q is a nonempty set of initial states, δ : Q × Σ → 2Q is a
transition function, and α ⊆ Q is an acceptance condition. Intuitively, when an
automaton A runs on an input word over Σ, it starts in one of the initial states,
and it proceeds along the word according the transition function. Thus, δ(q, σ) is
the set of states that A can move into when it is in state q and it reads the letter
σ. Note that the automaton may be nondeterministic, since it may have many
initial states and the transition function may specify many possible transitions
for each state and letter. The automaton A is deterministic if |Q0| = 1 and
|δ(q, σ)| ≤ 1 for all states q ∈ Q and letters σ ∈ Σ.

Formally, a run r of A on an infinite word w = σ1 · σ2 · · · ∈ Σω is an infinite
sequence q0, q1, . . . of states in Q such that q0 ∈ Q0, and for all i ≥ 0, we have
qi+1 ∈ δ(qi, σi+1). Note that a nondeterministic automaton can have many runs
on a given input word. In contrast, a deterministic automaton can have at most
one run on a given input word. The acceptance condition α determines which
runs are accepting. A run r is accepting if it visits some state in α infinitely often.
Formally, let inf (r) = {q : qi = q for infinitely many i’s }. Then, r is accepting
iff inf (r) ∩ α 6= ∅. This is called the Büchi acceptance condition.

We also refer here to the Rabin acceptance condition. The Rabin accep-
tance condition is richer than the Büchi acceptance condition: α ⊆ 2Q × 2Q

is a set of pairs of subsets of states, and a run r satisfies a condition α =

{〈G1, B1〉, . . . , 〈Gk , Bk〉} iff there is 1 ≤ i ≤ k such that inf (r) ∩ Gi 6= ∅ and
inf (r) ∩ Bi = ∅. We are not going to use the Rabin condition and only refer to
known results about it. We use NBW, DBW, and DRW to denote nondetermin-
istic Büchi automata, deterministic Büchi automata, and deterministic Rabin
automata, respectively.

3 From LTL to DBW

It is shown in [VW94] that every LTL formula ψ can be translated to an NBW
Aψ of size 2O(|ψ|) such that L(Aψ) = L(ψ). It is shown in [Saf88] that every
NBW with n states can be translated to a deterministic Rabin automaton with
2O(n logn) states. It follows that every LTL formula ψ can be translated to a

DRW Aψ of size 22O(|ψ|)
such that L(Aψ) = L(ψ). Moreover, it is shown in

[KPB94] that DRWs are Büchi type: if a DRW recognizes a language that is
DBW-recognizable, then an equivalent DBW can be defined on the same struc-
ture. It follows that if L(ψ) is DBW-recognizable, then there is a DBW Aψ of

size 22O(|ψ|)
such that L(Aψ) = L(ψ).

3.1 The known lower bound: from O(n2) to 22
n

In [KV05a], Kupferman and Vardi studied a lower bound for the translation of
LTL to DBW. By the Büchi-typeness of DRWs, the same bound applies for the
translation of LTL to DRW. We review their result below.

Theorem 1. [KV05a] There exists an infinite family of DBW-recognizable lan-
guages L1, L2, . . . such that for every n ≥ 1, the language Ln can be specified by
an LTL formula of length O(n2), and every DBW that recognizes Ln has at least
22n states.

Proof: Let Σ = {a, b,#, $}. We define the family of languages as follows:

Ln = {(a+ b+ #)∗ · # · w · # · (a+ b+ #)∗ · $ · w · #ω | w ∈ {a, b}n}.

For n ≥ 1, we use the term n-block to refer to a word in (a+ b)n. It is not hard
to see that Ln contains exactly all words in which some n-block w appears both
after the single $, with a #ω tail after it, and before the $, where it is surrounded
by #’s.

For every n, the language Ln can be specified by the LTL formula

ψn = [(¬$)U($ ∧

n
︷ ︸︸ ︷

X((a ∨ b) ∧X((a ∨ b) ∧ . . .X((a ∨ b)∧XG#

n
︷ ︸︸ ︷

) . . .)))]∧
F [# ∧

∧

1≤i≤n((X ia ∧G($ → X ia)) ∨ (X ib ∧G($ → X ib))) ∧Xn+1#].

