
Variable Automata over Infinite Alphabets

Orna Grumberga, Orna Kupfermanb, Sarai Sheinvaldb

aDepartment of Computer Science, The Technion, Haifa 32000, Israel
bSchool of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel

Abstract

Automated reasoning about systems with infinite domains requires an extension
of automata, and in particular, regular automata, to infinite alphabets. Exist-
ing formalisms of such automata cope with the infiniteness of the alphabet by
adding to the automaton a set of registers or pebbles, or by attributing the
alphabet by labels from an auxiliary finite alphabet that is read by an inter-
mediate transducer. These formalisms involve a complicated mechanism on top
of the transition function of automata over finite alphabets and are therefore
difficult to understand and to work with.

We introduce and study variable finite automata over infinite alphabets (VFA).
VFA form a natural and simple extension of regular (and ω-regular) automata,
in which the alphabet consists of letters as well as variables that range over
the infinite alphabet domain. Thus, VFAs have the same structure as regu-
lar automata, only that some of the transitions are labeled by variables. We
compare VFA with existing formalisms, and study their closure properties and
classical decision problems. We consider the settings of both finite and infinite
words. In addition, we identify and study the deterministic fragment of VFA.
We show that while this fragment is sufficiently strong to express many interest-
ing properties, it is closed under union, intersection, and complementation, and
its nonemptiness and containment problems are decidable. Finally, we describe
a determinization process for a determinizable subset of VFA.

Keywords: Automata, infinite alphabets, verification, model checking

1. Introduction

Automata-based formal methods are successfully applied in automated rea-
soning about systems. When the systems are finite-state, their behaviors and
specifications can be modeled by finite automata. When the systems are infinite-
state, reasoning is undecidable, and research is focused on identifying decidable

Email addresses: orna@cs.technion.ac.il (Orna Grumberg), orna@cs.huji.ac.il
(Orna Kupferman), surke@cs.huji.ac.il (Sarai Sheinvald)

Preprint submitted to Elsevier October 24, 2010

special cases (e.g., pushdown systems) and on developing heuristics (e.g., ab-
straction) for coping with the general case.

One type of infinite-state systems, motivating this work, are systems in which
the control is finite and the source of infinity is data. This includes, for example,
software with integer parameters [3], datalog systems with infinite data domain
[16, 4], and XML documents, whose leaves are typically associated with data
values from some infinite domain [7, 5]. Lifting automata-based methods to
the setting of such systems requires the introduction of automata with infinite
alphabets. 1

The transition function of a nondeterministic automaton over finite alpha-
bets (NFA) maps a state q and a letter σ to a set of states the automaton may
move to when it is in state q and the letter in the input is σ. When the alphabet
of the automaton is infinite, specifying all transitions is impossible, and a new
formalism is needed in order to represent them in a finite manner. Existing
formalisms of automata with infinite alphabets fulfill this task by augmenting
the automaton by registers or pebbles, or by attributing the alphabet by labels
from an auxilary finite alphabet that is read by an intermediate transducer.

The quality of a formalism is measured by its simplicity, expressive power,
compositionality, and computability. In simplicity, we refer to the effort re-
quired in order to understand a given automaton, work with it, and implement
it. In compositionality, we refer to closure under the basic operations of union,
intersection, and complementation. In computability, we refer to the decidability
and complexity of classical problems like nonemptiness, membership, universal-
ity, and containment.

In this work 2, we introduce and study a new formalism for recognizing lan-
guages over infinite alphabets. Our formalism, variable finite automata (VFA),
forms a natural and simple extension of NFAs. We also identify and study a
fragment of VFA that fulfills the simplicity, compositionality, and computability
criteria, and is still sufficiently expressive to specify many interesting properties.
Intuitively, a VFA is an NFA some of whose letters are variables ranging over
the infinite alphabet. The tight connection with NFAs enables us to apply much
of the constructions and algorithms known for them.

Before elaborating on our formalism, we survey the existing formalisms for
automata over infinite alphabets we have mentioned.

A register automaton [14] has a finite set of registers, each of which may con-
tain a letter from the infinite alphabet. The transitions of a register automaton
compare the letter in the input with the content of the registers, and may also
store the input letter in a register. Several variants of this model have been
studied. For example, [11] forces the content of the registers to be different, [13]
adds alternation and two-wayness, and [10] allows the registers to change their
content nondeterministically during the run.

1Different approaches for automatically reasoning about such systems are based on exten-
sions of first-order logic [2] and linear temporal logics [8].

2This work is an extended version of our paper [9]

2

A pebble automaton [13] places pebbles on the input word in a stack-like
manner. The transitions of a pebble automaton compare the letter in the input
with the letters in positions marked by the pebbles. Several variants of this
model have been studied. For example, [13] studies alternating and two-way
pebble automata, and [15] introduces top-view weak pebble automata.

The newest formalism is data automata [2, 1]. For an infinite alphabet Σ, a
data automaton runs on data words, which are words over the alphabet Σ× F ,
where F is a finite auxilary alphabet. Intuitively, the finite alphabet is accessed
directly, while the infinite alphabet can only be tested for equality, and is used
for inducing an equivalence relation on the set of positions. Technically, a data
automaton consists of two components. The first is a letter-to-letter transducer
that runs on the projection of the input word on F and generates words over yet
another alphabet Γ. The second is a regular automaton that runs on subwords
(determined by the equivalence classes) of the word generated by the transducer.

The formalisms of register, pebble, and data automata all fail hard the sim-
plicity criterion. Augmenting NFAs with registers or pebbles requires a substan-
tial modification of the transition function. The need to maintain the registers
and pebbles makes the automata hard to understand and work with. Unfortu-
nately, most researchers in the formal-method community are not familiar with
register and pebble automata. Indeed, even the definition of the basic notion of
a run of such automata cannot simply rely on the familiar definition of a run of
an NFA, and involves the notions of configurations, successive configurations,
and so on, with no possible shortcuts.

Data automata do not come to the rescue. The need to accept several sub-
words per input word and to go through an intermediate alphabet and trans-
ducer makes them very complex. Even trivial languages such as a∗ require extra
letters and checks in order to be recognized. Simplicity is less crucial in the pro-
cess of automatic algorithms, and indeed, data automata have been succesfully
used for the decidability of two-variable first order logic on words with data -
a formalism that is very useful in XML reasoning [2, 1]. For the purpose of
specification and design, and for developing new algorithms and applications,
simplicity is crucial. A simpler, friendlier formalism is needed.

Data and register automata and most of their variants fail the composi-
tionality and computability criteria too. Data automata and register automata
are not closed under complementation, apart from specific fragments of register
automata that limit the number of registers [8]. Their universality and con-
tainment problems are undecidable [13]. Pebble automata and most of their
variants fail the computability criterion, as apart from weaker models [15],
their nonemptiness, universality, and containment problems are undecidable.
Nonemptiness of data and register automata is decidable, but is far more com-
plex than the easy reachability-based nonemptiness algorithm for NFAs.

We now continue to elaborate on our formalism. Formally, a VFA is a pair
A = 〈Σ, A〉, where Σ is an infinite alphabet and A is an NFA, referred to as the
pattern automaton of A. The alphabet of A consists of constant letters – a finite
subset of Σ, a set of bounded variables, and a single free variable. The language
of A consists of words in Σ∗ that are formed by assigning letters in Σ to the

3

occurrences of variables in words in the language of A. Each bounded variable
is assigned a different letter (also different from the constant letters), thus all
occurrences of a particular bounded variable must be assigned the same letter.
This allows describing words in Σ∗ in which some letter is repeated. The free
variable may be assigned different letters in every occurrence, different from the
constant letters and from letters assigned to the bounded variables. This allows
describing words in which every letter may appear. For example, consider a
VFA A = 〈N, A〉, where A has a bounded variable x and its free variable is y.
If the language of A is (x + y)∗ ·x · (x + y)∗ ·x · (x + y)∗, then the language of A
consists of all words over N in which at least some letter occurs at least twice.

We prove that VFAs are closed under union and intersection. The construc-
tions we present use the union and product constructions for NFAs in their
basis, but some pirouettes are needed in order to solve conflicts between differ-
ent assignments to the variables of the underlying automata. Such pirouettes
are helpless for the problem of complementation, and we prove that VFAs are
not closed under complementation. We study the classical decision problems for
VFAs. We show that a VFA is nonempty iff its pattern automaton is nonempty.
Thus, the nonemptiness problem is NL-complete, and is not more complex than
the one for NFAs. We also show that the membership problem is NP-complete.
Thus, while the problem is more complex than the one for NFAs, it is still de-
cidable. The universality and containment problems, however, are undecidable.

We then define and study deterministic VFA (DVFA), a fragment of VFA
in which there exists exactly one run on every word. Unlike the case of DFAs,
determinism is not a syntactic property. Indeed, since the variables are not pre-
assigned, there may be several runs on a word even when the pattern automaton
is deterministic. However, a syntactic definition does exist and deciding whether
a given VFA is deterministic is NL-complete. We introduce an unwinding oper-
ator for VFAs. In an unwound VFA, each state is labeled by the variables that
have been read, and therefore assigned, in paths leading to the state. Using
the unwinding operator, we can define DVFAs for the union and intersection of
DVFAs. Moreover, the closure under complementation of DVFAs is immediate,
and it enables us to solve the universality and containment problems for DVFAs.
Thus, DVFAs suggest an expressive formalism that also fulfills the criteria of
simplicity, computability, compositionality.

We study further properties of DVFA. As bad news, we show that the prob-
lem of determinizing a given VFA (or concluding that no equivalent DVFA ex-
ists) is undecidable. As good news, we show that all VFAs with no free variable
have an equivalent DVFA, and present a determinization procedure for VFAs of
this kind. The advantages of DVFA make us optimistic about the extensions of
algorithms that involve DFAs, like symbolic formal verification and synthesis,
to the setting of infinite alphabets.

We demonstrate the robustness of our formalism by showing that its ex-
tension to the setting of ω-regular words is straightforward. In Section 7, we
introduce and study variable Büchi automata (VBAs), whose pattern automata
are nondeterministic Büchi automata on infinite words [6]. VBAs are useful for
specifying languages of infinite words over infinite alphabets, and in particular,

4

specifications of systems with variables ranging over infinite domains. We show
that the known relation between NFAs and nondeterministic Büchi automata
extends to a relation between VFAs and VBAs. This enables us to easily lift
the properties and decision procedures we presented for VFA to the setting of
VBAs.

2. Variable Automata over Infinite Alphabets

A nondeterministic finite automaton (NFA) is a tuple A = 〈Γ, Q, Q0, δ, F 〉,
where Γ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial
states, δ : Q × Γ → 2Q is a transition function, and F ⊆ Q is a set of accepting
states. If δ(q, a) 6= ∅, we say that a exits q. A run of A on a word w = σ1σ2 . . . σn

in Γ∗ is a sequence of states r = r0, r1, . . . , rn such that r0 ∈ Q0 and for every
1 ≤ i ≤ n it holds that ri ∈ δ(ri−1, σi). If rn ∈ F then r is accepting. Note that
a run may not exist. If a run does exist, we say that w is read along A. The
language of A, denoted L(A), is the set of words w such that there exists an
accepting run of A on w.

