
Formal Analysis of Online Algorithms⋆

Benjamin Aminof1, Orna Kupferman1, and Robby Lampert2

1 School of Computer Science and Engineering,Hebrew University, Jerusalem 91904, Israel
2 Department of Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel

Abstract. In [AKL10], we showed how viewing online algorithms as reactive systems enables the application
of ideas from formal verification to the competitive analysis of online algorithms. Our approach is based on
weighted automata, which assign to each input word a cost in IR≥0. By relating the “unbounded look ahead”
of optimal offline algorithms with nondeterminism, and relating the “no look ahead” of online algorithms with
determinism, we were able to solve problems about the competitive ratio of online algorithms and the memory
they require.
In this paper we improve the application in three important and technically challenging aspects. First, we
allow the competitive analysis to take into account assumptions about the environment. Second, we allow the
online algorithm to have a bounded lookahead. Third, we describe a symbolic version of the model-checking
algorithm and demonstrate its applicability. The first two contributions broaden the scope of our approach to
settings in which the traditional analysis of online algorithms is particularly complicated. The third contribution
improves the practicality of our approach and enables it to handle larger state spaces.

1 Introduction

In formal verification, we verify that a system has a desired property by checking whether a model of
the system satisfies a formal specification of the property. An important feature of formal verification
is that it enables reasoning aboutreactive systems, which maintain an on-going interaction with their
environment [HP85].

Online algorithmsfor optimization problems can be viewed as reactive systems. An online algorithm
processes requests in real-time: At each round, the environment issuesa request, and the algorithm
should process it. The sequence of requests is not known in advance,and the goal of the algorithm is
to minimize the overall cost of processing all the requests in the sequence. For example, in thepaging
problem, we have a two-level memory hierarchy: A slow memory that containsn different pages, and
a cachethat contains at mostk different pages (typically,k ≪ n). Pages that are in the cache can be
accessed at zero cost. If a request is made to access a page that is notin the cache, the page should be
brought into the cache, at a cost of 1, and if the cache is full, some other page should first be evicted
from the cache. The paging problem is, given a sequence of requested pages, to decide which page to
evict whenever an eviction is needed. The goal is to minimize the total cost. Online algorithms for many
problems have already been extensively studied for several decades, and have aroused much interest,
both from a practical and a theoretical point of view [BEY98].

The interaction described above between an online algorithm and its environment is at the heart of
formal verification. Still, the questions that are traditionally answered by formal-verification techniques
are very different from those that are asked in the context of online algorithms. In formal verification,
a system is checked with respect to a given specification. The specification can be qualitative (e.g.,
“whenever a request to a page is made, and this page is not in the cache, the page is brought into
the cache”) or quantitative (e.g., “what is the maximal number of page faults within a window ofk
rounds?”) [CCH+05]. The most interesting question about an online algorithm, however, is ofa different
nature, and refers to itscompetitive ratio: the worst-case (with respect to all input sequences) ratio
between the cost of the algorithm and the cost of an optimal solution (one thatmay be given by an
offline algorithm, which knows the input sequence in advance). Thus, we can specify the model-checking

⋆ Supported in part by the Minerva Center at the Weizmann Institute, and by an Advanced Research Grant from the ERC
under the European Community’s 7th Framework Programme.

problem of online algorithms as follows: Consider an optimization problemP . Given an algorithmg and
a competitive ratioα, is g α-competitive with respect to an optimal offline algorithm forP?

Recently, we extended the scope of formal verification to reasoning about online algorithms [AKL10].
The approach in [AKL10] is based onweighted finite automata(WFAs, for short) [KS86,Moh97]. A
WFA A induces a partialcost function fromΣ∗ to IR≥0. Technically, each transition ofA has a cost
associated with it. The cost of a run is the sum of the costs of the transitions taken along the run, and
the cost of a wordw, denotedcost(A, w), is the minimum cost over all accepting runs on it (the cost
is undefined if no run on the word is accepting). Consider an optimization problemP with requests in
Σ. An algorithm forP can be viewed as a mapping of words inΣ+ to a set of actions available to the
algorithm [BDBK+94]. For a finite setS of configurations, we say that an algorithm uses memoryS if
there is a regular mapping ofΣ∗ intoS such that the algorithm behaves in the same manner on identical
continuations of words that are mapped to the same configuration.

The set of online algorithms forP that use memoryS induces a WFAAP , with alphabetΣ and state
spaceS, such that the transitions ofAP correspond to actions of the algorithms and the cost of each tran-
sition is the cost of the corresponding action. It is shown in [AKL10] that many optimization problems
have algorithms that use finite memory and can be modeled by weighted automata asdescribed above.
Moreover, the “unbounded look ahead” of the optimal offline algorithm corresponds to nondeterminism
in AP , and the “no look ahead” of online algorithms corresponds to deterministic automata embed-
ded inAP . Consequently, questions about the competitive ratio of online algorithms canbe reduced to
questions aboutdeterminizationandapproximated determinizationof WFAs [AKL11]. In particular, the
model-checking problem for an online algorithmg can be reduced to the problem of deciding whether
the pruning ofAP induced byg results in a deterministic automatonAg

P thatα-approximatesAP (that
is, the automatonAg

P accepts the same set of words asAP , andcost(Ag
P , w) ≤ α · cost(AP , w) for

all wordsw in this set). In addition, the synthesis problem for online algorithms can be reduced to the
problem of deciding whetherAP contains an embedded deterministic automaton thatα-approximates
AP .

The competitive analysis of online algorithms takes into account the most hostile environment. In-
deed, an online algorithmg is α-competitive if its cost with respect to every input sequences is at most
α times the cost of an optimal solution. Quite often, however, the nature of the problem restricts the
set of possible input sequences. Much research has been carried out in the online-algorithm community
studying the competitive analysis of online algorithms under different assumptions about the environ-
ment [BEY98]. For example, for the paging problem, Borodin et al. studiedthe access graph model
[BIRS95], which takes into account thelocality of referenceprinciple. In the access graph model, the
paging problem is equipped with a graph whose vertices are the pages, and two pages can be requested
successively only if they are connected in the graph.