The first clause of the formula asserts that there is exactly one $ in the word,
followed by an n-block and an infinite tail of #’s. The second clause asserts that
there exists a position in which # is true and the i-th letter from this position,

for 1 ≤ i ≤ n, agrees with the i-th letter after the $. Also, the (n+ 1)-th letter
from this position is #. Clearly, the length of ψn is quadratic in n. Note that
the quadratic blow-up arises from the need to repeat n checks, where the check
for the i-th letter requires a subformula of length O(i).

By [CKS81], the smallest deterministic automaton on finite words that ac-
cepts Ln (omitting the #ω suffix) has at least 22n states. The same argument
can be used to prove that the smallest DBW that accepts Ln has at least 22n

states: reaching the $, the DBW should remember the set of n-blocks that have
appeared, surrounded by #’s, before. ut

Note that, for simplicity, [KV05a] assumes that the atomic propositions over
which the LTL formulas are defined are mutually exclusive (that is, at each
moment, exactly one proposition holds). Since the number of atomic propositions
is fixed, this can be achieved by adding a conjunction of a fixed size that enforces
it.

3.2 Improvement # 1: from O(n log n) to 22
n

with a fixed alphabet

In the proof above, the LTL formula checks that for some n-block w appearing
before the $, the i-th letter after the $ matches the i-th letter of w. Each of these
checks is done using a subformula of length O(i), and a check is required for all
1 ≤ i ≤ n, leading to an overall formula of a quadratic length. In this section
we consider a variant of Ln in which each letter in the n-blocks is prefixed by
the binary encoding of its position in the block. This enables each of the checks
to be specified by an LTL formula of length O(log n), resulting in a formula
of length O(n log n) for all positions. The formulas should also assert that each
letter is indeed prefixed by the encoding of its position, but this can be done
by a conjunction of length O(n logn), leading to an entire formula of length
O(n log n). Formally, we have the following.

Theorem 2. There exists a family of DBW-recognizable languages L1, L2, . . .
over a 6-letter alphabet, such that for every n, the language Ln can be defined
by an LTL formula of length O(n log n), and every DBW that recognizes Ln has
at least 22n states.

Proof: Let Σ = {a, b,#, $, 0, 1}. We first introduce some notations.

– For n ≥ 1 and 1 ≤ i ≤ n, let k = dlogne and bn,i be the k-bit binary
encoding of i− 1. For example, b8,4 = 011 and b12,11 = 1010.

– Let bn,i[j] denote the j-th bit in bn,i.

We are going to define Ln as the language of words consisting of a sequence
of n-blocks, separated by #, followed by a $, a copy of some n-block, and an
infinite tail of #’s. Each n-block must be well-formatted; that is, rather than
being a simple word in (a+b)n, it is now a subword of length n(k+1), consisting
of n letters in {a, b}, with the i-th letter, for 1 ≤ i ≤ n, being prefixed by bn,i.
Thus, each bit in the n-block is “labeled” by its position in the block. These

labels allow an LTL formula to efficiently verify that the n-block following the
letter $ is indeed a copy of one of the n-blocks appearing before the letter $.

We define Ln as an intersection of two languages, Sn and Rn. The language
Sn contains all words that have the proper format; i.e., the word is a sequence of
n-blocks, separated by #’s, followed by $, another n-block, and an infinite tail
of #’s. The language Rn contains all words in which some n-block surrounded
by #’s appear before and after a single $. Formally, let rn = bn,1 · (a+ b) · bn,2 ·
(a+ b) · · · bn,n · (a+ b). Then,

Sn = # · (rn · #)∗ · $ · rn · #ω

Rn =
⋃

w∈rn

Σ∗ · # · w · # ·Σ∗ · $ ·Σ∗ · w ·Σω

Ln = Sn ∩ Rn.

