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Abstract. Traditional automata accept or reject their input, and are therefore Boolean.
Lattice automata generalize the traditional setting and map words to values taken from a
lattice. In particular, in a fully-ordered lattice, the elements are 0, 1, . . . , n − 1, ordered
by the standard ≤ order. Lattice automata, and in particular lattice automata defined with
respect to fully-ordered lattices, have interesting theoretical properties as well as appli-
cations in formal methods. Minimal deterministic automata capture the combinatorial
nature and complexity of a formal language. Deterministic automata have many applica-
tions in practice.
In [13], we studied minimization of deterministic lattice automata. We proved that the
problem is in general NP-complete, yet can be solved in polynomial time in the case the
lattices are fully-ordered. The multi-valued setting makes it possible to combine reason-
ing about lattice automata with approximation. An approximating automaton may map a
word to a range of values that are close enough, under some pre-defined distance metric,
to its exact value. We study the problem of finding minimal approximating deterministic
lattice automata defined with respect to fully-ordered lattices. We consider approxima-
tion by absolute distance, where an exact value x can be mapped to values in the range
[x−t, x+t], for an approximation factor t, as well as approximation by separation, where
values are mapped into t classes. We prove that in both cases the problem is in general
NP-complete, but point to special cases that can be solved in polynomial time.

1 Introduction
Automata theory is one of the longest established areas in computer science. Applications
of automata theory include pattern matching, syntax analysis, and formal verification. In re-
cent years, novel applications of automata-theoretic concepts have emerged from numerous
sciences, like biology, physics, cognitive sciences, control, and linguistics. These novel appli-
cations require significant advances in fundamental aspects of automata theory [23]. One such
advance is a transition from a Boolean to a multi-valued setting: while traditional automata ac-
cept or reject their input, and are therefore Boolean, novel applications, for example in speech
recognition and image processing [19], are based on weighted automata, which map an input
word to a value from a semi-ring over a large domain [8].

Focusing on applications in formal verification, the multi-valued setting arises directly in
quantitative verification [14], and indirectly in applications like abstraction methods, in which
it is useful to allow the abstract system to have unknown assignments to atomic propositions
and transitions [24], query checking [6], which can be reduced to model checking over multi-
valued systems, and verification of systems from inconsistent viewpoints [15], in which the
value of the atomic propositions is the composition of their values in the different viewpoints.

In the above examples, the semi-ring used in the automata is often a finite distributive
lattice. A lattice ⟨A,≤⟩ is a partially ordered set in which every two elements a, b ∈ A have
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a least upper bound (a join b) and a greatest lower bound (a meet b). In particular, in a fully-
ordered lattice (a.k.a. linearly- or totally-ordered lattice: one in which a ≤ b or b ≤ a for all
elements a and b in the lattice), join and meet correspond to max and min, respectively.
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Fig. 1. Some lattices

For example (see Figure 1), in the abstraction application, researchers use the lattice L3

of three fully-ordered values [3, 24], as well as its generalization to Ln [7]. In query checking
[6], the lattice elements are sets of formulas, ordered by the inclusion order, as in L2{a,b,c}

[4]. When reasoning about inconsistent viewpoints, each viewpoint is Boolean, and their com-
position gives rise to products of the Boolean lattice, as in L2,2 [9, 15]. In addition, when
specifying prioritized properties of systems, one uses lattices in order to specify the priorities
[1]. Finally, LTL has been extended to latticed LTL (LLTL, for short), where the atomic propo-
sitions can take lattice values. The semantics of LLTL is defined with respect to multi-valued
Kripke structures and it can specify their quantitative properties [7, 17].

In a nondeterministic lattice automaton on finite words (LNFA, for short) [17], each tran-
sition is associated with a transition value, which is a lattice element (intuitively indicating the
truth of the statement “the transition exists”), and each state is associated with an initial value
and an acceptance value, indicating the truth of the statements “the state is initial/accepting”,
respectively. Each run r of an LNFA A has a value, which is the meet of the values of all the
components of r: the initial value of the first state, the transition value of all the transitions
taken along r, and the acceptance value of the last state. The value of a word w is then the join
of the values of all the runs of A on w. Accordingly, an LNFA A over an alphabet Σ and lattice
L induces an L-language L(A) : Σ∗ → L. Note that traditional finite automata (NFAs) can
be viewed as a special case of LNFAs over the lattice L2. In a deterministic lattice automaton
on finite words (LDFA, for short), at most one state has an initial value that is not ⊥ (the least
lattice element), and for every state q and letter σ, at most one state q′ is such that the value of
the transition from q on σ to q′ is not ⊥. Thus, an LDFA A has at most one run whose value is
not ⊥ on each input word, and the value of this run is the value of the word in the language of
A. In case such a run does not exist, the value of the word is ⊥.

For example, the LDFA A in Figure 2 is over the alphabet Σ = {a, b, c,#} and the lattice
L = ⟨{0, 1, 2, 3},≤⟩. All states have acceptance value 3, and this is also the initial value of
the single initial state. The L-language of A is L : Σ∗ → L such that L(ϵ) = 3, L(a) = 3,
L(a ·#) = 1, L(b) = 1, L(b ·#) = 1, L(c) = 3, L(c ·#) = 2, and L(w) = 0 for all other
w ∈ Σ∗.

Minimal deterministic automata capture the combinatorial nature and complexity of formal
languages. Beyond this theoretical importance, deterministic automata have many applications
in practice. They are used in run-time monitoring, pattern recognition, and modeling systems.
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Fig. 2. An LDFA A over a fully ordered lattice, with two different minimal LDFAs.

Thus, the minimization problem for deterministic automata is of great interest, both theoreti-
cally and in practice. For deterministic traditional automata on finite words (DFAs, for short),
a minimization algorithm, based on the Myhill-Nerode right congruence on the set of words,
generates in polynomial time a canonical minimal deterministic automaton [20, 21]. A polyno-
mial algorithm based on a right congruence is known also for deterministic weighted automata
over the tropical semi-ring [19].

In [13], we studied the minimization problem for LDFAs. We showed that it is impossible
to define a right congruence in the context of latticed languages, and that no canonical minimal
LDFA exists. The difficulty is demonstrated in the LDFA A in Figure 2. It is not hard to see
that both A1 and A2, which are not isomorphic, are minimal LDFAs equivalent to A. The lack
of a right congruence makes the minimization problem much more complicated than in the
Boolean setting, and in fact also than in the setting of the tropical semi-ring. It is shown in
[13] that the minimization problem for LDFAs is NP-complete in general. As good news, it is
also shown in [13] that even though it is impossible to define a right congruence even when
the LDFA is defined with respect to a fully-ordered lattice (indeed, the LDFA in Figure 2 is
defined with respect to L4), it is possible to minimize such LDFAs in polynomial time.

The multi-valued setting makes it possible to combine reasoning about weighted and lattice
automata with approximation. In this context, an approximating LDFA may map a word to a
range of values that are close enough, under some pre-defined distance metric, to its exact
value.

Approximations are widely used in computer science in cases where finding an exact solu-
tion is impossible or too complex. In the context of automata, approximation is used already in
the Boolean setting: DFAs are used in order to approximate regular [25] and non-regular [10]
languages. Applications of approximating DFAs include network security pattern matching,
where one-sided errors are acceptable, and abstraction-refinement methods in formal meth-
ods, where DFAs that over- and under-approximate the concrete language of the system or the
specification are used [18]. In the weighted setting, researchers used approximating automata
in order to cope with the fact that not all weighted automata can be determinized [2, 5]. For
example, [2] introduces t-determinization: given a weighted automaton A and an approxima-
tion factor t > 1, constructs a deterministic weighted automaton A′ such that for all words
w ∈ Σ∗, it holds that L(A)(w) ≤ L(A′)(w) ≤ t · L(A)(w). Approximation not only makes
determinization possible but also leads to automata that are significantly smaller [2, 5].

In this paper we study the approximation of lattice automata and the problem of finding
minimal approximating LDFAs. We focus on LDFAs defined with respect to fully-ordered
lattices. While it is possible to define distance metrics also in the setting of partially-ordered
lattices, for example by using lattice chains, we find the notion of approximation cleaner in the
setting of fully-ordered lattices. Also, since the minimization problem for LDFAs over partially
ordered lattices is NP-hard already without approximations, we cannot expect the problem of
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finding a minimal approximating LDFA to be easier. Finally, as we discuss below, applications
of approximated minimization exist already for fully-ordered lattices.