The first contribution of this paper is an extension of the framework in [AKL10] to a setting in which
assumptions about the environment can be taken into account. The issue ofrestricted environments is
well studied in formal verification. Ideas like fairness [Fra86], assume-guarantee reasoning [Pnu85],
and synthesis under restricted environments [CHJ08], have been suggested in order to take assumptions
about the environment into account. We study the competitive analysis of online algorithms in which
assumptions about the environment are given by means of anondeterministic finite automaton(NFA, for
short). In this setting, the competitive ratio of an online algorithm is defined onlywith respect to input
sequences that belong to the language of the assumption NFA. Our definitiongeneralizes restrictions
such as the one induced by the access graph — it supports all regular assumptions. In addition, it nicely
combines with the automata-based approach initiated in [AKL10]. Consider anonline problemP , a set
of configurationsS for it, an approximation factorα, an online algorithmg that uses configurations in
S, and an assumption NFAU . We show that the problem of deciding whetherg is α-competitive with
respect to input sequences inL(U) (model checking with assumptions) can be solved in polynomial time.
On the other hand, the problem of deciding whether there is an online algorithm that uses configurations

2

in S and isα-competitive with respect to input sequences inL(U) (synthesis with assumptions) is NP-
complete. We note that NP-hardness holds already for unweighted automataandα = 1, and even when
U is deterministic. This is in contrast to the setting with no assumptions studied in [AKL10], in which
synthesis withα = 1 can be solved in polynomial time. Thus, interestingly, the addition of assumptions
makes the problem substantially more complex.

The second contribution of this paper is an extension of the framework in [AKL10] to a setting in
which the online algorithm has abounded lookaheadon the requests yet to come. Since an offline al-
gorithm can be viewed as an online algorithm with an unbounded lookahead,the setting of a bounded
lookahead covers the “middle-ground” between onlineness and offlineness. However, considering online
algorithms with lookahead is also interesting from a practical point of view. Inpractical applications, re-
quests do not always arrive one by one, but sometimes naturally occur inbursts. Also, some applications
benefit from delaying requests so that a block of requests can be served all at once, minimizing common
overhead. Finally, in some applications requests are generated faster than they can be served, and thus the
online algorithm has to maintain a buffer containing requests that are pendingservice. The challenges of
manually analyzing online algorithms are even bigger in the setting of lookahead[Alb97,Bre98,You91].
Indeed, the analysis has to take into an account the extended memory of the algorithm and the partition
of the input stream to requests that are in the lookahead and those that arenot. The automata-theoretic
approach can be naturally extended to handle bounded lookahead in online algorithms by means of au-
tomata with a bounded lookahead. Such automata read, in each transition, a sequence of the nextl + 1
letters, for a fixed parameterl (that is, the look ahead). We study the problems of determinization and ap-
proximated determinization of nondeterministic weighted automata with a bounded lookahead, and how
questions about online algorithms can be reduced to them. Unfortunately, theanalysis is exponential in
the lookahead. A similar computational cost is needed in the analysis of lookahead in regular infinite
games [HKT10], and we prove that the cost indeed cannot be polynomial.

One of the main challenges in formal verification is the need to cope with very big, often infi-
nite, state spaces. In our context, the state space often involves weights, and is thus very big. The third
contribution of the paper is a description of asymbolic algorithm[BCM+92] for the problem of model-
checking of online algorithms. In symbolic reasoning, the state space and thetransitions of the system
are given symbolically by characteristic functions over a set of variablesthat encode the state space of
the system. The operations allowed to the verification algorithm correspond tomanipulations of predi-
cates over the set of variables. The fact a symbolic algorithm has to manipulate predicates over variables
forces it to refer to sets of elements rather than to individual elements. The idea behind the algorithm is
as follows. Consider a WFAA. We say that a stateq of A, (α, i, t)-approximates a stateq′, for a com-
petitive ratioα, an integeri ≥ 0, and an additive factort, if there is a deterministic automatonAq with
initial stateq that is embedded inA and in whichcost(Aq, w) ≤ t+ α · cost(Aq′ , w) for every wordw
of length at mosti, whereAq′ isA with initial stateq′. We show that given a symbolic representation of
pairs〈q, q′〉 such thatq (α, i, t)-approximatesq′, it is possible to generate a symbolic representation of
pairs〈q, q′〉 such thatq (α, i+1, t′)-approximatesq′, for the minimalt′ for which such an approximation
exists. Note thatt′ ≥ t. The symbolic algorithm then calculates a fixed-point of the above transforma-
tion. In the process, it detects cycles along whichAq′ is “unboundedly better” thanAq. The algorithm
then concludes thatt′ should be increased to infinity. Finally, the answer to the model-checking problem
is positive iff there is an initial stateq such thatq (α, i, 0)-approximatesq′ for all the initial statesq′

of A and the iterationi in which a fixed-point was reached3. The symbolic implementation can handle
also assumptions about the environment and algorithms with lookahead. We implemented our symbolic
algorithm, and describe its application in reasoning about two online algorithms for the paging problem.

3 In [CL92], the authors use an iterative (non-symbolic) procedure that checks forα-competitive algorithms to the server
problem. There, a fixed-point has been reached iff such an algorithmexists. By [AKL10], the procedure can be terminated
after two rounds of quadratically many iterations.

3

2 Preliminaries

2.1 Weighted Automata

Standard automata map words inΣ∗ to either “accept” or “reject”. A weighted automaton can be viewed
as a partial function (defined only for accepted words) fromΣ∗ to IR≥0. Formally, aweighted finite
automaton(WFA, for short) is a 6-tupleA = 〈Σ,Q,∆, c,Q0, F 〉, whereΣ is a finite input alphabet,Q
is a finite set of states,∆ ⊆ Q×Σ×Q is a transition relation,c : ∆ → IR≥0 is a cost function,Q0 ⊆ Q
is a set of initial states, andF ⊆ Q is a set of final states. A transitiond = 〈q, a, p〉 ∈ ∆ (also written as
∆(q, a, p)) can be taken whenA reads the input lettera, and it causesA to move from stateq to statep
with costc(d). The transition relation∆ induces a transition functionδ : Q×Σ → 2Q in the expected
way. Thus, for a stateq ∈ Q and a lettera ∈ Σ, we haveδ(q, a) := {p : ∆(q, a, p)}. A WFA A may be
nondeterministic in the sense that it may have many initial states, and that for someq ∈ Q anda ∈ Σ,
it may have∆(q, a, p1) and∆(q, a, p2), with p1 6= p2. If |Q0| = 1 and for every stateq ∈ Q and letter
a ∈ Σ we have|δ(q, a)| ≤ 1, thenA is adeterministicweighted finite automaton (DWFA, for short).

For a wordw = w1 . . . wn ∈ Σ∗, a run ofA on w is a sequencer = r0r1 . . . rn ∈ Q+, where
r0 ∈ Q0 and for every1 ≤ i ≤ n, we have〈ri−1, wi, ri〉 ∈ ∆. The runr is accepting ifrn ∈ F .
The wordw is accepted byA if there is an accepting run ofA on w. The (unweighted)languageof
A is L(A) = {w : w is accepted byA}. The cost of an accepting run is the sum of the weights of the
transitions that constitute the run. Formally, letr = r0r1 . . . rn be an accepting run ofA on w, and
let d = d1 . . . dn ∈ ∆∗ be the corresponding sequence of transitions. The cost ofr is cost(A, r) =
∑n

i=1 c(di). The cost ofw, denotedcost(A, w), is the minimal cost over all accepting runs ofA onw.
Thus,cost(A, w) = min{cost(A, r) : r is an accepting run ofA onw}.

