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Abstract. Alternating automata play a key role in the automata-theoretic ap-
proach to specification, verification, and synthesis of reactive systems. Many
algorithms on alternating automata, and in particular, their nonemptiness test,
involve removal of alternation: a translation of the alternating automaton to an
equivalent nondeterministic one. For alternating Büchi automata, the best known
translation uses the “breakpoint construction” and involves an O(3n) state blow-
up. The translation was described by Miyano and Hayashi in 1984, and is widely
used since, in both theory and practice. Yet, the best known lower bound is
only 2n.
In this paper we develop and present a complete picture of the problem of al-
ternation removal in alternating Büchi automata. In the lower bound front, we
show that the breakpoint construction captures the accurate essence of alterna-
tion removal, and provide a matching Ω(3n) lower bound. Our lower bound
holds already for universal (rather than alternating) automata with an alphabet of
a constant size. In the upper-bound front, we point to a class of alternating Büchi
automata for which the breakpoint construction can be replaced by a simpler n2n

construction. Our class, of ordered alternating Büchi automata, strictly contains
the class of very-weak alternating automata, for which an n2n construction is
known.

1 Introduction
The automata-theoretic approach to formal verification uses automata on infinite words
and trees in order to model systems and their specifications. By translating specifica-
tions to automata, we can reduce problems like satisfiability and model checking to the
nonemptiness and containment problems of automata. The complexity of the automata-
based algorithms is induced by both the blow-up involved in the translation of specifi-
cations to automata, and the complexity of the nonemptiness and containment problems
for them. The automata-theoretic approach has proven to be extremely useful and pop-
ular in practice [1, 22].

Early translations of temporal-logic formulas to automata use nondeterministic au-
tomata. The transition function of a nondeterministic word automaton suggests several
successor states to each state and letter, and an input word is accepted by the automa-
ton if some run on it is accepting. The translation of LTL to nondeterministic Büchi
automata (NBW, for short) is exponential [14, 23]. Since the nonemptiness problem
for NBWs can be solved in NLOGSPACE, the translation suggested a PSPACE upper
bound for the model-checking and satisfiability problems of LTL [14, 23].

In the early 90s, researchers started to base the automata-theoretic approach on al-
ternating automata [19, 20]. In an alternating automaton, the transition function maps a



state and a letter to a formula over the set of states, indicating by which states the suffix
of the word should be accepted. For example, if δ(q0, a) = q1 ∧ (q2 ∨ q3), then when
the automaton is in state q0 and reads the letter a, then the suffix of the word should
be accepted both from the state q1 and from either q2 or q3. Thus, several copies of the
automaton run on the input word. As shown in [4, 13], the translation of temporal logic
to alternating automata is simple and involves no blow-up. Accordingly, the complex-
ity is shifted to the nonemptiness problem, which is harder for alternating automata,
and involves removal of alternation; that is, a translation to an equivalent nondetermin-
istic automaton. For alternating Büchi automata (ABWs, for short), such a translation
involves an exponential blow-up [16], leading to a PSPACE nonemptiness algorithm,
which is tight.

It turns out that the use of intermediate alternating automata has many advantages.
In some cases, such as branching-time model checking, one can reason about the al-
ternating automaton without removing alternation [13]. In LTL, the use of intermediate
alternating automata enables further optimizations on the translation of LTL to NBW
[8, 9, 21], and has led to improved minimization algorithms for NBWs [5, 6]. In addi-
tion, postponing the removal of alternation to later stages of the algorithms has led to
simplified decision and synthesis procedures [7, 12].

Consider an alternating automaton A with state space Q, transition function δ, and
set α of accepting states. Removal of alternation in A has the flavor of removal of non-
determinism in nondeterministic automata. As there, the constructed automaton follows
the subset construction applied to A. Here, however, when the constructed automaton
is in a state associated with a subset S ⊆ Q, the input word should be accepted from all
the states in S, and there may be several successors to the state associated with S. For
example, if δ(q0, a) = q1∧(q2∨q3), then in an equivalent nondeterministic automaton,
the transition function would map a state associated with the set {q0} and the letter a to
a nondeterministic choice between the two states associated with {q1, q2} or {q1, q3}.
In the case of finite words, it is easy to see that defining the set α′ of accepting states
to be these associated with sets contained in α results in an equivalent nondeterministic
automaton.

