
What’s Decidable About Weighted Automata?

Shaull Almagor1, Udi Boker1,2, and Orna Kupferman1

1 Hebrew University, School of Engineering and Computer Science, Jerusalem, Israel.
2 IST, Austria.

Abstract. Weighted automata map input words to numerical values. Ap-
plications of weighted automata include formal verification of quantitative
properties, as well as text, speech, and image processing. A weighted au-
tomaton is defined with respect to a semiring. For the tropical semiring,
the weight of a run is the sum of the weights of the transitions taken along
the run, and the value of a word is the minimal weight of an accepting
run on it.
In the 90’s, Krob studied the decidability of problems on rational series
defined with respect to the tropical semiring. Rational series are strongly
related to weighted automata, and Krob’s results apply to them. In par-
ticular, it follows from Krob’s results that the universality problem (that
is, deciding whether the values of all words are below some threshold) is
decidable for weighted automata defined with respect to the tropical semir-
ing with domain

�
∪ {∞}, and that the equality problem is undecidable

when the domain is � ∪ {∞}.
In this paper we continue the study of the borders of decidability in
weighted automata, describe alternative and direct proofs of the above
results, and tighten them further. Unlike the proofs of Krob, which are
algebraic in their nature, our proofs stay in the terrain of state machines,
and the reduction is from the halting problem of a two-counter machine.
This enables us to significantly simplify Krob’s reasoning, make the un-
decidability result accessible to the automata-theoretic community, and
strengthen it to apply already to a very simple class of automata: all the
states are accepting, there are no initial nor final weights, and all the
weights on the transitions are from the set {−1, 0, 1}. The fact we work
directly with the automata enables us to tighten also the decidability re-
sults and to show that the universality problem for weighted automata
defined with respect to the tropical semiring with domain

�
∪ {∞}, and

in fact even with domain � ≥0 ∪ {∞}, is PSPACE-complete. Our results
thus draw a sharper picture about the decidability of decision problems
for weighted automata, in both the front of containment vs. universality
and the front of the

�
∪ {∞} vs. the � ∪ {∞} domains.

1 Introduction

Traditional automata accept or reject their input, and are therefore Boolean. A
weighted finite automaton (WFA, for short) has numeric weights on its transitions
and maps each word to a numeric value. Applications of weighted automata in-
clude formal verification, where they are used for the verification of quantitative

properties [5, 6, 10, 13, 17], for reasoning about probabilistic systems [3], and for
reasoning about the competitive ratio of on-line algorithms [1], as well as text,
speech, and image processing, where the weights of the automaton are used in
order to account for the variability of the data and to rank alternative hypotheses
[8, 16].

The rich structure of weighted automata makes them intriguing mathematical
objects. Fundamental problems that have been solved decades ago for Boolean
automata are still open or known to be undecidable in the weighted setting. For
example, while in the Boolean setting, nondeterminism does not add to the ex-
pressive power of the automata, not all weighted automata can be determinized,
and the problem of deciding whether a given nondeterministic weighted automa-
ton can be determinized, is still open, in the sense we do not even know whether
it is decidable.

Other two problems of great interest in the context of automata are the univer-

sality and containment problems. In the Boolean setting, the universality problem
asks, given an nondeterministic automaton (NFA) A, whether all the words in Σ∗

are accepted by A. In the weighted setting, the “goal” of words is not just to get
accepted, but also to do it with a minimal value. Accordingly, the universality
problem for WFAs asks, given a WFA A and a threshold v, whether A assigns
a value that is smaller than v to all words in Σ∗. Similarly, the containment
problem in the weighted setting naturally extends the Boolean one by asking,
given two WFAs A and B, whether for all words w ∈ Σ∗, the value of w in B
is less than or equal to its value in A. In the Boolean setting, the complexity
for the two problems coincide, and is PSPACE-complete [14]. As we shall see in
this paper, in the weighted setting the picture is more involved. Both problems
are of great practical interest: in the automata-theoretic approach to reasoning
about systems and their specifications, universality amounts to validity of specifi-
cations, and containment amounts to correctness of systems with respect to their
specifications. The same motivation applies also for weighted systems, with the
specifications being quantitative [5].

Recall that weighted automata map words to numerical values. Technically,
each weighted automaton is defined with respect to an algebraic semiring. For
example, 〈 � ∪ {∞}, min, +,∞, 0〉 is a semiring whose sum operator is min (with
∞ being the identity element) and whose product operator is + (with 0 being the
identity element). Such a min-sum semiring is called a tropical semiring. The value
of a run is the semiring-product of the weights along the transitions traversed (and
the initial and final weights). The value of a word is the semiring-sum of the values
of the accepting runs on it. A formalism that is analogous to the one of weighted
automata is the one of rational series [18]. There too, the series is defined with
respect to a semiring, and maps words to values from the domain of the semiring.

In [11], Krob proved that the universality problem for rational series is un-
decidable for the tropical semiring with domain � ∪ {∞}, and that this implies
undecidability of the containment problem for the tropical semiring with domain

� ∪ {∞}. Moreover, in [12], Krob proved that universality for rational series de-
fined with respect to the tropical semiring with domain � ∪{∞} is decidable. The

2

analogy between rational series and weighted automata implies the same results
for the universality and containment problems for weighted automata.

In this paper we describe alternative and direct proofs of the above results.
Our proofs offer the following advantages.