We now turn to define the LTL formula ψn that specifies Ln. As in [KV05a],
we assume that the atomic propositions are mutually exclusive. As there, since
the number of atomic propositions is fixed, this can be enforced by a fixed-length
subformula. For 1 ≤ i ≤ n, we let ϕn,i assert that the current position starts
with bn,i. Formally,

ϕn,i = bn,i[1] ∧X(bn,i[2] ∧X(bn,i[3] ∧ . . . ∧X(bn,i[k]) . . .)).

We now define the LTL formula ψn as the conjunction of the following clauses:

∧X(ϕn,1) (1)

∧ G(

n−1∧

i=1

(ϕn,i → X((a ∨ b) ∧Xϕn,i+1))) (2)

∧ G(ϕn,n → X((a ∨ b) ∧X(# ∧X(ϕn,1 ∨ $ ∨G#)))) (3)

∧ (¬$)U($ ∧Xn·(k+1)G#) (4)

∧ F (# ∧ (

n∧

i=1

(ϕn,i → Xk
∨

σ∈{a,b}

(σ ∧ F ($ ∧ F (ϕn,i ∧X
kσ)))))U#). (5)

Clause (1) asserts that the word begins correctly. Clause (2) asserts that the
n-blocks are well formed. Clause (3) asserts that the n-blocks are separated by
#’s, and right after them starts a new n-block, or there is a $, or a #ω tail.
Clause (4) asserts that the first $ symbol is followed by a subword of length
n(k+1) after which a #ω tail starts. Clause (5) asserts that there exists a string
w, surrounded by #’s, with each letter appearing again after a $ symbol. Note
that Clauses (1) through (4) assert that the word is in Sn, while Clause (5),
given that Clauses (1)-(4) hold, adds the requirement that the input is in Rn.

Since |ϕn,i| = O(k) and k = dlogne, it follows that |ψn| = O(n logn).
Since Ln is of the form L′

n ·#
ω for a regular language L′

n, a DBW recognizing
it can easily be constructed by adding a transition from the accepting state of a
DFW accepting L′

n to a one state DBW that accepts the #ω tail.

It is left to prove that every DBW that recognizes Ln must have at least 22n

states. Assume by contradiction that there exists a DBW A that recognizes Ln
and has less than 22n states. For 0 ≤ i ≤ 2n−1, let wi be the n-block that corre-
sponds to the the i-th word in (a+b)n, say, according to a lexicographic order. For
every S = {i1, i2, . . . , ik} ⊆ {0, 1, . . . , 2n − 1}, let pS = #wi1#wi2# . . .#wik#$.
Let qS be the state that A visits after reading pS . Since A has less than 22n states,
there must be two distinct sets S, S ′ ⊆ {0, 1, . . . , 2n − 1} such that qS = qS′ .
Since S 6= S′, there must be 0 ≤ i ≤ 2n−1 that distinguishes them. Without loss
of generality, assume that i ∈ S \S ′. Since i ∈ S, it follows that pS ·wi#ω ∈ Ln,
and the run of A on pS · wi#ω is accepting. Therefore, the run on pS′ · wi#ω is
accepting as well. However, i /∈ S ′, so pS′ · wi#

ω /∈ Ln, which leads to a contra-
diction. ut

3.3 Improvement #2: from O(n) to 22
n

with a linear alphabet

In the proof above, in a well-formatted n-block, each letter a or b was prefixed
by the binary encoding of its position, which is of length dlogne. By using an
alphabet of linear size, we can use the alphabet in order to encode the position
of the a’s and the b’s. This will allow the LTL formula to check the matching of
each letter in the n-block by a formula of a fixed length. Checking for all letters
can then be done by a formula of a linear length. In addition, we have to check
that the letters we use indeed encode the positions, which again can be done by
a formula of a linear length. Formally, we have the following.

Theorem 3. There exists a family of DBW-recognizable languages L1, L2, . . .
such that for every n, the language Ln can be specified by an LTL formula of
length O(n), and every DBW that recognizes Ln has at least 22n states.