The case of infinite words is more difficult. Defining α′ as above does not work, as
it forces the different copies of A to visit α simultaneously. Also, it is not clear whether
a “round-robin” examination of the copies (as done in the case of NBW intersection) is
possible, as the number of copies is not bounded. A procedure for alternation removal
in ABWs was suggested in 1984 by Miyano and Hayashi [16]. The idea behind the
procedure, known as the breakpoint construction, is that the states of the equivalent
NBW maintain, in addition to the set S associated with the subset construction, also a
set O ⊆ S \ α of states along runs that “owe” a visit to the set of accepting states. 1

Thus, starting with an ABW with n states, the breakpoint construction ends up in an
NBW with at most 3n states. While the construction is only exponential (one could
have expected a 2O(n log n) blow-up, as is the case of complementation or determiniza-
tion of NBWs [15]), it is conceptually different from the simple subset construction.
In particular, it is annoying that the construction does not make use of the fact that the

1 The direct translations of LTL to NBW, which do not go via ABWs, implement a similar
breakpoint construction, by means of an “eventuality automaton” [23].
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Büchi condition is memoryless, which suggests that we do not have to run more than
n copies. In addition, from a practical point of view, the need to maintain two sub-
sets makes the state space exponentially bigger and makes the implementation of the
breakpoint construction difficult and complex [2, 5, 10, 17].

These drawbacks of the breakpoint construction, and its performance in practice
for some natural specifications have led Gastin and Oddoux to develop an alternative
translation of LTL to NBW [10]. The new translation is based on the fact that the ABWs
that correspond to LTL formulas are very weak, in the sense that all the cycles in them
are of size one (in other words, the only cycles are self-loops). It is shown in [10]
that for very weak ABWs, one can replace the breakpoint construction by a simpler
construction, with only an n2n blow-up.

In this paper we develop and present a complete picture of the problem of alternation
removal in ABWs. In the lower bound front, we show that the breakpoint construction
of [16] and its Ω(3n) blow-up cannot be avoided. In the upper-bound front, we point to
a class of ABWs that is strictly more expressive than very-weak ABW and for which
the breakpoint construction can be replaced by a simpler n2n construction. Below we
elaborate on the two contributions.

First, we show that the concept of the breakpoint construction captures the accurate
essence of alternation removal in ABWs. Thus, there is a need to associate the states of
the equivalent NBW with two sets, and the Ω(3n) blow-up cannot be avoided. Tech-
nically, we describe a family of languages Ln such that Ln can be recognized by an
alternating (in fact, a universal) Büchi automaton with n states, whereas an equivalent
NBW requires at least 1

6 · 3n states.2 This solves negatively the long-standing open
problem of improving the breakpoint construction to one with an O(2n) blow-up. As in
[24], our lower-bound proof starts with automata with an exponential alphabet, which
we then encode using a fixed-size alphabet. We show that the Ω(3n) lower bound ap-
plies also to the determinization of nondeterministic co-Büchi word automata and for
alternation removal in alternating Büchi tree automata [18].

Second, we introduce ordered automata and show that alternation removal in or-
dered ABWs can avoid the breakpoint construction and involves only an n2n blow-up.
Essentially, an automaton is ordered if the only rejecting cycles induced by its transition
function are self loops. Note that all very weak ABWs are ordered, but not vice versa.
Indeed, in ordered automata we have no restrictions on cycles that contain accepting
states. Ordered automata are strictly more expressive than very weak ABWs. For ex-
ample, the specifications “p holds in all even positions” and “whenever there is request,
then try and ack alternate until grant is valid” can be specified by an ordered ABW but
not by a very weak ABW. As the above specifications demonstrate, ordered ABWs can
handle regular specifications, which are strictly more expressive than LTL and are in-
deed very popular in modern specification formalisms [3]. Thus, our results extend the
fragment of automata for which the breakpoint construction can be avoided. The order
condition enables the equivalent NBW to examine the states of the ABW that are not
in α in a round-robin fashion: whenever the NBW is in a state associated with a set S
of states, it examines a single state p ∈ S \ α and makes sure that no path in the run of

2 The 1

6
constant can be reduced and probably also eliminated by some more technical work,

which we do not find interesting enough.
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the ABW gets trapped in p: as long as p is a successor of itself, it keeps examining p.
Only when a chain of p’s ends, the NBW changes the examined state. The acceptance
condition then makes sure that the NBW does not get trapped in a rejecting state.