First, unlike the undecidability proofs of Krob, which refer to rational series
and are therefore algebraic in their nature, our proofs stay in the terrain of state
machines: while Krob’s reduction is from Hilbert’s 10th problem (solving a Dio-
phantine equation), ours is from the halting problem of a two-counter machine.
This enables us to significantly simplify Krob’s reasoning and make the undecid-
ability result accessible to the automata-theoretic community.

Second, the clean reduction enables us to strengthen the result and show that
undecidability applies already to a very simple class of automata: the weights of
the automaton are in {−1, 0, 1}, it has no initial nor final weights, and all its
states are accepting. We note that Krob’s reduction does not capture this weaker
class of automata.

Third, the pure algebraic view of rational series has the drawback that it can-
not be generalized to some natural extensions of the weighted setting. For exam-
ple, rational series cannot capture weighted automata on infinite words (where one
cannot speak about final states or final weights), nor can it capture discounted-
sum automata over finite and infinite words [19, 2, 5, 4]. For these cases, the non-
algebraic, automata-theoretic definition, is useful [5, 9, 6, 7].

Our proof uses ideas similar to those presented in [9]. Given a two counter
machine M, we define a weighted automaton A whose alphabet is the set of M’s
operations. We show that A assigns a positive value to a word w if and only
if w describes the actual run of M and this run is halting with both counters
having value 0. Hence, we have that M halts if and only if A is not universal with
respect to the threshold 1. A direct corollary is that the containment problem is
also undecidable. Our proof generalizes the undecidability result of [11], and we
believe that it may also be useful when investigating other models of weighted
automata.

Recall that when rational series are defined with respect to the tropical semir-
ing with domain � ∪ {∞}, universality becomes decidable [12]. The fact that we
work directly with the automata enables us to tighten this result too. By bound-
ing the length of the shortest witness to non-universality we are able to show that
the universality problem for weighted automata defined with respect to the trop-
ical semiring with domain � ∪ {∞} is PSPACE-complete. We extend this good
news also to weighted automata defined with respect to the tropical semiring with
domain � ≥0 ∪ {∞}. On the other hand, we show that restricting to the domain

� ∪ {∞} is not helpful for the containment problem, which is undecidable. We
conclude that, unlike the Boolean case, the universality and containment prob-
lems do not have the same complexity in the weighted setting, and are in fact
on different sides of the border of decidability. Moreover, this border crucially
depends on whether the weights of the weighted automaton are all of the same
polarity (all in � ∪ {∞} or all in − � ∪ {−∞}) or are mixed (as in � ∪ {∞}).

3

2 Preliminaries

While standard automata map words in Σ∗ to either “accept” or “reject”, weighted
automata may be viewed as partial functions (defined only for accepted words)
from Σ∗ to � ∪ {∞}. Formally, a weighted finite automaton (WFA, for short) is
a 8-tuple A = 〈Σ, Q, ∆, c, Q0, F, i, f〉, where Σ is a finite input alphabet, Q is
a finite set of states, ∆ ⊆ Q × Σ × Q is a transition relation, c : ∆ → � is a
cost function, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final states,
i : Q0 → � ∪ {∞} is an initial-weight function, and f : F → � ∪ {∞} is a final-
weight function. A transition d = 〈q, a, p〉 ∈ ∆ (also written as ∆(q, a, p)) can be
taken by A when reading the input letter a in the state q, and it causes A to
move to the state p with cost c(d). Note that a WFA A may be nondeterministic
in the sense that it may have many initial states, and that for some q ∈ Q and
a ∈ Σ, it may have ∆(q, a, p1) and ∆(q, a, p2), with p1 6= p2. We say that A is
complete if ∆ is total; that is, for every state q ∈ Q and letter a ∈ Σ, there is at
least one state p ∈ Q such that ∆(q, a, p).

For a word w = w1 . . . wn ∈ Σ∗, and states q, q′ ∈ Q, a run of A on w is a
sequence r = r0r1 . . . rn ∈ Q+, where r0 ∈ Q0, rn ∈ F , and for all 1 ≤ i ≤ n, we
have di = 〈ri−1, wi, ri〉 ∈ ∆. The cost of the run r is c(r) = i(r0) +

∑n

i=1 c(di) +
f(rn). Note that if A is nondeterministic, it may have several runs on w. The cost

of w in A is LA(w) = min {c(r) : r is a run of A on w }. If the minimum is taken
over an empty set, then w is not in the range of LA.

We note that in general, a WFA may be defined with respect to a semiring
〈K,⊕,⊗, 00, � 〉. The cost of a run is then the semiring product of the initial weight
of the first state, the weights along the run, and the final weight of the last state.
The cost of an accepted word is the semiring sum over the costs of all accepting
runs on it. In this work, we focus on weighted automata defined with respect
to the min-sum semiring, 〈 � ∪ {∞}, min, +,∞, 0〉, sometimes called the tropical

semiring, as defined above.

