
Rigorous Approximated Determinization of
Weighted Automata

Benjamin Aminof∗, Orna Kupferman∗, and Robby Lampert†
∗Hebrew University, Israel †Weizmann Institute, Israel

Email: {benj,orna}@cs.huji.ac.il robby.lampert@weizmann.ac.il

Abstract—A nondeterministic weighted finite automaton
(WFA) maps an input word to a numerical value. Applications
of weighted automata include formal verification of quantitative
properties, as well as text, speech, and image processing. Many of
these applications require the WFAs to be deterministic, or work
substantially better when the WFAs are deterministic. Unlike
NFAs, which can always be determinized, not all WFAs have
an equivalent deterministic weighted automaton (DWFA). In [1],
Mohri describes a determinization construction for a subclass of
WFA. He also describes a property of WFAs (thetwins property),
such that all WFAs that satisfy the twins property are deter-
minizable and the algorithm terminates on them. Unfortunately,
many natural WFAs cannot be determinized.

In this paper we study approximated determinization of WFAs.
We describe an algorithm that, given a WFAA and an approx-
imation factor t ≥ 1, constructs a DWFA A′ that t-determinizes
A. Formally, for all words w ∈ Σ

∗, the value of w in A′ is
at least its value in A and at most t times its value in A.
Our construction involves two new ideas: attributing states in
the subset construction by both upper and lower residues, and
collapsing attributed subsets whose residues can be tightened.
The larger the approximation factor is, the more attributed
subsets we can collapse. Thus,t-determinization is helpful not
only for WFAs that cannot be determinized, but also in cases
determinization is possible but results in automata that are
too big to handle. In addition, t-determinization is useful for
reasoning about the competitive ratio of online algorithms. We
also describe a property (thet-twins property) and use it in order
to characterize t-determinizable WFAs. Finally, we describe a
polynomial algorithm for deciding whether a given WFA has the
t-twins property.

Index Terms—Weighted automata; Determinization;

I. I NTRODUCTION

Automata are the key to the modeling and solution of
various problems in computer science. By reducing problems
to questions about nondeterministic finite automata (NFAs,for
short), we separate the algorithmic aspects of the problem,
yielding clean and optimal solutions. For example, discrete
feasible planning is reduced to the nonemptiness problem
for NFAs [2], pattern finding in strings is reduced to the
membership problem for NFAs [3], and correctness of finite-
state systems with respect to safety properties is reduced to
the containment problem for NFAs [4]. Research includes
both efforts to find or improve automata-based frameworks for
various settings, as well as a study of classical automata-theory
problems, like the emptiness, membership, and containment
problems mentioned above.

Over the years, researchers have extended the basic model
of NFA, giving rise to automata-based frameworks for new

settings. For example, in [5], B̈uchi introduced nondetermin-
istic automata on infinite words, and used them in order to
solve the decidability of S1S. Another example, which is the
subject of this paper, is a generalization of NFAs to a multi-
valued setting. While a classical NFA defines a subset ofΣ∗,
and hence maps each word inΣ∗ to either0 or 1, a weighted
finite automaton(WFA, for short) maps each word inΣ∗ to a
value from some semiring [6], [1]. We focus on thetropical
semiring 〈IR≥0 ∪ {∞},min,+,∞, 0〉. There, each transition
of the WFA has aweight in IR≥0, and the cost of a run is
the sum of the weights of the transitions taken along the run.
Applications of weighted automata over the tropical semiring
include formal verification, where WFAs are used for the
verification of quantitative properties [7], [8], for reasoning
about probabilistic systems [9], and for reasoning about the
competitive ratio of on-line algorithms [10], as well as text,
speech, and image processing, where the weights of the WFA
are used in order to account for the variability of the data and
to rank alternative hypotheses [11], [12].

An NFA is nondeterministic, and may have several runs
on an input word. In the Boolean setting, a word is accepted
if some run accepts it. In the weighted setting, the cost that
a WFA A assigns to a wordw, denotedcost(A, w), is the
minimum of the costs of accepting runs onw. For example,
the WFA in Figure 1 has two accepting runs on the wordabb.
The first run isq0q1q1q1, and it has cost1 + 1 + 1 = 3. The
second run isq0q2q2q2, and it has cost2 + 2 + 2 = 6. Thus,
the cost thatA assigns toabb is min{3, 6} = 3.

q0

q1

q3

q2

a, 1 c, 0

a, 2 d, 1

b, 1

b, 2

Fig. 1. A non-determinizable WFA.

As argued in [7], [8], [1], some applications of the automata-
theoretic approach require, or work substantially better,when
the automata are deterministic. In the context of formal
verification, an implementation is correct with respect to its
specification if the language of an automatonI that models the
implementation is contained in the language of an automaton
S that models the specification. In the weighted setting, a

solution to the containment problem is known only whenS
is deterministic [8]1, and the problem is in fact undecidable
for WFAs [13]. Likewise, a translation of weighted automata
to weightedµ-calculus, which is essential for symbolic al-
gorithms, involves determinization of the automata, and so
does the use of weighted automata as specifiers of winning
conditions in weighted games [7]. In the context of speech
recognition, weighted automata are used in order to repre-
sent components of a complex system, and the efficiency
of combining the components crucially depends on the au-
tomata beeing deterministic [1], [14]. Another advantage of
deterministic weighted automata (DWFAs, for short), is the
existence of minimization algorithms for them [1]. In fact,
while determinization (when possible) of WFA may involve a
poly-exponential blow-up in the number of states, in practice
determinization is remarkably successful, and DWFAs are not
bigger than their nondeterministic origins [15].

Unlike NFAs, which can always be determinized [16], not
all WFAs can be determinized. Consider for example the WFA
from Figure 1. In order to get convinced thatA does not have
an equivalent DWFA, consider words of the formab∗. It is not
hard to see that an equivalent DWFA should reach different
states after readingabi andabj , for i 6= j. Indeed, sinceA may
read bothc and d after reading a prefix inab∗, and reading
d forces the cost accumulated so far to be doubled, a DWFA
for the language must remember this unbounded accumulated
cost.

In [1], Mohri describes a determinization construction fora
subclass of WFA. Essentially, as in the subset construction for
NFA [16], each state in the equivalent DWFA is associated
with a setS of states of the WFA. Intuitively, the weights
on the transitions of the DWFA are defined so that the cost
of reading a wordw and getting to stateS of the DWFA
is equivalent to the minimal cost of readingw in the WFA
and getting to some state inS. In order to achieve this, each
stateq in S is mapped to aresidue– a value in IR≥0 that
describes the extra cost that has to be paid when the transition
from S originates from a transition fromq. The challenge in
the determinization process is that these residues may keep
increasing, bringing in more and more states associated with
the setS, and the algorithm may not terminate even for WFAs
that are determinizable.

Mohri also describes a property of WFAs – thetwins
property, such that all WFAs that satisfy the twins property
are determinizable and the algorithm terminates on them. A
WFA satisfies the twins property if for all pairsq and q′

of states, if there are two wordsu, v ∈ Σ∗ such that both
q and q′ are reachable from the set of initial states along
u, and bothq and q′ can loop alongv, then the cost of
looping alongv from q is equal to the cost of looping along
v from q′. The twins property captures a significant subclass
of determinizable WFAs. In particular, for automata that are
trim and unambiguous (all states participate in at least one

1In the weighted setting, a WFAI is contained in a WFAS iff for every
word w, the cost thatI assigns tow is less than, or equal to, the costS
assigns tow.

accepting run, and each word accepted by the automaton has
exactly one accepting run), satisfying the twins property is
both a necessary and a sufficient condition for determiniz-
ability [1]. Moreover, checking whether a given unambiguous
WFA satisfies the twins property can be done in polynomial
time [17], [14]. We note that the problem of deciding whether
a general WFA is determinizable is open. Also, a refined
characterization of the settings in which Mohri’s algorithm
terminates in described in [18].