We study the expressive power of ordered automata and argue that the order con-
dition defines a fragment of automata for which the breakpoint construction can be
avoided. We also show that the n2n upper bound for the translation of ordered ABWs
to NBWs is tight, thus even for ordered automata one needs to augment the subset con-
struction with additional information. Finally, we show that for ordered universal Büchi
automata, we can replace the examined state by a subset of letters that are examined,
resulting in an alternative construction with blow-up 2n+m, where m is the size of the
alphabet. This is in contrast with many translations in automata-theory (c.f. [24], as well
as our lower bound proof here), where moving to an alphabet of a constant size does
not change the state blow-up.

2 Preliminaries

Given an alphabet Σ, an infinite word over Σ is an infinite sequence w = σ0·σ1 · · ·σ2 · · ·
of letters in Σ. For a word w and two indices t1, t2 ≥ 0, we denote by w[t1, t2] its sub-
word σt1 · σt1+1 · · ·σt2 . In particular, w[0, t1] is the prefix σ0 · σ1 · · ·σt1 of w, and
w[t2,∞] is its suffix σt2 · σt2+1 · · · .

For a given set X , let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨), where we also allow the
formulas true and false. For Y ⊆ X , we say that Y satisfies a formula θ ∈ B+(X)
iff the truth assignment that assigns true to the members of Y and assigns false to the
members of X \ Y satisfies θ. An alternating Büchi automaton on infinite words is a
tuple A = 〈Σ, Q, qin, δ, α〉, where Σ is the input alphabet, Q is a finite set of states,
qin ∈ Q is an initial state, δ : Q × Σ → B+(Q) is a transition function, and α ⊆ Q
is a set of accepting states. We define runs of A by means of infinite DAGs (directed
acyclic graphs).3 A run of A on a word w = σ0 · σ1 · · · is an infinite DAG G = 〈V, E〉
satisfying the following (note that there may be several runs of A on w).

– V ⊆ Q × IN is as follows. Let Ql ⊆ Q denote all states in level l. Thus, Ql = {q :
〈q, l〉 ∈ V }. Then, Q0 = {qin}, and Ql+1 satisfies

∧

q∈Ql
δ(q, σl).

– E ⊆
⋃

l≥0(Ql × {l}) × (Ql+1 × {l + 1}) is such that E(〈q, l〉, 〈q′, l + 1〉) iff
Ql+1 \ {q′} does not satisfy δ(q, σl).

Thus, the root of the DAG contains the initial state of the automaton, and the states
associated with nodes in level l + 1 satisfy the transitions from states corresponding to
nodes in level l. For a set S ⊆ Q, a node 〈q, i〉 ∈ V is an S-node if q ∈ S. The run
G accepts the word w if all its infinite paths satisfy the acceptance condition α. Thus,
in the case of Büchi automata, all the infinite paths have infinitely many α-nodes. We
sometimes refer also to co-Büchi automata, where a run is accepting iff all its paths

3 In general, runs of alternating automata are defined by means of infinite trees. Since we are
going to deal only with acceptance conditions that have memoryless runs, we can work instead
with DAGs [4, 11].
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have only finitely many α-nodes. A word w is accepted by A if there a run that accepts
it. The language of A, denoted L(A), is the set of infinite words that A accepts.

We sometimes refer to automata in which the acceptance condition is defined with
respect to the transitions. Thus, such an automaton is a tuple A = 〈Σ, Q, qin, δ〉, where
the transition function is δ : Q × Σ → B+(Q × {⊥,>}), and a run is accepting if all
its paths contain infinitely many transitions with >.