Recall that in the binary setting, the universality problem asks, given an
nondeterministic automaton (NFA) A, whether L(A) = Σ∗. Thus, all the words
in Σ∗ have to be accepted by the automaton. In the weighted setting, the “goal”
of words is not just to get accepted, but also to do it with a minimal value.
Accordingly, the universality problem for WFAs asks, given a WFA A and a
threshold v ∈ � given in binary, whether LA(w) < v for all w ∈ Σ∗. We denote
the latter fact by LA < v. The containment and equality problems for NFAs are
lifted to the weighted setting in a similar manner: Given two WFAs A and B,
the containment problem is to decide whether LA(w) ≥ LB(w) for all w ∈ Σ∗.
We refer to ⊥ as being greater than ∞, thus if LB(w) = ⊥ then LA(w) = ⊥
too. Thus, the domain of A has to be contained in the domain of B. 1 Similarly,

1 For our confused readers, the ≥ in the LA(w) ≥ LB(w) condition is not a typo: recall
that the goal of words is to get accepted, and with a minimal value. When A is
contained in B, it is more challenging for words to satisfy their goal in A rather than
in B. In the Boolean setting, this amounts to L(A) being a subset of L(B). In the
weighted setting, this amounts to the values that words are mapped to in A being
greater than the values to which they are mapped in B.

4

the equality problem is to decide whether LA(w) = LB(w) for all w ∈ Σ∗. In
particular, the domains of LA and LB coincide. It is easy to see that an upper
bound on the containment problem implies upper bounds on the equality and the
universality problems. Also, a lower bound on the universality problem implies
a lower bound on the containment and the equality problems. In the Boolean
setting, the complexity for the three problems coincide, and is PSPACE-complete
[14]. As we shall see in this paper, in the weighted setting the picture is more
involved, and depends on the domain of the weights in the WFA. Studying the
universality problem, it is more convenient to consider its dual, namely the non-

universality problem. There, given A and v, we ask whether there is there a word
w ∈ Σ∗ such that LA(w) ≥ v. Thus, the non-universality problem asks whether
there exists a word for which all the runs of A have value of at least v.

3 Weighted Automata With Integer Weights

In this section we show that the universality problem, and therefore also the
containment problem, are undecidable for WFAs with weights in � . In fact, even
when only considering complete automata where all states are final, and without
initial or final weights, in which the weights are only in {−1, 0, 1}, the problems
remain undecidable.

We show this by a reduction from the halting problem for two-counter (Min-
sky) machines. Our proof uses ideas similar to those presented in [9]. A two-counter
machine M is a sequence (l1, . . . , ln) of commands involving two counters x and
y. We refer to {1, . . . , n} as the locations of the machine. There are five possible
forms of commands:

inc(c), dec(c), goto li, if c=0 goto li else goto lj , halt,

where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations. Since we can always
check whether c = 0 before a dec(c) command, we assume that the machine never
reaches dec(c) with c = 0. That is, the counters never have negative values. Given
a counter machine M, deciding whether M halts is known to be undecidable [15].
Given M, deciding whether M halts with both counters having value 0 is also
undecidable. Indeed, given a counter machine M, we can replace every halt

command with code that clears the counters before halting. Thus, the halting
problem can be reduced to the latter problem, termed the 0-halting problem.

We are going to reduce the 0-halting problem to the non-universality prob-
lem for complete WFAs with weights in {-1,0,1}, without initial weights or final
weights, in which all the states are final.

Theorem 1. The universality problem for complete WFAs over the semiring

〈 � ∪ {∞}, min, +,∞, 0〉 with weights in {-1,0,1}, without initial weights or final

weights, in which all the states are final, is undecidable.

Proof. We show a reduction from the 0-halting problem for two-counter machines
to the non-universality problem. Let M be a two-counter machine with commands
(l1, . . . , ln). A halting run of a two-counter machine with commands from the set

5

L = {l1, . . . , ln} is a sequence ρ = ρ1, . . . , ρm ∈ (L × � × �)∗ such that the
following hold.

1. ρ1 = 〈l1, 0, 0〉.
2. For all 1 < i ≤ m, let ρi−1 = (lk, α, β) and ρi = (l′, α′, β′). Then, the following

hold.
– If lk is a inc(x) command (resp. inc(y)), then α′ = α + 1, β′ = β (resp.

β = β + 1, α′ = α), and l′ = lk+1.
– If lk is a dec(x) command (resp. dec(y)), then α′ = α− 1, β′ = β (resp.

β = β − 1, α′ = α), and l′ = lk+1.
– If lk is a goto ls command, then α′ = α, β′ = β, and l′ = ls.
– If lk is an if x=0 goto ls else goto lt command, then α′ = α, β′ = β,

and l′ = ls if α = 0, and l′ = lt otherwise.
– If lk is a if y=0 goto ls else goto lt command, then α′ = α, β′ = β,

and l′ = ls if β = 0, and l′ = lt otherwise.
– If l′ is a halt command, then i = m. That is, a run does not continue

after halt.
3. ρm = 〈lk, α, β〉 such that lk is a halt command.

Observe that the machine M is deterministic. We say that a machine M
0-halts if its run ends in 〈l, 0, 0〉.

We say that a sequence of commands τ ∈ L∗ fits a run ρ, if τ is the projection
of ρ on its first component.

The command trace π = π1, . . . , πm of a run ρ = ρ1, . . . , ρm is defined as
follows. For every 1 ≤ i ≤ m, if the command taken in ρi is not of the form
if c=0 goto lk else goto lk′ , then πi = li. Otherwise, πi = goto ls, where s
is the location of the command in ρi+1.