Before defining variable automata with infinite alphabets, let us explain
the idea behind them. Consider the NFA A1 over the finite alphabet {x, y}
appearing in Figure 1. It is easy to see that L(A1) = x · y∗ · x. Suppose now
that we want to define an automaton for the language L = {i · y∗ · i : i ∈ N}
over the infinite alphabet {y} ∪ N. One naive way to do so is to branch, after
reading the first letter, to a state that remembers it. This, however, requires
an infinite state space. The way register and pebble automata address this
problem is by storing the first letter in a register or placing a pebble on it, and
then comparing the letters in the input with the letter stored in the register or
the letter on which a pebble is placed. This requires a complicated transition
function that involves registers or pebbles and their maintenance. Our variable
automata are based on the following simple idea: we stay with the NFA A1, but
rather than refering to x as a letter in the alphabet, we refer to x as a variable
that ranges over N.

Next, suppose we want to define an automaton for the language L′ = {i1 ·
i2 · · · ik : k ≥ 2, ij ∈ N, i1 = ik, and ij 6= i1 for all 1 < j < k} over the alphabet
N; that is, L′ contains exactly all words in which the first letter is equivalent to
the last letter, and is different from all other letters. Again, the straightforward
solution involves an infinite state space, and register and pebble automata are
complicated. Our solution is to refer to both x and y as variables with range N

as follows: x is a bounded variable whose value is fixed once assigned, and y is
a free variable that can take changing values (different from the value assigned
to x). This way, A1 recognizes L′. Also, if we want to remove the restriction
about the letters in the middle being different from the first letter, thus consider
L′′ = {i1 · i2 · · · ik : k ≥ 2, ij ∈ N, and i1 = ik}, we can label the self loop in A1

by both x and y.
We now define variable finite automata (VFAs) formally. A VFA is a pair

A = 〈Σ, A〉, where Σ is an infinite alphabet and A is an NFA, to which we refer as
the pattern automaton of A. The (finite) alphabet of A is ΓA = ΣA ∪X ∪ {y},

5

x x x x

x x x

x

y y, y, y, y1 1 1

1 1 1

A A A1 2 3

Figure 1: The pattern automata A1, A2, and A3 for the VFAs A1, A2, and A3 .

where ΣA ⊂ Σ is a finite set of constant letters, X is a finite set of bounded
variables and y is a free variable. We refer to the number of bounded variables
in A as the width of A. The variables in X ∪ {y} range over Σ \ ΣA.

Consider a word v = v1v2 . . . vn ∈ Γ∗
A read along A, and another word

w = w1w2 . . . wn ∈ Σ∗. We say that w is a legal instance of v in A if

• vi = wi for every vi ∈ ΣA,

• For vi, vj ∈ X , it holds that wi = wj iff vi = vj , and wi, wj /∈ ΣA, and

• For vi = y and vj 6= y, it holds that wi 6= wj .

Intuitively, a legal instance of v leaves all occurrences of vi ∈ ΣA unchanged,
associates all occurrences of vj ∈ X with the same unique letter, not in ΣA, and
associates every occurrence of y freely with letters from Σ \ ΣA, different from
those associated with X variables.

We say that a word v ∈ Γ∗
A is a witnessing pattern for a word w ∈ Σ∗ if w is

a legal instance of v. Note that v may be the witnessing pattern for infinitely
many words in Σ∗, and that a word in Σ∗ may have several witnessing patterns
(or have none). Given a word w ∈ Σ∗, a run of A on w is a run of A on a
witnessing pattern for w. The language of A, denoted L(A), is the set of words
in Σ∗ for which there exists a witnessing pattern in L(A).

Example 1. Let A2 = 〈Σ, A2〉 where A2 is the automaton appearing in Fig-
ure 1. Then, L(A2) is the language of all words in Σ∗ in which some letter
appears at least twice. By deleting the x1 labels from the self loops in A2, we
get the language of all words in which some letter appears exactly twice.

Example 2. Let A3 = 〈Σ, A3〉 where A3 is the NFA appearing in Figure 1.
Then L(A3) is the language of all words in Σ∗ in which the last letter is different
from all the other letters.

2.1. Comparison with Other Models

A classical model for recognizing languages over infinite alphabets is finite
state machines (FMA) [11]. In this model, a finite set of registers are assigned
letters from the input word during the run. The contents of the registers are
distinct, and the transition function can refer to them. In [10], the authors

6

introduce NFMA, a nondeterministic extension of FMA in which the content
of the registers may be updated nondeterministically during the run and needs
not be restricted to letters in the input word.

VFAs are strictly less expressive than NFMA and are incomparable with
FMA. Intuitively, the variables of a VFA are analogous to registers, but while a
register can change its content during the run, a bounded variable cannot change
the value assigned to it. Formally, a VFA A = 〈Σ, A〉 with c constant letters
and width d can be simulated by an NFMA with c + d + 1 registers. The first
c registers are preassigned the constant letters and do not change their content
during the run. The next d registers are preassigned nondeterministically and
do not change their content during the run. Finally, the last register, which
simulates the free variable, may change its content freely during the run.

To see the advantage that the ability to change the content of registers gives
FMA, consider the language L = {σ1σ1σ2σ2 . . . σnσn : n ≥ 0, σi ∈ Σ}. It is not
hard to prove that the number of variables that a VFA needs in order to rec-
ognize L depends on the length of the input word, and is therefore unbounded.
On the other hand, an NFMA (in fact, an FMA) for L can use a single register
that changes its content all even positions. The ability to assign to the regis-
ters letters that have not been read yet is crucial for the simulation of VFA by
NFMA. For example, as shown in [11], no FMA exists for the language L(A3)
from Example 2.

Data automata [2] run on data words. These are words over Σ×F , where Σ
is an infinite alphabet and F is n finite alphabet. A data automaton comprises
two components. The first is a letter to letter transducer B which runs on the
F projection of an input word w and outputs a word w′ over an alphabet Γ.
The second is an NFA C, which runs on the subwords of w′ corresponding to
positions in w in which all letters of Σ are equal. Thus, the letters from Σ are
not accessed directly, and are used for inducing an equivalence relation on the
set of positions in w. The word w is accepted iff B accepts the F projection of
w and C accepts all appropriate subwords of w′.

Data automata can accept the language {w|wi 6= wj∀(i, j < |w|)}, which
VFA cannot. Data automata cannot handle constants in Σ, as only equality
checks are performed on the Σ projection of w. Therefore, data automata are
incomparible with VFA. However, every constant-free VFA A over an infinite
alphabet Σ with variables X ∪ {y} can be simulated by a data automaton A′

over Σ × X ∪ {y} that accepts a word w iff the X ∪ {y} projection of w is a
witnessing pattern for the Σ projection of w in A as follows. The transducer is
almost similar to the pattern automaton of A. It outputs the X∪{y} projection
of the input word w, with a minor change (resulting in a linear blow-up) of
substituting the first appearance of xi with x′

i. This substitution makes sure
that every appearance of xi is paired with the same letter the first appearance
of xi is paired with. The class automaton then consists of NFAs for x′x∗ for
every x ∈ X , and an NFA for y∗.

7

3. Closure properties for VFAs

In this section we study closure properties of VFAs and the decidability and
complexity of basic problems about them. We show that while VFAs are closed
under union and intersection, they are not closed under complementation. In
the computability front, we show that while the emptiness problem for VFAs is
not harder than the one for NFA, the membership problem is harder, but still
decidable, whereas the universality and containment problems are undecidable.

Theorem 1. VFAs are closed under union.

Proof: Let A1 = 〈Σ, A1〉 and A2 = 〈Σ, A2〉 be VFAs with A1 = 〈Σ1 ∪ X1 ∪
{y1}, Q1, Q

1
0, δ1, F1〉 and A2 = 〈Σ2 ∪ X2 ∪ {y2}, Q2, Q

2
0, δ2, F2〉. 3

A union construction for VFAs cannot simply guess whether to follow A1 or
A2. The reason is that the set of constant letters of the union contains both Σ1

and Σ2. Therfore, while the variables of A1 and A2 range over Σ\Σ1 and Σ\Σ2,
respectively, their occurrences in a simple union construction would range over
Σ \ (Σ1 ∪ Σ2). Thus, a simple union construction may miss words in L(A1) in
which variables in X1 are assigned values in Σ2 and dually for L(A2). The same
problem exists with the free variables y1 and y2, whose range may be restricted
in a simple union construction.

We solve this problem by defining the union of A1 and A2 as a union of
several copies of the simple union. In every copy, a subset of bounded variables
of one VFA is assigned a subset of constant letters of the other VFA.

Formally, let H1 be the set of all one-to-one functions from subsets of X1 to
Σ2 \ Σ1. Each function in H1 can be viewed as h : X1 → (Σ2 \ Σ1) ∪ {>} such
that for all x, x′ ∈ X1, if h(x) = h(x′) then h(x) = >. Intuitively, h−1(>) is the
set of bounded variables that are not assigned values in Σ2 \Σ1, and which are
therefore not problematic. The function h then induces a bijection from the set
of bounded variables that are not assigned > by h to img(h) \ {>}.

Let Ah
1 be the NFA obtained from A1 by replacing all occurrences of x such

that h(x) 6= > by h(x), and replacing all occurrences of y1 by y∪ (Σ2 \ img(h)).
That is, we add to every y1 transition the set of constant letters that have not
been assigned to the variables in h. Let A′

1 be the union of the NFAs A1
h, for

all h ∈ H1. Note that the alphabet of A′
1 is Σ1 ∪ X1 ∪ {y}. We define H2 and

A′
2 over Σ2 ∪X2 ∪ {y} in a similar way. Now, A = 〈Σ, A〉, where A is the union

of A′
1 and A′

2.
If the number of states, width, and number of constant letters in A1 and

A2 are n1, n2, d1, d2, c1 and c2, respectively, then we can bound the number
of states of A by n1c

d1+1
2 + n2c

d2+1
1 , and its width by d1 + d2. These bounds

follow from an analysis of the number of different functions H1 and H2. The
analysis can be made tighter. In particular, note that if Σ1 = Σ2, the simple
union construction works.

3For simplicity, both A1 and A2 are over the same alphabet Σ, but it is possible, with
minor modifications, to construct the union (and intersection) for the case where the two
VFAs are over different alphabets.

8

Theorem 2. VFA are closed under intersection.

Proof: Let A1 = 〈Σ, A1〉 and A2 = 〈Σ, A2〉 be VFAs with A1 = 〈Σ1 ∪ X1 ∪
{y1}, Q1, Q

1
0, δ1, F1〉 and A2 = 〈Σ2 ∪ X2 ∪ {y2}, Q2, Q

2
0, δ2, F2〉.