In fully-ordered lattices, there is a natural way to define the distance between two lattice
elements: finite fully-ordered lattices are all isomorphic to Ln, for some n ≥ 1, and we define
the distance between two elements a and b in the lattice to be |a − b|.1 We refer to approxi-
mations with respect to this metric as distance approximations: Consider an integer n ≥ 1, an
approximation factor 0 ≤ t ≤ n − 1, and two LDFAs A and A′ over Ln. We say that A′ t-
approximates A iff for all words w ∈ Σ∗ we have that |L(A′)(w)−L(A)(w)| ≤ t. That is, A′

t-approximates A if it maps every word w to a value whose distance from L(A)(w) is at most
t. We first show that the problem of deciding whether A′ t-approximates A is NLOGSPACE-
complete. We then turn to the problem of finding a minimal LDFA that t-approximates a given
LDFA. We study the corresponding decision problem, and then conclude about the search prob-
lem. It follows from [13] that the special case of finding a minimal 0-approximating LDFA can
be solved in polynomial time. We show that when 1 ≤ t ≤ ⌊n

2 ⌋ − 1, the problem is NP-
complete, and in fact is even inapproximable. On the other hand, for ⌊n

2 ⌋ ≤ t ≤ n − 1, the
problem can be solved in constant time (simply since a t-approximating LDFA of size one
always exists).

A different natural way to define approximations in a fully-ordered lattice involves the
introduction of separators. Formally, a t-separation of Ln, for 1 ≤ t ≤ n, is a partition
P = {P0,P1, . . . ,Pt−1} of {0, 1, . . . , n − 1} such that all the sets in the partition are not
empty and contain only successive elements. An approximation by t-separation maps a set of
successive values to a single value. Formally, consider an integer n ≥ 1, an approxomation
factor 1 ≤ t ≤ n, an LDFA A over Ln and an LDFA A′ over Lt. We say that A′ t-separates A
iff there is a t-separation P of Ln such that for all words w ∈ Σ∗ we have that L(A′)(w) = i
iff L(A)(w) ∈ Pi. For example, when n = 10 and P = {{0}, {1}, {2, . . . , 9}}, the LDFA
A′ may agree with A on all words that are mapped to 0 and 1, and map to 2 all words that are
mapped by A to {2, . . . , 9}. We first show that the problem of deciding whether A′ t-separates
A according to a given t-separation is NLOGSPACE-complete. We then turn to the problem
of finding a minimal LDFA that t-separates a given LDFA. We show that the problem can
be solved in polynomial time for a fixed t, and is NP-complete when t is a parameter to the
problem.

Beyond the theoretical motivation for studying minimization of approximating LDFAs with
respect to the two distance metrics, both metrics are useful in practice. Recall the use of fully-
ordered lattices in the specification of prioritized properties of systems [1]. Consider an LDFA
over Ln that corresponds to the specification. Assume that the (Boolean) language of all words
that are assigned some value i has a large Myhill-Nerod index, thus a DFA for it, and hence
also the LDFA, is big. It is often possible to approximate the assignment of priorities so that
“problematic” values are no longer problematic and an LDFA for the specification is much
smaller. Using the distance metric, the approximation may map a value x to values in [x −
t, x + t]. Such a metric is useful when we tolerate a change of order between the prioritized
properties but want to limit the range in which priorities are changed. Using separators, the
approximation is not restricted to a certain range, but bounds the number of classes to which
successive priorities can be mapped. Such a metric is useful when we care about the order of
the prioritized properties and do not care about their values. As another example, recall the
application of the three-value lattice L3 in abstraction. A 2-separation of L3 corresponds to
either an under-approximation of the concrete system, in case the “unknown” value is grouped

1 Another popular isomorphic lattice uses the range 0, . . . , 1, with the elements being 0, 1
n
, 2
n
, . . . , 1.

We find it simpler to work with Ln. Clearly, our results can be easily adjusted to all fully-order lattices.
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with “false”, or to an over-approximation, in case “unknown” value is grouped with “true”.
Finally, both types of approximation may be useful when using LDFAs for the specification of
quantitative properties.

2 Fully-Ordered Lattices and Lattice Automata

Let ⟨A,≤⟩ be a partially ordered set, and let P be a subset of A. An element a ∈ A is an upper
bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for all b ∈ P .
An element a ∈ A is the least element of P if a ∈ P and a is a lower bound on P . Dually,
a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on P . A partially ordered
set ⟨A,≤⟩ is a lattice if for every two elements a, b ∈ A both the least upper bound and the
greatest lower bound of {a, b} exist, in which case they are denoted a ∨ b (a join b) and a ∧ b
(a meet b), respectively. For an integer n ≥ 1, let [n] = {0, 1, . . . , n − 1}. The fully-ordered
lattice (a.k.a. linearly- or totally-ordered lattice) with n elements is Ln = ⟨[n],≤⟩, where ≤ is
the usual “less than” relation, thus 0 ≤ 1 ≤ · · · ≤ n − 1. For a set P ⊆ [n] of elements, the
least upper bound of P , namely the join of the elements in P , is maxP . The greatest lower
bound of P , namely the meet of the elements in P , is minP . In particular, the meet and join
of [n] are 0 and n− 1, also referred to as ⊥ and ⊤, respectively.

Consider a lattice L = ⟨A,≤⟩. For a set X of elements, an L-set over X is a function
S : X → A assigning to each element of X a value in A. It is convenient to think about
S(x) as the truth value of the statement “x is in S”. We say that an L-set S is Boolean if
S(x) ∈ {⊤,⊥} for all x ∈ X . In particular, all L2-sets are Boolean.

Consider a lattice L = ⟨A,≤⟩ and an alphabet Σ. An L-language is an L-set over Σ∗.
Thus, an L-language L : Σ∗ → A assigns a value in A to each word over Σ.

A deterministic lattice automaton on finite words (LDFA) is A = ⟨L, Σ,Q,Q0, δ, F ⟩,
where L is a finitie lattice, Σ is a finite alphabet, Q is a finite set of states, Q0 ∈ LQ is an L-set
of initial states, δ ∈ LQ×Σ×Q is an L-transition-relation, and F ∈ LQ is an L-set of accepting
states. The fact that A is deterministic is reflected in two conditions on Q0 and δ. First, there
is at most one state q ∈ Q, called the initial state of A, such that Q0(q) ̸= ⊥. In addition, for
every state q ∈ Q and letter σ ∈ Σ, there is at most one state q′ ∈ Q, called the σ-destination of
q, such that δ(q, σ, q′) ̸= ⊥. The run of an LDFA on a word w = σ1 ·σ2 · · ·σl is a sequence r =
q0, . . . , ql of l+1 states, where q0 is the initial state of A, and for all 1 ≤ i ≤ l it holds that qi is
the σi-destination of qi−1. The value of w is val(w) = Q0(q0)∧

∧l
i=1 δ(qi−1, σi, qi)∧F (ql).

Intuitively, Q0(q0) is the value of q0 being initial, δ((qi−1, σi, qi)) is the value of qi being a
successor of qi−1 when σi is the input letter, F (ql) is the value of ql being accepting, and the
value of w is the meet of all these values. The L-language of A, denoted L(A), maps each
word w to the value of its run in A. In case A does not have a run on w, this word is mapped
to ⊥. In the special case of a lattice automaton over Ln, the value of a word is simply the
minimal value appearing in its run. An LDFA is simple if Q0 and δ are Boolean. An example
of an LDFA over a fully-ordered lattice can be found in Figure 2.

Note that traditional deterministic automata over finite words (DFA) correspond to LDFA
over the lattice L2. Indeed, over L2, a word is mapped by L(A) to the value ⊤ iff the run on it
uses only transitions with value ⊤ and its final state has acceptance value ⊤.

Analyzing the size of A, one can refer to |L|, |Q|, and |δ|. Since the emphasize in this paper
is on the size of the state space, we use |A| to refer to the size of its state space.
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3 Approximation by Distance
In this section we study the problem of approximating LDFAs over fully-ordered lattices using
the natural distance metric, in which the distance between two elements a and b is |a− b|. We
first formally define approximation with respect to this metric.