For two WFAsA1 = 〈Σ,Q1, ∆1, c1, Q
0
1, F1〉 andA2 = 〈Σ,Q2, ∆2, c2, Q

0
2, F2〉, andα ≥ 1,

we say thatA2 α-approximatesA1 if L(A1) = L(A2) and for all wordsw in both languages, we
havecost(A2, w) ≤ α · cost(A1, w). We say thatA2 is embeddedin A1 if Q2 = Q1, Q0

2 ⊆ Q0
1,

∆2 ⊆ ∆1, c2 agrees withc1 on∆2, andF1 = F2. Thus,A2 can be obtained fromA1 by decreasing its
nondeterminism. Finally, given an approximation factorα ≥ 1, we say thatA is α-determinizable by
pruning(α-DBP, for short) ifA has an embedded DWFA thatα-approximatesA.

2.2 Online Algorithms

A problemassociates with each possible inputI a setF (I) of feasible solutions. In anoptimization
problem (of cost minimization), each solution inF (I) has a cost in IR≥0, and the goal is to find a
feasible solution that minimizes the cost.

An online algorithmfor an optimization problemP is an algorithm that gets as input a finite se-
quence of requests, and has to process each request (and end up ina feasible solution) without knowing
the requests yet to come. In contrast, anoffline algorithmfor P gets the entire sequence in advance, and
its decisions as to how to process a request may depend on the requests yet to come.

Formally, if we denote byΣ the set of requests, and denote byΓ the set of actions that are available
to the algorithm, then an online algorithm corresponds to a functiong : Σ+ → Γ . The processing
of an input sequenceσ1 . . . σn by g is theng(σ1), g(σ1σ2), g(σ1σ2σ3), In typical optimization
problems, there is a cost functionaction cost : Γ → IR≥0 that associates a cost with each action. The
cost of processing an input sequence is the sum of the costs of the actions taken in order to process
it. The performance of an online algorithm is typically worse than that of an offline algorithm for the
same problem. For analyzing the performance of online algorithms we usecompetitive analysis, which
compares the two performance values.

For an online algorithmg and an inputw ∈ Σ+, let g(w) denote the cost of processingw by g,
and let OPT(w) denote the cost of processingw by the optimal offline algorithm. We say that an online
algorithm g is α-competitiveif there exists a constantβ such that for all input sequencesw ∈ Σ+

4

we have thatg(w) ≤ α·OPT(w) + β. Thecompetitive ratioof g is the smallestα for which g is α-
competitive. In the rest of the paper we restrict attention to the multiplicative factor α and ignore the
additive factorβ, except for places where it is not immediately clear how to handleβ.

2.3 An Automata-Theoretic Approach to Reasoning about Online Algorithms

Recall that an online algorithm corresponds to a functiong : Σ+ → Γ that maps sequences of requests
(the history of the interaction so far) to an action to be taken. For a finite setS of configurations, we
say thatg uses memoryS, if there is a regular mapping ofΣ∗ into S such thatg behaves in the same
manner on identical continuations of words that are mapped to the same configuration.We model the
set of online algorithms that use memoryS and solve an optimization problemP with requests inΣ
and actions inΓ , by a WFAAP = 〈Σ,S,∆, c, S0, S〉, where∆ andc describe transitions between
configurations and their costs, andS0 is a set of possible initial configurations. Formally,∆(s, σ, s′) if
the setΓ ′ ⊆ Γ of actions that process the requestσ from configurations by updating the configuration
to s′ is non-empty, in which casec(〈s, σ, s′〉) = minγ∈Γ ′ action cost(γ). Note that all the states ofAP

are accepting. Thus,AP assigns a cost to all sequences inΣ∗.
As demonstrated in [AKL10], many optimization problems have online algorithms that require finite

memory. Below we describe the modeling of the paging problem, presented in Section 1.

Example 1 [The paging problem [ST85]] A paging problemP with parametersn (number of pages)
andk (size of the cache) induces a WFAAP = 〈Σ,S,∆, c, S0, S〉, whereΣ = {1, . . . , n} is the set of
possible requests (page indices),S = {C ⊆ {1, . . . , n} : |C| ≤ k} is a set of finite configurations, each
describing the set of pages currently in the cache,∆ andc describe how (and at which cost) requests
are served, andS0 = {∅}, indicating that the cache is initially empty. Thus,∆(C, i, C ′) iff one of the
following holds: (1)i ∈ C, in which caseC ′ = C andc(〈C, i, C ′〉) = 0, (2) i 6∈ C, |C| < k, and
C ′ = C ∪ {i}, in which casec(〈C, i, C ′〉) = 1, or (3) i 6∈ C, |C| = k, and there isj ∈ C such that
C ′ = (C \ {j}) ∪ {i}, in which casec(〈C, i, C ′〉) = 1. Note that by the definition ofS, a configuration
stores only the set of pages currently in the cache, and there are no provisions for storing any extra
information such as time-stamps, etc. A different automaton for the problem could have definedS in a
way that allows the storage of such extra information. We will elaborate on thispoint in the sequel.

Note that the above modeling restricts attention tolazy (a.k.a. demand paging) algorithms, which
minimize the change of configurations so that only the current request is served. By [MMS90], for every
non-lazy algorithm, there exists a lazy one that performs at least as well.

LetP be an optimization problem, and letAP = 〈Σ,S,∆, c, S0, S〉 be a WFA for its algorithms that
use memoryS. Given a finite sequence of requestsw ∈ Σ∗, each run ofAP onw corresponds to a way
of serving the requests inw by an algorithm with configurations inS. The set of all runs includes all such
algorithms, thus the cost ofw in AP is the cost ofw in an optimal offline algorithm whose configurations
are based onS (the configurations of the offline algorithm may also maintain the suffix of the input yet
to be processed. This information, however, would be implicit in the nondeterminism ofAP). On the
other hand, an online algorithm has to process each request as soon asit arrives, without knowing the
requests yet to arrive. Accordingly, an online algorithm that uses memoryS corresponds to a DWFA
embedded inAP (note that this correspondence is lost if we consider unrestricted determinization of
AP). Formally, given an online algorithmg : Σ+ → Γ that uses memoryS, let h : Σ∗ → S be the
regular mapping that witnesses thatg uses memoryS. Then, the DWFA embedded inAP and induced
by g is an automatonAg

P in which, for all statess ∈ S and requestsσ ∈ Σ, we haveδ(s, σ) = s′, where
s′ is the configuration obtained by applying the actiong(w · σ) from s, andw is such thath(w) = s. In
other words, for allw ∈ Σ∗, we haveδ(h(w), σ) = h(w · σ).