The need to work with DWFAs has called for improved
solutions to the determinization challenge. One approach,
taken in [7], is to extend weighted automata with registers that
can maintain unbounded values. While this makes all automata
determinizable, basic questions about the automata of [7]
are undecidable, and decidability is obtained by augmenting
the automaton with bound functions, which depends on the
context in which the automaton is used. Another approach is
to have anapproximateddeterminization algorithm. Motivated
by applications in speech recognition, [15] suggests a variant
of Mohri’s algorithm that allows the residues maintained
in the state space of the DWFA to be approximated by
some parameterǫ. Thus, if during the subset construction we
generate a states that is ǫ-close to a states′ that has already
been generated (formally,s ands′ are associated with the same
setS of states and the residues to whichs maps the states inS
are different by at mostǫ from those to which they are mapped
in s′), then we give up the generation ofs and use instead the
states′. Since the approximation mechanism in [15] is local,
there is no way to relatecost(A, w) with cost(A′, w), for
a WFA A and its approximating DWFAA′. Indeed, the only
guarantee in the approximated-determinization construction of
[15] is thatA′ accepts exactly all the words accepted byA, and
no guarantee is given about the cost of the accepted words.
Nevertheless, the experimental results in [15] show that the
approximation has led to a significant size reduction while
hardly affecting the performance. In fact, for the application
of speech recognition, researchers have tried even rougher
approximations, like ignoring the weights of the WFA, and
then re-introducing them via ad-hoc heuristics [19], [20].A
different approach to cope with the lack of a deteminization
construction is to restrict attention to DWFAs that are embod-
ied in the structure of the WFA [10].

The sequence of work above suggests that determinization
of weighted automata is of great theoretical and practical
interest, and that the lack of a rigorous approximated deter-
minization construction should be addressed. By “rigorous”
we mean that there is a guaranteed relation between the cost
of words in the input WFA and the constructed DWFA. In
this paper we solve this problem: we describe a rigorous
approximated-determinization construction, and study its prop-
erties and applications. Given a WFAA and a real-valued
parametert ≥ 1, we construct a DWFAA′ thatt-approximates
A. That is, for every wordw ∈ Σ∗, the DWFAA′ acceptsw iff
A acceptsw, andcost(A, w) ≤ cost(A′, w) ≤ t · cost(A, w).
We refer to such a construction ast-determinization. For
example, in Figure 2 we describe a DWFA that2-approximates

2

s0 s1 s2
a, 2

c, 0
d, 1

b, 2

Fig. 2. A 2-determinization of the WFA from Figure 1.

a, 2

b, 2

a, 4

b, 4

c, 4

a, 1

b, 1

c, 2 d, 4

Fig. 3. A WFA that satisfies the 2-twins property.

the non-determinizable WFA in Figure 1.
A promising attempt to adjust Mohri’s construction tot-

determinization is to multiply the weights of some transitions
of the given WFA by a factor of at mostt, hoping to obtain a
WFA that satisfies the twins property. Such an approach, how-
ever, ignores the subtle connection between different cycles of
the WFA. To see the problem, consider the WFA appearing
in Figure 3. While the WFA is 2-determinizable, we cannot
multiply the weights of the transitions by a factor of at most
2 so that the result satisfies the twins property [21]. Indeed,
since both the first and second components can traverse(ab)∗,
and both the second and third components can traverse(abc)∗,
no multiplication works.

The WFA appearing in Figure 3 also demonstrates that an
adjustment of Mohri’s construction tot-determinization by
multiplying the weights of some transitions in the constructed
DWFA by at mostt, and updating the residues maintained
in the states not to take into account “debts” that go below
the multiplied weight, are doomed to fail too. While this
construction, in case it terminates, results in a DWFA that
t-approximates the input WFA, there are simple examples
of WFAs (in particular, the WFAs in Figures 1 and 3) that
are t-determinizable, yet the construction does not terminate
on them. Indeed, a key point in the algorithm should be
a mechanism for collapsing states associated with the same
subset of states of the WFA to a single state. In Mohri’s
algorithm, whent = 1, the mechanism of maintaining residues
proves itself as a very good one, and indeed the algorithm
handles successfully all WFAs that satisfy the twins property.
A goodt-determinization algorithm should aim at similar high
standards, which requires the development of a new collapsing
mechanism.

Our t-determinization construction involves such a new
mechanism, and indeed, as we prove, our construction termi-
nates when applied to WFAs with rational weights that satisfy
the t-twins property. Essentially, thet-twins property adds a
parameter to Mohri’s twins property and bounds byt the ratio
between the costs of traversing cycles that can be traversed
reading the same word. Note that the two WFAs in Figures 1
and 3 satisfy the2-twins property. As has been the case with
the twins property, thet-twins property captures a significant
subclass oft-determinizable WFAs. In particular, as we show,
for automata that are trim and unambiguous, satisfying thet-

twins property is both a necessary and sufficient condition for
t-determinizability. In addition, we present a polynomial-time
algorithm for deciding whether an unambiguous WFA has the
t-twins property.

The mechanism we suggest involves the following new
ideas: Consider a WFAA. Recall that each statep in the subset
construction ofA is associated with a setS of states ofA. We
maintain for each stateq ∈ S two residues: an upper-bound
residueuq and a lower-bound residuelq. The upper-bound
residue plays a role similar to the one played by the single
residue in Mohri’s construction, and it upper bounds the cost
that may be added to the cost of a run that proceeds fromq

without causing the cost of the run to exceedt·cost(A, w). The
lower-bound residue is a new feature and is the cost that should
be added to the cost of a run that proceeds fromq in order to
make sure that the cost of the run is at leastcost(A, w). Thus,
each stateq ∈ S is associated with a range[lq, uq] rather than
with a single residue. This range is used in the criterion for
collapsing states. Since the cost assigned byA′ to a wordw
should be betweencost(A, w) andt·cost(A, w), the invariants
maintained foruq and lq guarantee that every residual weight
in the range[lq, uq] may be used when we proceed fromq
without violating the approximation. Consequently, in case the
algorithm is about to create a new statep′ that corresponds to
S and the algorithm has already generated a statep associated
with S such that for everyq ∈ S the residual range ofq in p′

is contained in the residual range ofq in p, then the algorithm
does not createp′, and uses the statep instead.

Our results enablet-determinization of automata for which
determinization is impossible or not known. Recall that in
some applications the user can settle for approximated deter-
minization. Our approximated determinization may be useful
even when the automata are determinizable. Indeed, we show
that for all t > t′ there exists a WFAA such that a DWFA
that t-approximatesA is exponentially more succinct than one
that t′-approximatesA. Finally, as we discuss in Section V,
t-determinization has proven useful in an automata-theoretic
approach for the competitive analysis ofonline algorithms
[10], and our results here increase the domain of algorithms
that can be handled by the framework.