Recall that in the product construction for the NFAs A1 and A2, the state
space is Q1 ×Q2, and 〈q′1, q

′
2〉 ∈ δ(〈q1, q2〉, a) iff q′1 ∈ δ1(q1, a) and q′2 ∈ δ2(q2, a).

Since A1 and A2 are pattern automata of VFAs, the letter a may be a vari-
able. Accordingly, there are cases in which it should be possible to intersect
two differently labeled transitions: intersecting two transitions with differently
named bounded variables, meaning they get the same assignment in A1 and in
A2; intersecting a variable with a letter σ, meaning the variable is assigned σ;
and intersecting the free variable y with a bounded variable x or with a letter
σ, meaning the assignment to y in this transition agrees with the assignment of
x or with σ.

Accordingly, we would like to define δ such that for z ∈ (Σ1 ∪Σ2)∪X ∪{y},
we have that 〈q′1, q

′
2〉 ∈ δ(〈q1, q2〉, z) iff there exist z1 ∈ Σ1 ∪ X ∪ {y} and

z2 ∈ Σ2 ∪X ∪ {y} such that q′1 ∈ δ1(q1, z1) and q′2 ∈ δ2(q2, z2) and such that z1

and z2 can be matched according to the cases described above.
In order to define δ, we define a relation H for matching the variables and

constant letters of A1 with the variables and constant letters of A2. As there
may be several possible such relations, the intersection automaton is a union of
several VFAs, one for every relation.

Formally, consider a relation HV ⊆ (X1 ∪{y1})× (X2 ∪{y2}) and a relation
HAB ⊆ ((Σ1 \ Σ2) × (X2 ∪ {y2})) ∪ (X1 ∪ {y1}) × (Σ2 \ Σ1) such that every
x ∈ X1 ∪X2 and every σ ∈ (Σ1 ∪Σ2) appears in at most one pair in HV ∪HAB .
Thus, the relation HAB is for the cases in which in one VFA the transition is
labeled by a constant letter a, and in the other the transition is labeled by a
variable z, and z is assigned a. The relation HV is for the cases in which in both
VFAs the transitions are labeled by variables, and these variables are equally
assigned. Hence, HV defines the variables of the intersection construction: a
pair (z1, z2) ∈ HV in which z1 or z2 is bounded is a bounded variable, and
(y1, y2) is the free variable. Let H = HV ∪ HAB .

We define AH = 〈(Σ1 ∪ Σ2) ∪ HV , Q1 × Q2, Q
1
0 × Q2

0, δ, F1 × F2〉, where
〈q′1, q

′
2〉 ∈ δ(〈q1, q2〉, z) if one the following holds.

• z ∈ (Σ1 ∩ Σ2), q
′
1 ∈ δ1(q1, z), and q′2 ∈ δ2(q2, z),

• z ∈ Σ2 and there is z1 such that 〈z1, z〉 ∈ HAB , q′1 ∈ δ1(q1, z1), and
q′2 ∈ δ2(q2, z),

• z ∈ Σ1 and there is z2 such that 〈z, z2〉 ∈ HAB , q′1 ∈ δ1(q1, z), and q′2 ∈
δ2(q2, z2),

• z = 〈z1, z2〉, 〈z1, z2〉 ∈ HV , q′1 ∈ δ1(q1, z1), and q′2 ∈ δ2(q2, z2).

We define A = 〈Σ,
⋃

H AH 〉. The set of bounded variables of A is HV \
{〈y1, y2〉}, and the free variable is 〈y1, y2〉.

9

1 2
x

a
1A 3 4

y,bB

x2

1 2
x

a
1

A B

3 4
y,b,a

x2

1 2

a

3 4
y,b

b

a

:ax2

:bx1

U

A BU

1,3 2,4:yx1
1,3 2,3

x1 2,4
:x2

x1,2 a
yx1

1,3 2,4:bx1

b a :y

Figure 2: The VFAs A and B, and their union and intersection constructions.

If the number of states and width, and number of constant letters in A1 and
A2 are n1, n2, d1, d2, c1 and c2, respectively, then we can bound the number of

states of A by O((n1n2)
(d1+d2+c1+c2)!

(c1+c2)!
), and its width by O((d1+d2+c1+c2)!

(c1+c2)!
).

The bound on the size of A follows from an analysis of the number of different
relations H .

Example 3. Figure 2 shows the union and intersection constructions for the
VFAs A and B.

Theorems 1 and 2 show that while the straightforward union and product
constructions for NFAs do not work for VFAs, VFAs are still closed under union
and intersection via more complicated constructions. We now show that the
same cannot be done for the problem of complementation.

Theorem 3. VFAs are not closed under complementation.

Proof: Consider the VFA A2 of Example 1. Recall that L(A2) contains ex-
actly all words in Σ∗ in which some letter appears at least twice. The comple-
ment L̃ of L(A2) then contains exactly all words all of whose letters are pairwise
distinct.

Assume by way of contradiction that there exists a VFA Ā2 of width k that
recognizes L̃. Let w be a word of length k+2 whose letters are pairwise distinct
and does not contain a constant letter of Ā2. Then w ∈ L̃. Let v be a witnessing
pattern for w in L̃. Then v contains no constant letters. Also, it cannot contain
two bounded variables, as they are equally assigned, and hence must contain at
least two occurences of the free variable y. Therefore, a legal assignment for v

10

in L̃ that assigns all occurences of y the same letter a creates a word g(v) ∈ L̃
in which a appears more than once, a contradiction.

4. Decision procedures for VFAs

The basic decision problems for automata are membership (given A and a
word w ∈ Σ∗, is w ∈ L(A)?), nonemptiness (given A, is L(A) 6= ∅?), uni-
versality (given A, is L(A) = Σ∗?) and containment (given A1 and A2, is
L(A1) ⊆ L(A2)?). We now turn to study the decidability and complexity of
these problems for VFAs.

Theorem 4. The nonemptiness problem for VFA is NL-complete.

Proof: Let A = 〈Σ, A〉. We prove that L(A) is nonempty iff L(A) is nonempty.
Since NFA nonemptiness is NL-complete, both the upper and lower bounds
would follow. For the first direction, consider w ∈ L(A). By the way we defined
L(A), there exists a word v in L(A) and a legal assignment g for v such that
g(v) = w. Therefore, L(A) is nonempty. For the other direction, consider
v ∈ L(A). Since Σ is infinite, there exists a legal assignment g for v, inducing a
word in L(A).

Theorem 5. The membership problem for VFA is NP-complete.

Proof: For the upper bound, consider a VFA A = 〈Σ, A〉 and a word w ∈ Σ∗.
A nondeterminitic polynomial-time algorithm for deciding whether w ∈ L(A)

guesses a word v ∈ Γ
|w|
A and a legal assignment g for v in A over the letters of

w, and checks whether v ∈ L(A) and g(v) = w.
The lower bound is shown by a reduction from the Hamiltonian cycle prob-

lem for directed graphs. Let G = 〈V, E〉 be a directed graph with n ver-
tices. We construct VFA AG = 〈N, AG〉 as follows. The pattern automaton
AG = 〈V, V, {v1}, δG, {v1}〉 is such that the set of bounded variables is V , and if
E(vi, vj), then δG(vi, vj) = {vj}; otherwise δG(vi, vj) = ∅. Thus, AG is obtained
from G by labeling each edge by its destination.

Consider the word w = 1 · 2 · 3 · · ·n. Since every variable must be assigned a
different letter, a run on w matches a path in AG of length n in which n different
vertices have been traversed, the last of which is the initial vertex. This exactly
matches a description of a Hamiltonian cycle in G.

So nonemptiness is not harder than the case of finite alphabets, and while
membership is harder, it is still decidable. The picture is less nice when we turn
to study the universality and containment problems. Here, the algorithms for
the finite-alphabet case relies on the closure of NFAs under complementation,
which does not hold for VFAs. As we show below, the problems are indeed
undecidable.

11

Theorem 6. The universality and containment problems for VFAs are unde-
cidable.

Proof: We start with the universality problem. In [13], the authors prove the
undecidability of universality problem for register automata by a reduction from
PCP (Post’s Correspondence Problem).

The reduction translates a PCP instance, which is a pair of sets of words A
and B, into an automaton that accepts an input word iff it is not a legal encoding
of the PCP instance, or a legal encoding that does not represent a solution.
More specifically, the solution is the encoding of the concatination of words of
A, followed by a seperating mark and the encoding of the concatenation of the
words of B. The two concatenations in a correct legal encoding are identical.
The language of the automaton is then universal iff there exists no solution for
the PCP instance.

The idea is to use a double indexing system based on unique data values.
Every encoded word is preceded by a unique data value of one index, and every
letter in every word is preceded by a unique data value of the other. This al-
lowes the automaton to check that the two parts indeed form a correct solution,
by checking that the two concatenations are indeed identical, and are legally
formed according to the PCP rules. Such a system can be used also in VFAs,
and the reduction is very similar. Since the PCP problem is undecidable, unde-
cidability for universality follows. Since we can easily define a universal VFA,
undecidability for the containment problem follows too.

5. Deterministic VFA

In this section we define deterministic VFA and study their properties. We
show that deterministic VFA are simple, expressive, and are closed under all
Boolean operations. In addition, the nonemptiness, membership, universality,
and containment problems are all decidable for them.

Recall that an NFA is deterministic if |Q0| = 1 and for all q ∈ Q and
σ ∈ Σ, we have |δ(q, σ)| ≤ 1. Indeed, these syntactic conditions guarantee
that the automaton has at most one run on each input word. To see that
such a syntactic characterization does not exist for VFA, consider the VFA A
appearing in Figure 3. Its pattern automaton is deterministic, but the word a
has two different runs in A: one in which x1 is assigned a, and one in which x2 is
assigned a. Thus, there is a need to define deterministic VFAs in a non-syntactic
manner.

Definition 1. A VFA A = 〈Σ, A〉 is deterministic (DVFA, for short), if for
every word w ∈ Σ∗, there exists exactly one run of A on w.

Note that, equivalently, a VFA is deterministic if for every word in Σ∗ there
is exactly one witnessing pattern, on which there is a single run in the pattern
automaton.

12

x1

x2

x1

y

x1

y,x1

DA

Figure 3: A nondeterministic VFA whose pattern automaton is deterministic, and an DVFA
that accepts all words in which the first letter is repeated at least twice.

Example 4. Consider the VFA D = 〈Σ, D〉, where D is the DFA appearing
in Figure 3. The language of D is the set of all words over Σ in which the
first letter is repeated at least twice. To see that it is deterministic, consider
a word w = w1w2 . . . wn in Σ∗. A witnessing pattern for w is over x1 and y.
Since only x1 exits the initial state, then x1 must be assigned w1, and all other
occurences of other letters must be assigned to y. Therefore, every word that has
a witnessing pattern has a single witnessing pattern. Since D is deterministic,
every witnessing pattern has a single run in D. It follows that D is deterministic.

Example 4 demonstrates the expressive power of deterministic VFAs. In
fact, as we will show in Theorem 16, every VFA without a free variable has an
equivalent DVFA.