5

Theorem 2. [AKL10] Given an online problemP and a setS of configurations, letAP be a WFA, with
state spaceS, that models online algorithms forP that use memoryS. An online algorithmg, that uses
memoryS, isα-competitive iffAg

P α-approximatesAP .

Note that the setting describes above forces the online algorithm to have the same state space as
the offline one. In [AKL10] we described how the framework can handlealso online algorithms with a
richer state space. The same idea can be applied to the extensions studied in the current paper.

3 Adding Assumptions on the Environment

As discussed in Section 1, an online algorithm can be viewed as a reactive system. The fact that a reactive
system has to satisfy its specification with respect to all input sequences is analogous to the fact that an
α-competitive online algorithm has to satisfyg(w) ≤ α·OPT(w) for all input sequencesw ∈ Σ+. When
reasoning about reactive systems, it is sometimes desirable to restrict the universal quantification over all
input sequences to a subset of the possible inputs. The automata-theoreticapproach naturally formalizes
such assumptions in the context of online algorithms. We begin our study with unweighted automata,
where things are typically simpler, and then move to weighted automata, which immediately translates
to the context of online algorithms.

Given two NFAs,A andU , we say thatA is determinizable by pruning with respect to assumptions
in U (U -DBP, for short), ifA has an embedded DFAA′ such thatL(A) ∩ L(U) ⊆ L(A′). Thus,A is
U -DBP if it can be pruned to a deterministic automaton that accepts all the words inL(A) that are also
in L(U). In this case we say thatA′ is awitnessfor A beingU -DBP. Similarly, for the weighted case,
given a WFAA, an NFAU , and an approximation factorα ≥ 1, we say thatA is α-U -DBP if A has
an embedded DWFAA′ such that for allw ∈ L(A) ∩ L(U) we havecost(A′, w) ≤ α · cost(A, w).
Intuitively, the NFAU specifies assumptions about the environment. In particular, usual determinization
by pruning is a special case of the above, withL(U) = Σ∗.

The relaxed-α-DBP problem is to decide, given a WFAA, an approximation factorα ≥ 1, and an
NFA U , whetherA is α-U -DBP. Therelaxed-α-DBP witness-checkingproblem is to decide, given a
WFA A, an NFAU , α ≥ 1, and a DFA (DWFA)A′ embedded inA, whetherA′ is a witness forA being
α-U -DBP. WhenA andA′ are NFAs (that is, unweighted), no approximation factor is given and we refer
to the problems as therelaxed-DBPand therelaxed-DBP witness-checkingproblems. The relaxed-α-
DBP problem corresponds to the synthesis problem, whereas the witness-checking problem corresponds
to model checking. We start with the relaxed-DBP and the relaxed-α-DBP witness-checking problems:

Theorem 3. The relaxed-DBP (relaxed-α-DBP) witness-checking problem is NLOGSPACE-complete
(in PTIME, respectively).

Proof: We first prove that the relaxed-DBP witness-checking problem is NLOGSPACE-complete, and
we start with the upper bound. Given two NFAsA andU , and a DFAA′ embedded inA, we have
that A′ is a witness forA beingU -DBP iff L(A) ∩ L(U) ⊆ L(A′). SinceA′ is deterministic, its
complementation is immediate, and thus, checking the above can be done in NLOGSPACE.

In order to prove NLOGSPACE-hardness, we describe a reduction from the non-reachability prob-
lem (proved to be NLOGSPACE-hard in [Imm88]) to the DBP witness-checking problem. Consider a
directed graphG = 〈V,E〉 and two verticess, t ∈ V . LetB be some fixed NFA that has a single initial
state and is not DBP, and letσ be a letter not in the alphabet ofB. Consider the NFAB′ obtained form
G by labeling all its edges byσ, adding a self loop (labeled byσ) to s, definings to be the only initial
state, defining all the vertices ofG as accepting states, and “pluggingB in t” (that is, adding tot the
transitions that exit the initial state ofB). Note that ift is not reachable froms, then the language ofB′

is σ∗. If t is reachable froms, then the language ofB′ is σ∗ + σ∗ · L(B). SinceB is not DBP, it is not
hard to see thatt is not reachable froms iff B′ is DBP.

6

We now move to the weighted case and prove that the relaxed-α-DBP witness-checking problem is
in PTIME. We describe a polynomial algorithm for solving the problem. Given a WFAA, an NFAU ,
α ≥ 1, and a DWFAA′ embedded inA, we first construct the WFAA × U that accepts the language
L(A)∩L(U) with the weights ofA. Thus, the states and transitions are defined as in the classical product
automaton, and the weights are induced from those inA. Formally, letQ1 andQ2 be the state spaces of
A andU , respectively. Then, forq1, q′1 ∈ Q1, q2, q

′
2 ∈ Q2, andσ ∈ Σ, we set the cost of the transition

(〈q1, q2〉, σ, 〈q
′
1, q

′
2〉) to be the cost of the transition(q1, σ, q′1) in A. Since the automatonA′ is embedded

also inA × U , the relaxed-α-DBP witness-checking problem reduces to theα-DBP witness-checking
problem with respect toA′ andA× U . By [AKL10], the latter can be solved in polynomial time. ⊓⊔

We now proceed to the relaxed-DBP problem. In the setting with no assumptionsabout the envi-
ronment, it was shown in [AKL10] that the DBP-problem is polynomial for theunweighted case or for
the weighted case withα = 1, and is NP-complete for the weighted case withα > 1. As the follow-
ing theorem shows, adding assumptions makes the relaxed-DBP problem NP-complete already for the
unweighted case, and thus significantly harder. On the positive side, adding assumptions does not make
the problem harder in the weighted case withα > 1, where it stays NP-complete, as in the setting with
no assumptions.

Theorem 4. The relaxed-DBP and the relaxed-α-DBP problems are NP-complete.

Proof: First, observe that the problems are in NP since givenA andU , we can guess a DFAA′ embed-
ded inA and check whether it is a witness. By the above, this can be done in polynomial time.

In order to show that the problems are NP-hard, we describe a reductionfrom 3SAT to the relaxed-
DBP problem. Letθ be a 3CNF formula withm clauses,c1, . . . , cm, over the variablesx1, . . . , xn. We
construct an NFAAθ and a DFAUθ over the alphabet{#, 1, ...,m}, such thatAθ is Uθ-DBP iff θ is
satisfiable.