We start by explaining the intuition behind the reduction. We construct a
WFA A such that M 0-halts iff there exists w ∈ Σ∗ such that LA(w) ≥ 1. The
alphabet of A consists of the following n + 5 letters:

Σ = {inc(x),dec(x), inc(y),dec(y),halt} ∪ {goto li : i ∈ {1, . . . , n}}.

When A reads a sequence of commands w, it tries to simulate the run of M that
induces the command trace w. If the sequence of commands fits the actual run,
and this run 0-halts, then all the runs of A cost at least 1. Thus, the word w
is such that LA(w) ≥ 1. If, however, the sequence of commands does not fit the
actual run, then the violation is detected and A has a run on w with non-positive
cost.

We now construct the WFA A = 〈Σ, Q, ∆, c, Q0〉. Observe that we omit F, i
and f , as all the states are accepting, and there are no initial nor final weights.
In Section 3.1 we describe an example of the reduction.

We designate a state qfreeze such that for all σ ∈ Σ, the WFA A has the
transition ∆(qfreeze, σ, qfreeze) with c((qfreeze, σ, qfreeze)) = 0. There is also a
state qhalt with the transition ∆(qhalt, σ, qfreeze) and c((qhalt, σ, qfreeze)) = −1
for all σ ∈ Σ (see Figure 1).

In order to define A, we first define a “skeleton” ComCheck, which is an
underspecified WFA. We then compose A from variants of ComCheck.

6

qfreeze qhalt

Σ,−1
Σ, 0

Fig. 1. qfreeze and qhalt.

The skeleton ComCheck consists of states q1, . . . , qn that correspond to the
commands l1, . . . , ln. For two locations i and j, there is a transition from qi to qj iff
lj can locally follow li in a run of M. That is, either j = i+1 and li is an inc or dec

command, li is a goto lj command, or li is an if c=0 goto lk else goto l′k
command, with j ∈ {k, k′}. The letters labeling the transition from qi to qj

corresponds to the command trace. That is, the letter is li, except the case li is
an if c=0 goto lk else goto l′k command with j ∈ {k, k′}, in which case the
letter is goto lj . The weights on the transitions, as well as additional transitions,
are specified below in every variant of ComCheck.

The WFA A is composed of 5 gadgets, each responsible for checking a certain
type of violation in the description of a 0-halting run of M. The gadgets are
obtained from ComCheck as described below.

Command Checker. The first gadget we construct is the command checker.
This gadget checks for local violations of succesive commands. That is, it makes
sure that the letter wi represents a command that can follow the command repre-
sented by wi−1 in M. The test is local, as this gadget does not check for violations
involving illegal jumps due to the value of the counters. The command checker
consists of a ComCheck in which all the weights are 0. In addition, we add tran-
sitions labeled by halt from every state qi such that li = halt to qhalt. These
transitions cost 1. Every other transition that is not specified in ComCheck leads
to qfreeze with weight 0. For example, reading a command that does not cor-
respond to li in qi leads to qfreeze with weight 0. Note that indeed, if a word
represents the command trace of a halting run, it ends with a halt letter from a
state qi such that li = halt. Thus, the last transition has weight 1. Otherwise,
the run of the command checker on w ends with a 0 weight transition.

Positive Jump Checker. The second gadget we need is the positive jump

checker, which is defined for each counter c ∈ {x, y}. This gadget checks for vio-
lations in conditional jumps. In every if c=0 goto lj else goto lk command,
it makes sure that if the jump goto lk is taken, then the value of c is indeed
greater than 0.

This gadget is a variant of ComCheck in which the weights are defined as fol-
lows. Every transition that is taken upon reading inc(c) has weight 1, and every
transition that is taken upon reading dec(c) has weight −1. In every state qi such
that li = if c=0 goto lj else goto lk, we add a transition 〈qi,goto lk, qfreeze〉
with weight −1. We add an initial state q0 that, intuitively, has an ε transition
with weight 1 to q1 in ComCheck. Since we do not allow ε transitions, we remove
the transition by connecting q0 to the appropriate descendants of q1. All the other
transitions induced by ComCheck have weight 0. In addition, for every state q in
ComCheck we add a transition 〈q,halt, qfreeze〉 with weight 0 (See Figure 2).

The intuition behind this gadget is as follows. Along the run, the cost of the
run reflects the value of the counter c plus 1. Whenever a conditional jump is

7

taken, A nondeterministically moves to qfreeze, accumulating a weight of −1. If
the jump is legal, then the value of the counter is at least 1, so the cost of the run
so far is at least 1 + 1 = 2. Thus, the nondeterministic run that follows this route
has weight at least 1 when it reaches qfreeze. Otherwise, the value of the counter
is 0, so the cost of the run is 1, and the nondeterministic move to qfreeze induces
a run with cost 0, thus “detecting” the violation.

inc(x), 1

dec(x),−1
qi

qfreeze

qkqj

goto lj , 0 goto lk, 0

goto lk,−1

Fig. 2. Positive Jump Checker for x, where li : if x=0 goto lj else goto lk.

Zero Jump Checker. Dually to the positive jump checker, we define the
gadget zero jump checker for each counter c ∈ {x, y}.

This gadget checks for the dual violations in conditional jumps. Thus, in every
command of the form if c=0 goto lj else goto lk, it makes sure that if the
jump goto lj is taken, then the value of c is indeed 0.