Recall that deciding whether an NFA is deterministic is easy, as the definition
of determinization is syntactic. For VFA, the definition is semantic. As we show
below, however, an equivalent syntactic definition does exist.

Theorem 7. Deciding whether VFA is deterministic is NL-complete.

Proof: We start with the upper bound. Consider a VFA A = 〈Σ, A〉 with
variables X ∪ {y} and an initial state qin. We claim that A is not deterministic
iff one of the following holds.

1. A is nondeterministic,

2. there exists a reachable state s such that there exist two bounded variables
x and x′ that exit s, and a path from qin that reaches s and does not
traverse x and x′,

3. there exists a bounded variable x such that both x and y exit s, and a
path from qin that reaches s but does not traverse x,

4. there exists a reachable state s such that there exists a constant letter
that does not exit s, or a variable that appears along a path from qin to
s that does not exit s, or

5. there exists a path π from qin to s such that all variables that exit s appear
along π, and y does not exit s.

13

Intuitively, conditions 2 and 3 check that each word w ∈ Σ∗ has at most
one run in A. Indeed, if conditions 2 or 3 hold, then after reaching s, the next
input letter may be assigned to both x and x′ (in condition 2), or to x and y
(in condition 3). If A is deterministic, these are the only conditions in which
continuing along two transitions with the same input letter is possible.

Conditions 4 and 5 check that w has at least one run on every input word.
Indeed, if condition 4 holds, then the run is stuck from s if the next input letter
is the missing constant, or the letter that has been assigned to the missing
variable. If condition 5 holds, then the run is stuck from s if the next input
letter has not appeared before.

In order to implement the above check in NL, we guess the condition that is
violated, and check that it is indeed violated. For example, to check the second
item, we can guess the state s, a path π to s, and x and x′, and check that π
does not traverse x and x′, and that both x and x′ exit s. Since NL is closed
under complementation, we are done.

For the lower bound, we do a reduction from the reachability problem for
directed graphs. Given a directed graph G and two vertices s and t, consider
the VFA AG = 〈N, AG〉, where AG is obtained from G by labeling its edges by
different constant letters and adding two transitions, both labeled x1, from the
state t to two new states. In addition, we add to AG transitions to a rejecting
sink from every state, labeled both by y and all constant letters that do not exit
the state. It is not hard to see that the vertex t is reachable from the vertex s
in G iff AG is not detereministic.

Note that Theorem 7 refers to the problem of deciding whether a given VFA
is deterministic and not whether it has an equivalent DVFA. As we show in the
sequel, the latter problem is much harder.

The closure of DVFA under the operations of union and intersection does not
follow from Theorems 1 and 2, as even if applied on DVFA, these constructions
do not yield a DVFA.

In order to present the various constructions for DFVAs, we introduce an
unwinding operator for VFA. Given a VFA over Σ with a pattern automaton
A = 〈ΣA ∪ X ∪ {y}, Q, Q0, δ, F 〉, the unwinding of A is the VFA U = 〈Σ, U〉,
with U = 〈ΣA ∪ X ∪ {y}, Q × 2X , 〈Q0, ∅〉, ρ, F × 2X〉, where ρ is defined, for
every 〈q, θ〉 ∈ Q × 2X and z ∈ ΣA ∪ X ∪ {y} as follows.

ρ(〈q, θ〉, z) =

{

δ(q, z) × {θ ∪ {z}} z ∈ X ∪ {y}

δ(q, z) × {θ} z ∈ ΣA

(1)

Intuitively, the states in U keep track of the set of variables that have been
traversed (and hence also assigned, in case of bounded variables) along the path
from the initial state.

Remark 1. A state in the unwinding reflects the set of all variables that are
read until reaching this state. The conditions in the proof of Theorem 7 refer to

14

this set. Consequently, for determining whether an unwound VFA is determin-
istic, checking these sets is enough. An unwound automaton U with a pattern
automaton U is a DVFA iff all the following conditions hold:

1. U is deterministic

2. From every state 〈q, θ〉 exits either a single bounded variable not in θ, or
y, but not both.

3. From every state 〈q, θ〉 exit all the variables in θ and all constant letters.

These conditions follow from the conditions in the proof of Theorem 7.

Lemma 1. A VFA is equivalent to its uwinding.

Proof: Consider a VFA A = 〈Σ, A〉 and its unwinding U = 〈Σ, U〉. Let
w ∈ L(A), and let q0, q1, . . . , qm be an accepting run of the pattern automaton
A of A on a witnessing pattern v = v1v2 . . . vm for w in A. Then by the way
we have defined ρ, the run 〈q0, ∅〉, 〈q1, θ1〉, . . . , 〈qm, θm〉 where θi is the set of all
variables that appear in the prefix v1v2 . . . vi of v is an accepting run of U on w.

Now, let w ∈ L(U), and let 〈q0, ∅〉, 〈q1, θ1〉, . . . , 〈qm, θm〉 be an accepting run
of U on a witnessing pattern v of w. Then, by the way we have defined ρ, the
run q0, q1, . . . , qm is an accepting run of A on v, and therefore w ∈ L(A).

Lemma 2. A VFA is deterministic iff its unwinding is deterministic.

Proof: Consider a VFA A = 〈Σ, A〉 and its undinding U = 〈Σ, U〉. We first
prove that if A is deterministic then U is deterministic. Assume by way of
contradiction that A is deterministic and U is not. Then one of the conditions
of the proof of Theorem 7 applies. We now go over the different conditions and
show that they all lead to a contradiction.

Condition 1. According to the way we defined U , we have that if A is deter-
ministic then U is deterministic.

Conditions 2-4. Let π = 〈q0, ∅〉, 〈q1, θ1〉 . . . 〈qm, θm〉 be the path in U that is
mentioned in conditions 2-4, reading a word v. According to the way we
defined U , we have that q0, q1, . . . , qm is a path in A reading v, and that
the set of labels exiting 〈qm, θm〉 is the set of labels exiting qm. Therefore,
the state qm in A fulfills conditions 2-4, and so A is nondeterministic, a
contradiction.

Similarly, to show that if U is deterministic then A is deterministic, we go
over the conditions in the proof of Theorem 7 and show that assuming otherwise
leads to a contradiction.

Condition 1. According to the way we defined U , we have that if U is deter-
ministic then A is deterministic.

15

Conditions 2-4. Let π = q0, q1, . . . , qm be the path in A that is mentioned in
conditions 2-4, and let v = v1v2 · · · vm be the word read along π. Then
π matches a path 〈q0, ∅〉, 〈q1, θ1〉, . . . , 〈qm, θm〉 reading v in U , where θi is
the set of variables appearing in v1v2 . . . vi. The set of labels that exit qm

is the set of labels that exit 〈qm, θm〉. Therefore, the state 〈qm, θm〉 in U
fulfills conditions 2-4, and so U is nondeterministic, a contradiction.

We now present the constructions for union and intersection. The construc-
tions have the construction for DFAs in their basis, applied to the unwinding
of the DVFA. As in Theorems 1 and 2, there is a need to match the variables
and constant letters of one DVFA with those of the other. The properties of
the DVFA and the unwinding induce a deterministic matching.

Theorem 8. DVFA are closed under intersection.

Proof: Let D1 and D2 be DVFAs over an alphabet Σ 4. Let U1 and U2 be the
unwindings of D1 and D2, respectively. Recall from Remark 1 that from every
state s = 〈q, θ〉 in U1 (resp. U2) there exits either a bounded variable not in θ
or y, and all the variables in θ and constant letters exit s. We construct a VFA
U over Σ such that L(U) = L(U1) ∩ L(U2) in which this properties also hold,
and is identical to its unwinding. Therefore, the VFA U is deterministic.

Recall that the construction for intersecting two VFAs involves matching
the variables and constants of one VFA with the variables and constant letters
of the other. In the case of VFA, several such matchings are possible. In the
case of DVFA, a similar matching is constructed, induced from the properties
of Remark 1. Since DVFA are full, there is a run on every word and so it is
always possible to continue along both automata simultaneously. However, the
result must remain deterministic.

Intuitively, the DVFA U is constructed by matching the new variables that
exit a pair of states in U1×U2 with each other or with the free variable, and with
constant letters. These matchings are remembered by the states that follow.

More specifically, consider a state q in the construction that represents a
pair of states 〈s, t〉 ∈ U1 × U2. If s and t introduce new variables x1 and x2,
respectively, then these variables are matched together to form a new variable
〈x1, x2〉 that exits q. If only s (w.l.o.g.) introduces a new variable x1, then
according to Remark 1 we have that y2 exits t, and x1 and y2 are matched
together to form a new variable 〈x1, y2〉 that exits q. Finally, if y1 exits s
and y2 exits t then they are matched together and form the free variable y.
Additionally, new variables are matched with every constant letter that is not
a constant in their own automaton. All these matchings are remembered by

4For simplicity, both D1 and D2 are over the same alphabet Σ, but it is possible, with minor
modifications, to construct the union and intersection for the case where the two DVFAs are
over different alphabets.

16

x1

a

1 2

a x ,y1

x23 5
x34

x ,y3

x2 x2

1,3

a

x1,2

2,4

x1 ,x2

2,5

a,x3

x1 ,x2

4

a ,x2

5

y,x3

x1 ,x2

s,
s,

x1 ,x2

s,t

5

a,x3

x1,x2

s,

y,y
a,x3

x1 ,x2

s,t

yx3

a

x1,2 y x1,2

a

A B

A BU

Figure 4: The DVFAs A and B, and their intersection A ∩ B. s and t denote rejecting sinks
in A and B. The dotted lines lead to further rejecting states and sinks.

the states that are reachable from q by augmenting every state with the set of
matchings that have been made until it is reached.

The complete transition relation and proof of correctness is given in Ap-
pendix A.1

Theorem 9. DVFA are closed under union.

Proof: As in intersection of DVFA, the construction for the union is performed
on top of the unwindings. Since DVFA are full, there is a run on every word
and so it is always possible to continue along both automata simultaneously.
Consequently, the construction for the union is similar to that of the intersection.
The only difference is that here, a state representing a pair 〈s, t〉 is accepting if
either s or t are accepting. The proof of correctness is in Appendix A.2.

Example 5. Figure 4 shows the result of the intersection of two DVFAs with
pattern automata A and B, where a is the only constant letter of A and B has
no constant letters. For convenience, only some of the rejecting states and sinks
are shown. The union construction has a similar construction, with more states
marked as accepting.

The fact that a DVFA has exactly one run on each input word makes its
complementation easy: one only has to complement the pattern automaton.
Formally, we have the following.

17

Theorem 10. DVFAs are closed under complementation. Given a DVFA A,
we can construct a DVFA Ã with the same size and width such that L(Ã) =
Σ∗ \ L(A).

Proof: Let A = 〈Σ, A〉. Consider the DFA Ã that dualizes A. That is, if
A = 〈ΓA, Q, q0, δ, F 〉, then Ã = 〈ΓA, Q, q0, δ, Q \ F 〉. Let Ã = 〈Σ, Ã〉. We claim
that L(Ã) = Σ∗ \ L(A).