The NFAAθ has the form of a DAG with four levels (see Figure 1 for an example). On thefirst
level of the DAG there is a single initial stateq0. On the second level there aren states,x1, . . . , xn,
corresponding to the variables inθ. For each statexi, there arem transitions, labeled1, . . . ,m from
q0 to xi. On the third level there are2n states,1true , 1false , . . . , ntrue , nfalse , corresponding to possible
truth assignments to the variables. For every1 ≤ i ≤ n, there are transitions, labeled#, from xi
to itrue and ifalse . On the fourth level there is a single accepting stateqacc. For every1 ≤ i ≤ n,
valueval ∈ {true, false}, and letter1 ≤ j ≤ m, there is a transition labeledj from ival to qacc iff
assigningval to variablei satisfies the clausecj . For example, if the literal¬x5 appears in clausec2,
then there is a transition labeled2 from the state5false to qacc. It is easy to see that the language ofAθ

is {j#k : 1 ≤ j ≤ m, 1 ≤ k ≤ m}. The DFAUθ is such thatL(Uθ) = {j#j : 1 ≤ j ≤ m}. It is
easy to defineUθ with m + 2 states. It is left to show thatθ is satisfiable iffAθ is Uθ-DBP. Note that
sinceL(Uθ) ⊆ L(Aθ), the relaxed-DBP problem in our case amounts to deciding whetherAθ has an
embedded DFAA′ such thatL(Uθ) ⊆ L(A′).

Assume first thatθ is satisfiable. Letf : {1, ..., n} → {true, false} be a satisfying assignment to the
variables ofθ. We describe a deterministic automatonA′

f embedded inAθ such thatL(Uθ) ⊆ L(A′
f).

Note that in order to obtain fromAθ a DFA, one should resolve two kinds of nondeterministic choices.
First, for every statexi, we have to choose a single#-successor. We define the#-successor ofxi to be
if(xi). Then, in the initial stateq0, we have to choose for every letter1 ≤ j ≤ m a singlej-successor.
Sincef is a satisfying assignment forθ, then every clausecj has at least one literal satisfied byf . For
a letterj, we define thej-successor ofq0 to bexi, for the minimali such that eitherxi is a literal incj
andf(xi) = true of¬xi is a literal incj andf(xi) = false. It is easy to see that for all1 ≤ j ≤ m, the
word j#j is in L(A′

f).

For the other direction, assume thatAθ has an embedded DFAA′ such thatL(Uθ) ⊆ L(A′). The
transition functionδ′ of A′ induces an assignmentf where for all1 ≤ i ≤ n, we have thatf(i) = true iff

7

q0

acc

A
θ
1 :

#

x2x1

#

2,3 1,2
1 3

1,2,31,2,3

2false2true1false1true

A
θ
2 :

#

2

1
2 3

1 3

Fig. 1. The NFAA
θ
1 and the DFAAθ

2 corresponding toθ = (x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x2) ∧ (¬x1 ∨ ¬x1 ∨ ¬x2).

δ′(xi,#) = itrue . SinceL(Uθ) ⊆ L(A′), then for all1 ≤ j ≤ m, the wordj#j is accepted byA′. Thus,
for every1 ≤ j ≤ m, there exists a variable1 ≤ ij ≤ n, such thatδ′(q0, j) = xij , δ

′(xij ,#) = (ij)val,
andδ′((ij)val, j) = qacc. By the definition ofAθ, there is a transition labeledj from the stateival to qacc
iff assigningval to xi satisfies the clausecj . It follows that for every clausecj , the variablexij is such
thatxij is a literal incj andδ′(xij ,#) = (ij)true or ¬xij is a literal incj andδ′(xij ,#) = (ij)false .
Hence,f is a satisfying assignment forθ. ⊓⊔

By Theorem 2, the application of our results to online algorithms is as follows.

Corollary 1. Consider an optimization problemP with a setS of configurations, an approximation
factorα ≥ 1, and an NFAU .

– [model checking]Given an online algorithmg for P that uses configurations inS, deciding whether
g is α-competitive with respect to environments restricted to input sequences inL(U) can be solved
in time polynomial inS andU .

– [synthesis]Deciding whether there is anα-competitive online algorithm forP that uses configura-
tions inS, with respect to environments restricted to input sequences inL(U), is NP-complete.

4 Reasoning about Online Algorithms with Look-ahead

In this section we describe a framework for reasoning about online algorithms that have abounded
lookaheadon the requests yet to come. We consider the case where the online algorithmcan see not
only the next request, but rather the nextl + 1 requests for some constantl ≥ 0. For several classes
of optimization problems, like dynamic location and online graph problems, it was shown that online
algorithms with a lookahead above a certain minimal length can achieve better competitive ratios than
algorithms with a shorter (or no) lookahead [CGS89,Ira94]. To the best of our knowledge, there are
also problems, like online bipartite matching [KT91], for which it is not fully known how beneficial a
lookahead can be.

An online algorithm with lookaheadl for an optimization problemP is an algorithm that at each
point i > 0 in time, reads the nextl + 1 requestsri, . . . , ri+l that need to be processed, and serves the
requestri. The requestsri+1, . . . , ri+l (i.e., thelookahead) arenotserved at timei, but rather when their
respective times come. The use of the lookahead at timei is only to guide the algorithm in serving the
requestri. 4 Formally, given a setΣ of requests, and a setΓ of actions, let⊥ be a new symbol designating

4 Note that while this is perhaps the most natural kind of lookahead, other types of lookahead have also been considered in
the literature. However, these (for example, the “strong lookahead” of[Alb97] for paging) are usually specifically tailored
for a specific class of optimization problems.

8

the end of the input. A wordx = x1 · · ·xn ∈ (Σ ∪ {⊥})+ is legal if for all 1 ≤ j < n, if xj = ⊥ then
xj+1 = ⊥. Forn > 0, we denote byΣn

⊥ = {x ∈ (Σ ∪ {⊥})n : x is legal} the set of all legal lookahead
words of lengthn, and byΣ+

⊥
the set

⋃

n>0Σ
n
⊥ of all legal words in(Σ ∪ {⊥})+. An online algorithm

with lookaheadl corresponds to a functiong : Σ+×Σl
⊥ → Γ . The processing of a sequence of requests

σ1 · · ·σn ∈ Σn by g is theng(σ1, σ2 · · ·σl+1), g(σ1σ2, σ3 . . . σl+2), . . . , g(σ1 . . . σn, σn+1 . . . σn+l),
whereσi = ⊥ for everyi > n. Note that at timei > 0 the lookahead isσi+1 · · ·σi+l, and it contains the
end-of-input symbol for every position after the last requestσn. Similar to the case with no lookahead,
we say that an online algorithm with lookahead of lengthl uses a finite memoryS, if there is a regular
mapping ofΣ∗ ×Σl

⊥ to S such thatg behaves in the same manner on identical continuations of words
that are mapped to the same configuration. The definitions of the cost of processing a sequence of
requests, as well as the definitions ofα-competitiveness and the competitive ratio ofg, are carried over
from the definitions given in Section 2 for online algorithms with no lookahead.