Proof: First we define the alphabet Σn. Let Σ′
n = {1, 2, . . . , n} × {a, b}, and

Σn = Σ′
n ∪ {#, $}. For clarity, we use the symbols ai and bi for 〈i, a〉 and 〈i, b〉,

respectively.
Next, we define Ln. Intuitively, Ln is again the language of words consisting of

n-blocks, separated by #’s, followed by a $ symbol, a copy of some n-block, and
an infinite #ω tail. Now however, the n-blocks are well-formatted in a different
way: for each 1 ≤ i ≤ n, the i-th letter is ai or bi. Thus, again each occurrence
of a and b is “labeled” by its position in the n-block. These labels allow an LTL
formula to efficiently check that the n-block following the $ symbol is indeed a
copy of one of the n-blocks appearing before the $.

Again, we define Ln as an intersection of Sn andRn, which are defined exactly
as in the proof of Theorem 2, only with rn = (a1 + b1) · (a2 + b2) · · · (an + bn).
Thus,

Sn = # · (rn · #)∗ · $ · rn · #ω

Rn =
⋃

w∈rn

Σ∗
n · # · w · # ·Σ∗

n · $ ·Σ∗
n · w · #ω

Ln = Sn ∩ Rn

Finally, we define an LTL formula ψn that recognizes Ln. Again, we assume
that the atomic propositions are mutually exclusive. A naive way to enforce this
is by a conjunction disabling all pairs of atomic propositions to hold simultane-
ously. This, however, would result in a formula quadratic in n, and is thus too
long. As we shall see below, the fact the formula ψn forces the letters # or $
to appear between n-block can be used in order to specify mutual exclusiveness
with a formula of linear length. Now, ψn is a conjunction of the following clauses.

∧X(a1 ∨ b1 ∨ $)

∧ G(

n−1∧

i=1

((ai ∨ bi) → X(ai+1 ∨ bi+1)))

∧ G((an ∨ bn) → X(# ∧X(a1 ∨ b1 ∨ $ ∨G#)))

∧ (¬$)U($ ∧X((a1 ∨ b1) ∧X
nG#))

∧ F (# ∧X(((
n∧

i=1

(ai ∧ F ($ ∧ Fai)) ∨ (bi ∧ F ($ ∧ Fbi))))U#))

The structure of the clauses is similar to these used in the proof of Theorem 2.
Clearly, |ψn| = O(n). Also, the language Ln is DBW-recognizable, and the proof
that the minimal DBW that recognizes Ln has at least 22n states is identical to
the previous one, with the present format of n-blocks.

It is left to show that we can enforce mutual exclusion using a formula of
linear size. We use the following formula:

G((# ∨ $) → ¬
n∨

i=1

(ai ∨ bi))

∧ G((# → ¬$))

∧ G(

n∧

i=1

(ai → ¬bi)).

The formula guarantees that the atomic propositions # and $ are mutually
exclusive to all other atomic propositions, and that for all 1 ≤ i ≤ n, the atomic
propositions ai and bi are mutually exclusive. We claim that this, together with
ψn, implies that xi and yj are also mutually exclusive, for all x, y ∈ {a, b} and
1 ≤ i < j ≤ n. Assume by contradiction that there is some n-block such that
both xi and yj hold in a position k in the n-block. By the formula ψn, the fact
that yj holds in position k implies that # holds in position k+n−j+1. Also, the
fact that xi holds in position k and i < j implies that ai+n−j+1 ∨ bi+n−j+1 also
holds in position k+n−j+1. This, however, contradicts the mutual exclusiveness
of # with ai+n−j+1 and bi+n−j+1, so we are done. ut

4 Discussion

We tightened the lower bound in the blow-up involved in the translation of LTL

formulas to deterministic Büchi automata from 22Ω(
√
n)

to 22Ω(n)

. Interestingly,

we had to distinguish between the case the set of atomic propositions is fixed
and the case it is not. This is interesting, as the known translations with which
the upper bound for the blow-up is proven do not try to take advantage of a
fixed alphabet. Indeed, given an LTL formula ψ of length n, its translation goes
through a nondeterministic Büchi automaton with 2O(n) states, which is then

determinized to a Büchi automaton with 22O(n)

states. A more careful analysis
of the constants hiding in the O() notations reveals that one can actually take
advantage of the fixed alphabet.