To see this, consider a word w ∈ Σ∗. Let v ∈ ΓA be the unique witnessing
pattern of w in A. The word w is in L(A) iff v ∈ L(A). Since L(Ã) = Γ∗

A \L(A),
the latter holds iff v 6∈ L(Ã), which holds iff w /∈ L(Ã).

We now turn to study the complexity of the DVFA model. We first study
the problems of nonemptiness and membership. As argued in the proof of The-
orem 4, a VFA is empty iff its pattern automaton is empty. Since the nonempti-
ness problem is NL-complete also for DFAs, the NL-complete complexity there
applies also for DVFAs. For the membership problem we have to describe a
more complicated lower bound.

Theorem 11. The membership problem for DVFA is in PTIME.

Proof: Consider a DVFA D = 〈Σ, D〉 and a word w = w1w2 · · ·wn. We can
check the membership of w in L(D) by simulating a run of D on it. In the
process, we maintain a list of all the assignments that have been made so far,
and consult the list in order to resolve branches labeled by different variables in
D.

We note that the question of whether the membership problem is PTIME-
hard, or in NL is still open, and we suspect that it is very difficult, as it has the
same flavor of the long-standing open problem of the complexity of one-path
LTL model checking [12]. In both problems, one has to go back and forth a
single path, and it is not clear whether it is possible to bound by a logarithmic
function the information he has to store during this traversal.

We now turn to study the universality and containment problems and show
that they are decidable.

Theorem 12. The universality problem for DVFA is NL-complete.

This result follows from the NL-completeness of the emptiness problem, and
from the fact that complementation only involves a dualization of the acceptance
condition.

Since DVFA are closed under complementation and instersection, the con-
tainment problem is also decidable. In fact, we have the following.

Theorem 13. The containment problem for DVFA is in co-NP.

Proof: Consider two DFVAs A1 and A2. We claim that if there is a word in
L(A1) \L(A2) (that is, a witness that A1 is not contained in A2), then there is

18

also such a word whose length is bounded by n1 · n2, where n1 and n2 are the
sizes of A1 and A2, respectively. By Theorem 11, checking such a witness can
be done in PTIME.

To prove the claim about the length of the witness, let us consider the VFA
for L(A1) \ L(A2). We can construct such a VFA by complementing A2 (by
dualizing the acceptance condition of its pattern automaton) and then taking
its product, as specified in the proof of Theorem 2, with A1. Note that we define
the product as a VFA, rather than a DVFA, so no unwinding is required. While
the product may contain several copies of the basic product constructions, its
diameter is bounded by n1 · n2, and hence it is not empty iff there is a witness
of length at most n1 · n2 to its nonemptiness.

6. Determinization

In this section we show that not all VFAs have an equivalent DVFA, and the
problem of determinizing a given VFA (or concluding that no equivalent DVFA
exists) is undecidable. As good news, we point to a fragment of VFAs that can
always be determinized.

One evidence that not all VFAs have an equivalent DVFA is the fact that
while DVFA are closed under complementation, VFA are not. As a specific
example, which also demostrates the weakness of DVFA, consider the VFA A2

of Example 1. The language of A2 is the set of all words in which some letter is
repeated at least twice. We claim that it has no equivalent DVFA. To see this,
assume by way of contradiction that it has an equivalent DVFA D of width
d. Let w be a word of length d + 2 whose letters are pairwise distinct and
contains no constant letters. Then w is not accepted by D. By the way we
defined w, the witnessing pattern v of w must include at least two occurences
of y. By assigning these two occurences of y the same letter, we get a word w′

that should accepted by D. However, its witnessing pattern v is rejected by the
pattern automaton, a contradiction.

Theorem 14. The problem of determinizing a given VFA (or concluding that
no equivalent DVFA exists) is undecidable.

Proof: Assume by way of contradiction that there is a Turing Machine M
that, given a VFA, returns an equivalent DVFA or announces that no such
DVFA exists. We construct from M a Turing machine M ′ that decides the
universality problem for VFA, which, according to Theorem 6, is undecidable.

The machine M ′ proceeds as follows. Given a VFA A, it runs M on A. If M
returns that A does not have an equivalent DVFA, then M ′ returns that A is
not universal. This, since a single accepting state with a self loop labeled y is a
universal DVFA and could be returned by M ′. Otherwise, M ′ returns a DVFA
A′ equivalent to A. By Theorem 12, M ′ can then check A′ for universality.

However, there exist fragments of VFA for which a determinization process
does exist.

19

url=www. .com;email= @ .comx xz

x
. t .com;email= @ xz

1

2

t

1

2 . .com

Figure 5: A syntactically determinizable VFA

Definition 2. We say that a VFA is syntactically determinizable if it contains
no y transitions.

For example, consider the syntactically determinizable VFA A = 〈{a, . . . , z}∗, A〉,
appearing in Figure 5. The VFA A accepts all words of the form

url=www.x1.com;email=z@x1.com or url=www.x2.t.com;email=z@x2.t.com,

where x1, x2, t, and z are words over the alphabet {a, . . . , z}. Thus, A makes
sure that the domain of the url agrees with that of the email, and it nondeter-
ministically branches to allow both domain of the form x.com and of the form
x.t.com.

Theorem 15. A syntactically determinizable VFA has an equivalent DVFA.

For every syntactically determinizable VFA there exists an equivalent DVFA,
which is obtained by a determinization process we describe next.

6.1. A determinization procedure for syntactically determinizable VFA

Let A = 〈ΣA ∪ X ∪ {y}, q0, Q, δ, F 〉 be the pattern automaton of A, and let
U and U = 〈ΣA∪X∪{y}, 〈q0, ∅〉, Q×2X , ρ, F ×2X〉, be the unwinding of A and
the pattern automaton of the unwinding of A, respectively. We assume that A
is deterministic, and therefore U is deterministic. It is easy to see that in case
that A is not deterministic, applying the subset construction on A yields an
equivalent VFA (but not necessarily a DVFA).

It follows from the proof of Theorem 7 that in case that A is deterministic
and y does not appear in the pattern automaton, a word may have more than
one run in the unwinding U iff there exists a state s = 〈q, θ〉 in U such that more
than one variable not in θ exits s. Intuitively, the DVFA D is formed from U by
grouping together all transitions labeled by new variables exiting the different
states and substituting them with a single transition labeled by a fresh variable.
Then, in a similar manner to the subset construction, all states these transitions
reach are grouped together. Finally, rejecting sinks and transitions are added
in order to have a single run on all words not in L(A).

Formally, we construct an equivalent DVFA D with a pattern automaton
D, a set of bounded variables Z, a set of states QD, a set of accepting states
FD and a transition function δD as follows. During the procedure we rename
labels in X by fresh variables that we add to Z. A state in QD is of the form
{〈q1, η1〉, 〈q2, η2〉, . . . , 〈qm, ηm〉} where qi ∈ Q and ηi ⊆ (X × Z). The state is
accepting iff there exists 1 ≤ i ≤ m s.t. qi ∈ F . Let ηi|X = {x|〈x, z〉 ∈ ηi}, and
similarly, let ηi|Z = {z|〈x, z〉 ∈ ηi}. Then, for a state 〈qi, ηi|X〉 ∈ QU , the set ηi

20

denotes the set of variables in ηi|X and their mapping to their new names in Z.
It is possible that qi = qj for i 6= j, if ηi 6= ηj .

We begin the procedure by adding the initial state {〈q0, ∅〉} to QD. At every
iteration, for every state s = {〈q1, η1〉, 〈q2, η2〉, . . . , 〈qm, ηm〉} ∈ QD, let

Xs =
⋃

〈qi,ηi〉∈s{x|x ∈ X and there exists 〈q, θ〉 ∈ ρ(〈qi, θi〉, x), where θi =

ηi|X}.

Then Xs is the set of variables exiting the states 〈qi, ηi|X〉 for 1 ≤ i ≤ m in
U . Let

X ′
s =

⋃

〈qi,ηi〉∈s{x|x ∈ X and there exists 〈q, θ〉 ∈ ρ(〈qi, θi〉, x) such that x /∈

θi, where θi = ηi|X}.

Then X ′
s is the set of variables that exit some state in s which does not know

them yet. We group the variables in X ′
s together and rename them by a fresh

variable z we add to Z. For this, we add new states to D as described next.
For a new z ∈ Z induced by a state s we add a new state s′ to D as

follows. For every 〈q, η〉 ∈ s and 〈q′, θ〉 ∈ QU such that 〈q′, θ〉 ∈ ρ(〈q, η|X 〉, x)
for x ∈ X ′

s, we add 〈q′, η ∪ {〈x, z〉}〉 to s′. We define δD(s, z) = s′. Notice that
by the definition of ρ we have that θ = η|X ∪{x}, and so adding 〈q′, η∪{〈x, z〉}〉
to s′ reflects the transition from 〈q, η|X〉 to 〈q′, θ〉, and adds the new mapping
〈x, z〉 to the list of mappings η.

For every other z ∈ Z, we add a new state s′ to D, if it does not already
exist, as follows. For every 〈q, η〉 ∈ s such that 〈x, z〉 ∈ η for some x ∈ Xs

and 〈q′, θ〉 ∈ QU such that 〈q′, θ〉 ∈ ρ(〈q, η|X 〉), we add 〈q′, η〉 to s′. We define
δD(s, z) = s′. Notice that by the definition of ρ we have that θ = η|X , and
therefore η contains the mappings to the variables in θ.

We handle the letters in ΣA in the straightforward way. For every σ ∈ ΣA

we add a new state s′ to D, if it does not already exist, as follows. For every
〈q, η〉 ∈ s and 〈q′, θ〉 ∈ QU such that 〈q′, θ〉 ∈ ρ(〈q, η|X 〉, σ), we add 〈q′, η〉 to
s′. We define δD(s, σ) = s′. Notice that by the definition of ρ we have that
θ = η|X , and therefore η contains the mappings to the variables in θ.

In order for the result to be full, we add a set of rejecting states {qrej}×2Z .
For a state s ∈ QD, let Zs =

⋃

〈q,η〉∈s η|Z , and let Z ′s be the set of variables

in Zs that do not exit s. we add to δD transitions from s to 〈qrej , Z
′
s ∪ {y}〉

labeled by every z ∈ Z ′
s, by every σ ∈ ΣA that does not exit s, and if there

exists no z ∈ (Z \Zs) exiting s, then we also add a transition labeled by y. We
add a self-loop to every rejecting state 〈qrej , Zs ∪ {y}〉 labeled by the variables
in Zs ∪ {y} and the letters in ΣA.

Finally, the set of accepting states in D is {s|〈q, η〉 ∈ s, 〈q, η|X 〉 ∈ F × 2X}.
In order to prove the correctness of the determinization procedure, we have

the following lemmas.

Lemma 3. The VFA D constructed by the determinization procedure is deter-
ministic.