When the formulas in the transition function of A contain only conjunctions, then
A is universal. When they contain only disjunctions, then A is nondeterministic, and
its runs are DAGs of width 1, where at each level there is a single node. Accordingly,
we sometimes refer to the transition function of a nondeterministic automaton as δ :
Q × Σ → 2Q, and refer to its runs as sequences r = q0, q1, . . . of states. We extend δ
to sets of states, by letting δ(S, a) =

⋃

q∈S δ(q, a), and recursively to words in Σ∗, by
letting δ(S, ε) = S, and δ(S, w · σ) = δ(δ(S, w), σ), for every w ∈ Σ∗ and σ ∈ Σ. As
with words, we denote the subrun of r between positions t1 and t2 by r[t1, t2]. The set
of states that a run or a subrun r visits is denoted by states(r).

Finally, we denote the different classes of automata by three letter acronyms in
{D, N, U, A} × {B, C} × {W}. The first letter stands for the branching mode of the
automaton (deterministic, nondeterministic, universal or alternating); the second letter
stands for the acceptance-condition type (Büchi or co-Büchi); and the third letter indi-
cates that the automaton runs on words. We add the prefix TR to denote automata with
acceptance on transitions. For example, TR-UBW stands for a universal Büchi word
automaton with acceptance on transitions.

3 The Lower Bound
In this section we show that the breakpoint construction is accurate, in the sense that it
keeps the exact data required for translating an ABW to an NBW. Starting with an ABW
with state space Q and acceptance set α (in fact, we even start with a UBW), the NBW
generated by the breakpoint construction has a state for each pair 〈S, O〉, where S ⊆ Q
and O ⊆ S \ α. We show that the construction is optimal, as an equivalent NBW must,
essentially, have a different state corresponding to each pair 〈S, O〉. Our proof basically
shows that the NBW must have a state corresponding to every two such pairs, while for
simplicity reasons we ignore some cases, getting a constant factor. Formally, we prove
the following.

Theorem 1. There is a family of UBWs U4,U5, . . . over an alphabet of 8 letters, such
that for every n ≥ 4, the UBW Un has n states, and every NBW equivalent to Un has at
least 1

63n states.

In [24], Yan presents the “full automata approach”, suggesting to seek for lower
bounds on automata with unbounded alphabets, allowing every possible transition. Only
then, should one try to implement the required rich transitions via finite words over a
fixed alphabet. We adopt this approach, and further extend it. Not only do we assume an
alphabet letter for every possible transition, but we also choose whether the transition
visits the accepting states. For that reason, we start with TR-UBWs An, having the
acceptance condition on transitions rather than on states. Afterwards, we transform An

to the required UBW Un, which is over a fixed alphabet and has acceptance on states.
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The family of TR-UBWs. For every n ≥ 4, we define the TR-UBW An = 〈Γ, Q, δ, qin〉,
where Q = {q1, q2, . . . , qn}, qin = q1, and Γ = {reach(S), award (S, O), unify(S)
and connect(S, O, O′) : S ⊆ Q and ∅ 6= O, O′ ( S} is an alphabet consisting of four
types of letters. The transition function δ : Q × Γ → 2Q×{>,⊥} is defined as follows
(see Figure 1):

– reach(S): reaching a subset S ⊆ Q from q1, without a visit in an accepting transi-
tion. Formally,

δ(q, reach(S)) =

{

S × {⊥} if q = q1

∅ otherwise.

– award (S, O): continuing the paths currently in S and awarding those in O with a
visit in an accepting transition. Formally,

δ(q, award (S, O)) =







〈q,>〉 if q ∈ O
〈q,⊥〉 if q ∈ S \ O
∅ otherwise.

We also refer to award (S, ∅), defined in the same way.
– unify(S): connecting, without a visit in an accepting transition, all states in S to

all states in S. Formally,

δ(q, unify(S)) =

{

S × {⊥} if q ∈ S
∅ otherwise.

– connect(S, O, O′): connecting, without a visit in an accepting transition, all states
in O to all states in O′ and all states in S \ O to all states in S. Formally,

δ(q, connect(S, O, O′)) =







O′ × {⊥} if q ∈ O
S × {⊥} if q ∈ S \ O
∅ otherwise.