In [BKR10], the authors define the class of ordered alternating automata. In
ordered automata, the non-accepting states of the automaton are ordered, and
transitions between non-accepting states must respect the order. LTL formulas
can be translated to ordered alternating automata. Unlike general alternating au-
tomata, for which removal of alternation involves that break-point construction
and a 3n blow up [MH84], alternation of ordered automata (as well as very weak
alternating automata, which are a special case of ordered automata [GO01]) can
be removed with only an n2n blow-up. Moreover, it is shown in [BKR10] that
for ordered automata with m letters, alternation can be removed with a 2m+n

blow-up, in a construction that makes use of the fact that the break-point con-
struction can be based on subsets of letters rather than subsets of states. Our
results here motivate further study of constructions that explicitly refer to the
set of letters. It may well be that the lower bound described here for the case of
an alphabet of a constant size is tight, and that efforts should now be directed
at improving the upper bound for this setting.

Acknowledgement We thank the anonymous reviewers for helpful comments.

References

[BK09] U. Boker and O. Kupferman. Co-ing Büchi made tight and helpful. In Proc.

24th IEEE Symp. on Logic in Computer Science, pages 245–254, 2009.
[BKR10] U. Boker, O. Kupferman, and A. Rosenberg. Alternation Removal in Büchi

Automata. In Proc. 37th International Colloquium on Automata, Lan-

guages and Programming, volume 6199 of Lecture Notes in Computer Sci-

ence, pages 76–87. Springer, 2010.
[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic.

In Proc. Int. Congress on Logic, Method, and Philosophy of Science. 1960,
pages 1–12. Stanford University Press, 1962.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of

the Association for Computing Machinery, 28(1):114–133, 1981.
[Dam94] M. Dam. CTL? and ECTL? as fragments of the modal µ-calculus. Theo-

retical Computer Science, 126:77–96, 1994.
[EH00] K. Etessami and G.J. Holzmann. Optimizing Büchi automata. In 11th Int.

Conf. on Concurrency Theory, volume 1877 of Lecture Notes in Computer

Science, pages 153–167. Springer, 2000.
[ES84] E.A. Emerson and A. P. Sistla. Deciding branching time logic. In Proc.

16th ACM Symp. on Theory of Computing, pages 14–24, 1984.

[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc

13th Int. Conf. on Computer Aided Verification, volume 2102 of Lecture

Notes in Computer Science, pages 53–65. Springer, 2001.
[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly auto-

matic verification of linear temporal logic. In P. Dembiski and M. Sredni-
awa, editors, Protocol Specification, Testing, and Verification, pages 3–18.
Chapman & Hall, 1995.

[KPB94] S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-
vis deterministic Büchi automata. In Algorithms and Computations, volume
834 of Lecture Notes in Computer Science, pages 378–386. Springer, 1994.

[Kup06] O. Kupferman. Avoiding determinization. In Proc. 21st IEEE Symp. on

Logic in Computer Science, pages 243–254, 2006.
[KV05a] O. Kupferman and M.Y. Vardi. From linear time to branching time. ACM

Transactions on Computational Logic, 6(2):273–294, 2005.
[KV05b] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th

IEEE Symp. on Foundations of Computer Science, pages 531–540, 2005.
[Lan69] L.H. Landweber. Decision problems for ω–automata. Mathematical Systems

Theory, 3:376–384, 1969.
[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. The-

oretical Computer Science, 32:321–330, 1984.
[Pit06] N. Piterman. From nondeterministic Büchi and Streett automata to deter-

ministic parity automata. In Proc. 21st IEEE Symp. on Logic in Computer

Science, pages 255–264. IEEE press, 2006.
[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. Theoretical

Computer Science, 13:45–60, 1981.
[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.

16th ACM Symp. on Principles of Programming Languages, pages 179–190,
1989.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite
trees. Transaction of the AMS, 141:1–35, 1969.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on

Foundations of Computer Science, pages 319–327, 1988.
[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae.

In Proc 12th Int. Conf. on Computer Aided Verification, volume 1855 of
Lecture Notes in Computer Science, pages 248–263. Springer, 2000.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Infor-

mation and Computation, 115(1):1–37, 1994.