21

Proof: By our definition of δD, the pattern automaton D of D is deterministic.
For every state s ∈ QD, let Zs =

⋃

〈q,η〉∈s{η|Z}. We show, by renaming every

state s ∈ QD by 〈s, Zs〉, that D is identical to its unwinding.5

For the initial state s0, we have that the initial state is 〈s0, ∅〉. Let s be a
state in D obtained while constructing D. If s introduces a new variable z, then
by our definition of δD there exists a single state s′ such that δ(s, z) = s′ and it
holds that Zs′ = Zs ∪ {z}. Also by our definition of δD , every other transition
from s is labeled by d, where d is either a letter in ΣA or a variable in Zs. In
both cases, for the state s′ for which δ(s′, d) = s′ we have that Z ′

s = Zs. This
exactly matches the definition of the unwinding automaton of D. Therefore, we
have that D is identical to its unwinding.

In addition, we have the following. Apart from transitions to the rejecting
sinks there are no y transitions, from every state s ∈ QD there exits exactly one
transition labeled by a variable z /∈ Zs, every σ ∈ ΣA and every z ∈ Zs exits s.
Therefore, according to the proof of Theorem 7, we have that D is deterministic.

Lemma 4. The VFA D is equivalent to A.

Proof: To prove that L(U) ⊆ L(D), we prove that for every word v =
v1v2 . . . vm read along U with a run 〈q0, ∅〉, 〈q1, θ1〉, . . . , 〈qm, θm〉 there exists
a one to one function f : X → Z such that the following hold.

• The word f(v) can be read along D with a run s1, s2, . . . , sm,

• for every 0 ≤ i ≤ m, there exists 〈t, η〉 ∈ si such that 〈t, η|X 〉 = 〈qi, θi〉,
and

• if v ∈ L(U) then f(v) ∈ L(D),

where f(v) denotes the replacement of every letter vi ∈ X by f(vi). Notice that
v and f(v) are then witnessing patterns for the same set of words.

To prove that L(D) ⊆ L(U) we prove that for every word u = u1u2 . . . um

read along D with a run s0, s1, . . . , sm where sm = {〈q1, η1〉, 〈q2, η2〉, . . . , 〈qk, ηk〉},
for every 1 ≤ i ≤ k there exists a one to one function gi : Z → X such that the
following hold.

• The word gi(u) can be read along U with a run 〈t0, ∅〉, 〈t1, θ1〉, . . . , 〈tm, θm〉,

• for every 0 ≤ i ≤ m, there exists 〈t, η〉 ∈ si such that 〈t, η|X〉 = 〈ti, θi〉,

• it holds that 〈tm, θm〉 = 〈qi, ηi|X 〉, and

• if u ∈ L(D) then there exists gi such that gi(u) ∈ L(U),

5Apart for the rejecting sinks construction, which does not affect the correctness

22

url=www. .com;email= @ .comx xz

.
t .com;email= @ xz t. .com

Figure 6: The DVFA equivalent to the VFA from Figure 5

where gi(u) denotes the replacement of every letter uj ∈ Z by gi(uj).
Intuitively, this shows that for for every 〈qi, ηi〉 ∈ sm, there exists a matching

run in U on u that reaches 〈qi, ηi〉, and for every 1 ≤ i ≤ k, the words gi(u) and
u are witnessing patterns for the same set of words. If sm is accepting then one
of these runs is accepting in U .

The complete proof is given in Appendix A.3

Lemma 5. The determinization procedure is finite and yields a finite DVFA.

Proof: By the description of the procedure, if D is finite then the procedure
terminates. Notice that by the way D is defined, and since U is finite, it suffices
to show that Z is finite.

A variable in Z is introduced only from a state s containing a state 〈q, η〉
such that there is a transition from 〈q, η|X 〉 in ρ labeled by a variable x /∈ η|X .
According to the definition of U , in every path π = 〈q0, ∅〉, 〈q1, θ1〉, . . . in U we
have that θi ⊆ θi+1 ⊆ X for every i > 0. According to the way we defined δD,
for two states q and s such that δD(q, z) = s for some z ∈ Z we have that for
every 〈si, βi〉 ∈ s there exists some 〈qj , ηj〉 ∈ q such that ηj |X ⊆ βi|X . Therefore,
in every path π = s0, s1, . . . in D there exists a state si such that from si on no
new variables are introduced. Therefore, every path in D introduces a finite set
of new variables, and hence contains a finite set of states. Since the number of
transitions from every state in QD is finite, we have that D is finite.

Theorem 16. Let A be a VFA that has no transitions labeled by the free vari-
able in its pattern automaton. Then there exists a DVFA D such that D ≡ A.

Proof: Theorem 16 follows from Lemmas 3, 4 and 5.

We show the result of applying the algorithm on the VFA described in Fig-
ure 5. For clarity, we do not include in the figure the transition to the rejecting
sinks.

7. Variable Büchi Automata

In [6], Büchi extended NFAs to nondeterministic Büchi automata, which
run on infinite words. The similarity between VFAs and NFAs enables us to
extend VFAs to nondeterministic variable Büchi automata (VBA, for short).
Formally, a VBA is A = 〈Σ, A〉, where A is a nondeterministic Büchi automaton
(NBA). Thus, a run of the pattern automaton A is accepting iff it visits the set
of accepting states infinitely often. Similar straightforward extensions can be

23

described for additional acceptance conditions for infinite words. As we specify
below, the properties and decision procedures for VFAs generalize to VBA in
the expected way, demonstrating the robustness of the VFA formalism.

We start with closure properties. The union construction for VBA is identi-
cal to the union construction for VFA. The intersection construction for NBAs
involves two copies of the product automaton. Recall that the intersection con-
struction for VFAs involves several copies of the product automaton. Combining
the two constructions, we construct the intersection of two VBAs by taking two
copies of these several copies. This guarantees that the run has infinitely many
visits in accepting states of both VBAs, and that the conflicts between assign-
ments are taken care of. Therefore, we have the following.

Theorem 17. VBA and DVBA are closed under union and intersection.

As with VFAs, VBAs are not closed under complementation. Recall that a
DVFA can be complemented by complementing its pattern automaton. Since
deterministic Büchi automata are not closed under complementation, so are
DVBA. However, a deterministic Büchi automata can be translated to an NBA
by taking two copies of the given automaton, the second of which contains only
the rejecting states. An accepting run continues along the first copy for a finite
number of steps and nondeterministically continues on to the second copy. A
similar construction is used to complement a DVFA to a VBA.

Theorem 18. VBAs and DVBAs are not closed under complementation. A
DVBA can be complemented to a VBA.

As for the various decision problems, the complexities and reductions of
VFAs all apply, with minor modifications.

Theorem 19. • The nonemptiness problem for VBA and DVBA is NL-
complete.

• The membership problem for VBA is NP-complete and for DVBA is in
PTIME.

• The containment problem for VBA is undecidable and for DVBA is in
co-NP.

• Deciding whether a given VBA is a DVBA is NL-complete.

References

[1] Mikoaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data trees and xml reasoning. J. ACM, 56(3):1–48,
2009.

[2] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and
Claire David. Two-variable logic on words with data. In LICS, pages 7–16.
IEEE Computer Society, 2006.

24

[3] A. Bouajjani, P. Habermehl, and R.: Mayr. Automatic verification of
recursive procedures with one integer parameter. Theoretical Computer
Science, 295:85–106, 2003.

[4] Ahmed Bouajjani, Peter Habermehl, Yan Jurski, and Mihaela Sighireanu.
Rewriting systems with data. In Erzsébet Csuhaj-Varjú and Zoltán Ésik,
editors, FCT, volume 4639 of LNCS, pages 1–22. Springer, 2007.

[5] Marco Brambilla, Stefano Ceri, Sara Comai, Piero Fraternali, and Ioana
Manolescu. Specification and design of workflow-driven hypertexts. J. Web
Eng., 1(2):163–182, 2003.

[6] J.: Büchi. On a decision method in restricted second order arithmetic. In
Int. Congress on Logic, Method, and Philosophy of Science, pages 1–12.
Stanford University Press, 1962.

[7] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Co-
mai, and Maristella Matera. Designing Data-Intensive Web Applications.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[8] S. Demri, R. Lazic, and D.: Nowak. On the freeze quantifier in constraint
ltl: Decidability and complexity. Information and Computation, 07:2–24,
2007.

[9] O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over
infinite alphabets. In The 4th International Conference on Language and
Automata Theory and Applications (LATA 2010), LNCS, pages 561–572.
Springer, 2010.

[10] M. Kaminski and D.: Zeitlin. Extending finite-memory automata with
non-deterministic reassignment. In Csuhaj-Varjú and Z. E., Ézik, editors,
AFL, pages 195–207. In eds.:, 2008.

[11] Michael Kaminski and Nissim Francez. Finite-memory automata. Theoret-
ical Computer Science, 134(2):329–363, 1994.

[12] Nicolas Markey and Ph. Schnoebelen. Model checking a path. In
Roberto M. Amadio and Denis Lugiez, editors, CONCUR, volume 2761
of LNCS, pages 248–262. Springer, 2003.

[13] Frank Neven, Thomas Schwentick, and Victor Vianu. Towards regular
languages over infinite alphabets. In MFCS ’01, pages 560–572, London,
UK, 2001. Springer-Verlag.

[14] Y. Shemesh and N.: Francez. Finite-state unification automata and rela-
tional languages. Information and Computation, 114:192–213, 1994.

[15] T.: Tan. Pebble Automata for Data Languages: Separation, Decidability,
and Undecidability. PhD thesis, Technion - Computer Science Department,
2009.

25

[16] Victor Vianu. Automatic verification of database-driven systems: a new
frontier. In ICDT ’09, pages 1–13. ACM, 2009.

Appendix A. Proofs

Appendix A.1. Proof of Theorem 8

Formally, the pattern automaton U of U is 〈(Σ1 ∪Σ2)∪X ∪ {y}, Q, q0, δ, F 〉
where

• X = ((X1 ∪ {y1}) × (X2 ∪ {y2})) \ {〈y1, y2〉},

• y = 〈y1, y2〉,

• Q = (Q1 × Q2) × 2Γ1×Γ2 ,

• q0 = 〈q1
0 , q2

0 , ∅〉 ,

• F = (F1 × F2) × 2Γ1×Γ2 , and

• The transition function δ is as follows.

For a set β in 2Γ1×Γ2 , we define β|1 = {z1|∃z2.〈z1, z2〉 ∈ β} and β|2 =
{z2|∃z1.〈z1, z2〉 ∈ β}.