In order to handle algorithms with lookahead, we construct (instead of the automatonAP of Sec-
tion 2.3) an automatonAP,l such that every online algorithm forP that uses memoryS and lookahead of
lengthl is embedded inAP,l. The construction ofAP,l is very similar to that ofAP , the main difference
being that now the alphabet ofAP,l is Σ × Σl

⊥, to match the way requests are presented to an online
algorithm with a lookahead of lengthl. Observe that not all sequences of letters inΣ × Σl

⊥ need be
considered. Indeed, if(σ, y), (σ′, y′) ∈ Σ ×Σl

⊥ are two consecutive blocks of requests presented to the
online algorithm, then it must be thaty = σ′ · y′1 · · · y

′
l−1, i.e., that the lookaheady indeed matches the

following l requests. In order to make sure that irrelevant sequences have no influence,AP,l does not
accept such sequences (in fact, it simply crashes when reading such asequence). To this end,AP,l has
to remember the lookahead in every input letter that it reads.

Formally,AP,l = 〈Σ × Σl
⊥, S0 ∪ (S × Σl

⊥), ∆, c, S0, S × {⊥l}〉, whereS0 ⊆ S is the subset of
initial configurations ofS; For a source stateu of the formu = s ∈ S0 or u = (s, x) ∈ S × Σl

⊥, an
input (σ, y) ∈ Σ ×Σl

⊥, and a destination state(s′, x′) ∈ S ×Σl
⊥, we have that〈u, (σ, y), (s′, x′)〉 ∈ ∆

iff (i) y = x′, and ifu is of the formu = (s, x) thenx1 = σ andx2 · · ·xl · x′l = y, (ii) the setΓ ′ ⊆ Γ
of actions that process the requestσ from configurations, by updating the configuration tos′, is non-
empty; the cost of such a transition isc(〈u, (σ, y), (s′, x′)〉) = minγ∈Γ ′ action cost(γ); Note that the
accepting states are all configurations that are coupled with a lookahead of ⊥l, which indicates that the
input sequence has ended.

LetP be an optimization problem, and letAP,l be a WFA for its algorithms that use memoryS and
lookahead of lengthl. Observe that, likeAP , the automatonAP,l represents the optimal offline algorithm
for P in the sense that given a finite sequence of requestsw ∈ Σ∗, the cost ofw in AP is the cost ofw in
an optimal offline algorithm whose configurations are inS. On the other hand, it is not hard to see that
an online algorithm with lookahead of lengthl, that uses memoryS, corresponds to a DWFA embedded
in AP,l. Formally, given such an online algorithmg : Σ+ × Σl

⊥ → Γ , the DWFA embedded inAP,l

and induced byg is an automatonAg
P,l in which, for every configurations ∈ S, and every request (with

lookahead)(σ, y) ∈ Σ × Σl
⊥, we have thatδ(s, (σ, y)) = (s′, y) for every initial configurations ∈ S0,

andδ(〈(s, σ · y1 · · · yl−1), (σ, y)〉) = (s′, y) for all s ∈ S; wheres′ is the configuration obtained by
applying the actiong(w · σ, y) from s, andw is such thath(w, σ · y1 · · · yl−1) = s.

Theorem 5. Given an optimization problemP , a setS of configurations, andl ≥ 0. LetAP,l be a WFA
that models online algorithms forP that use memoryS and lookahead of lengthl. An online algorithm
g that uses memoryS and lookahead of lengthl is α-competitive iffAg

P,l α-approximatesAP,l.

By [AKL10], given AP,l, deciding if it has an embedded DWFA thatα-approximates it (and also
obtaining such DWFAs) can be done in time polynomial in the size ofAP,l if α = 1, and is NP-complete
for α > 1; whereas givenAg

P,l, deciding if itα-approximatesAP,l can be done in polynomial time for
all values ofα. Thus, Theorem 5 implies the following:

9

Corollary 2. Consider an optimization problemP with a setS of configurations, an approximation
factorα ≥ 1, and somel ≥ 0.

– [model checking]Given an online algorithmg for P that uses configurations inS and lookahead
of sizel, deciding whetherg isα-competitive can be solved in time polynomial inS and exponential
in l.

– [synthesis]Deciding whether there is anα-competitive online algorithm forP that uses memoryS
and lookahead of lengthl, can be done in polynomial deterministic (nondeterministic) time inS for
α = 1 (α > 1, respectively) and time exponential inl.

Note that the model-checking and synthesis algorithms that we get are exponential inl. While we do
not prove a matching lower bound, we were able to prove co-NP-hardness inl (by a reduction from the
problem of deciding whether an NFW accepts all words of lengthl or less). Also, earlier work on looka-
head inω-regular games suggests that an exponential cost in the lookahead cannot be avoided [HKT10].

5 Symbolic Model-Checking Algorithm

In this section we describe a symbolic model-checking algorithm for online algorithms. The explicit al-
gorithm of [AKL10] gets as input a WFAA1 = 〈Σ,Q1, ∆1, c1, S1, F1〉, a DWFAA2 = 〈Σ,Q2, ∆2, c2, s2, F2〉
embedded inA1, and an approximation factorα, and decides in polynomial time whetherA2 α-
approximatesA1.

Let m = |Q1| = |Q2|. The algorithm is based on iteratively calculating functionsfi : Q1 × Q2 →
Z ∪ {−∞,∞}. The dependency inm is reflected both in the size of the required data structure, and the
number of iterations that the algorithm performs. A symbolic algorithm cannot avoid the time complexity
that the iterative calculation involves, but it copes with the space complexity byworking with a symbolic
representation of all the components of the automata and of the functionsfi.

The data structures we work with areBinary Decision Diagrams(BDDs, for short) [Bry86] and
multi-valuedBDDs (MVBDDs, for short). While a BDD represents a Boolean function,MVBDDs as-
sign to each truth assignment of the variables a value inZ ∪ {−∞,∞}. We implement an MVBDD by
an array of BDDs, each encoding a single bit of the value. Usingb BDDs, the value of the MVBDD is
then ab-bit signed two’s complement integer. It has a minimum value of−2b−1 and a maximum value
of 2b−1 − 1 (inclusive). In addition, we maintain two BDDs, for−∞ and∞.