This gadget is a variant of ComCheck in which the weights are as follows.
Every transition that is taken upon reading inc(c) has weight −1, and every tran-
sition that is taken upon reading dec(c) has weight 1. In every state qi such that
li = if c=0 goto lj else goto lk, we add a transition 〈qi,goto lj , qfreeze〉
with weight 0. We add an initial state q0 exactly as in the positive jump checker.
All the other transitions in ComCheck have weight 0. In addition, for every state q
in ComCheck we have a transition 〈q,halt, qfreeze〉 with weight 0 (See Figure 3).

inc(x),−1

dec(x), 1
qi

qfreeze

qkqj

goto lj , 0 goto lk, 0

goto lj , 0

Fig. 3. Zero Jump Checker for x, where li : if x=0 goto lj else goto lk.

To complete the definition of the automaton, we define Q0 to include the states
corresponding to l1 in the command checker gadget and the q0 states defined for
the jump checkers for each counter c ∈ {x, y}.

We claim that M 0-halts iff there exists w ∈ Σ∗ such that LA(w) ≥ 1. Observe
that the runs of A consist of all the runs in the underlying gadgets. Thus, it is
enough to prove that M 0-halts iff there exists w ∈ Σ∗ such that all the runs of
all the gadgets of A on w have cost of at least 1.

We start with the easier direction. Assume that M 0-halts. Let ρ be the 0-
halting run of M, and let w be the command trace of ρ. We prove that w is

8

assigned a cost of at least 1 in all gadgets. Consider first the command checker.
Since M 0-halts, all the transitions are “legal” in M. Also, ComCheck is de-
terministic. Accordingly, all the commands except for the final halt command
accumulate cost 0, and the final halt command moves to qhalt with weight 1. It
follows that the command checker contributes a single run with weight 1.

Next, consider the positive jump checker for counter c. The ComCheck part
of this gadget acts the same as the command checker in the sense that the transi-
tions never reach qfreeze or qhalt until the halt command. However, by the defi-
nition of the gadget, the accumulated cost of the single run on a prefix w[1, . . . , k]
is valk(c) + 1, where valk(c) is the value of the counter c after the commands
w1, . . . , wk have been executed. (The +1 is from the transition from the initial
state q0). Since w is the trace of a legal run, then when a line lk of the form
if c=0 goto li else goto lj is encountered in the run of M, the correspond-
ing goto command in w is legal for valk(c). According to the definition of the
transitions, if val(c) = 0, and hence the next letter in the input is goto li, then
the run continues with goto li in the ComCheck component. Otherwise, the
next letter in the input is goto lj , and the nondeterministic choice on goto lj
enables the run to also continue to qfreeze with weight −1. Since we assume that
the value of the counters is never negative, the fact that valk(c) 6= 0 implies that
val(c) + 1 ≥ 2. Thus, the cost accumulated in the run that goes to qfreeze is at
least 2 + (−1) = 1. Finally, the runs that remain in the ComCheck component
go, upon reading halt, to qfreeze, with whatever cost they have. Since this is a
0-halting run, this cost is 0 + 1 ≥ 1.

Dually, consider the zero jump checker for counter c. Here, the accumulated
cost in ComCheck is −val(c)+1. If a jump in a location where the command is of
the form if c=0 goto li else goto lj is to lj , the run continues in ComCheck.
If the run takes the li jump, then val(c) = −val(c) = 0, so the nondeterministic
choice to qfreeze induces a run with weight 0+1 ≥ 1. As for the runs that remain
in ComCheck, upon reading halt their accumulated cost is 0, and as in the positive
jump checker, they move to qfreeze with weight 1.

Thus, all the runs have cost of at least 1, so LA(w) ≥ 1.

We proceed to prove the harder direction. Assume there exists w ∈ Σ∗ such
that LA(w) ≥ 1. We claim that w is the command trace that is induced by a
0-halting run of M.

Consider the run of the command checker on w. Assume by way of contradic-
tion that the sequence of commands described by w is not the command trace of
the run of M. Thus, there is some violation in the run induced by the word w.
Let k be the minimal index in w where a violation occurs.

If the violation is not in a conditional jump, it must be that the succesive
command of w does not fit the current location of M. In this case, the command
checker goes to qfreeze with accumulated cost 0. Thus, there exists at least one run
of A on w with accumulated cost 0, so LA(w) ≤ 0, contradicting the assumption
that LA(w) ≥ 1. Furthermore, if w does comply with M along the entire run,
but does not halt, then the run stays in ComCheck, with cost 0. If w has a halt
command, but then has additional letters, the command checker reaches qhalt

with cost 1, and then moves to qfreeze with accumulated cost of 1− 1 = 0. From

9

this we get that if LA(w) ≥ 1, then w is the command trace of the run of M, up
to violations in conditional jumps or a violation of halting with non-zero counters.

Consider again the first violation (which occurs in wk). By the above argument,
either w takes a conditional jump with the wrong jumping condition, or w halts
with a (strictly) positive counter.