II. PRELIMINARIES

While standard automata map words inΣ∗ to either “accept”
or “reject”, weighted automata may be viewed as partial func-
tions (defined only for accepted words) fromΣ∗ to IR≥0 (the
set of non-negative reals). Formally, aweighted finite automa-
ton (WFA, for short) is a 8-tupleA = 〈Σ, Q,∆, c, Q0, F, i, f〉,
whereΣ is a finite input alphabet,Q is a finite set of states,
∆ ⊆ Q × Σ × Q is a transition relation,c : ∆ → IR≥0 is a
weight function,Q0 ⊆ Q is a set of initial states,F ⊆ Q is a
set of final states,i : Q0 → IR≥0 is an initial-weight function,
and f : F → IR≥0 is a final-weight function. A transition
d = 〈q, a, p〉 ∈ ∆ (also written as∆(q, a, p)) can be taken
by A when reading the input lettera in the stateq, and it
causesA to move to the statep with costc(d). The transition
relation∆ induces a transition functionδ : Q×Σ → 2Q in the

3

expected way. Thus, for a stateq ∈ Q and a lettera ∈ Σ, we
haveδ(q, a) = {p : ∆(q, a, p)}. We extendδ to sets of states,
by letting δ(S, a) =

⋃
q∈S δ(q, a), and recursively to words in

Σ∗, by lettingδ(S, ε) = S, andδ(S, u ·a) = δ(δ(S, u), a), for
all u ∈ Σ∗ anda ∈ Σ. A WFA A may be nondeterministic in
the sense that it may have many initial states, and that for some
q ∈ Q and a ∈ Σ, it may have∆(q, a, p1) and∆(q, a, p2),
with p1 6= p2. If |Q0| = 1 and for every stateq ∈ Q and
letter a ∈ Σ we have|δ(q, a)| ≤ 1 thenA is a deterministic
weighted finite automaton (DWFA, for short).

For a wordw = w1 . . . wn ∈ Σ∗, and statesq, q′ ∈ Q,
a partial run of A on w from q to q′ is a sequence
r = r0r1 . . . rn ∈ Q+, where r0 = q, rn = q′, and for all
1 ≤ i ≤ n, we havedi = 〈ri−1, wi, ri〉 ∈ ∆. The cost of
the partial runr is c(r) =

∑n
i=1 c(di). Note that if A is

nondeterministic, it may have several partial runs onw from q

to q′. Thepartial costof w from q to q′ in A is θ(q, w, q′) =
min {c(r) : r is a partial run onw from q to q′ }. A run of
A on a wordw ∈ Σ∗ is a partial runr = r0r1 . . . rn ∈ Q+

of A on w, where r0 ∈ Q0. The run r is accepting if
rn ∈ F . The word w is accepted byA if there is an
accepting run ofA on w. The (unweighted)language of
A is L(A) = {w : w is accepted byA}. The cost of an
accepting run is the sum of the weights of the transitions
that participate in the run added to the initial weight of the
first state and the final weight of the last state2. Formally, let
r = r0r1 . . . rn be an accepting run ofA on w. The cost
of r is cost(A, r) = i(r0) + c(r) + f(rn). The cost ofw,
denotedcost(A, w), is the minimal cost over all accepting
runs of A on w. Thus, cost(A, w) = min{cost(A, r) :
r is an accepting run ofA on w}. For completeness, ifw 6∈
L(A) we setcost(A, w) = ∞.

For two WFAs A and A′, and anapproximation factor
t ∈ IR, t ≥ 1, we say thatA′ t-approximatesA iff for all words
w ∈ Σ∗, we havecost(A, w) ≤ cost(A′, w) ≤ t · cost(A, w).
We say that two weighted automata areequivalentif they ac-
cept the same set of words, with the same costs (equivalently,
they 1-approximate each other).

A WFA is trim if every state appears in an accepting run
on some word. A WFA isunambiguous(or single-run) if
there exists exactly one accepting run for each accepted word.
Consider a WFAA = 〈Σ, Q,∆, c, Q0, F, i, f〉. Two states,
p and q, of A are twins if for all u, v ∈ Σ∗ such that
p, q ∈ δ(Q0, u), p ∈ δ(p, v), and q ∈ δ(q, v), it holds that
θ(p, v, p) = θ(q, v, q). The WFAA has thetwins propertyif
all pairsp, q ∈ Q are twins.

The WFA in Figure 1, for example3, is trim, as all its states
appear in some accepting run and no transition weights∞.

2In general, a WFA may be defined with respect to any semiring
〈IK ,⊕,⊗, 0, 1〉. The cost of a run is then the semiring product of the initial
weight of the first state, the weights along the run, and the final weight of
the last state. The cost of an accepted word is the semiring sumover the
costs of all accepting runs on it. In this work, we focus on weighted automata
defined with respect to themin-sum semiring, 〈IR≥0 ∪ {∞} ,min,+,∞, 0〉
(sometimes called thetropical semiring), as defined above.

3For convenience, throughout this paper, we set the values ofthe functions
i andf to be constantly 0 and we omit them in the graphical descriptions.

It is, however, ambiguous, since it has two accepting runs on
words of the formab∗. In addition, it does not satisfy the twins
property: the statesq1, q2 are both reachable from the initial
state by the worda, are both reachable from themselves by
the wordb, yet the costs of the twob-cycles are different.

III. A PPROXIMATED DETERMINIZATION

We describe an algorithm that given a WFAA and an
approximation factort ≥ 1, constructs a DWFAA′ that t-
approximatesA. We say thatA′ is a t-detrminizationof A.
Recall that not all WFAs are determinizable. In general, given
t, not all WFAs aret-determinizable, and some WFAs are not
t-determinizable for allt ≥ 1. In Section IV we discusst-
determinizability and the class of WFAs that our algorithm
t-determinizes. As discussed in Section I, approximated deter-
minization may be applied also to determinizable automata,
aiming at reducing the state space. Formally, we have the
following.

Theorem 1. For everyn ≥ 1 and approximation factort > 1,
there exists a WFAAt

n with O(n) states such that a DWFA
that t-approximatesAt

n needs only two states whereas every
DWFA thatt′-approximatesAt

n, for all t′ < t, needs at least
2n states.

Proof: Let At
n be an automaton that accepts all words in

Ln = (a+ b)∗ · a · (a+ b)n−1 with a cost of1, and all words
in {a, b}+ \ Ln with a cost oft.

...
︸ ︷︷ ︸

n−1

a, 1 Σ, 0 Σ, 0

Σ, 0

Σ, t
Σ, 0

Fig. 4. The WFAAt
n.

It is easy to see that one cant-approximateAt
n using a

DWFA with two states that accepts all words in{a, b}+ with
a cost oft (the bottom component ofAt

n). SinceAt
n satisfies

the twins-property, then, by [1],At
n is determinizable, and

hencet′-determinizable for everyt′ ≥ 1. Assume by way
of contradiction that there is a DWFAA′ with less than2n

states thatt′-approximatesAt
n, for somet′ < t. For a word

w ∈ {a, b}∗, let c(w) be the sum of the initial weight and the
weights of the transitions of the single run ofA′ on w.

Consider a wordw ∈ {a, b}+. Recall thatcost(A, w) ≤ t.
SinceA′ t′-approximatesA, it follows thatcost(A′, w) ≤ t′ ·t.
Since all the weights inA′ are non-negative4, then c(w) ≤
cost(A′, w). Hence,c(w) ≤ t′ · t for all w ∈ {a, b}+. Since
A′ is finite, and thus involves only finitely many weights, this
implies that there is some costc ≤ t′ · t such thatc(w) ≤ c

for all words w ∈ {a, b}+ and there is at least one word
u ∈ {a, b}+ for which c(u) = c. Note that, by our choice of
u, for all v ∈ {a, b}∗ we have thatc(uv) = c(u).

4Using similar but slightly more complex arguments one can show an
exponential blow-up also in the case where negative weightsare allowed.

4

Let x = x1 . . . xn andy = y1 . . . yn be two different words
in {a, b}n such thatA′ reaches the same state after readingux

anduy. SinceA′ has less than2n states, such differentx and
y exist. Let1 ≤ i ≤ n be such thatxi 6= yi. Without loss of
generality, letxi = a andyi = b. Finally, let z = ai−1. Note
thatuxz ∈ Ln whereasuyz 6∈ Ln. Also, A′ reaches the same
stateq after readinguxz anduyz. Sincecost(A′, uxz) ≤ t′,
we havec(uxz) + f(q) ≤ t′. Also, sincecost(A′, uyz) ≥ t,
we have thatc(uyz) + f(q) ≥ t. Recall that by our choice
of u, we have thatc(u) = c(uxz) = c(uyz). If follows that
t ≤ c(u)+f(q) ≤ t′, contradicting the assumption thatt > t′.