For a letter a ∈ Σ, we define δ(〈〈s, θ〉, 〈t, η〉, β〉, a) = 〈〈s′, θ′〉, 〈t′, η′〉, β′〉 if

– a ∈ (Σ1 ∩Σ2) and δ1(〈s, θ〉, a) = 〈s′, θ′〉 and δ2(〈t, η〉, a) = 〈t′, η′〉 and
β′ = β, or

– σ ∈ (Σ1 \ Σ2) and δ1(〈s, θ〉, a) = 〈s′, θ′〉 and there exists a variable
z2 /∈ η such that δ2(〈t, η〉, z2) = 〈t′, η′〉, and σ /∈ β|1, and β′ =
β ∪ {〈a, z2〉}, or

– a ∈ (Σ1 \ Σ2) and δ1(〈s, θ〉, a) = 〈s′, θ′〉 and there exists z2 ∈ (X2 ∪
{y2}) such that δ2(〈t, η〉, z2) = 〈t′, η′〉, and 〈a, z2〉 ∈ β, and β′ = β.

We define transitions for σ ∈ (Σ2 \ Σ1) by the symmetric conditions.

For a variable z = 〈z1, z2〉 we define δ(〈〈s, θ〉, 〈t, η〉, β〉, z) = 〈〈s′, θ′〉, 〈t′, η′〉, β′〉
if

– δ1(〈s, θ〉, z1) = 〈s′, θ′〉 and δ2(〈t, η〉, z2) = 〈t′, η′〉, if z1 ∈ X1 then
z1 /∈ θ, and if z2 ∈ X2 then z2 /∈ η and β′ = β ∪ {〈z1, z2〉}, or

– δ1(〈s, θ〉, z1) = 〈s′, θ′〉 and δ2(〈t, η〉, z2) = 〈t′, η′〉, and 〈z1, z2〉 ∈ β and
β = β′,

To prove that U is deterministic, we first show that it is identical to its
unwinding. Note that since U1 and U2 are deterministic and by the way we
defined δ, we have that U is deterministic. For a state q = 〈t1, t2, β〉 in Q, we
define θ(q) = β∩((X1∪{y1})×(X2∪{y2})). For the initial state q0 we have that
θ(q0) = ∅. Let q and q′ be two states in Q. If δ(q, σ) = q′ for a letter σ ∈ Σ, then
by the way we defined δ, we have that θ(q) = θ(q′). If δ(q, z) = q′ for a variable

26

z ∈ X ∪ {y}, then by the way we defined δ, we have that θ(q′) = θ(q) ∪ {z}.
Therefore, renaming every state q by 〈q, θ(q)〉 results in the unwinding of U .

We now show that the rest of the conditions of Remark 1 hold.
Consider a state q = 〈〈s1, θ1〉, 〈s2, θ2〉, β〉 in Q. Since U1 and U2 are both

deterministic, we have that from 〈s1, θ1〉 there exits at most one variable not in
θ1 and from 〈s2, θ2〉 there exits at most one new variable not in θ2. Therefore,
by the way we defined δ, there exits at most one variable from q not in θ(q). In
addition, if y1 exits 〈s1, θ1〉 then no other variable not in θ1 exits it, and if y2

exists from 〈s2, θ2〉 then no other variable not in θ2 exits it. Therefore, we have
that if 〈y1, y2〉 exits q then no other variable not in θ(q) exits it.

We show that every constant letter in Σ1∪Σ2 exits q. Every constant letter of
A1 exits 〈s1, θ1〉 and every constant letter of A2 exits 〈s2, θ2〉. By the definition
of δ, every mutual constant letter exits q. Either a new variable not in θ1 (resp.
θ2) or y1 (resp. y2) exit 〈s1, θ1〉 (resp. 〈s2, θ2〉), and δ matches it with every
constant letter in Σ2 \Σ1 (resp. Σ1 \Σ2). In both cases, these constants exit q.

Let 〈z1, z2〉 be a variable in θ(q). By the definition of δ, we have that z1 ∈ θ1

and z2 ∈ θ2. Every variable in θ1 exits 〈s1, θ1〉 and every variable in θ2 exits
〈s2, θ2〉. Therefore, by the definition of δ, we have that 〈z1, z2〉 exits q.

Consequently, we have that U is deterministic.
We now show that L(U) ⊆ L(U1) ∩ L(U2). Let w = w1w2 · · ·wm be a word

in L(U), and let v = v1v2 · · · vm be the witnessing pattern for w, with a run
〈s0, t0, ∅〉, 〈s1, t1, β1〉, . . . 〈sm, tm, βm〉 in U . We construct witnessing patterns v1

and v2 for w in U1 and U2, respectively, as follows.
For every vi ∈ (Σ1∩Σ2), by the way we defined δ, we have that δ1(si−1, vi) =

si and δ2(ti−1, vi) = ti. Accordingly, we define v1
i = v2

i = vi(= wi).
For vi = σ1 ∈ (Σ1 \Σ2), let vj be the first occurence of σ1 in v. Then, by the

way we defined δ, we have that δ2(ti−1, z2) = ti for some variable z2 in U2, and
that {〈σ, z2〉} = βj \ βj−1 Accordingly, we define v1

i = σ1 and define v2
i = z2.

Symmetrically, for vi = σ2 ∈ (Σ2 \ Σ1), we define v2
i = σ2 and v1

i = z1 for the
appropriate z1 in U1. In all cases, we have that the variable z1 (resp. z2) can
indeed be assigned σ2 (resp. σ1).

For every vi = 〈z1, z2〉 in X ∪ {y}, by the way we defined δ, we have that
δ1(si−1, z1) = si and δ2(ti−1, z2) = ti. Accordingly, we define v1

i = z1 and
v2

i = z2, and since by the way we defined δ we have that if z1 6= y1 then z1 is
matched only with z2 and vise versa, both z1 and z2 can be assigned the same
letter wi.

By the way we defined F we have that the (only) runs on v1 and v2 are
s0, s1, . . . , sm and t0, t1, . . . , tm in U1 and U2, respectively, are accepting. In
addition, we have that v1 and v2 are both witnessing patterns for w. Therefore,
we have that w ∈ L(U1) ∩ L(U2).

Finally, we show that L(U1)∩L(U2) ⊆ L(U). Let w = w1w2 · · ·wm be a word
in L(U1) ∩ L(U2), and let v1 = v1

1v
1
2 · · · v

1
m and v2 = v2

1v2
2 · · · v

2
m be the witness-

ing patterns for w in U1 and U2, respectively. Let 〈s0, ∅〉, 〈s1, θ1〉, . . . 〈sm, θm〉
be the run of U1 on v1, and let 〈t0, ∅〉, 〈t1, η1〉, . . . , 〈tm, ηm〉 be the run of U2

on v2. We construct a witnessing pattern v for w in U with a run r =

27

〈〈s0, ∅〉, 〈t0∅〉, ∅〉, 〈〈s1, θ1〉, 〈t1, η1〉, β1〉, . . . 〈〈sm, θm〉, 〈tm, ηm〉, βm〉 in U such that
βi|1 ∩ X1 = θi and βi|2 ∩ X2 = ηi inductively as follows.

If v1
1 ∈ (Σ1∩Σ2) then so is v2

1 , and so we have that v1
1 = v2

1 , and accordingly,
we define v1 = v1

1 . By the definition of δ, we have that δ(〈〈s0, ∅〉, 〈t0, ∅〉, ∅〉, v1
1) =

〈〈s1, ∅〉, 〈t1, ∅〉, ∅〉.
If v1

1 ∈ (Σ1 \ Σ2) then since both v1 and v2 are witnessing patterns for w,
we have that v2

1 is a variable z. We define v1 = v1
1 , and by the way we defined

δ we have that δ(〈〈s0, ∅〉, 〈t0, ∅〉, ∅〉, v1
1) = 〈〈s1, ∅〉, 〈t1, η1〉, {〈v1

1 , z〉}〉. Symmet-
rically, if v2

1 ∈ (Σ2 \ Σ1) then we have that v1
1 is a variable z. We define

v1 = v2
1 , and by the way we defined δ we have that δ(〈〈s0, ∅〉, 〈t0, ∅〉, ∅〉, v2

1) =
〈〈s1, ∅〉, 〈t1, η1〉, {〈z, v2

1〉}〉.
If v1

1 ∈ (X1 ∪ {y1}) and v2
1 ∈ (X2 ∪ {y2}) then we define v1 = 〈v1

1 , v
2
1〉, and

by the definition of δ we have that
δ(〈〈s0, ∅〉, 〈t0, ∅〉, ∅〉, 〈v1

1 , v
2
1〉) = 〈〈s1, θ1〉, 〈t1, η1〉, {〈v1

1 , v2
1〉}〉.

Let v1v2 . . . vm−1 be the word obtained according to the induction hypoth-
esis, and let 〈〈sm−1, θm−1〉, 〈tm−1, θm−1〉, βm−1〉 be the state the run of U on
v1v2 . . . vm−1 reaches. In a similar manner to the base case for v1

m ∈ (Σ1∩Σ2), we
define vm = v1

m, and the final step of the run r is rm = 〈〈sm, θm〉, 〈tm, ηm〉, βm−1〉.
If v1

m ∈ (Σ1 \ Σ2), we have that v2
m is a variable z. We define vm = v1

m. If
〈v1

m, z〉 ∈ βm−1 then the final step of the run r is rm = 〈〈sm, θm〉, 〈tmηm〉, βm−1〉.
If 〈v1

m, z〉 /∈ βm−1 then we claim that v1
m /∈ βm−1|1, that is, v1

m has not
been matched with a variable up to this point. To see this, assume by way of
contradiction that v1

m ∈ βm−1|1. Let v1
i be the first occurence of the letter v1

m

in v1. Then i < m − 1, and v2
i is a variable z′. By the definition of δ and

since r can be constructed for m− 1 steps, we have that 〈v1
m, z′〉 ∈ βm−1. Since

〈v1
m, z〉 /∈ βm−1, we have that z′ 6= z. Both v1 and v2 are witnessing patterns

for w, but z and z′ cannot both be assigned v1
m, a contradiction. Therefore, we

have that v1
m /∈ βm−1|1.

If v2
m = y2, then the final step of the run r is rm = 〈〈sm, θm〉, 〈tmηm〉, βm−1∪

{〈v1
m, y2〉〉}.
If v2

m ∈ X2, we claim that v2
m /∈ βm−1|2, that is, v2

m has not been assigned
yet and can be matched with v1

m. To see this, assume by way of contradiction
that v1

m ∈ βm−1|2. Let v2
i be the first occurence of v2

m in v2. Then i < m − 1,
and v1

i is either a variable or a letter. By the way we defined δ and since
r can be constructed for m − 1 steps, we have that 〈v1

i , v2
m〉 ∈ βm−1. Since

〈v1
m, v2

m〉 /∈ βm−1, we have that v1
i 6= v1

m. Therefore, they are either different
letters or that v1

i is a variable. In both cases, they cannot be assigned the same
letter. However, v2

m and v2
i must be assigned the same letter, and therefore,

since v1 and v2 are witnessing patterns for w, this is a contradiction. Then, we
have that v2

m /∈ βm−1|2, and therefore v2
m /∈ ηm−1. Consequently, the final step

of the run r is rm = 〈〈sm, θm〉, 〈tmηm〉, βm−1 ∪ {〈v1
m, v2

m〉〉}.
Similarly, if v2

m ∈ (Σ2 \ Σ1), we define vm = v2
m, and the final step of the

run r is constructed according to the various cases.
The final case is for v1

m ∈ (X1 ∪ {y1}) and v2
m ∈ (X2 ∪ {y2}). We de-

fine vm = 〈v1
m, v2

m〉. If 〈v1
m, v2

m〉 ∈ βm−1 then the final step of the run r
is rm = 〈〈sm, θm〉, 〈tmηm〉, βm−1〉. Otherwise, if v1

m ∈ X1, we claim that

28

v1
m /∈ βm−1|1. That is, v1

m has not been assigned yet. To see this, assume
by way of contradiction that v1

m ∈ βm−1|1. Let v1
i be the first occurence of the

variable v1
m in v1. Then i < m−1, and v2

i is a variable z′. By the way we defined
δ and since r can be constructed for m− 1 steps, we have that 〈v1

m, z′〉 ∈ βm−1.
Since 〈v1

m, z〉 /∈ βm−1, we have that z′ 6= z. Both v1 and v2 are witnessing
patterns for w, but z and z′ cannot both be assigned the same letter as v1

m, a
contradiction.