Definition 1. Consider an integer n ≥ 1, an approximation factor 0 ≤ t ≤ n − 1, and two
LDFAs A and A′ over Ln. We say that A′ t-approximates A iff for all words w ∈ Σ∗ we have
that |L(A′)(w)− L(A)(w)| ≤ t.

Intuitively, the distance between the exact and the approximated values of words is at most
t. It is not hard to see that the quality of the approximation improves as t becomes smaller.
For t = n − 1 (in fact, already for t ≥ ⌊n

2 ⌋) all words can simply be mapped to the same
element. As t reduces, the values of the words get closer to their exact values, till they coincide
for t = 0, where L(A′) = L(A).

Example 1. Figure 3 depicts an LDFA A over the lattice L7 and the alphabet Σ = {a1, . . . , a6,#}.
It also depicts an LDFA A′ that 1-approximates A. One can see that A′ agrees with A on the
values of the words ϵ, a1, . . . , a6, a2#, a5#, while the values of the words a1#, a3#, a4#, a6#
differs by 1. All other words are mapped by both A and A′ to 0. The approximation enables
A′ to merge the upper and lower three states that are reachable in one transition in A.

A: #, 1
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a3, 6
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a3, 6

a4, 6
a5, 6
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6
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6

6
6

#, 5

Fig. 3. An LDFA A with a 1-approximating LDFA A′.

Theorem 1. Let n ≥ 1 and t ≥ 0. Given two LDFAs A and A′ over Ln, deciding whether A′

t-approximates A is NLOGSPACE-complete.

Proof. We start with the upper bound and rely on the fact that co-NLOGSPACE = NLOGSPACE
[16]. To decide whether A′ does not t-approximate A, it is enough to find a word w ∈ Σ∗ such
that |L(A′)(w) − L(A)(w)| > t. We show that if such a word exists, then there also exists a
word of size at most n2|A′||A| satisfying this condition2. Let w ∈ Σ∗ be such a word. Consider
two corresponding simple LDFAs S and S ′, such that L(S) = L(A) and L(S ′) = L(A′). In
[17] it was shown that there are such automata with n|A| and n|A′| states, respectively. Con-
sider now the product automaton of S and S ′ which is also simple and is of size n2|A′||A|.
Let qw and qw′ be the states reached by w in S and S ′, respectively. Note that the run of the
product automaton on w reaches the state ⟨qw, qw′⟩. Since the product automaton is simple,
the value of w is induced only by the acceptance values of the states qw and qw′ . Therefore,

2 In fact, one can prove that there exists such a word of size at most |A′||A|, but this is not required for
our purpose.
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we can ignore all cycles along the run if any, and get a word of size at most n2|A′||A| which
gets the same value as w on both A and A′. Therefore, one can guess a word of size at most
n2|A′||A|, compute its value on both A and A′ in logarithmic space, and return that A′ does
not t-approximate A iff |L(A′)(w) − L(A)(w)| > t. Finally, the lower bound is by an easy
reduction from the reachability problem in directed graphs. ⊓⊔

Approximation can lead to a significant reduction in the size of the automata. Formally,
for all t ≥ 1 there is a family of LDFAs for which t-approximation allows for an exponential
reduction in the state space whereas (t − 1)-approximation allows no reduction. To see this,
note that applying 1-approximation on languages over L2 results in an LDFA with one state,
no matter how complicated the original automaton was. This trivial example can be naturally
extended to all t ≥ 1 by considering lattices over [n] and Ln-languages that map the accepted
and non-accepted words to two lattice values l and l′, respectively, such that |l − l′| = t.

Motivated by the importance of generating small automata, our goal is to find an LDFA
A′ with a minimal number of states that t-approximates a given LDFA A. We show that the
problem is trivial when t is large enough. For the non-trivial interesting case where t is small
with respect to the lattice, the problem becomes much more complicated, and we prove that it
is NP-complete. However, for t = 0, where the problem coincides with minimization, it gets
back to the easy side and can be solved in polynomial time [13].

Consider the corresponding decision problem: APRXLDFA={⟨A, n, t, k⟩ : A is an LDFA
over Ln with a t-approximating A′ over Ln such that |A′| ≤ k}. As we shall see, the complex-
ity of APRXLDFA depends on the relation between n and t. We therefore study also the family
of problems (n, t)-APRXLDFA, in which n and t are not parameters and rather are fixed. That
is, (n, t)-APRXLDFA={⟨A, k⟩ : A is an LDFA over Ln with a t-approximating A′ over Ln

such that |A′| ≤ k}.

Theorem 2. Let n ≥ 1. The problem (n, t)-APRXLDFA:

– [13] Can be solved in polynomial time for t = 0.
– Is NP-complete for 1 ≤ t ≤ ⌊n

2 ⌋ − 1.
– Can be solved in constant time for t ≥ ⌊n

2 ⌋.

Proof. We start with the second case. For the upper bound, given A and k, a witness for their
membership in (n, t)-APRXLDFA is an LDFA A′ as required. Assuming k ≤ |A| (other-
wise, ⟨A, k⟩ clearly belongs to (n, t)-APRXLDFA), the size of A′ is linear in the input. By
Theorem 1, we can verify that A′ t-approximates A in polynomial time.

For the lower bound, we show a polynomial-time reduction from the Minimal Automaton
Identification problem (MAI, for short), proved to be NP-complete in [12]. The MAI problem
refers to the minimal DFA whose language agrees with a set of observations.3 Formally, let
Σ be an alphabet of size two. A data is a set D = {(w1, y1), . . . , (wn, yn)}, where for all
1 ≤ i ≤ n, we have that wi ∈ Σ∗ and yi ∈ {0, 1}, and wi ̸= wj for all 1 ≤ i ̸= j ≤ n. A DFA
A agrees with D iff L(A)(wi) = yi for all 1 ≤ i ≤ n. Then, MAI = {⟨D, k⟩ : D is data, and
there exists a DFA A with |A| ≤ k that agrees with D}.

We now turn to describe the reduction, starting with the case n is even and t = n
2 −

1. Note that for t to be at least 1, it must be that n ≥ 4. Given an input ⟨D, k⟩ for MAI,
let Σ be the alphabet and let D = {(w1, y1), . . . , (wm, ym)}. We construct an LDFA A =
⟨Ln, Q,Σ, δ,Q0, F ⟩ as described below.

3 The result in [12] is stated by means of Mealy machines. It can, however, be easily adapted to DFAs.
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– The states Q are defined as follows. Let P be the set of all prefixes of the words w1, . . . , wm.
Each prefix w ∈ P induces a state qw. Note that prefixes that are common to more than
one word contribute one element to P , and therefore induce one state in Q. In addition,
there is a state qsink.

– For all w ∈ P and σ ∈ Σ, if wσ ∈ P , then δ(qw, σ, qwσ) = ⊤; Otherwise, δ(qw, σ, qsink) =
⊤. In addition, δ(qsink, σ, qsink) = ⊤ for all σ ∈ Σ.

– Q0(qϵ) = ⊤, and Q0(q) = ⊥ for all other states q ∈ Q.
– The acceptance values are defined as follows. Consider first the states {qw1 , . . . , qwm}

corresponding to the words appearing in D. For all 1 ≤ i ≤ m, if yi = 1, then F (qwi) =
⊤; Otherwise, F (qwi) = ⊥. For all other q ∈ Q, we define F (q) = n

2 .

Note that A is deterministic. Also, since the components of A are all of size polynomial in
the data D, the reduction is polynomial.

Example 2. Let n = 4. Figure 4 depicts the LDFA AD corresponding to the data D =
{(aa, 1), (aab, 0), (ab, 0), (bba, 1), (bbb, 0)} over Σ = {a, b}. All transitions described in the
figure have the value ⊤. The states with acceptance value ⊤ correspond to words w ∈ {a, b}∗
such that (w, 1) ∈ D, and symmetrically, the states with acceptance value ⊥ correspond to
words w ∈ {a, b}∗ such that (w, 0) ∈ D. The states with acceptance value of 2 on the left
correspond to the strict prefixes of the words in D. Finally, the rightmost state is qsink, and its
acceptance value is also 2.

a

b

a

a
b

b

b

a

a, b

a, b

a, b
⊤

⊥

⊥

a, b2

2

2

2

2

AD :

⊤

b

⊥ a, b

a

⊤

Fig. 4. The LDFA AD induced by the data D.