Before we turn to describe ourt-determinization algorithm,
let us recallMDet – Mohri’s determinization algorithm [1].
The algorithmMDet is based on the subset construction for
determinization of NFAs [16]. There, each states of the
deterministic automaton is associated with a set of states of
A, and the intuition is that the single run of the deterministic
automaton reachess iff A has a run that reachesq for exactly
all q ∈ s. This general intuition holds also forMDet, except
that now the different states ins may have been reached using
runs with different costs, whereas the single run tos has a
single cost. The construction of the deterministic automaton
AM makes sure that the cost of the single run is the minimal
cost to some state ins. In order to achieve this, the states in
AM are attributed by additional information, and each states

is a set of pairs〈q, x〉, whereq ∈ Q is a state in the input WFA,
andx ∈ IR≥0 is the residual weightof q in s. Intuitively, the
residual weight ofq in s is the difference between the cost
of the minimal run to some state ins and the cost of the
minimal run to q. This weight has to be taken into account
if q is chosen to be the state from whichAM proceeds from
s. In more detail, lets′ be the set of states reachable froms
by the lettera. There may be different weights on transitions
from different states ins to their a-successors ins′. In order
to determine the weightc of the single transition froms to
s′ in AM , we calculate for every stateq′ in s′ a valuevq′ .
This value is the sum of the residual weight of the stateq ∈ s

that is the origin of thea-transition toq′, and the weight of
the a-transition fromq to q′ (in case there are several such
origins, we consider the one that minimizes this sum). The
weight c in then set to the minimalvq′ over all q′ ∈ s′, and
the residual weight of each stateq′ ∈ s′ is set tovq′ − c.

q0

q1

q2

q3

a, 1 b, 2

a, 2 b, 1

Fig. 5. The original WFAA.

{〈q0, 0〉}
{〈q1, 0〉,
〈q2, 1〉}

{〈q3, 0〉}
a, 1 b, 2

Fig. 6. The resultD of Mohri’s determinization algorithm.

In Figures 5 and 6 we show an example for applyingMDet.

From the stateq0 there area-transitions to bothq1 and q2.
Thus, the set of states in thea-successor of the initial state
of D consists ofq1 and q2. Sincevq1 = 1 while vq2 = 2,
the transition inD gets the weightvq1 = 1, and q2 gets the
residual weight of2−1 = 1, indicating that if the run continues
from q2, then 1 should be added to the cost accumulated in
the transitions taken so far. Theb-transition to the accepting
state ofD gets the weight of 2, since no matter which origin
of the b-transition toq3 we consider, we getvq3 = 2 (residual
weight 0 + weight 2 for the transition fromq1, and residual
weight 1 + weight 1 for the transition fromq2). Note that if
the weight on the transition fromq2 to q3 had been 0, then
the weight of the transition to the accepting state inD would
have changed to 1, since in this case, considering the origin
q2, we would have gotvq3 = 1 + 0 = 1.

If we try to applyMDet to the non-determinizable WFA in
Figure 1,MDet would generate infinitely many states with the
subset{q1, q2}, as every time we take theb-transition from
this subset to itself, the residual weight ofq2 increases by 1
and thus, a new state should be created.

One may be tempted to try overcoming this situation by
multiplying the weights on a subset of the transitions by a
factor bounded byt. Indeed, if we multiply the weight of
the b-transition fromq1 to itself by 2, then the WFA we get
can be determinized. However, as described in Section I, there
are cases in which this attempt does not succeed. Apparently,
the single residue maintained byMDet is not sufficiently
informative to deal with this problem.

Our algorithmtDet copes with this problem by associating
each state of the WFA with a range of residual weights rather
than with a single residual weight. This enables the unification
of two states with the same subset even when their residual
weights are not equal, as long as the unification does not result
in a weight that is out of the allowed range. The ranges are
simple, in the sense that they are defined by means of upper
and lower bounds.

Given a WFAA = 〈Σ, Q,∆, c, Q0, F, i, f〉, tDet constructs
a DWFAA′ = 〈Σ, P,∆′, c′, p0, F

′, i′, f ′〉 as follows. The state
space ofA′ is P ⊆ 2Q×IR×IR. Thus, every statep ∈ P is a
set of triples〈q, lq, uq〉. The set of theunderlying statesof p,
denotedstates(p), is the set{q : 〈q, lq, uq〉 ∈ p}. Each one of
the underlying statesq, has its ownresidual range[lq, uq] in
p, defined by itslower bound, lq, andupper bound, uq. When
p is not clear from the context, we uselpq andup

q .
The idea is that since the costcost(A′, w) assigned byA′

to a wordw should be betweencost(A, w) andt ·cost(A, w),
we should store for every underlying stateq of p the minimal
residual weightlq that should be added to the cost of the run
that proceeds fromq in order to make sure that its cost is
at least the cost of the cheapest corresponding run inA, and
the maximal residual weightuq that may be added to the cost
of the run that proceeds fromq without causing its cost to
exceedt times the cost of the cheapest corresponding run in
A. Accordingly, every residual weight within this range may
be used, without violating the approximation. Therefore, in
case the algorithm is about to create a new statep′, and there

5

already exists a stater such thatstates(r) = states(p′) = S,
and for everyq ∈ S the residual range ofq in r, [lrq , u

r
q], is

contained in the residual range ofq in p′, [lp
′

q , up′

q] (that is,
lp

′

q ≤ lrq ≤ ur
q ≤ up′

q), then the algorithm does not createp′,
but usesr instead. In this case we say thatr refinesp′.

procedure tDet(A, t)
1 P := ∅; F ′ := ∅; Q := ∅;
2 i′ := t ·min{i(q0) : q0 ∈ Q0};
3 p0 := {〈q0, i(q0)− i′, t · i(q0)− i′〉 : q0 ∈ Q0};
4 Enqueue(Q, p0);
5 while Q 6= ∅ do
6 p := Dequeue(Q); P := P ∪ {p};
7 if states(p) ∩ F 6= ∅ then
8 F ′ := F ′ ∪ {p};
9 f ′(p) := minq∈states(p)∩F {lq + f(q)};5

10 for each {a ∈ Σ : δ(states(p), a) 6= ∅} do
11 c′ := min{uq + t · c(d) :

〈q, lq, uq〉 ∈ p andd = (q, a, q′) ∈ ∆};
12 p′ :=

⋃
q′∈δ(states(p),a){〈 q

′,

min{lq + c(d)− c′ :
〈q, lq, uq〉 ∈ p andd = 〈q, a, q′〉 ∈ ∆},

min{uq + t · c(d)− c′ :
〈q, lq, uq〉 ∈ p andd = 〈q, a, q′〉 ∈ ∆}〉};

13 if there isr ∈ Q ∪ P such thatr refinesp′ then
14 d′ := 〈p, a, r〉; c′(d′) := c′;
15 ∆′ := ∆′ ∪ d′;
16 else
17 d′ := 〈p, a, p′〉; c′(d′) := c′;
18 ∆′ := ∆′ ∪ d′; Enqueue(Q, p′);

Fig. 7. Thet-determinization algorithm.

In Figure 7 we describetDet in pseudo-code. The resulting
DWFA A′ is constructed on the fly, using a queue of states
Q. That is, initially, the initial weighti′ is calculated6, and the
initial statep0 is created and enqueued intoQ. Then, whileQ
is not empty, at each stage, one statep is being dequeued from
Q, processed, and added toP . Processing a statep includes
two steps. First, if there exists at least one accepting state of
A that belongs tostates(p) then p is defined as accepting,
and its final weight is defined. Then, the algorithm calculates
for every lettera ∈ Σ the statep′ = δ′(p, a) and the weight
of the a-transition fromp to p′. If there already exists a state
r ∈ P that refinesp′, then r is defined as the target of the
a-transition fromp, andp′ is not created. In this case we say
that thea-transition fromp to r is red. Otherwise,p′ is created
and enqueued intoQ. In this case we say that thea-transition
from p to p′ is green. Note that because of the use of a queue,
the DWFA A′ is constructed in a BFS manner. Thus, states
that are reachable from the initial state by shorter words are

5We could useuq andt · f(q) insteadlq andf(q), to be consistent about
multiplying all weights byt, but we prefer to keep the cost as tight as possible.