Assume that w takes an illegal conditional jump as the first violation. Let
li = if c=0 goto lj else goto lk be the corresponding command in M. Two
scenarios are possible. Either wk is goto lj and valk(c) > 0, or wk is goto lk
and valk(c) = 0. In the former case, consider the runs of the zero jump checker
on w. The cost accumulated by the run that stays in the ComCheck component
is −valk(c) + 1 ≤ 0. Thus, reading goto lj , the run moves to qfreeze with
accumulated cost of at most 0, and the run stays there with the same accumulated
cost contradicting the assumption that LA(w) ≥ 1. In the latter case, consider
the runs of the positive jump checker. The value of the run that stays in the
ComCheck component at the corresponding letter is valk(c)+1 = 1. Thus, reading
goto lj moves to qfreeze with accumulated weight of 1 − 1 = 0, which is again
a contradiction.

Finally, assume that w halts with a strictly positive counter c. Consider again
the run of the zero jump checker (for c) on w. The cost accumulated by the run
that stays in the ComCheck component is −valk(c)+1. If valk(c) ≥ 1 then this run
costs at most 0. Upon reading halt the run moves to qfreeze with accumulated
cost 0, contradicting the assumption that LA(w) ≥ 1.

We conclude that w is the actual trace of the 0-halting run of M. Therefore,
M 0-halts, and we are done. Since the set of decidable languages is closed under
complementation, undecidability applies also to the universality problem. ut

3.1 An Example

In this section we describe an example of the reduction presented in Theorem 1.
Consider the following two-counter machine M.

l1 : if x=0 goto l5 else goto l2
l2 : dec(x)
l3 : inc(y)
l4 : goto l1
l5 : halt

The single run of M is 〈l1, 0, 0〉, 〈l5, 0, 0〉, and its command trace is goto l5,halt.
Note, however, that M contains many “potential violations”, which would make
it an interesting machine to consider. Figure 4 describes the command checker
for M. The gray arrows are transitions that are taken on every letter that is
unspecified in the gadget, all with cost 0.

Note that the cost of goto l5,halt is 1. Note also that some words that do not
fit the actual run of M, for example goto l2, dec(x), inc(y), goto l1,goto l5,halt,
also have cost 1. This is, however, not a problem, as the command checker does
not attempt to detect violations that have to do with conditional jumps in which
a wrong jump has been taken – such violations are going to be detected by the

10

qfreeze

qhalt

goto l2, 0 dec(x), 0 inc(y), 0

goto l1, 0

goto l5, 0

halt, 1

Σ,−1

Σ, 0

Fig. 4. Example Command Checker.

jump checkers. On the other hand, the command checker assigns a cost of 0 to
words like goto l2, inc(y), which do not follow M, or to words like goto l5 or
goto l5,halt,goto l1, which are too short or too long.

Figure 5 describes the positive jump checker for x. For clarity, we use an ε-
transition. Formally, this transition is removed by replacing it with two edges with
cost 1 to the states reachable from q1.

q0

qfreeze

ε, 1

goto l2, 0 dec(x),−1 inc(y), 0

goto l1, 0

goto l5, 0

goto l2,−1

Σ, 0

Fig. 5. Example Positive Jump Checker for x.

Recall the trace goto l2, dec(x), inc(y), goto l1,goto l5,halt, which is
illegal in M, but went undetected in the command checker. In the positive jump
checker, this trace has a run with cost 0. Indeed, reading the goto l2 command,
the gadget has accumulated cost 1 and proceeds to qfreeze, with accumulated cost
1 + (−1) = 0. Thus, the violation is detected.

Finally, Figure 6 describes the zero jump checker for x. The jump checkers
for y are similar and are therefore not depicted here. In fact, in our case of M,

q0

qfreeze

ε, 1

goto l2, 0 dec(x), 1 inc(y), 0

goto l1, 0

goto l5, 0

goto l5, 0

Σ, 0

Fig. 6. Example Zero Jump Checker for x.

no word that survives the command checker may violated the conditions that the
zero jump checker attempts to detect. Indeed, the only possible violation that is
not detected by the command checker is a wrong jump in l1, which is a positive
(rather than zero) jump, or a halt with the counters not being cleared, which

11

again cannot happen in words that survive the other checks. Still, it is important
to observe that the zero jump checker does not detect false violations. For example,
the word goto l5,halt has two runs in this gadget, both with cost 1.

4 Weighted Automata With Positive Weights

In many models, the complexity of the universality problem and of the contain-
ment problem coincide. This is the case with Boolean automata, in which they
are both PSPACE-complete [14], as well as with weighted automata over inte-
ger weights, for which the previous section shows undecidability. In this section
we show that the model of weighted automata over positive integers is different:
while the universality problem is PSPACE-complete, the containment problem is
undecidable.

4.1 Universality is PSPACE-Complete

In this section we prove that the universality problem for WFAs defined over the
tropical semiring with domain � ∪{∞}, and in fact even � ≥0∪{∞}, is decidable,
and is PSPACE-complete. Intuitively, the fact the weights are all positive enables
us to bound the length of a shortest witness to non-universality, and reason about
a bounded unwinding of the WFA into a deterministic WFA.

Theorem 2. The universality problem for WFAs defined with respect to the semir-

ing 〈 � ∪ {∞}, min, +,∞, 0〉 is PSPACE-complete.

Proof. Consider a WFA A = 〈Σ, Q, ∆, c, Q0, F, i, f〉 and a threshold v ∈ � . Given
a word w = w1 · · ·wn, we associate with w the weighted subset run E0, E1, . . . , En

of A on w as follows. Each Ei is a function Ei : Q → � ∪ {∞,⊥}. We initialize
E0 by setting

E0(q) =

{

i(q) if q ∈ Q0,

⊥ if q /∈ Q0.