Intuitively, the goal of A is to keep the information stored in D in a way that would enable
to restore it from an LDFA that t-approximates A. By mapping to 0 and n − 1 and defining t
to be strictly smaller than n

2 , we ensure that the t-approximating LDFAs do not mix up words
that are mapped in D to different values. This way, we can associate a t-approximation A′ of
A with a DFA B that agrees with D and vice versa.

We prove formally that ⟨D, k⟩ ∈ MAI iff ⟨A, k⟩ ∈ (n, t)-APRXLDFA. That is, there
exists a DFA B with |B| ≤ k that agrees with D iff there exists a t-approximating A′ for A
with |A′| ≤ k.

Assume first that there exists a DFA B as required. Recall that a DFA can be viewed as
an LDFA over the Boolean lattice L2 = {0, 1}. We thus derive A′ from B by viewing B as
an LDFA over L2, and replacing all 0′s and 1′s appearing as values in A′ with n

2 − 1 and n
2 ,

respectively. Note that |A′| ≤ k, as we do not add states to B.
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We show that A′ t-approximates A. It is not hard to see that L(A) and L(A′) are as follows:

L(A)(w) =

⊥ w = wi for some 1 ≤ i ≤ m and yi = 0
⊤ w = wi for some 1 ≤ i ≤ m and yi = 1
n
2 otherwise

L(A′)(w) =


n
2 − 1 w = wi for some 1 ≤ i ≤ m and yi = 0
n
2 w = wi for some 1 ≤ i ≤ m and yi = 1
n
2 or n

2 − 1 otherwise

We show that for all w ∈ Σ∗ it holds that |L(A′)(w)− L(A)(w)| ≤ t. For words w ∈ Σ∗

such that w = wi for some 1 ≤ i ≤ m and yi = 0, it holds that |L(A′)(w) − L(A)(w)| =
|(n2 − 1) − 0| = n

2 − 1 = t. For words w ∈ Σ∗ such that w = wi for some 1 ≤ i ≤ m and
yi = 1, it holds that |L(A′)(w) − L(A)(w)| = |n2 − (n − 1)| = (n − 1) − n

2 = n
2 − 1 = t.

Finally, for words that are not of the form wi for any 1 ≤ i ≤ m the apprixomation is obvious,
since t ≥ 1. We conclude that A′ t-approximates A.

As for the other direction, assume now that there exists a t-approximating A′ for A with at
most k states. We show that there is a DFA B that agrees with D and |B| ≤ k.

We derive B from A′ as follows. We replace by 0 all values between 0 and n
2 −1 appearing

in A′, and symmetrically, we replace by 1 all values between n − 1 and n
2 . Now we have an

LDFA over L2. Such an LDFA can be viewed as a DFA, and we define B to be this DFA. Note
that |B| ≤ k, as we do not add states to A′.

It is left to show that B agrees with D. For this purpose we show that L(B)(wi) = yi for
all 1 ≤ i ≤ m. Consider a word wi for 1 ≤ i ≤ m. Assume first that yi = 1. Recall that in
such a case it holds that L(A)(wi) = ⊤ = n − 1. Also, since A′ t-approximates A, it holds
that |L(A′)(wi)− (n− 1)| ≤ t = n

2 − 1, and therefore L(A′)(wi) must be between n− 1 and
n
2 . This implies that all values read along the run of A′ on wi are between n−1 and n

2 . Finally,
recall that such values have all been replaced by n

2 and then by 1, meaning that L(B)(wi) = 1
as required. The proof for wi with yi = 0 is similar. We conclude that B agrees with D, and
we are done.

Now, recall that the reduction above assumes that n is even and t = n
2 − 1. Hence, we still

have to show that (n, t)-APRXLDFA is NP-hard for all n ≥ 1 and 1 ≤ t ≤ ⌊n
2 ⌋ − 1.

Let n ≥ 1 and 1 ≤ t ≤ ⌊n
2 ⌋ − 1. Since 2t + 2 is even and t = 2t+2

2 − 1, the reduction
above shows that (2t + 2, t)-APRXLDFA is NP-hard. We show a polynomial-time reduction
from (2t + 2, t)-APRXLDFA to (n, t)-APRXLDFA. Let ⟨A, k⟩ be an input for (2t + 2, t)-
APRXLDFA. Since 2t + 2 ≤ 2(⌊n

2 ⌋ − 1) + 2 = 2⌊n
2 ⌋ ≤ n, we have that 2t + 2 ≤ n. We

extend the lattice L2t+2 to Ln by adding n − (2t + 2) new elements at the top of the lattice.
We then produce ⟨U , k⟩ as an input for (n, t)-APRXLDFA, where U coincides with A, except
that U is defined over Ln rather than L2t+2. It is not hard to see that ⟨A, k⟩ ∈ (2t + 2, t)-
APRXLDFA iff ⟨U , k⟩ ∈ (n, t)-APRXLDFA. Indeed, if A′ t-approximates A when both are
over L2t+2, then, as L(A) = L(U), we have that A′ also t-approximates U when both are
over Ln. On the other hand, if an LDFA U ′ t-approximates U , then replacing all occurrences
of the new elements of Ln that appear in U ′ by 2t + 1 resulted in an LDFA over L2t+2 that
still t-approximates U , and therefore t-approximates A as well.

We now turn to prove the third part of the theorem. Let t ≥ ⌊n
2 ⌋. A constant time algorithm

that is given ⟨A, k⟩ and decides whether ⟨A, k⟩ ∈ (n, t)-APRXLDFA can simply return “yes”
for all inputs. To prove correctness, we show that every LDFA A over Ln has a t-approximating
A′ of size one. To see this, consider an LDFA with one state that maps all words to the value
⌊n
2 ⌋. Clearly, there exists such LDFA. It is left to show that |⌊n

2 ⌋ − L(A)(w)| ≤ t for all
w ∈ Σ∗. Since 0 ≤ L(A)(w) ≤ n− 1 for all w ∈ Σ∗, it is enough to show that |⌊n

2 ⌋ − 0| ≤ t
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and |⌊n
2 ⌋ − (n − 1)| ≤ t. The first inequality is clear, since ⌊n

2 ⌋ ≤ t. For the second one
|⌊n

2 ⌋− (n− 1)| = (n− 1)−⌊n
2 ⌋ ≤ (n− 1)− (n2 − 1

2 ) =
n
2 − 1

2 ≤ ⌊n
2 ⌋ ≤ t, and we are done.

⊓⊔

Going back to the problem APRXLDFA, we can now reduce (n, t)-APRXLDFA to APRXLDFA
for some fixed n ≥ 1 and 1 ≤ t ≤⌊n

2 ⌋ − 1. By the second part of Theorem 2, we conclude
with the following.

Theorem 3. APRXLDFA is NP-complete.

Remark 1. By Theorem 3, it is unlikely that there can ever be an efficient exact algorithm for
APRXLDFA. A natural question to ask is whether the problem can be efficiently approximated.
In [22], the authors show that the MAI problem, from which we have reduced, cannot be ap-
proximated within any polynomial. That is, assuming P̸= NP, there does not exist a polynomial
time algorithm that on a data input D can always return a DFA of size at most polynomially
larger than opt, where opt is the smallest DFA that agrees with D. Therefore, the reduction
described in the proof of Theorem 2 in fact gives a stronger result: APRXLDFA is inapprox-
imable.

Theorems 2 and 3 study the complexity of deciding whether there is a t-approximating
LDFA of size at most k. Below we discuss the corresponding search problem, of constructing
a minimal LDFA. Consider the three cases stated in Theorem 2. For t = 0, the approximation
problem coincides with minimization, and there is an algorithm generating a minimal LDFA
in polynomial time [13]. For 1 ≤ t ≤ ⌊n

2 ⌋ − 1, we can first perform a binary search to find the
minimal k, and then verify a guessed LDFA of size k. Therefore, the problem of constructing
a minimal LDFA belongs to the class FNP (of problems where the goal is to return a witness
in an NP decision problem). Finally, for ⌊n

2 ⌋ ≤ t, we have seen that a t-approximating LDFA
can map all words to the value ⌊n

2 ⌋, and a minimal one can do it with a single state.