6SinceA′ is deterministic, it has a single initial state. Accordingly, we
refer to i′ as a single value rather than a function.

generated and processed before states that are reachable from
the initial state by longer words.

Example 2. The WFA in Figure 8 is the result of ourt-
determinization algorithm, applied witht = 2 on the non-
determinizable WFA in Figure 1.

{〈q0, 0, 0〉}
{〈q1, -1, 0〉,
〈q2, 0, 2〉}

{〈q3, -1, 0〉}
a, 1

c, 0
d, 4

b, 2

Fig. 8. The 2-determinization of the WFA in Figure 1.

A simple analysis of the algorithmtDet in Figure 7 yields
the following two lemmas:

Lemma 3. For every statep ∈ P , we have that(i) for every
〈q, lq, uq〉 ∈ p it holds that uq ≥ 0; and (ii) there exists
〈q, lq, uq〉 ∈ p such thatuq = 0.

Lemma 4. The weightc′(d′) of every transitiond′ ∈ ∆′ is
non-negative.

Theorem 5. If the determinization algorithm terminates, then
the resulting DWFAA′ t-approximates the given WFAA.

Proof: Recall that for a wordw ∈ Σ∗, and statesq, q′ ∈
Q, the partial cost of w from q to q′ in A, θ(q, w, q′), is
the cost of the cheapest partial run ofA on w from q to q′.
In addition, letθ(Q0, w, q) = minqo∈Q0

[i(q0) + θ(q0, w, q)].
Also, for p ∈ P , let θ′(p, w) denote the cost of the unique
path labeled byw starting atp in A′. We show that for all
w ∈ Σ∗, the stateδ′(p0, w) ∈ P satisfies the following.

states(δ′(p0, w)) = δ(Q0, w), (1)

and for every〈q, lq, uq〉 ∈ δ′(p0, w), we have

θ(Q0, w, q)− [i′ + θ′(p0, w)] ≤ lq ≤ (2)

uq ≤ t · θ(Q0, w, q)− [i′ + θ′(p0, w)].

We prove both claims by an induction on|w|. The base case
is whenw = ε. In this case, it is clear from the algorithm (line
3) that indeedstates(p0) = Q0 = δ(Q0, ε). Since for a state
q ∈ Q0, the only path from any state inQ0 to q while reading
ε is q itself, we have

θ(Q0, ε, q) − [i′ + θ′(p0, ε)] =

= i(q) + θ(q, ε, q)− [i′ + θ′(p0, ε)]

= i(q)− i′ [= lq]

≤ t · i(q)− i′ [= uq]

= t · θ(Q0, ε, q)− [i′ + θ′(p0, ε)].

The induction step for (1) is simple. Consider a wordw =
ua, whereu ∈ Σ∗ and a ∈ Σ. By the induction hypothesis,
we have

states(δ′(p0, u)) = δ(Q0, u). (*)

6

Consider a statep ∈ P . From the algorithm (line 12), we have

states(δ′(p, a)) = δ(states(p), a). (**)

Thus, we have

states(δ′(p0, w)) = states(δ′(δ′(p0, u), a))

= δ(states(δ′(p0, u)), a) (3)

= δ(δ(Q0, u), a) = δ(Q0, w), (4)

where (3) holds due to (**) and (4) holds due to (*).
The induction step for (2) is more involved. First, we show

that for every〈q′, lq′ , uq′〉 ∈ δ′(p0, w) we havelq′ ≤ uq′ .
For |w| = k > 0 and p′ = δ′(p0, w), if p′ can be reached
from p0 while reading a word shorter thanw, then, by the
induction hypothesis, we are done. Otherwise, letp ∈ P be the
state from whichp′ is primarily reached, i.e.,p = δ′(p0, u) for
|u| = k− 1, and the statep′ is generated while processing the
statep with a lettera (line 12). Thus,〈p, a, p′〉 ∈ ∆′. Let c′ =
c′(〈p, a, p′〉). For a stateq′ ∈ states(p′), let q ∈ states(p) be
a state for which〈q, a, q′〉 ∈ ∆ and for whichc = c(〈q, a, q′〉)
is such thatuq + t · c = min{uq + t · c(d) : 〈q, lq, uq〉 ∈ p and
d = (q, a, q′) ∈ ∆}. Then, by Lemmas 3 and 4, we have

lq′ = min{lq + c(d)− c′ :

〈q, lq, uq〉 ∈ p andd = 〈q, a, q′〉 ∈ ∆}

≤ lq + c− c′

≤ lq + t · c− c′

≤ uq + t · c− c′ (by the induction hypothesis)

= min{uq + t · c(d)− c′ :

〈q, lq, uq〉 ∈ p andd = 〈q, a, q′〉 ∈ ∆} = uq′ .

To complete the proof of (2), we show that for every
〈q′, lq′ , uq′〉 ∈ δ′(p0, w) we have

θ(Q0, w, q
′)− [i′ + θ′(p0, w)] ≤ lq′

and
uq′ ≤ t · θ(Q0, w, q

′)− [i′ + θ′(p0, w)].

Let w = u · a, for u ∈ Σ∗ anda ∈ Σ, and letp = δ′(p0, u).
For q′ ∈ δ(Q0, w) we have

θ(Q0, w, q
′)− [i′ + θ′(p0, w)] =

= min
q∈δ(Q0,u)

{θ(Q0, u, q) + c(〈q, a, q′〉)}

−[i′ + θ′(p0, u) + c′(〈p, a, p′〉)]

≤ min
q∈δ(Q0,u)

{lq + c(〈q, a, q′〉)} − c′(〈p, a, p′〉) (5)

≤ lq′ , (6)

and

uq′ ≤ min
q∈δ(Q0,u)

{uq + t · c(〈q, a, q′〉)} − c′(〈p, a, p′〉) (7)

≤ min
q∈δ(Q0,u)

{t · θ(Q0, u, q)− [i′ + θ′(p0, u)] (8)

+t · c(〈q, a, q′〉)}

−c′(〈p, a, p′〉)

= t · θ(Q0, w, q
′)− [i′ + θ′(p0, w)],

where inequalities (5) and (8) hold due to the induction hy-
pothesis, and inequalities (6) and (7) hold due to the possibility
that a state is replaced by a state that refines it.

By (1) and the definition ofF ′, a wordw is accepted byA
iff w is accepted byA′.
Let w be a word accepted by bothA andA′. By applying (2)
on lq appearing in line 9 of the algorithm, we get

min
q∈δ(Q0,w)∩F

{θ(Q0, w, q) + f(q)} − [i′ + θ′(p0, w)]

≤ f ′(δ′(p0, w))

≤ min
q∈δ(Q0,w)∩F

{t · θ(Q0, w, q) + f(q)} − [i′ + θ′(p0, w)].

Thus,

cost(A, w)− i′ − θ′(p0, w)

≤ f ′(δ′(p0, w))

≤ t · cost(A, w)− i′ − θ′(p0, w).

From the first inequality we get

cost(A, w)≤ i′ + θ′(p0, w) + f ′(δ′(p0, w)) (9)

From the second inequality we get

i′ + θ′(p0, w) + f ′(δ′(p0, w))≤ t · cost(A, w). (10)

Since the right hand of (9) and the left hand of (10) both equal
cost(A′, w), we have

cost(A, w) ≤ cost(A′, w) ≤ t · cost(A, w).