For every letter wi, we then define the function Ei as follows. For every q ∈ Q,
we define Ei(q) = min{∆(q′, wi, q) + Ei−1(q

′) : Ei−1(q
′) 6= ⊥}. That is, Ei(q)

is the minimal cost of a run of A on w1 · · ·wi, excluding the final weight. If the
minimum is taken over the empty set, we define Ei(q) = ⊥, which means that q
is not reachable after reading w1 · · ·wi.

We first prove that if there exists some word w ∈ Σ∗ such that LA(w) ≥ v (a
“witness”), then there also exists such a word of length bounded by (v + 2)|Q|.

Consider a word w = w1 · · ·wn ∈ Σ∗, and let E0, . . . , En be its weighted subset
run. We associate with every set Ei its v-restriction Ev

i , defined by

Ev
i (q) =

v if Ei(q) ≥ v,

Ei(q) if Ei(q) < v,

⊥ if Ei(q) = ⊥.

12

We say that Ei and Ej v-coincide if Ev
i = Ev

j . It is easy to see that there are only

(v + 2)|Q| different v-restrictions. Indeed, a v-restriction corresponds to a vector
of size |Q| with entries in {0, . . . , v,⊥}. Assume that w is a shortest witness for
the non-universality. Then, we claim that no two weighted subsets in E0, . . . , En

can v-coincide.
Assume by way of contradiction that Ei and Ej v-coincide, for i < j. We

shrink w to obtain w′ = w[1, . . . , i] · w[j + 1, . . . , n − 1]. We claim that w′ is
a (shorter) witness for the non-universality. Indeed, let F0, . . . , Fi, Fj+1, . . . , Fn

be the weighted subset run of w′. Clearly Fk = Ek for all k ≤ i. Since Ei and
Ej v-coincide, then for every q, either Ei(q) = Ej(q) = ⊥, or Ei(q) = Ej(q) ∈
{0, . . . , v}, or both Ei(q) > v and Ej(q) > v. In the first case, q is not reachable,
so no runs continue through q. In the second case, every run that visits q after
reading w[1, . . . , i] can continue the same way it continues from q after it reads
w[1, . . . , j]; thus the cost of these runs is the same in w′ as in w. In the third case,
every run through q has already accumulated weight v. Since all the weights are
positive, all the relevant runs reach Fn with weight at least v. Since LA(w) ≥ v,
then every run of A on w costs at least v. It follows that every run on w′ also
costs at least v, so LA(w′) ≥ v, which is a contradiction to the minimality of the
length of w.

Thus, every v-restriction of a weighted subset construction run on a shortest
witness can appear at most once. It follows that the length of a shortest witness
is bounded by (v + 2)|Q| = 2|Q| log(v+2).

We proceed to describe how we can solve the non-universality problem. Ob-
serve that given w, we can check whether LA(w) ≥ v by calculating the functions
Ei for all 0 ≤ i ≤ n, add f(q) for all q ∈ F in En, and take the minimal cost,
which is exactly LA(w).

Since the length of the shortest witness is single-exponential in |Q| and log v,
which is the size of the input to the problem, we can solve the problem by guessing
a run of this length on-the-fly, thus deciding the problem in NPSPACE=PSPACE.
An important note is that calculating Ei from Ei−1 involves arithmetic operations
on numbers, which can all be done in linear time in the representation of the
numbers.

Since PSPACE=co-PSPACE, it follows that the universality problem for WFAs
is in PSPACE as well. Finally, it is not hard to see that the universality problem
is at least as hard as the universality problem for NFW, which is known to be
PSPACE-hard [14]. ut

The PSPACE proof above makes use of the discrete nature of � . Neverthe-
less, even when the domain with respect to which the automaton is defined is
dense, there are only finitely many different “configurations” one has to consider.
Formally, we have the following.

Theorem 3. The universality problem for WFAs defined with respect to the semir-

ing 〈 � ≥0 ∪ {∞}, min, +,∞, 0〉 is PSPACE-complete.

Proof. The upper bound is similar to the one described in the proof of Theorem 2,
except that we start by multiplying all the weights of A as well as v by a common

13

denominator α, so that they are all natural. The denominator α is at most the
multiplication of all the denominators, which is single-exponential in the weights
and v. It follows that the bound on the shortest witness is (αv + 2)|Q|. Thus,
the problem can be solved in NSPACE(|Q| log(αv + 2)), which is polynomial in
|Q|, v. ut

4.2 Containment is Undecidable

We now show that the containment problem is undecidable for WFAs with weights
in � . In fact, the problem is undecidable already for complete WFAs with weights
in {0,1,2}, without initial or final weights, in which all the states are final.

The decidability result for the universality problem used the monotonicity of
weights accumulated in weighted automata with weights in � . One may wonder
why a similar approach cannot work for the containment problem. The reason
is that the containment problem relates to the difference between two WFAs.
Consequently, the underlying function, which is the difference in the weight accu-
mulated in the two WFAs, is not monotonic even when the automata have only
positive weights.

The undecidability proof is by a reduction from the containment problem for
WFAs defined with respect to the domain � . It follows an analogous lemma in
[11], according to which, two WFAs with domain � are equal iff so are WFAs
that they induce, and that are with domain � . Intuitively, the induced WFAs are
obtained by increasing all the weights in the original WFAs. Formally, we have
the following.