We now move to a detailed description of the symbolic model-checking algorithm (Figure 2). In
addition toα, the algorithm gets as input a symbolic representation ofA1 andA2. The sets of variables
X andW are used in order to encodeQ1 andΣ, respectively. Accordingly, the transition function∆1 is
described by an MVBDDtrans1 : X ×W ×X ′ → IN ∪∞, whereX ′ is a tagged copy ofX. Formally,
trans1(〈q1, a, q′1〉) is c(〈q1, a, q

′
1〉) for 〈q1, a, q′1〉 ∈ ∆1, and is∞ otherwise. Note that the domain of

trans1 are truth assignments to the variables inX,W , andX ′, and not tuples inQ1 × Σ × Q1; since,
however, the variables encode such triples, we abuse notation and refer to trans1(〈q1, a, q′1〉). Note that
we use weights in IN rather than in IR≥0. The setsS1 andF1 are described by the BDDsinit1 andfin1
overX, respectively. The WFAA2 is described in a similar manner, with variables inY andW . Let
V = X ∪X ′ ∪W ∪ Y ∪ Y ′. For convenience, we refer to all BDDs as functions fromV (even though
the function they maintain may be independent of some of the variables).

The algorithm uses the following operators.

– The functionsnot : BDD → BDD andand : BDD × BDD → BDD operate as the corre-
sponding logical operators of negation and conjunction, respectively.

– The operatorset value gets an MVBDDf , a BDD cond, and a valueval, and sets the value off
to val for the inputs characterized bycond.

10

– The operatorprime gets an MVBDDf whose function is independent ofX ′ andY ′ and turns it
into an MVBDD that corresponds to the function obtained fromf by replacing the variables inX
andY by their tagged copies inX ′ andY ′.

– The functionsadd, sub,max : MVBDD ×MVBDD → MVBDD return the MVBDD obtained by
applying addition, subtraction, and maximum, respectively, on the given MVBDDs.

– The functionget BDD : MVBDD → BDD returns a BDD whose value is 1 exactly on the inputs
on which the value of the given MVBDD is not∞. In particular,get BDD(trans) returns a BDD
representing the (un-weighted) transitions.

– The functionless than : MVBDD × MVBDD → BDD gets two MVBDDs,f andg, and returns
a BDDh such that for allv ∈ 2V , we haveh(v) = 1 iff f(v) ≤ g(v).

– The functionvar max : 2V × MVBDD → MVBDD gets a setU of variables and an MVBDD
g and returns an MVBDDf such that for allv ∈ 2V , we havef(v) = max{g(v′) : v′ agrees
with v on the variables not inU}. Note thatf(v) is independent of the variables inU . The function
cond max : 2V × BDD × MVBDD → MVBDD is similar, but gets in addition a BDDs, and the
maximum of the MVBDDg is taken only overv′’s that agree withv on the variables not inU and
satisfys(v′) = 1. If no suchv′ exists, thenf(v) = −∞.

The algorithm calculates functionsfi : X × Y → Z ∪ {−∞,∞}, for 0 ≤ i ≤ 2m2. The functionfi
indicates the competitiveness ofA2 with respect to words of length at mosti. Formally, for every two
statesq1 ∈ Q1 andq2 ∈ Q2, the valuefi(q1, q2), for 0 ≤ i ≤ m2, equals−∞ if no word of length at
mosti is accepted fromq1, it equals∞ if there exists a word of length at mosti that is accepted from
q1 but not fromq2, and it equalst ∈ Z if t is the maximal value such that there exists a word of size at
mosti that is accepted fromq1 at a cost ofc, and fromq2 at a cost ofα · c+ t. Form2 ≤ i ≤ 2m2, the
algorithm takes into account cycles along which the performance ofA1 is “unboundedly better” than
that ofA2, in which case the value offi(q1, q2) is increased to∞. As proved in [AKL10], such cycles
would be detected after at mostm2 iterations, and their influence on the ability ofA2 to α-approximate
A1 would be detected after another round ofm2 iterations. Thus, the algorithm needs not computefi
for i > 2m2.

The algorithm first definesf0 so thatf0(q1, q2) is−∞ if q1 /∈ F1, is0 if q1 ∈ F1 andq2 ∈ F2, and is
∞ if q1 ∈ F1 andq2 /∈ F2. Each loop iteration getsfi−1 and calculatesfi. For that, the algorithm calcu-
lates an MVBDDg. After executing Line 8, we haveg(〈q1, q′1, a, q2, q

′
2〉) = fi−1(q

′
1, q

′
2)+c2(q2, a, q

′
2)−

α·c1(q1, a, q
′
1). Thus, after Line 14, we havefi(q1, q2) = max{fi−1(q1, q2),maxa∈Σ fa(q1, q2)}, where

fa(q1, q2) = maxq′
1
∈δ1(q1,a)[fi−1(q

′
1, δ2(q2, a)) + c2(q2, a, δ2(q2, a))− α · c1(q1, a, q

′
1)]. If i ≥ m2 and

fi(q1, q2) ≥ fi−1(q1, q2), thenfi(q1, q2) is further increased, in Line 17, to∞.
Finally, note that the fact we only care about embedded DWFA (only DWFA correspond to deter-

ministic online algorithms) is crucial for the correctness of the algorithm. Indeed, the calculation of
fa(q1, q2) makes use of the fact that in a DWFA, the stateq1 has only a singlea-successor.

When implementing the symbolic algorithm, we have tried to minimize the maximal number of
variables for a single MVBDD, but (as is the case with other symbolic algorithmsthat relate two systems)
we could not avoid the construction of the MVBDDg that depends on all the variables inV .

We note here that the implementation of the symbolic algorithm is applicable also for the results
appearing in the previous sections. The algorithm given in Section 3 for deciding whether a given online
algorithm isα-competitive with respect to a given restriction on the environment actually uses the algo-
rithm described above as a sub-routine. Before running the algorithm it should only compute a product
of two automata. This can be easily implemented symbolically. As for the algorithm given in Section 4
for reasoning about online algorithms with lookahead, it simply uses the algorithm described above as a
black-box.