4 Approximation by Separation
Approximation by distance poses a uniform requirement on the elements of the lattice. In this
section we introduce and study another natural metric, based on lattice separation.

Definition 2. Let n ≥ 1 and 1 ≤ t ≤ n. A t-separation of Ln is a partition P = {P0,P1, . . . ,Pt−1}
of [n] into t non-empty sets such that each set contains only successive elements.

Definition 3. Consider an integer n ≥ 1, an approximation factor 1 ≤ t ≤ n, an LDFA A
over Ln and an LDFA A′ over Lt. We say that A′ t-separates A iff there is a t-separation P
of Ln such that for all words w ∈ Σ∗ we have that L(A′)(w) = i iff L(A)(w) ∈ Pi.

Intuitively, an approximation by t-separation maps a set of successive values to a single
value. One can see that the quality of the approximation improves as t grows. Indeed, for t = 1
we have only one set containing all elements, allowing us to map all words to the same value.
On the other hand, when t = n, each element constitutes a singleton set, and L(A′) = L(A).

Example 3. Figure 5 depicts an LDFA A over the lattice L7 and the alphabet Σ = {a1, . . . , a6,#}.
The LDFA A′ over L3 3-separates A with respect to the 3-separation P0 = {0, 1, 2, 3, 4},
P1 = {5}, and P2 = {6}. One can see that the words ϵ, a1, . . . , a6, and a6# are mapped by
A to 6 and by A′ to 2, and that the word a5# is mapped by A to 5 and by A′ to 1. All other
words are mapped by A to values taken from the set {0, 1, 2, 3, 4}, and by A′ to 0.
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A:
#, 1

#, 2

#, 3

#, 4

#, 5

a1, 6

a2, 6

a3, 6

a4, 6

a5, 6

a6, 6
#, 6

a5, 2

a6, 2 #, 2

#, 1

a1, 2

a2, 2

a3, 2

a4, 2

6

6

6

6

6

6

6

6 2 2

2

26 2

A′:

Fig. 5. An LDFA A with a 3-separating LDFA A′.

Theorem 4. Let n ≥ 1 and 1 ≤ t ≤ n. Given an LDFA A over Ln, an LDFA A′ over Lt, and
a t-separation P = {P0, . . . ,Pt−1} of Ln, deciding whether A′ t-separates A with respect to
P is NLOGSPACE-complete.

Proof. We use the same considerations used in Theorem 1. Here we are looking for a word
w ∈ Σ∗ such that L(A)(w) ∈ Pi but L(A)(w) ̸= i for some 0 ≤ i ≤ t− 1. As there, we can
bound the length of such a word from above by n2|A||A′| and conclude that the problem can
be solved in NLOGSPACE. Hardness in NLOGSPACE follows from hardness of reachability
in directed graphs. ⊓⊔

We now turn to consider the problem of finding a minimal t-separating LDFA. As we
have seen in Section 1, there are practical situations in which the input includes a specific t-
separation of Ln, and the goal is to find a minimal A′ that t-separates A with respect to that
separation. We show below that in such a case the problem can be solved in polynomial time.

Theorem 5. Let n ≥ 1 and 1 ≤ t ≤ n. Given an LDFA A over Ln and a t-separation
P = {P0, . . . ,Pt−1} of Ln, constructing a minimal LDFA A′ over Lt that t-separates A with
respect to P can be done in polynomial time.

Proof. Let B be the LDFA over Lt obtained from A by replacing each value j ∈ [n] appearing
in A by the value i ∈ [t] for which j ∈ Pi. Let A′ be a minimal LDFA equivalent to B. By
[13], A′ can be constructed in time polynomial in B, which can clearly be constructed in time
polynomial in A. We claim that A′ is a minimal LDFA that t-separates A with respect to P .

We first show that for all w ∈ Σ∗, we have that L(A′)(w) = i iff L(A)(w) ∈ Pi.
Since L(A′) = L(B), it is enough to show that for all w ∈ Σ∗ we have L(B)(w) = i iff
L(A)(w) ∈ Pi. Let w ∈ Σ∗. It holds that L(A)(w) ∈ Pi iff at least one of the values read
along the run of A on w belong to Pi, and the other values belong to Pi, . . . ,Pt−1. This holds
iff at least one of the values read along the run of B on w equals to i, and the other values are
in {i, . . . , t− 1}. Finally, this holds iff L(B)(w) = i.

The fact that A′ has a minimal number of states follows from the correctness of the mini-
mization algorithm, and from the fact that all LDFAs that t-separate A with respect to a specific
t-separation have the same language. ⊓⊔

We now turn to consider the case where the user does not provide a specific t-separation.
That is, we are given an LDFA A over Ln and t ≥ 1, and we seek an LDFA A′ with a minimal
number of states that t-separates A. For example, as discussed in Section 1, when the user
does not care about the way priorities are grouped, or, in the case of abstraction, when the user
hesitates between working with an over- or an under-approximation, the t-separation is not
given. Consider the corresponding decision problem SEPLDFA={⟨A, n, t, k⟩ : A is an LDFA
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over Ln with a t-separating A′ over Lt such that |A′| ≤ k}. As in Section 3, we study also
the family of problems (n, t)-SEPLDFA, in which n and t are not parameters and rather are
fixed. That is, (n, t)-SEPLDFA={⟨A, k⟩ : A is an LDFA over Ln with a t-separating A′ over
Lt such that |A′| ≤ k}.

Theorem 6. For all n ≥ 1 and t ≥ 1, the problem (n, t)-SEPLDFA can be solved in polyno-
mial time.

Proof. For fixed n ≥ 1 and t ≥ 1, there is a fixed number of possible t-separations of Ln.
Therefore, one can go over all t-separations, construct for each the corresponding minimal
LDFA and return“yes” iff one of them has at most k states. By Theorem 5, each check, and
therefore also the whole procedure, can be done in polynomial time. ⊓⊔

It is not hard to see that the algorithm above shows that the problem stays solvable in poly-
nomial time also when n is not fixed and is a parameter to the problem.

We now turn to study the problem SEPLDFA, in which n and t are parameters, and show
that this problem is NP-complete. In Section 3, the NP-hardness of APRXLDFA follows di-
rectly from the hardness of (n, t)-APRXLDFA for 1 ≤ t ≤ ⌊n

2 ⌋ − 1. Here, however, the
problem (n, t)-SEPLDFA can be solved in polynomial time for all n ≥ 1 and t ≥ 1, so the
fact that n and t are parameters is crucial.

Theorem 7. The problem SEPLDFA is NP-complete.

Proof. As in the case of (n, t)-APRXLDFA, membership in NP follows directly from Theo-
rem 4.

For the lower bound, we show a polynomial time reduction from the NP-complete Maximum-
Bisection problem on regular graphs (MBRG, for short) [11]. The Maximum Bisection of a
graph G = ⟨V,E⟩, for V of an even size, is a partition of V into two equally sized sets that
maximizes the number of edges between those sets. For regular graphs, in which all vertices
have the same degree, the problem coincides with the problem of finding T ⊆ V such that
|T | = |V |

2 and e(T ) is minimal, where e(T ) is the number of edges among the vertices of
T . Formally, e(T ) = |E ∩ (T × T )|. The corresponding decision problem can therefore be
formulated as MBRG = {⟨G, k⟩ : G = ⟨V,E⟩ is an undirected regular graph with an even
number of vertices, such that there is a set T ⊆ V with |T | = |V |

2 and e(T ) ≤ k}.
For technical convenience, instead of reducing the MBRG problem to SEPLDFA directly,

we go through the following variant of the problem: MBRG′ = {⟨G, v, k⟩ : G = ⟨V,E⟩ is an
undirected graph with an odd number of vertices, the vertex v touches all other vertices, and
there is a set T ⊆ V with |T | = |V |−1

2 , v ̸∈ T , and e(T ) ≤ k}.

Lemma 1. MBRG′ is NP-complete.