Consider an NBW Bn with state space U and acceptance set β equivalent to An.
For showing the correspondence between the states of Bn and all possible pairs 〈S, O〉,
we present a set of words in L(An) that will be shown to fully utilize the required state
space of Bn.

The words. For every n ≥ 4, consider the TR-UBW An defined above. We say that a
a triple 〈S, O, O′〉 ∈ 2Q×2Q×2Q is relevant if ∅ 6= O, O′ ( S. For every relevant triple
〈S, O, O′〉, we define the infinite word wS,O,O′ = reach(S)·reward(S, O, O′)ω, where
reward(S, O, O′) = unify(S) · award (S, S \ O) · connect(S, O, O′) · award (S, O′).

Lemma 1. For all relevant triples 〈S, O, O′〉, the word wS,O,O′ is in L(An).

Since the words are in L(An), each has an accepting run rS,O,O′ of the equivalent
NBW Bn on it. We first show that these runs are distinct for different Ss.

Lemma 2. Let r1 and r2 be accepting runs of Bn on w1 = wS1,O1,O′
1

and w2 =
wS2,O2,O′

2
, respectively. If S1 6= S2, then states(r1[1,∞]) ∩ states(r2[1,∞]) = ∅.
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award (S, {q2, q4, q5})reach(S)

unify(S) connect(S, {q3, q5}, {q3, q4})

q2q1 q4q3 q5

q2q1 q4q3 q5
q2q1 q4q3 q5

q2q1 q4q3 q5

Fig. 1. An illustration of the required actions, for S = {q2, q3, q4, q5}. The doubled transitions
are accepting.

Replacing a letter connect(S, O, O′) in the word wS,O,O′ with a letter connect(S, P, P ′)
(of another tuple) may result in a word out of L(An). We say that a tuple 〈S, P, P ′〉 is
humbler than a tuple 〈S, O, O′〉 if the run ofAn on award(S, S\O)·connect(S, P, P ′)·
award (S, O′) visits an accepting transition along every path that starts in a state in S.

Lemma 3. If 〈S, P, P ′〉 is humbler than 〈S, O, O′〉 then O ⊆ P and P ′ ⊆ O′.

Let r be a specific accepting run rS,O,O′ of Bn on wS,O,O′ . Since r goes infinitely
often along the subword reward(S, O, O′), there is some state q visited infinitely often
at the starting positions of the subword reward(S, O, O′). Since r is accepting, there
are cases in which r visits β between two such visits of q. That is, there are positions
t1 and t2 such that r(t1) = r(t2) = q and states(r[t1, t2]) ∩ β 6= ∅. We shall refer to
the subrun of r between positions t1 and t2 as the loop lS,O,O′ . Such a loop contains
at least one transition corresponding to connect(S, O, O′), going from some state u to
some state v. We refer to u and v as a bridge for 〈S, O, O′〉.

Assigning designated bridges to relevant triples. A bridge assignment is a function
f : 2Q × 2Q × 2Q → U × U . We say that a bridge assignment f is good if for
every relevant triple 〈S, O, O′〉, the bridge 〈u, v〉 = f(〈S, O, O′〉) satisfies one of the
following.

1. There is a transition from u to v on connect(S, O, O′) along lS,O,O′ , and for all
relevant triples 〈S, P, P ′〉, if there is a transition from u to v on connect(S, P, P ′),
then 〈S, P, P ′〉 is humbler than 〈S, O, O′〉, or

2. (Intuitively, we cannot choose u and v that satisfy the condition above, in which
case we choose a transition that visits an accepting state). For all pairs 〈u′, v′〉 ∈
U × U , if there is a transition from u′ to v′ on connect(S, O, O′) along lS,O,O′ ,
then there is a tuple 〈S, P, P ′〉 such that there is a transition from u′ to v′ on
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connect(S, P, P ′) and 〈S, P, P ′〉 is not humbler than 〈S, O, O′〉, in which case
there is a transition from u to v on connect(S, O, O′) along lS,O,O′ that visits β. 4

Consider a relevant tuple 〈S, O, O′〉. If we cannot assign to 〈S, O, O′〉 a pair 〈u, v〉
that satisfies Condition (1) above, then all transitions from u to v on connect(S, O, O′)
along lS,O,O′ are also transitions along loops that are not accepting. Since the loop
lS,O,O′ does visit β, one of these transitions should visit β, and f can assign it. Hence
we have the following.