Theorem 4. The containment and equality problems for complete WFAs over

the semiring 〈 � ∪ {∞}, min, +,∞, 0〉 with weights in {-1,0,1}, without initial or

final weights, in which all the states are final, is undecidable.

Proof. We start by defining a “weight-increase” operation on WFAs. Consider
a number k ∈ � and a WFA A over � with a cost function c. We define the
k-increase of A, denoted A+k, to be a WFA with a cost function c+k that is
equivalent to A, except for having all weights increased by k; that is, for every
transition d of A, we have that c+k(d) = c(d) + k.

We claim that for every word w, we have that LA+k(w) = LA(w) + k|w|.
Indeed, consider a run r of A on w, such that c(r) = LA(w). Since A+k has
the same transitions as A, there is a run r′ of A+k on w that follows the same
transitions as r. Thus, c(r′) = c(r)+k|w|, and therefore LA+k(w) ≤ LA(w)+k|w|.
Analogously, we have that LA(w) ≤ LA+k(w) − k|w|, choosing the same run for
A as the one used for A+k. Hence, LA+k(w) = LA(w) + k|w|.

Now, consider two automata, A and B, over � . Let k be the maximal absolute
value of a weight in the transitions of A and B. It is easy to see that all the
weights in A+k and B+k are positive, thus they are defined with respect to the
domain � . We claim that LA ≤ LB iff LA+k ≤ LB+k . Indeed, for every word w,
LA+k(w) ≤ LB+k(w) iff LA+k(w)+k|w| ≤ LB+k(w)+k|w|. Hence, the containment
problem of WFAs over � can be reduced to the containment problem of WFAs
over � , which is undecidable by Theorem 1. Furthermore, as the automata in

14

Theorem 1 can be restricted to have weights in {−1, 0, 1}, their corresponding
automata over � can be restricted to have weights in {0, 1, 2}.

We now reduce the containment problem to the equality problem, showing
that the latter is undecidable as well. For WFAs A and B, observe that LA ≤ LB

iff LA = min{LA, LB}. Since we can easily construct a WFA for min{LA, LB},
then we can indeed reduce the containment problem to the equality problem.

ut

References

1. B. Aminof, O. Kupferman, and R. Lampert. Reasoning about online algorithms
with weighted automata. ACM Transactions on Algorithms, 6(2), 2010.

2. D. Andersson. An improved algorithm for discounted payoff games. In ESSLLI

Student Session, pages 91–98, 2006.
3. C. Baier, N. Bertrand, and M Grösser. Probabilistic automata over infinite words:

Expressiveness, efficiency, and decidability. In Proc. 11th International Workshop

on Descriptional Complexity of Formal Systems, pages 3 – 16, 2006.
4. U. Boker and T. A. Henzinger. Determinizing discounted-sum automata. submitted.
5. K. Chatterjee, L. Doyen, and T. Henzinger. Quantative languages. In Proc. 17th

Annual Conf. of the European Association for Computer Science Logic, pages 385–
400, 2008.

6. K. Chatterjee, L. Doyen, and T. Henzinger. Alternating weighted automata. In Proc.

17th International Symposium on Fundamentals of Computation Theory, volume
5699, pages 3–13, 2009.

7. K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure properties
for quantitative languages. Logical Methods in Computer Science, 6(3), 2010.

8. K. Culik and J. Kari. Digital images and formal languages. Handbook of formal

languages, vol. 3: beyond words, pages 599–616, 1997.
9. A. Degorre, L. Doyen, R. Gentilini, J. Raskin, and S. Torunczyk. Energy and mean-

payoff games with imperfect information. In Proc. 19th Annual Conf. of the Euro-

pean Association for Computer Science Logic, pages 260–274, 2010.
10. M. Droste and P. Gastin. Weighted automata and weighted logics. In Proc. 32nd

Int. Colloq. on Automata, Languages, and Programming, pages 513–525, 2005.
11. D. Krob. The equality problem for rational series with multiplicities in the trop-

ical semiring is undecidable. International Journal of Algebra and Computation,
4(3):405–425, 1994.

12. D. Krob. Some consequences of a fatou property of the tropical semiring. Journal

of Pure and Appllied Algebra, 93(3):231–249, 1994.
13. D. Kuperberg. Linear temporal logic for regular cost functions. In Proc. 28th Symp.

on Theoretical Aspects of Computer Science, pages 627–636, 2011.
14. A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential time. In Proc. 13th IEEE Symp. on Switching

and Automata Theory, pages 125–129, 1972.
15. M.L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1 edition,

1967.
16. M. Mohri, F.C.N. Pereira, and M. Riley. Weighted finite-state transducers in speech

recognition. Computer Speech and Language, 16(1):69–88, 2002.
17. M.P. Schützenberger. On the definition of a family of automata. Information and

Control, 4(2-3):245–270, 1961.

15

18. I. Simon. Recognizable sets with multiplicitives in the tropical semiring. In 13th Int.

Symp. on Mathematical Foundations of Computer Science, volume 324 of Lecture

Notes in Computer Science, pages 107–120, 1988.
19. U. Zwick and M.S. Paterson. The complexity of mean payoff games on graphs.

Theoretical Computer Science, 158:343–359, 1996.

16