Similarly, we have that if v2
m ∈ X2, then v2

m /∈ βm−1|2. Accordingly, we have
that if v1

m ∈ X1 then v1
m /∈ θm−1, and if v2

m ∈ X2, then v1
m /∈ ηm−1. Therefore,

the final step of the run is rm = 〈〈sm, θm〉, 〈tm, ηm〉, βm−1 ∪ {〈v1
m, v2

m〉}〉.
Since both 〈sm, θm〉 and 〈tm, ηm〉 are accepting, we have that

〈〈sm, θm〉, 〈tm, ηm〉, βm〉 is accepting, and therefore v ∈ L(U).
It is left to show that v is a witnessing pattern for w. For the cases where

v1
i ∈ Σ or v2

i ∈ Σ we have that vi = wi. Otherwise, for every occurence of
wi, we have that v1

i = z1 and v2
i = z2 for variables z1 ∈ (X1 ∪ {y1}) and

z2 ∈ (X2 ∪ {y2}), and that vi = 〈z1, z2〉. Therefore, every occurence of vi can
be assigned wi. Consequently, we have that w ∈ L(U).

Appendix A.2. Proof of Theorem 9

The pattern automaton U of U is the automaton obtained from the inter-
section construction for A1 and A2 by defining the set of accepting states F as
F = ((F1 × Q2) ∪ (Q1 × F2)) × 2Γ1×Γ2 .

To see the correctness of the construction, recall that in the proof of Theo-
rem 8, we show that every word w ∈ Σ∗ has a single run r in U . To see that
L(U) ⊆ L(A1) ∪ L(A2), let 〈p, q, β〉 be the last state in r. Then, as we show in
the proof of Theorem 8, the word w has runs r1 and r2 in A1 and A2, respec-
tively, such that the last state in r1 is p and the last state in r2 is q. Therefore,
if r is accepting then either p or q is accepting, and so w ∈ L(A1) ∪ L(A2).

To see that L(A1) ∪L(A2) ⊆ L(U), let r1 and r2 be the runs of A1 and A2,
respectively, on a word w ∈ L(A1)∪L(A2), and let q1 and q2 be the last states
in r1 and r2, respectively. Then, as we show in the proof of Theorem 8, the
word w has a run r in U such that the last state in r is 〈q1, q2, β〉 for some β.
Therefore, by the definition of F , we have that w ∈ L(U).

Appendix A.3. Proof of Lemma 4

To prove that L(U) ⊆ L(D) we prove that for every word v = v1v2 . . . vm

read along U with a run 〈q0, ∅〉, 〈q1, θ1, 〉, . . . 〈qm, θm〉 there exists a one to one
function f : X → Z such that the following hold.

• The word f(v) can be read along D with a run s1, s2, . . . , sm,

• For every 0 ≤ i ≤ m, there exists 〈t, η〉 ∈ si such that 〈t, η|X〉 = 〈qi, θi〉,
and

• If v ∈ L(U) then f(v) ∈ L(D),

29

where f(v) denotes the replacement of every letter vi ∈ X by f(vi).
Notice that v and f(v) are then witnessing patterns for the same set of

words.
Let v = v1v2 . . . vm with a run 〈q0, ∅〉, 〈q1, θ1〉, . . . , 〈qm, θm〉 in U . We prove

by induction on m that there exists a suitable function f .
For the base case of m = 1, if v1 ∈ ΣA then the run in U is 〈q0, ∅〉, 〈q1, ∅〉, and

by the way we defined δD there exists a state s1 ∈ QD such that δD({〈q0, ∅〉}, v1) =
s1 and 〈q1, ∅〉 ∈ s1. If 〈q1, ∅〉 is accepting then so is s1. Since we must have
v1 = f(v1), we get a suitable function by setting f = ∅.

If v1 ∈ X then the run in U is 〈q0, ∅〉, 〈q1, {x}〉 and the determinization
procedure matches v1 with a new variable z1. By the way we defined δD there
exists a state s1 ∈ QD such that δD({〈q0, ∅〉}, z1) = s1 and 〈q1, {〈x, z1〉}〉 ∈ s1,
and so, in a similar manner, assigning f(v1) = z1 yields a suitable function.

For the induction step, let h be the function which exists by the induction
hypothesis for v′ = v1v2 . . . vm−1 and let sm−1 ∈ QD be the state the run on
h(v′) reaches in D. Then 〈qm−1, θm−1〉 = 〈t, η|X〉 for some 〈t, η〉 ∈ sm−1. If
vm ∈ ΣA then θm−1 = θm. By the way we have defined δD, there exists sm ∈ QD

such that δD(sm−1, vm) = sm and 〈qm, η〉 ∈ sm. If 〈qm, θm−1〉 is accepting then
sm is accepting, and so f = h yields a suitable function.

If vm ∈ X then if vm ∈ θm−1, by the way we have defined D there exists
some z ∈ Z such that 〈vm, z〉 ∈ η. Also, we have that θm−1 = θm. By the
way we have defined δD, there exists sm ∈ QD such that δD(sm−1, z) = sm and
〈qm, η〉 ∈ sm. if 〈qm, θm−1〉 is accepting then sm is accepting, and so setting
f = h yields a suitable function.

If vm /∈ θm−1 then there exists no z ∈ Z such that 〈vm, z〉 ∈ η, there exists
no i < m for which vi = vm and we have that θm = θm−1 ∪ {vm}. By the way
we defined δD, during the procedure vm is matched with a new variable z, and
there exists sm ∈ QD such that δD(sm−1, z) = sm and 〈qm, η ∪{〈vm, z〉}〉 ∈ sm.
if 〈qm, θm〉 is accepting then sm is accepting, and so f = h ∪ {〈vm, z〉} yields a
suitable function.

To prove that L(D) ⊆ L(U) we prove that for every word u = u1u2 . . . um

read along D with a run s0, s1, . . . , sm where sm = {〈q1, η1〉, 〈q2, η2〉, . . . , 〈qk, ηk〉}
, for every 1 ≤ i ≤ k there exists a one to one function gi : Z → X such that
the following holds.

• The word gi(u) can be read along U with a run 〈t0, ∅〉, 〈t1, θ1〉, . . . , 〈tm, θm〉,

• For every 0 ≤ j ≤ m, there exists 〈t, η〉 ∈ sj such that 〈t, η|X〉 = 〈tj , θj〉,

• It holds that 〈tm, θm〉 = 〈qi, ηi|X 〉, and

• If u ∈ L(D) then there exists gi such that gi(u) ∈ L(U),

where gi(u) denotes the replacement of every letter uj ∈ Z by gi(uj).
Intuitively, this shows that for for every 〈qi, ηi〉 ∈ sm, there exists a matching

run in U on u that reaches 〈qi, ηi〉, and for every 1 ≤ i ≤ k, the words gi(u) and
u are witnessing patterns for the same set of words. If sm is accepting then one
of these runs is accepting in U .

30

Let u = u1u2 . . . um with a run s0, s1, . . . , sm in D where sm = {〈q1, η1〉, 〈q2, η2〉
, . . . , 〈qk, ηk〉}. We prove by induction on m that there exists a suitable set of
functions {gi}1≤i≤k.

For the base case of m = 1, if u1 ∈ ΣA then the run in D is {〈q0, ∅〉}, s1, and
by the way we defined δD it holds that 〈q1, ∅〉 ∈ ρ(〈q0, ∅〉, u1) for some q1 ∈ A,
and since U is deterministic we have that s1 = {〈q1, ∅〉}. If s1 is accepting then
so is 〈q, ∅〉. Since we must have u1 = g1(u1), we get a suitable function by
setting g1 = ∅.

If u1 ∈ Z then by the way we defined D the run in D is {〈q0, ∅〉}, s1 where
s1 = {〈q1, η1〉, 〈q2, η2〉, . . . , 〈qk, ηk〉} and where every ηi is of the form ηi =
{xi, u1} for some xi ∈ X . If s1 is accepting then there exists some 〈qj , ηj〉 ∈ s1

such that 〈qj , ηj |X〉 is accepting, and so setting gi(u1) = xi for 1 ≤ i ≤ k yields
a suitable set of functions.

For the induction step, let sm−1 = {〈r1, η1〉, 〈r2, η2〉, . . . , 〈rl, ηl〉} and let
{hj}1≤j≤l be the set functions which exists by the induction hypothesis for
u′ = u1u2 . . . um−1. If um ∈ ΣA, since δD(sm−1, um) = sm and by the definition
of δD, for every 〈ti, ηi|X〉 such that 〈ti, ηi〉 ∈ sm there exists 〈rj , ηj〉 ∈ sm−1 such
that 〈ti, ηi|X〉 ∈ ρ(〈rj , ηj |X〉, um). If there exists 〈t, η〉 ∈ sm such that 〈t, η|X 〉
is accepting then sm is accepting, and so we have that setting gi = hj yields a
suitable set of functions.

If um ∈ Z, since δD(sm−1, um) = sm and by the way we have defined δD,
for every 〈ti, ηi|X 〉 such that 〈ti, ηi〉 ∈ sm there exists 〈rj , ηj〉 ∈ sm−1 and
xj ∈ X such that 〈ti, ηi|X〉 ∈ ρ(〈rj , ηj |X〉, xj) where 〈xj , um〉 ∈ ηi. If there
exists 〈t, η〉 ∈ sm such that 〈t, η|X〉 is accepting then sm is accepting, and so we
have that setting gi = hj ∪ {〈um, xj〉} yields a suitable set of functions.

Notice that if 〈xj , um〉 ∈ ηj then 〈um, xj〉 ∈ hj . This, since 〈xj , um〉 ∈ ηj

means that um = up for some p < m, and so, according to the induction steps
and the definition of δD, the variable um has already been matched to xj in hj .
Otherwise, um is first introduced from sm−1, and gi is formed by extending hj

accordingly. In both cases, we have that gi is well defined.

31