Lemma 4. There is a good bridge assignment.

Next, we show that every pair of states can serve as the assigned bridge of at most
two relevant triples. Intuitively, since there are “many” relevant triples, this would imply
that “many bridges are needed”. Intuitively, it follows from the fact that, by Lemma 3,
if 〈S, P, P ′〉 is humbler than 〈S, O, O′〉 and 〈S, O, O′〉 is humbler than 〈S, P, P ′〉, then
O = P and O′ = P ′.

Lemma 5. For every good bridge assignment f and pair 〈u, v〉 ∈ U × U , we have
|f−1({〈u, v〉})| ≤ 2.

Fixed alphabet. The size of the alphabet Γ of An is exponential in n. From now on,
let us refer to the alphabet of An as Γn. The UBWs Un we are after have an alphabet
Σ of 8 letters, and a single additional accepting state. Using the 8 letters it is possible
to simulate each of the letters γ ∈ Γn by a finite sequence of letters (whose length
depends on γ) in Σ. In particular, the set of states visited when γ is simulated includes
an accepting state iff the transition taken when γ is read is accepting.

Lemma 6. There is a set Σ of size 8 such that for every n ≥ 4, there are functions
τ : Γn → Σ∗ and ρ : (Q ∪ {qacc}) × Σ → 2Q∪{qacc} such that for all q ∈ Q and
γ ∈ Γn, if δ(q, γ) = {〈q1, b1〉, . . . , 〈qm, bm〉}, then the following hold.

– ρ(q, τ(γ)) = {q1, . . . , qm}, and
– Let τ(γ) = σ1, . . . , σl. For all 1 ≤ i ≤ m, and sequences r0, . . . , rl such that

r0 = q, rj+1 ∈ ρ(rj , σj+1) for all 1 ≤ j < l, and rl = si, there is 0 ≤ j ≤ l such
that ri = qacc iff bi = >.

We can now complete the proof of Theorem 1. For every n ≥ 4, let Bn be an NBW
over the alphabet Σ equivalent to An. We can partition an input word that simulate
the words wS,O,O′ to blocks, where each block corresponds to a letter in Γn. We refer
to a state of Bn that appears after reading a block as a “big-state”. For every n ≥ 4,
consider the UBW Un with state space Q′ = {q1, q2, . . . , qn, qacc} that simulates An as
described in Lemma 6, and an equivalent NBW Bn. For every subset S ⊆ Q′ \ {qacc}
and nonempty subsets O, O′ ( S there is the loop lS,O,O′ of big-states in Bn. By
Lemma 2, the loops are distinct among the different S’s with respect to their big-states.
Let XS be the set of big-states in all the loops corresponding to a specific S. We know
that Bn has at least ΣS⊆Q′\{qacc}|XS | states.

4 Thus, u ∈ β or v ∈ β; we still describe the condition in terms of the transition as it makes the
transformation to an automaton with a fixed alphabet clearer.
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Let f be a good bridge assignment. By Lemma 4, such an assignment f exists.
Consider a specific subset S ⊆ Q′ \ {qacc}. By Lemma 5, every pair of states in XS

can be the assigned bridge of at most two relevant triples in {S}× (2S \{S, ∅})× (2S \
{S, ∅}). There are (2|S|−2)2 such relevant triples. Thus, there are at least (2|S|−2)2/2

pairs of states in XS . Therefore, there are at least 2|S|−2√
2

≥ 2|S|

2 states in XS. 5 Hence,

there are at least ΣS⊆Q′\{qacc}|XS| = ΣS⊆Q′\{qacc}
2|S|

2 = 1
23n states in Bn. Starting

with a UBW with n + 1 states, we get a state blow-up of 1
23n−1 = 1

63n.
Combined with the breakpoint construction, we have a tight bound for the trans-

lation of an ABW to an equivalent NBW. Applying the construction in [16] to UBW,
one ends up with a DBW. Since we described the lower bound using UBWs, we also
get a tight bound for alternation removal of UBW, and, dually, to determinization of
nondeterministic co-Büchi automata. Formally, we have the following.