Proof. Membership in NP is trivial. We show a polynomial time reduction from MBRG to
MBRG′, proving that it is NP-hard. Let ⟨G, k⟩ be an input for MBRG, where G = ⟨V,E⟩. We
add a new vertex v to V , and connect v to all other vertices. Note that the number of vertices is
now odd. We denote by G′ = ⟨V ′, E′⟩ the graph obtained, and produce ⟨G′, v, k⟩ as an input
for MBRG′. It is not hard to see that ⟨G, k⟩ ∈ MBRG iff ⟨G′, v, k⟩ ∈ MBRG′. Indeed, the
same set T works for both graphs. That is, T ⊆ V is a set of |V |

2 vertices such that e(T ) ≤ k

iff T ⊆ V ′ is a set of |V ′|−1
2 vertices such that v ̸∈ T and e(T ) ≤ k. ⊓⊔
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We now turn to describe the reduction from MBRG′ to SEPLDFA. Let ⟨G, v, k⟩ be an input
to MBRG′, where G = ⟨V,E⟩ is such that V = {v1, . . . , vn, v} and E = {e1, . . . , em}. Note
that n = |V | − 1 and m = |E|. We construct an LDFA A = ⟨Ln+1, Σ,Q, δ,Q0, F ⟩, where:

– Σ = {a1, . . . , am, b1, . . . , bn, c1, . . . , cn}. Thus, each edge ei ∈ E induces a letter ai, and
each vertex vi ∈ V \ {v} induces two letters, bi and ci.

– Q = {q1, . . . , qm, q11 , q
2
1 , q

1
2 , q

2
2 , . . . , q

1
n, q

2
n, qinit , qfin}. Thus, each edge ei ∈ E induces

a state qi, and each vertex vi ∈ V \ {v} induces two states q1i and q2i . In addition there are
two states qinit and qfin .

– The transition relation is defined as follows.
• For all 1 ≤ i ≤ m, we have δ(qinit , ai, qi) = ⊤.
• For all 1 ≤ i ≤ m and 1 ≤ j ≤ n, if ei touches vj , then δ(qi, bj , q

1
j ) = ⊤, otherwise

δ(qi, bj , q
2
j ) = ⊤.

• For all 1 ≤ j ≤ n, we have δ(q2j , bj , q
1
j ) = δ(q1j , bj , q

1
j ) = ⊤.

• For all 1 ≤ j ≤ n, we have δ(q1j , cj , qfin) = δ(q2j , cj , qfin) = ⊤.
• For all other q, q′ ∈ Q and σ ∈ Σ, we have δ(q, σ, q′) = ⊥.

– Q0(qinit) = ⊤, and Q0(q) = ⊥ for all other q ∈ Q.
– For all 1 ≤ j ≤ n, we have F (q1j ) = j and F (q2j ) = j − 1. For all other q ∈ Q, we have
F (q) = ⊤.

Note that A is indeed deterministic, and has m+2n+2 states. Also, since the components
of A are all of size polynomial in the input graph, the reduction is polynomial. We refer to the
states qi as “the left column” and to the states q1j and q2j as “the right column” (see Figure 6).

Example 4. Figure 6 depicts a graph G and its induced LDFA AG. For clarity, we do not draw
all edges in the middle, only a symbolic sample. In addition, we omit transition values, which
are all ⊤, and omit acceptance values, which are all ⊤ except for the states on the right column,
where F (q1j ) = j and F (q2j ) = j − 1 for all 1 ≤ j ≤ 4.

v1

v2 v3

v4

e1

e2 e3

e4

v

e5

e6

e7

q1

q2

q3

q4

q5

q6

q7

q11

q21

q12

q22

q13

q23

q14

q24

b1

b2

b3

b4

b3

b4

b1

b2a1
a2

a3

a4

a5

a6

a7

qinit qfin

c1

c2

c3

c4

c3

c4

c1

c2

b1

b1

b1

b2

b2

b2

b3

b3

b3

b4

b4

b4

G :

⊤

AG :

Fig. 6. A graph G and its induced LDFA AG.
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We prove below that there exists a set T ⊆ V such that |T | = n
2 , v ̸∈ T , and e(T ) ≤ k

iff there exists an LDFA A′ over Lt with at most k + 2n + 3 states that t-separates A, for
t = n

2 + 1.
For the sake of the proof, we redefine below the notion of a t-separating LDFA. The new

definition is equivalent to the original one in the sense that for a given LDFA A, there exists
A′ with k states that t-separates it by the original definition iff there exists A′′ with k states
that t-separates it by the new definition.

Definition 4. Consider an integer n ≥ 1, an approximation factor 1 ≤ t ≤ n, and two LDFAs
A and A′ over Ln. We say that A′ t-separates A iff there is a t-separation P of Ln such that
for all words w ∈ Σ∗ we have that L(A′)(w) ∈ Pi iff L(A)(w) ∈ Pi.

Back to the proof, assume first that G has a set T ⊆ V s.t. |T | = n
2 , v ̸∈ T , and

e(T ) ≤ k. Let vi1 , vi2 , . . . , vin
2

be the vertices of T . For t = n
2 + 1, we define a t-separation

P = {P0, . . . ,Pn
2
} of Ln+1 such that P0 = {0, 1, .., i1 − 1}, P1 = {i1, . . . , i2 − 1},

P2 = {i2, . . . , i3 − 1}, . . . , Pn
2

= {in
2
, . . . , n}. That is, P separates Ln+1 on the indices

of the vertices of T . We construct an LDFA A′ = ⟨Ln+1, Q
′, Σ, δ′, Q′

0, F
′⟩ that t-separates A

with respect to P , as decribed below (see Figure 7).

– The states Q′ are defined as follows.
• Consider the relation ∼T⊆ E × E, where e1 ∼T e2 iff for all v ∈ T it holds that

e1 touches v iff e2 touches v. In other words, e1 and e2 are equivalent iff they agree
on touching the vertices of T . It is easy to see that ∼T is an equivalence relation. For
each equivalence class C we add one state qC to Q′.

• For each vi ∈ V , if vi ∈ T we add two states q1i and q2i , otherwise we add one state
q1,2i (one can think of this state as a merge of q1i and q2i , as explained in the sequel).

• Finally, we add an initial and final states qinit and qfin .
– The transition relation is defined as follows.

• For all 1 ≤ i ≤ m and equivalence class C, if ai ∈ C, then δ′(qinit , ai, qC) = ⊤.
• For all 1 ≤ j ≤ n and equivalence class C:

∗ If vj ̸∈ T , then δ′(qC , bj , q
1,2
j ) = ⊤.

∗ If vj ∈ T and the edges of C touch vj , then δ′(qC , bj , q
1
j ) = ⊤.

∗ If vj ∈ T and the edges of C do not touch vj , then δ′(qC , bj , q
2
j ) = ⊤.

• For all 1 ≤ j ≤ n such that vj ∈ T , we have δ(q2j , bj , q
1
j ) = δ(q1j , bj , q

1
j ) = ⊤.

For all 1 ≤ j ≤ n such that vj ̸∈ T , we have δ′(q1,2j , bj , q
1,2
j ) = ⊤.

• For all 1 ≤ j ≤ n such that vj ∈ T , we have δ′(q1j , cj , qfin) = δ′(q2j , cj , qfin) = ⊤.
For all 1 ≤ j ≤ n such that vj ̸∈ T , we have δ′(q1,2j , cj , qfin) = ⊤.

• For all other q, q′ ∈ Q and σ ∈ Σ, we have δ(q, σ, q′) = ⊥.
– Q′

0(qinit) = ⊤, and Q′
0(q) = ⊥ for all other q ∈ Q′.

– For all 1 ≤ j ≤ n such that vj ∈ T , we have F ′(q1j ) = j and F ′(q2j ) = j − 1, and for all
1 ≤ j ≤ n such that vj ̸∈ T , we have F ′(q1,2j ) = j − 1. For all other q ∈ Q′, we have
F ′(q) = ⊤.