IV. T HE t-TWINS PROPERTY

In this section we define and study thet-twins propertyof
WFA. Consider a WFAA = 〈Σ, Q,∆, c, Q0, F, i, f〉. Two
states,p and q, of A are t-twins if for all u, v ∈ Σ∗ such
that p, q ∈ δ(Q0, u), p ∈ δ(p, v), and q ∈ δ(q, v), it holds
that θ(p, v, p) ≤ t · θ(q, v, q). The WFA A has thet-twins
property if all pairs p, q ∈ Q are t-twins. Thus, thet-twins
property bounds byt the ratio between the costs of traversing
cycles that can be traversed reading the same word. Note that
the twins property is simply thet-twins property fort = 1.
Also note that ifA does not contain cycles of weight0, then it
satisfies thet-twins property, for somet. WhenA does contain
such cycles, it may not satisfy thet-twins property, for allt.

We now prove that for WFAs with rational weights and for
a rational approximation factort, if the t-twins property holds
then ourt-determinization algorithm always terminates.

Theorem 6. Consider a WFAA in which the weights are in
Q≥0, and an approximation factort ∈ Q, t ≥ 1. If A satisfies
the t-twins property, thentDet(A, t) terminates.

Proof: Let A = 〈Σ, Q,∆, c, Q0, F, i, f〉, and letn = |Q|.
First, observe that if all the weights appearing inA are rational,
we can multiply them all by a common denominator, and thus
assume that all the weights inA are natural numbers.

Assume by way of contradiction thatA satisfies thet-
twins property but thattDet(A, t) does not terminate. Thus,

7

tDet(A, t) generates infinitely many states in the process of
constructing the DWFAA′. Observe that every new statep′

that is added toA′ (line 18 of the algorithm) has an incoming
green edge (line17). Hence, by a simple induction on the
iteration in which a state is added toA′, we can show that
every state inA′ that is reachable from the initial statep0 is
also reachable by green edges only. Since every state inA′

has at most one outgoing edge for every letter in the finite
alphabetΣ, then, by K̈onig’s Lemma, there is an infinite path
π = p0p1 . . . of distinct states (i.e.,j 6= k =⇒ pj 6= pk)
in A′, that, by the above observation, uses only green edges.
SinceA has only finitely many states, it follows that there
is a setS = {q0, . . . , qm} ⊆ Q such that the set of indices
J0 = {j ∈ N : states(pj) = S} is infinite. For every state
q ∈ S and every indexj ∈ J0, let lq,j denote the lower residue
of q in pj , and letuq,j denote the upper residue ofq in pj . We
claim that there must be a statep ∈ S such that the sequence
of lower residues{lp,j : j ∈ J0} is unbounded from above.

In order to prove the above claim, assume by way of
contradiction that there is some constantb ∈ N such that
lq,j ≤ b for all q ∈ S and all j ∈ J0. By Lemma 3, we
have thatuq,j ≥ 0 for all q ∈ S and allj ∈ J0. Recall that all
the weights inA are inN, and thus, all the lower and upper
residues inA′ are in Z. Every infinite sequence of integers
that is bounded from above (below) either tends towards−∞
(∞, respectively), or it has some integer that repeats infinitely
often. We derive a series of infinite sequences of indices
J0 ⊇ J1 . . . ⊇ J2m+2 (recall thatS = {q0, . . . , qm}) as
follows: for 0 ≤ k ≤ m, if the sequence{lqk,j : j ∈ J2k}
tends to−∞, then we letJ2k+1 = J2k; and if there isℓk ∈ Z

that appears in{lqk,j : j ∈ J2k} infinitely often, then we let
J2k+1 = {j ∈ J2k : lqk,j = ℓk}. Similarly, if the sequence
{uqk,j : j ∈ J2k+1} tends to∞, then we letJ2k+2 = J2k+1,
and otherwise, we letJ2k+2 = {j ∈ J2k+1 : uqk,j = uk}, for
uk ∈ Z that appears infinitely often in{uqk,j : j ∈ J2k+1}.

Consider now the subsequenceπ2m+2, of states ofπ,
defined byπ2m+2 = {pj : j ∈ J2m+2}, and let j0 be
the minimal index inJ2m+2. It is easy to see that, by our
construction, for everyqk ∈ S we have that either the lower
(upper) residue ofqk is the same for all states inπ2m+2

or it tends to−∞ (∞, respectively). It follows that for all
large enoughj ∈ J2m+2 and for all qk ∈ S, it holds that
lqk,j ≤ lqk,j0 anduqk,j ≥ uqk,j0 . In other words, there is an
(infinite) suffix of π2m+2 all of whose states are refined by
pi0 . This is, however, impossible, astDet(A, t) (line 13 of
the algorithm) never adds toA′ a state that is refined by a
previously added state, and obviously at the time thatpi0 was
added toA′ only finitely many states were already present in
A′. This proves our claim that there is a statep ∈ S such that
the sequence of lower residues{lp,j : j ∈ J0} is unbounded.
We can thus take an infinite subsequenceJ̃ ⊆ J0 for which
the lower residues ofp monotonically increase towards∞. We
complete the proof of the theorem by showing that the fact that
the sequence of lower residues{lp,j : j ∈ J̃} is monotonically
increasing towards infinity implies thatA does not satisfy the
t-twins property. By Lemma 3 and the fact thatA has only

finitely many states, we have that there is a stateq ∈ S such
thatuq,j = 0 for everyj in some infinite subsequenceJ ′ ⊆ J̃ .
Consider now the subsequenceπ′ of states ofπ defined by
π′ = {pj : j ∈ J ′}. Given a wordw ∈ Σ∗, let runs(w, p),
and runs(w, q) be the sets of all partial runs ofA on w that
reachp and q, respectively. Letx = max{c(r) − t · c(r′) :
w ∈ Σ∗, |w| ≤ n2, r ∈ runs(w, p), r′ ∈ runs(w, q)}. I.e.,
x is the maximal value that the expressionc(r) − t · c(r′)
attains whenr andr′ range over all possible partial runs ofA
(that respectively reachp and q) on words of length at most
n2. Observe that, by our choice ofπ, every statepj in π′ is
reachable from the initial statep0 by reading some wordwj

using only green edges. Hence, by the proof of Theorem 5,
for everyj ∈ J ′ we haveθ(Q0, w

j , p)− i′−θ′(p0, w
j) = lp,j ,

and t · θ(Q0, w
j , q)− i′ − θ′(p0, w

j) = uq,j .

By subtracting the second equation from the first, and recall-
ing thatuq,j = 0, we get thatθ(Q0, w

j , p)− t ·θ(Q0, w
j , q) =

lp,j for every j ∈ J ′. SinceJ ′ is an infinite subsequence
of J̃ , the lower residues ofp in π′ tend towards infinity, and
thus, the last equation implies that there is an indexk in J ′

such thatθ(Q0, w
k, p) − t · θ(Q0, w

k, q) > x. Let z be the
length ofwk, and letr(wk, p) = r0, r1 . . . rz be a partial run
of A on wk that ends inp and costsθ(Q0, w

k, p). Similarly,
let r(wk, q) = r′0, r

′
1 . . . r

′
z be a partial run ofA on wk that

ends inq and costsθ(Q0, w
k, q).

Observe that by our choice ofk, we have thatz > n2, and
thus there are two indices0 ≤ i < j ≤ z such thatri = rj
and r′i = r′j . Consider the wordu = wk

1 . . . w
k
i · wk

j+1 . . . w
k
z .