Theorem 2. The tight bound for translating ABWs or UBWs to NBWs and for deter-
minization of NCWs is Θ(3n).

4 Ordered Automata
In Section 3 we showed that, in general, a blow-up of Ω(3n) cannot be avoided when
translating an ABW to an NBW. In this section we introduce and explore a subclass of
ABWs that can be translated to an equivalent NBW with a blow-up of only n2n.

Definition 1. An automaton A = 〈Σ, Q, δ, qin, α〉 is ordered if there exists a partial
order ≤A on Q \ α, such that for every q, q′ ∈ Q \ α and σ ∈ Σ, if q′ ∈ δ(q, σ), then
q′ ≤A q.

Note that, equivalently, A is ordered if the only cycles consisting solely of states not in
α are self loops.

The order property is less restrictive than the very-weak condition of [10]. To demon-
strate this extra strength, we describe below the ordered ABW for the property “when-
ever there is request, then try and ack alternate until grant is valid” over the alphabet
Σ = 2AP , where AP = {try, ack, req, grant}. Since the ABW has a single rejecting
state, it is obviously ordered. Note that this property cannot be specified in LTL or in a
very weak ABW. Note also how the ordered ABW uses universal branches in order to
allow the try-ack cycle to be accepting. Indeed, fulfilling the eventuality is taken care
by a different copy of the ABW.

The automata used in the lower-bound proof have the property that every two states
not in α are reachable from each other without an intermediate visit to α. In a sense,
this property is an antipode of the order property presented in Definition 1. We argue
that violating the order property is what forces an equivalent NBW to associate its states
with two subsets of states of the ABW. Indeed, as we show below, an ABW that has
the order property can be translated to an equivalent NBW with an n2n blow-up. Still,
even for ordered automata, the NBW needs to maintain information beyond the subset
construction, thus the n2n translation is tight.

5 This ≥ is not correct for a very small subset S, but since we accumulate over all the subsets,
the total sum does satisfy it.
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req
try

Σ \ {req} grant

grant

Σ \ {grant}ack

Σ

Fig. 2. An ordered ABW specifying “whenever there is request, then try and ack alternate un-
til grant is valid”. For a propositional assertion θ over AP , a transition labeled θ stands for a
transition with all the letters σ ∈ 2AP that satisfy θ.

Theorem 3. The tight bound for translating an ordered ABW to an NBW is Θ(n2n).

Proof. We start with the upper bound. Let A = 〈Σ, Q, δ, qin, α〉 be an ordered ABW,
and let ≤A be an extension of the partial order on Q \ α to a total order on Q. Let
|Q| = n. The order ≤A allows us to identify Q with {1, 2, . . . , n} while preserving the
natural order. We define the equivalent NBW A′ = 〈Σ, Q′, δ′, q′in, α′〉 as follows.

– Q′ ⊆ 2Q × (Q \α∪{0}) is such that 〈S, p〉 ∈ Q′ iff p ∈ (S \α)∪{0}. Intuitively,
the set S follows the subset construction applied to A: when A is in a state in
S × {0, . . . , n}, the word in the input should be accepted from all the states in
S. Note that since A is alternating, there may be several sets S ′ that are possible
successors of a set S. Since the input word should be accepted from all the states
in S, all the paths that start in states in S should not get trapped in a state not in
α. To ensure this, A′ examines the states not in α in a round-robin fashion: at each
moment it examines a single state p ∈ S \ α and makes sure that no path in the
run of A gets trapped in p: as long as p is a successor of itself, it keeps examining
p. Only when a chain of p’s ends (either because p is not in S ′ or because p is in
S′ but is not a successor of itself), A′ changes the examined state, to the maximal
state in S′ that is smaller than p. If no such state exists, A′ sets p to 0. As would be
made clear below, this earns A′ a visit in the set of accepting states, and causes it
to start a new round of checks.