Example 5. Figure 7 depicts a set T = {v2, v4} in which e(T ) is minimal, together with the
corresponding minimal LDFA Amin

G that t-separates A, for t = n
2 + 1 = 3. For clarity, we

omit transition values, which are all ⊤, and omit acceptance values, which are all ⊤ except
for the states on the right column, where for all 1 ≤ j ≤ 4, if vj ∈ T , then F ′(q1j ) = j

and F ′(q2j ) = j − 1, and if vj ̸∈ T , then F ′(q1,2j ) = j − 1. (As explained above, it is
technically convenient to define A′ over Ln+1 rather than over Lt. We can later easily group
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the elements and map them to [t]). Note that equivalent edges are drawing the same in the graph
G, and that the equivalence classes corresponding to the states on the left column of Amin

G are
C1 = {e1, e3}, C2 = {e2, e5, e6} and C3 = {e4, e7}.

v1

v2 v3

v4

e1

e2 e3

e4

v

e5

e6

e7

q12
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q14

q24
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b4

b3

b4

b2

a1

a2

a3

a4

a5
a6

a7

qinit qfin

c1

c2

c3

c4
c4

c2

b1

b1

b1

b2

b2

b2

b3

b3

b3

b4

b4

b4

qC1

qC2

qC3

T

G :

⊤

Amin
G :

q
1,2
3

q
1,2
1

Fig. 7. A set T = {v2, v4} in which e(T ) is minimal, and the corresponding minimal LDFA Amin
G that

t-separates A, for t = 3.

Lemma 2. |A′| ≤ k + 2n+ 3.

Proof. We first consider the states at the right column, that is, states that are associated with
vertices. It is not hard to see that there are exactly n

2 · 2 + n
2 · 1 = 3

2n such states, because
vertices that belong to T induce two states, and vertices that do not belong to T induce one
state. Next, we consider the states at the left column that are associated with edges, and claim
that there are at most k + n

2 + 1 such states. Since the number of those states equals the
number of the equivalence classes of the relation ∼T defined above, it is enough to show that
there are at most k + n

2 + 1 equivalence classes of that relation. To see this, we consider three
different types of edges, counting the number of classes contributed by each type. First, we
consider edges e = (u, v) such that u, v ∈ T . Note that edge of that type cannot be equivalent
to any other edge, as there is exactly one edge touching both u and v. Therefore, each such
edge contributes exactly one class. By the assumption, there are at most k edges of that type,
meaning that at most k classes are contributed by this type of edges. We now turn to consider
edges e = (u, v) such that exactly one of u or v belongs to T . We can see that edges of that
type that are thouching the same vertex of T are equivalent. Therefore, each of the vertices of
T contributes at most one class, meaning that at most n

2 classes are contributed by the second
type of edges. As for the third type, we consider edges e = (u, v) such that u, v ̸∈ T . If there
exist edges of that type, then they are all equivalent, so at most one class is contributed by that
type. Altogether, we get that there are at most k+ n

2 +1 equivalence classes of the relation ∼T ,
meaning that there are at most k + n

2 + 1 states at the left column of A′. Finally, summing up
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the states of the right and left columns together with the initial and final states, we get a total
of at most k + 2n+ 3 states, and we are done. ⊓⊔

Lemma 3. A′ t-separates A with respect to P , for t = n
2 + 1.

Proof. We show that for all w ∈ Σ∗ and for all 0 ≤ i ≤ n
2 it holds that L(A)(w) ∈ Pi iff

L(A′)(w) ∈ Pi. It is not hard to see that L(A) and L(A′) are as follows.

L(A)(w) =



⊤ w = ϵ
⊤ w = ai
j (w = aibj) ∧ (ei touches vj)
j − 1 (w = aibj) ∧ (ei does not touch vj)
j w = aibjb

+
j

⊤ w = aib
+
j cj

⊥ otherwise

L(A′)(w) =



⊤ w = ϵ
⊤ w = ai
j (w = aibj) ∧ (ei touches vj) ∧ (vj ∈ T )
j − 1 (w = aibj) ∧ (ei does not touch vj) ∧ (vj ∈ T )
j (w = aibjb

+
j ) ∧ (vj ∈ T )

j − 1 (w = aib
+
j ) ∧ (vj ̸∈ T )

⊤ w = aib
+
j cj

⊥ otherwise

Comparing L(A) and L(A′), we can see that the first two lines and the last two lines
remain identical, and that lines 3-5 remain identical as long as vj ∈ T . The only difference
occurs for words of the form aib

+
j with vj ̸∈ T (6’th line in the definition of L(A′)), because

those words were mapped by L(A) to either j or j − 1, while L(A′) maps them all to j − 1.
This difference does not break the approximation though. To see this, it is enough to notice
that j and j − 1 belong to the same set Pi. This is implied by the fact that the sets P0, . . . ,Pn

2

were separated exactly at the indices {i1, . . . , in
2
} of the vertices of T , and by the fact that

vj ̸∈ T . We conclude that for all w ∈ Σ∗ and for all 0 ≤ i ≤ n
2 it holds that L(A)(w) ∈ Pi iff

L(A′)(w) ∈ Pi, and we are done. ⊓⊔

By Lemma 2 and Lemma 3 we get that A′ has at most k + 2n + 3 states, and that it t-
separates A, for t = n

2 + 1, as required.

On the other hand, assume that there exists an LDFA A′ = ⟨Ln+1, Q
′, Σ, δ′, Q′

0, F
′⟩ with

at most k + 2n+ 3 states that t-separates A, for t = n
2 + 1. We show that G has a set T ⊆ V

s.t. |T | = n
2 , v ̸∈ T , and e(T ) ≤ k.

The fact that A′ t-separates A, for t = n
2 + 1, implies that there is a partition of L into

n
2 + 1 non-empty sets P0, . . . ,Pn

2
of successive elements, such that for all w ∈ Σ∗ and for

all 0 ≤ i ≤ n
2 it holds that L(A)(w) ∈ Pi iff L(A′)(w) ∈ Pi. Let {i1, . . . , in

2
} be the indices

that separate those sets, that is, the sets are P0 = {0, 1, .., i1 − 1}, P1 = {i1, . . . , i2 − 1},
P2 = {i2, . . . , i3 − 1},. . . , Pn

2
= {in

2
, . . . , n}. We define T = {vi1 , . . . , vin

2
}. Of course, it

holds that |T | = n
2 and v ̸∈ T , so it is left to show that e(T ) ≤ k.

Recall that A′ is deterministic, and therefore has exactly one initial state. Let q′init be that
state, and let B = {q ∈ Q′ : δ′(q′init, ai, q) ̸= ⊥ for some ai ∈ Σ}. That is, B ⊆ Q′ contains
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all states reachable from the initial state by a1, . . . , am. Recall that the states in B correspond
to edges between vertices in T . Accordingly, we now turn to show that |B| ≤ k + n

2 + 1.

Lemma 4. |B| ≤ k + n
2 + 1.

Proof. Recall that |A′| ≤ k+2n+3. Hence, it is enough to show that |Q′ \B| ≥ 3
2n+2. We

show it by considering words that do not reach the states of B, proving that these words must
reach at least 3

2n+ 2 different states.
We start with an observation that will be repeatedly used along the proof. Let w1, w2 ∈

Σ∗ be two words for which there exist w′
1, w

′
2 ∈ Σ∗ such that L(A)(w1w

′
1) = ⊤ and

L(A)(w2w
′
2) = ⊤. This fact implies that the traversal values tr val(w1) and tr val(w2) read

in A′ must belong to Pt. Assume further that there exists z ∈ Σ∗ such that L(A)(w1z) and
L(A)(w2z) belong to two different sets Pi and Pj , respectively. We claim that in such a case
the words w1 and w2 cannot reach the same state in A′. Assume by contradiction that w1 and
w2 are reaching the same state, and let q be that state. Consider the state q′ reached when z is
read from q, and consider the value xz = δ(q, z, q′) ∧ F (q′) (where δ is naturally extended to
apply on words rather than on letters). Recall that both w1 and w2 are reaching q with traversal
value taken from Pt. Now, if xz ∈ Pi, then L(A′)(w2z) ∈ Pi, which contradicts the fact that
L(A′)(w2z) should be taken from Pj . Symmetrically, if xz ∈ Pj , then L(A′)(w1z) ∈ Pj ,
which contradicts the fact that L(A′)(w1z) should be taken from Pi. If xz ̸∈ Pi ∪ Pj then
of course the contradiction is met for both w1z and w2z. We conclude that w1 and w2 cannot
reach the same state. In such a case we say that z is a distinguishing tail between w1 and w2.