It is easy to see that the runr(u, p) = r0 . . . rirj+1 . . . rz,
obtained by removing the loopri . . . rj from r(wk, p), is
a run of A on u that ends inp. Similarly, the partial
run r(u, q) = r′0 . . . r

′
ir

′
j+1 . . . r

′
z, obtained by removing the

loop r′i . . . r
′
j from r(wk, q), is a partial run ofA on u

that ends in q. Let dp = c(r(wk, p)) − c(r(u, p)) and
dq = c(r(wk, q)) − c(r(u, q)) be the respective differences
in the costs of the above partial runs onu andwk. Observe
that dp is the cost of looping inri . . . rj whereasdq is the
cost of looping in r′i . . . r

′
j . Since, by our assumption,A

satisfies thet-twins property, we have thatdp ≤ t · dq, and
thus,c(r(wk, p))− c(r(u, p)) ≤ t · [c(r(wk, q))− c(r(u, q))].
Rearranging the last inequality we get thatc(r(u, p)) − t ·
c(r(u, q)) ≥ c(r(wk, p))− t ·c(r(wk, q)). Hence, by removing
a synchronized loop fromr(wk, p) andr(wk, q), the difference
between the cost of the remaining run top and t times the
cost of the remaining run toq does not decrease. It follows
that by repeatedly removing such synchronized loops from
r(wk, p) and r(wk, q) we can obtain a wordv of length at
mostn2 such that the partial runsr(v, p) and r(v, q) satisfy
c(r(v, p))−t ·c(r(v, q)) ≥ c(r(wk, p))−t ·c(r(wk, q)). Recall
that we choser(wk, p) and r(wk, q) such thatc(r(wk, p)) =
θ(Q0, w

k, p) andc(r(wk, q)) = θ(Q0, w
k, q), and that by our

choice ofk we have thatθ(Q0, w
k, p)− t · θ(Q0, w

k, q) > x.
Combining the last four (in)equalities we get thatc(r(v, p))−
t · c(r(v, q)) > x, which is a contradiction since, by the
definition of x and the fact that|v| ≤ n2, we have that

8

c(r(v, p))− t · c(r(v, q)) ≤ x.
By Theorems 5 and 6, the algorithmtDet successfullyt-

determinizes all WFAs with rational weights that satisfy the
t-twins property, for a rationalt ≥ 1. Note that the assumption
about the weights being rational enabled us to use the well
order on the natural numbers in the proof of Theorem 6. We
were not able to prove termination for the general tropical
semiring, and we leave open the problem whethertDet may
not terminate for WFAs that satisfy thet-twins properties but
have irrational weights.

We now prove that thet-twins property captures a sig-
nificant subclass oft-determinizable WFAs. In particular, as
has been the case with determinization, thet-twins property
characterizes exactly the subclass of trim and unambiguous
t-determinizable WFAs.

Theorem 7. Consider a WFAA in which the weights are in
Q≥0, and an approximation factort ∈ Q, t ≥ 1. If A is trim
and unambiguous, thenA is t-determinizable iffA satisfies
the t-twins property.

Proof: Let A = 〈Σ, Q,∆, c, Q0, F, i, f〉. By Theorems 5
and 6, if A satisfies thet-twins property then it ist-
determinizable. It remains to show that ifA is trim, unambigu-
ous, andt-determinizable then it satisfies thet-twins property.

Assume by way of contradiction thatA is trim, unambigu-
ous, andt-determinizable, but does not satisfy thet-twins
property. Hence, there are two statesp, q ∈ Q, and two words
u,w ∈ Σ∗ such thatA can reach bothp and q by reading
u, and it can loop fromp to itself, as well as fromq to
itself, while readingw. Furthermore, the cost of looping on
p is more thant times the cost of looping onq. Formally,
let r(Q0, u, p) and r(Q0, u, q) be partial runs ofA on u

that reach (from some initial states)p and q respectively,
and let r(p, w, p) and r(q, w, q) be partial runs ofA on
w from p to itself and fromq to itself, respectively. Then,
c(r(p, w, p)) > t · c(r(q, w, q)). SinceA is trim, there are
words v, ṽ ∈ Σ∗ such that there is a partial runr(p, v) of A
from p to some accepting state, and a partial runr(q, ṽ) of A
from q to some (maybe different) accepting state. Also, since
A is unambiguous, then for everyj ≥ 0, the run obtained
by following r(Q0, u, p) then loopingj times alongr(p, w, p)
and finally following r(p, v), is the only accepting run ofA
on the wordu ·wj ·v. Similarly, the run obtained by following
r(Q0, u, q) then loopingj times alongr(q, w, q) and finally
following r(q, ṽ) is the only accepting run ofA on the word
u ·wj · ṽ. It follows thatcost(A, u ·wj · v) = c(r(Q0, u, p))+
j · c(r(p, w, p)) + c(r(p, v)) + x, and cost(A, u · wj · ṽ) =
c(r(Q0, u, q)) + j · c(r(q, w, q)) + c(r(q, ṽ)) + y, where the
constantsx andy (which represent the sums of the initial and
final costs) are independent ofj.

Recall thatA is t-determinizable. LetA′ = 〈Σ, Q′,∆′, c′,

Q′
0, F

′, i′, f ′〉 be a DWFA thatt-approximatesA. SinceA′ is
finite, there is some states of A′, and an infinite sequence of
indicesJ ⊆ N, such thatA′ reachess after readingu · wj

for everyj ∈ J . Being deterministic, it follows that for every
j ∈ J , the states is the only state reachable inA′ after reading

u ·wj , and that sinceA′ t-approximatesA it must accept both
v and ṽ from s. Let r′(u · wj) be the run ofA′ (from the
initial state) onu · wj , and let r′(s, v) and r′(s, ṽ) be the
partial runs ofA′ from s on v and ṽ, respectively. We thus
have thatcost(A′, u ·wj · v) = c′(r(u ·wj))+ c′(r(s, v))+x′

andcost(A′, u ·wj · ṽ) = c′(r(u ·wj))+c′(r(s, ṽ))+y′, where
the constantsx′ andy′ (which represent the sums of the initial
and final costs) are independent ofj.

Now, sinceA′ t-approximatesA, the cost of accepting a
word in A′ is at least the cost of accepting it inA, and at
mostt times that cost. Thus,c′(r(u ·wj))+ c′(r(s, v))+x′ ≥
c(r(Q0, u, p)) + j · c(r(p, w, p)) + c(r(p, v)) + x, andc′(r(u ·
wj))+ c′(r(s, ṽ))+y′ ≤ t · [c(r(Q0, u, q))+ j · c(r(q, w, q))+
c(r(q, ṽ)) + y]. By rearranging and combining the last two
inequalities, we get that for everyj ∈ J , we have thatj ·
c(r(p, w, p)) ≤ t · j · c(r(q, w, q)) + a, wherea is a constant
that is independent ofj. SinceJ is infinite, the last inequality
holds for j as large as we want, and thusc(r(p, w, p)) ≤
t · c(r(q, w, q)). This, however, contradicts our choice ofp, q

andw for which c(r(p, w, p)) > t · c(r(q, w, q)), and we are
done.

Deciding thet-twins Property

In [17], the authors presented an efficient polynomial al-
gorithm for deciding whether a given trim and unambiguous
WFA has the twins property (i.e., thet-twins property for
t = 1). As we now show, extending this algorithm to handle
the caset ≥ 1 is not difficult.

Recall thatA = 〈Σ, Q,∆, c, Q0, F, i, f〉 does not satisfy
the t-twins property iff there are two statesp, q ∈ Q, and
two wordsu,w ∈ Σ∗ such thatA can reach bothp andq by
readingu, and it can loop fromp to itself, as well as from
q to itself, while readingw. Furthermore, the cost of looping
with w on p is more thant times the cost looping withw on
q. A key observation is that if thet-twins property does not
hold then its violation can be witnessed using a wordw of
length at mostn2.