– q′in = 〈{qin}, 0〉.
– In order to define the transition function, we first define a function next : 2Q ×

2Q × {0, . . . , n} × Σ → {0, . . . , n}, which returns the next state that should be
examined by A′. Formally, next(S, S ′, p, σ) is (we fix max(∅) = 0):





p if p 6= 0 and S′ \ {p} 6|= δ(p, σ)
max({q | q ∈ S′ \ (α ∪ {p}) ∧ q ≤ p}) if p 6= 0 and S ′ \ {p} |= δ(p, σ)
max(S′ \ α) if p = 0

Now, δ′(〈S, p〉, σ) = {〈S′, next(S, S′, p, σ)〉 | S′ |= δ(S, σ)}.
Thus, each transition guesses the next set S ′ and updates the examined new state
accordingly.

– α′ = 2Q × {0}.

We now turn to the lower bound. The lower bound of Theorem 1 does not hold
for ordered UBWs as the UBWs Un used there are, obviously, not ordered. In order to
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prove an Ω(n2n) lower bound, we argue that the actions reach() and award () can be
simulated by an ordered UBW over an alphabet whose size is linear in n, and that using
them we can point to words that force the NBW to have at least Ω(n2n) states.

For every n ≥ 4, consider the TR-UBW An defined in Section 3. Using the actions
reach() and award (), one can define for every set S ⊆ Q \ {qacc} the word ws =
reach(S)·reward (S)ω , where reward(S) = •q∈S award (S, {q}). These words belong
to L(An), entailing for every S a distinct loop of states in an equivalent NBW. We
show that the restriction of An, having only the reach() and award() actions, can be
simulated by an ordered UBW On over an alphabet whose size is linear in n, and
that each such loop of big states in an NBW equivalent to On has at least |S| states,
providing the required lower bound of ΣS⊆Q|S| = Ω(n2n).

4.1 Fixed Alphabet

Usually, the alphabet size does not influence the state blow-up involved in automata
translation. This is also the case with the translation of ABWs to NBWs, as shown
in Section 3. Yet, ordered UBWs provide an interesting example of a case in which
the alphabet size does matter. While Theorem 3 provides an Ω(n2n) lower bound for
the translation of an ordered UBW to an equivalent NBW, we show below that the
translation can be done with only O(2n) state blow-up over a fixed alphabet.

Theorem 4. An ordered UBW with n states over an alphabet with m letters has an
equivalent DBW with 2m+n states.

Proof. Let A = 〈Σ, Q, δ, qin, α〉. We define A′ = 〈Σ, Q′, δ′, q′in, α′〉, where

– Q′ = 2Q × 2Σ. Intuitively, the 2Q component is a simple subset construction. The
2Σ component has the task of maintaining a set of letters recently read from the
input word, with the property that all suffixes consisting entirely of letters from this
set are rejected by A.

– For a state 〈S, P 〉, we say that P detains S if there is a state q ∈ S \ α such that
for every letter σ ∈ P , we have q ∈ δ(q, σ). Now, for all states 〈S, P 〉 ∈ Q′ and
σ ∈ Σ, we define

δ′(〈S, P 〉, σ) =

[

〈δ(S, σ), P ∪ {σ}〉 if P ∪ {σ} detains S.
〈δ(S, σ), ∅〉 otherwise.

That is, the 2Q component follows the subset construction, while the current letter
is added to the 2Σ component as long as the required property (which is equivalent
to P ∪ {σ} detaining S) is retained. So a path in a run of A gets trapped in some
state q iff the 2Σ component manages to avoid the empty set thanks to q.

– q′in = 〈{qin}, ∅〉.
– α′ = 2Q × {∅}.

Remark 1. It is shown in [18] that the breakpoint construction is valid when applied
to alternating Büchi tree automata. Our lower bound proof clearly holds also for alter-
nation removal in tree automata. As for the upper bound, it is not hard to see that the
definition of ordered automata can be extended to the setting of tree automata, and that
both translations in Theorems 3 and 4 stay valid in this setting.
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