Going back to our proof, we start by considering words of the form aib
+
j . We show that

these words cannot reach any of the states of B. For this purpose, we have to find a distinguish-
ing tail between words of the form al and aib

+
j for all 1 ≤ l ≤ m, 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Let l, i, j be such indices. Applying the observation above on w1 = al, w2 ∈ aib
+
j , w′

1 = ϵ,
w′

2 = cj and z = cj implies that words of the form aib
+
j cannot reach any of the states of B,

as cj is a distinguishing tail. Therefore, we have at least one state in Q′ \B.
Next up, we distinguish between words of the form aib

+
j and aib

+
l for all 1 ≤ i ≤ m and

1 ≤ j ̸= l ≤ n, by applying the observation on w1 ∈ aib
+
j , w2 ∈ aib

+
l , w′

1 = cj , w′
2 = cl and

z = cj . We conclude that there must be at least n states in Q′ \B.
To distinguish further between the words, we now turn to focus on words of the form aib

+
j

such that vj ∈ T . Let el be an edge touching vj and let er be an edge that does not4. We
show that the words albj and arbj cannot reach the same state. To see this, recall that vj ∈ T ,
and that the indices of the vertices of T are exctly those that separate between the sets of P .
This implies that j and j − 1 necessarily do not belong to the same set. Now, we can apply the
observation on w1 = albj , w2 = arbj , w′

1 = cj , w′
2 = cj and z = ϵ and conclude that albj and

arbj cannot reach the same state. Going back to the n different states we have already found,
we conclude that n

2 of them must be splitted into two states, resulting in at least n + n
2 = 3

2n
states in Q′ \B so far.

Consider now the empty word ϵ. We can see that ϵ cannot reach any of the states of B, by
applying the observation on w1 = ϵ, w2 = ai, w′

1 = ϵ, w′
2 = ϵ and z = ai for all 1 ≤ i ≤ m.

Also, we can distinguish between ϵ and words of the form aib
+
j by applying the observation

on w1 = ϵ, w2 ∈ aib
+
j , w′

1 = ϵ, w′
2 = cj and z = ai for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. We

conclude that ϵ cannot reach any of the states reached by words cosidered so far, so we gain
one more state for Q′ \B, resulting in at least 3

2n+ 1 states.

4 Note that such edges exist for all vertices of T . To see this, recall that G has a vertex touching all
vertices. Hence, for a vertex w ∈ T , we can take el = (w, v) and er = (w′, v) for some w′ ̸∈ T
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Finally, we consider words of the form aib
+
j cj , for 1 ≤ i ≤ m and 1 ≤ j ≤ n. We

can see that such words cannot reach any of the states of B, by applying the observation on
w1 ∈ aib

+
j cj , w2 = al, w′

1 = ϵ, w′
2 = ϵ and z = bjcj for all 1 ≤ i ≤ m, 1 ≤ l ≤ m, and

1 ≤ j ≤ n. Also, we can distinguish between aib
+
j cj and words of the form alb

+
r by applying

the observation on w1 ∈ aib
+
j cj , w2 ∈ alb

+
r , w′

1 = ϵ, w′
2 = cr and z = cr for all 1 ≤ i ≤ m,

1 ≤ l ≤ m, 1 ≤ j ≤ n and 1 ≤ r ≤ n. In addition, we can distinguish between aib
+
j cj and

ϵ, by applying the observation on w1 ∈ aib
+
j cj , w2 = ϵ, w′

1 = ϵ, w′
2 = ϵ and z = ai for all

1 ≤ i ≤ m and 1 ≤ j ≤ n. We conclude that words of the form aib
+
j cj contribute at least one

additional state for Q′ \B, ending up with at least 3
2n+ 2 states, and we are done.⊓⊔

Lemma 5. The relation ∼T has at most k + n
2 + 1 equivalence classes.

Proof. Assume by way of contradiction that there are more than k+ n
2 +1 equivalence classes.

By Lemma 4, we conclude that there must be two indices i ̸= j and some q ∈ B such that
ei ̸∼T ej but the words ai and aj are reaching the same state. Since ei ̸∼T ej , there exists
vl ∈ T such that w.l.o.g ei touches vl while ej does not. To reach the contradiction, we show
that the words ai and aj cannot reach the same state. Recall that vl ∈ T , and that the indices
of the vertices of T are exctly those that separate between the sets. This implies that l and l−1
necessaily do not belong to the same set. Now, we can apply the observation stated in the proof
of Lemma 4 on w1 = ai, w2 = aj , w′

1 = ϵ, w′
2 = ϵ and z = bl and conclude that ai and aj

cannot reach the same state. We conclude that the number of equivalence classes of the relation
∼T is at most k + n

2 + 1. ⊓⊔

We now turn to show that e(T ) ≤ k. As in the proof of Lemma 2, we consider three
different types of edges, counting the number of classes contributed by each type. Recall that
the types are as follows: The first type contains edges (u, v) such that u, v ∈ T , the second
contains edges (u, v) such that exactly one of u and v belongs to T , and the third contains
edges (u, v) such that u, v ̸∈ T . We show that the second type contributes at least n

2 classes
and the third contributes at least one. Consider the second type, and note that if two edges of
that type touch two different vertices of T then those edges are not equivalent. Recall that G
has a vertex v connected to all other vertices. Since v ̸∈ T , the set {(v, u) : u ∈ T} contains n

2
edges of the second type that are touching all n

2 different vertices of T . We therefore conclude
that the second type contributes at least n

2 classes. As for the third type, it is enough to show
that there is at least one edge that does not touch the vertices of T . This is clear, since we can
take the edge (u, v) for some u ̸= v such that u ̸∈ T . By Lemma 5, it follows that the first type
contributes at most k classes. Now, as stated in the proof of Lemma 2, the number of classes
of the first type equals e(T ), meaning that e(T ) ≤ k, and we are done. ⊓⊔

We note that although the SEPLDFA problem is generally NP-hard when n and t are given
as parameters, there are still cases of parameters for which the problem can be solved in poly-
nomial time. For example, consider the family of pairs ⟨n, t⟩ such that t = n − c, for a fixed
c ≥ 0. The number of possible t-separations in these cases is polynomial, so one can apply
the same considerations as in Theorem 6 and solve the problem in polynomial time. Also, as
in the case of t-approximation, the problem of returning the minimal LDFA that t-separates a
given LDFA, for parameters t and n, is in FNP. Finally, comparing Theorems 5 and 7 we get
that the computational bottleneck of SEPLDFA is the need to find a good t-separation. Once
such a separation is given, finding a minimal LDFA can be done in polynomial time.
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5 Discussion
We studied the problem of finding a minimal LDFA that approximates a given LDFA defined
with respect to a fully-ordered lattice. We showed that the complexity of the problem depends
on the relation between the lattice size and the approximation factor and also depends on
whether we view them as fixed.

The complexity result of SEPLDFA may remind the reader of classic NP-complete prob-
lems, like vertex cover, where the goal is to decide the existence of some object (“the witness”)
of a certain size k. Typically, the existence of the required object can be decided in polynomial
time for a fixed k, while the problem is NP-complete when k is a parameter to the problem.
Despite of this resemblance, our setting here is very different, and the NP-hardness proof is
quite challenging. To see the difference, note that the factors we fix in (n, t)-SEPLDFA do
not include the size of the witness! The latter is k, which is part of the input. Another dif-
ficulty we face follows from the fact that, unlike in classic combinatorial problems, where,
say, the vertices in the graph are not ordered, here we have no symmetry between the ele-
ments. For example, when an LDFA reads a lattice value that is greater than the values read al-
ready, the accumulated value is not affected. On the other hand, reading a value that is smaller
affects the accumulated value. Coping with non-symmetry involves the design of languages
that take into an account the order induced by the lattice, making our reductions complicated.
The complication is reflected also in the fact that when t = 0, it is possible to use this non-
symmetry and come up with a polynomial algorithm for (n, t)-APRXLDFA. Finally, note that
our “fixed-parameter” variants fix both n and t, and still (n, t)-APRXLDFA is NP-hard when
1 ≤ t ≤ ⌊n

2 ⌋ − 1.
It is not hard to see that our bounds and proofs stay valid also for the t-APRXLDFA and

t-SEPLDFA variants, when only t is fixed. In particular, t-SEPLDFA can be solved in polyno-
mial time.

As discussed in Section 1, distance metrics can be defined also for partially-ordered lat-
tices. In our future work we plan to study minimization of approximating LDFAs defined with
respect to such lattices. Working with partially-ordered lattices, the notion of distance is more
vague. We may therefore look for possible linearizations of the partial order, for example by
using lattice chains, and apply techniques developed for fully-ordered lattices.
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