The algorithm thus proceeds in two phases. In the first
phase, it identifies all the pairs of statesp, q that can be reached
from the initial state using the same wordu. Observe that
this is a question about the non-emptiness of the intersection
of regular languages (without weights), which can be easily
solved in polynomial time. In the second phase, every such
pair p, q is checked for the existence of violating loops, as
follows: starting fromp, unwindA for n2 steps into a DAG
Gp; similarly, starting fromq, unwind A for n2 steps into
a DAG Gp; finally, construct the product DAGGp × Gq,
as usual. I.e.,Gp × Gq has a transition〈(x, x′), a, (y, y′)〉
iff there is a transition〈x, a, y〉 in Gp, and a transition
〈(x′, a, y′〉 in Gq. The weight of a transition〈(x, x′), a, (y, y′)〉
is t · c(〈x, a, y〉)− c(〈x′, a, y′〉). Observe that ifA is trim and
unambiguous, then for every wordw there is at most one path
in Gp × Gq from (p, q) labeled by the letters ofw, and its
cost is exactlyt times the cost of looping onp with w minus
the cost of looping onq with w. Thus, a pairp, q witnesses a
violation of thet-twins property iff there is a path of negative

9

cost inGp×Gq from (p, q) to itself. The later can be efficiently
checked by searching for the minimal-cost path from(p, q)
back to itself (for example, using a topological sort).

Hence, we can conclude with the following:

Theorem 8. It can be decided in polynomial time whether a
trim and unambiguous WFA satisfies thet-twins property.

When applied to ambiguous WFAs,7 the algorithm above
has a one-sided error and may miss WFAs that satisfy the
t-twins property.

V. D ISCUSSION

We described at-determinization algorithm for WFAs. We
defined thet-twins property and showed that our construction
successfullyt-determinizes WFAs that satisfy the property,
and that the property captures a large and natural subclass
of t-determinizable WFAs. In particular, thet-twins property
characterizes exactlyt-determinizability for WFAs that are
trim and unambiguous. We also described a polynomial-time
algorithm for deciding thet-twins property.

An important open question regarding the determinization
of weighted automata is the problem of deciding whether a
given WFA is determinizable. This problem generalizes to the
problem of deciding, given a WFAA and t ≥ 1, whether
A can be t-determinized, and thus also to the problem of
finding the minimalt, if exists, for which a given WFA is
t-determinizable.

Approximated determinization can be used not only for
WFAs that are not determinizable but also for WFAs that
are determinizable but whose exact determinization results in
DWFAs that are too big. As we showed, the approximation
may lead to a significant reduction in the state space. Such
an approach is similar to the one used in approximation
algorithms, where one settles for an approximated solutionfor
complex optimization problems. In [10], we related the two
approaches and described an automata-theoretic approach for
the competitive analysis of online algorithms. The approach is
based on modeling optimization problems by a WFA whose
transitions correspond to actions of the algorithm. By relating
the “unbounded look ahead” of optimal offline algorithms with
nondeterminism, and relating the “no look ahead” of online
algorithms with determinism, it is possible to solve problems
about the competitive ratio of online algorithms, by reducing
them to questions about approximated determinization of
weighted automata. The framework in [10] had to restrict
attention to DWFAs that can be obtained by pruning the
transitions of the given WFA. Essentially, the WFA models the
offline algorithm, which embodies all online algorithms, and
its transitions correspond to requests handled by the algorithm.
Having a t-determinization construction enables a simpler
modeling of online algorithms, in which the correspondence
between transitions of the WFA and actions of the algorithm
follows from the alphabet of the WFA rather than from

7Note that it is easy to transform, in polynomial time, every WFA toan
equivalent trim one.

the requirement that the DWFA be obtained by pruning of
transitions of the WFA.

Acknowledgments We thank Shir Peled for helpful discus-
sions and the anonymous reviewers for their valuable detailed
comments.

REFERENCES

[1] M. Mohri, “Finite-state transducers in language and speech processing,”
Computational Linguistics, vol. 23, no. 2, pp. 269–311, 1997.

[2] S. LaValle,Planning Algorithms. Cambridge University Press, 2006.
[3] A. Aho, “Algorithms for finding patterns in strings,”Handbook of

Theoretical Computer Science, pp. 255–300, 1990.
[4] M. Vardi, “Nontraditional applications of automata theory,” in Proc. 11th

Symp. on Theoretical Aspects of Computer Science, ser. Lecture Notes
in Computer Science, vol. 789. Springer, 1994, pp. 575–597.

[5] J. Büchi, “On a decision method in restricted second order arithmetic,”
in Proc. Int. Congress on Logic, Method, and Philosophy of Science.
1960. Stanford University Press, 1962, pp. 1–12.

[6] W. Kuich and A. Salomaa,Semirings, Automata, Languages, ser. EATCS
Monographs on Theoretical Computer Science. Springer, 1986.

[7] A. Chakrabarti, K. Chatterjee, T. Henzinger, O. Kupferman, and R. Ma-
jumdar, “Verifying quantitative properties using bound functions,” in
Proc. 13th Conf. on Correct Hardware Design and VerificationMethods,
ser. Lecture Notes in Computer Science, vol. 3725. Springer,2005, pp.
50–64.

[8] K. Chatterjee, L. Doyen, and T. Henzinger, “Quantative languages,” in
Proc. 17th Annual Conf. of the European Association for Computer
Science Logic, ser. Lecture Notes in Computer Science, vol. 5213, 2008,
pp. 385–400.

[9] C. Baier, N. Bertrand, and M. Grösser, “Probabilistic automata over
infinite words: Expressiveness, efficiency, and decidability,” in Proc.
11th International Workshop on Descriptional Complexity of Formal
Systems, 2006, pp. 3 – 16.

[10] B. Aminof, O. Kupferman, and R. Lampert, “Reasoning about online
algorithms with weighted automata,”ACM Transactions on Algorithms,
vol. 6, no. 2, 2010.

[11] K. Culik and J. Kari, “Digital images and formal languages,” Handbook
of formal languages, vol. 3: beyond words, pp. 599–616, 1997.

[12] M. Mohri, F. Pereira, and M. Riley., “Weighted finite-state transducers
in speech recognition,”Computer Speech and Language, vol. 16, no. 1,
pp. 69–88, 2002.

[13] D. Krob, “The equality problem for rational series withmultiplicities in
the tropical semiring is undecidable,”International Journal of Algebra
and Computation, vol. 4, no. 3, pp. 405–425, 1994.

[14] C. Allauzen and M. Mohri, “Efficient algorithms for testing the twins
property,” Journal of Automata, Languages and Combinatorics, vol. 8,
no. 2, pp. 117–144, 2003.

[15] A. L. Buchsbaum, R. Giancarlo, and J. Westbrook, “An approximate
determinization algorithm for weighted finite-state automata,” Algorith-
mica, vol. 30, no. 4, pp. 503–526, 2001.

[16] M. Rabin and D. Scott, “Finite automata and their decision problems,”
IBM Journal of Research and Development, vol. 3, pp. 115–125, 1959.

[17] A. L. Buchsbaum, R. Giancarlo, and J. Westbrook, “On the determiniza-
tion of weighted finite automata,”SIAM J. Comput., vol. 30, no. 5, pp.
1502–1531, 2000.

[18] D. Kirsten and I. M̈aurer, “On the determinization of weighted au-
tomata,”Journal of Automata, Languages and Combinatorics, vol. 10,
no. 2-3, pp. 287–312, 2005.

[19] P. Kenny, R. Hollan, V. Gupta, M. Lennig, P. Mermelstein,and
D. O’Shaughnessy, “A*-admissible heuristics for rapid lexical access,”
IEEE Transactions on Speech and Audio Processing, vol. 1, no. 1, pp.
49–58, 1993.

[20] R. Lacouture and R. D. Mori, “Lexical tree compression,”in 2nd
European Conference on Speech Communication and Technology, vol. 2,
1991, pp. 581–584.

[21] S. Peled, “Private communications,” 2010.

10