Experimental Results Before describing our experimental results, we would like to stress that themain
contribution of the paper is the ideas behind the algorithm – our implementation is not a suggestion

11

Symbolic model-checking(init1, trans1, fin1, init2, trans2, fin2, α)

1: set value(f0,not(fin1),−∞);
2: set value(f0,and(fin1, fin2), 0);
3: set value(f0,and(fin1,not(fin2)),∞);
4: i := 0;
5: repeat
6: i++;
7: prime(fi−1);
8: MVBDD g := sub(add(fi−1, trans2), α · trans1);
9: BDD t1 := get BDD(trans1);

10: BDD t2 := get BDD(trans2);
11: BDD matchtrans:= and(t1, t2);
12: MVBDD fa := cond max(D,matchtrans, g);
13: MVBDD h := var max(W, fa);
14: fi := max {fi−1, h};
15: if i ≥ m2 then
16: BDD diff := less than(fi−1, h);
17: set value(fi, diff,∞);
18: end if
19: until (fi == fi−1) or (i == 2m2);
20: BDD init states:= and(init1, init2);
21: MVBDD approx := var max(X ∪ Y, init states, fi);
22: if approx < ∞ then
23: return true ;
24: else
25: return false;
26: end if

Fig. 2.The symbolic model-checking algorithm.

for a ready-to-run tool, but rather a justification for the argument that our algorithm can actually be
implemented symbolically. It is very likely that researchers with more experience in implementations
could have come up with a much better implementation. We still find it encouraging that even our naive
implementation has led us to interesting and practical insights, as described below.

The most natural modeling of paging is by a WFA whose set of states corresponds to the configu-
rations of the cache. Such a modeling corresponds to non-marking algorithms, as it does not allow the
algorithm to use information beyond the set of pages that are currently in thecache. In the course of
applying our implementation of the symbolic algorithm to paging, we have realized that the only non-
marking competitive algorithm for paging we are aware of, Flush-when-Full (FWF) [BEY98,KMRS88],
is not lazy (also referred to as “demand paging” in [BEY98]); that is, it may evict from the cache more
than a single page in case an eviction is required. From a practical standpoint, such evictions are waste-
ful, and a reasonable implementation ofFWF would keep the cache full at all times and only mark
the pages spuriously evicted byFWF – thus treatingFWF as a marking algorithm. This has led us to
the development of an online algorithm that is both lazy and non-marking. Unfortunately for us, we
later discovered that this algorithm already appears asROTATE in [CKPV91], where it is proved to be
k-competitive, by means of amortized analysis. Below we give a brief description of FWF andROTATE.

12

Algorithm FWF (Flush-when-Full). The idea behindFWF is quite simple: on a fault, if the cache is
full, simply empty the cache, and then bring the requested page into the cache.Using our formalism,
Algorithm FWF can be described as follows. Initially, the cache configuration is empty. At any given
step, letC be the current configuration andr the requested page. Then

FWF(C, r) =







C if r ∈ C
C ∪ {r} if r /∈ C and|C| < k
{r} if r /∈ C and|C| = k

Algorithm ROTATE. As mentioned in Section 5, it turns out thatROTATE is the only knownk-
competitive algorithm that is both lazy and non-marking.

Assume that the set of pages isΣ = {1, 2, ..., n}. We think of the sequence1, 2, ..., n as being
wrapped around a circle, say clockwise. If a requested pager is not in the cache, and the cache is
full, find the pagev in the cache that is closest, in the counter-clockwise order around the circle, to r,
and replacev by r in the cache. Intuitively, thek cache locations travel clockwise around the circle in
response to the requests, without passing each other.

We now give a more formal description. Forx, y ∈ Σ, define

[x, y] =

{

{x, x+ 1, ..., y} if x ≤ y,
{x, x+ 1, ..., n, 1, ..., y} if x > y.

Initially, the cache configuration is empty. At any step, letC be the current cache configuration andr
the new request. Then

ROTATE(C, r) =







C if r ∈ C,
C ∪ {r} if r /∈ C and|C| < k,
(C − {v}) ∪ {r} if r /∈ C, |C| = k andC ∩ [v, r] = {v}.

We have studied thek-competitiveness ofROTATE andFWF using an implementation of the sym-
bolic algorithm written in Java, using JavaBDD [Wha] as a high level object oriented layer, on top of the
BDD library CUDD [Som]. As our test platform, we used a Pentium 4, 3.2Ghz Linux Machine with 4GB
of RAM. Due to the limitations of the 32bit Java Virtual Machine we used, our program was limited to
using at most 2GB of memory. Our experimental results are described in Figure 3. Note that the number
of states in a WFA representing a paging algorithm with parametersn andk is of ordernk. Thus, the
computational bottleneck isk. With our näıve implementation, this resulted in a memory requirement of
over 2GB for very low values ofk. It is also interesting to note that in some cases an explicit version of
the algorithm actually performed better than the symbolic one. For example, the explicit version was able
to prove thek-competitiveness ofFWF with parametersk = 4 andn = 23 (8 iterations, 5.5 minutes,
650MB), as well as to model checkROTATE with parametersk = 3 andn = 23 (7 iterations, 3 minutes,
200MB). Both of these tests could not be completed in the symbolic implementation asit exceeded the
2GB memory limit. The explanation for the high memory requirement of the symbolic algorithm lies in
the fact that some of the intermediate calculations require storing functions over five domains, whereas
the explicit algorithm never has to consider functions over more than three domains. On the other hand,
one can see that the symbolic algorithm could handle instances (likeFWF with k = 2 andn = 254) that
are clearly beyond the scope of an explicit implementation.

The experimental results achieved with our naive implementation are not impressive, but we find
them encouraging. First, they prove that formal reasoning about competitive ratios of online algorithms
is feasible, both in theory and practice. Second, even though the instances we considered were very
small, they have led us to rediscover the algorithmROTATE, showing that a lot of insight can be gained
even when working with small instances. Third, we discovered that while in the worst case the symbolic
algorithm may run for2m2 iterations, in practice it converges many orders of magnitude faster. For

13

k n Time Memory # of Iterations

2 23 < 1 Sec.< 100 MB 4
2 26 4 Sec. 170 MB 4
2 220 25 Sec. 600 MB 4
2 240 100 Sec. 1300 MB 4
2 254 6 Min. 2000 MB 4

3 22 < 1 Sec.< 100 MB 6
3 23 10 Min. 620 MB 6

k n Time Memory # of Iterations

2 23 < 1 Sec.< 100 MB 4
2 26 7 Sec. 170 MB 4
2 210 100 Sec. 250 MB 4
2 220 12 Hrs. 1300 MB 4

FWF ROTATE

Fig. 3.Experimental Results

example, while some of our experiments have a value of2m2 above250, in all cases the algorithm
converged to termination in at most6 iterations! In fact, the main bottleneck seems to be the memory
requirements of our BDD based implementation, and the associated time requiredto handle very big
BDDs. It is our belief that representing MVBDDS not by arrays of BDDs, but rather by utilizing more
efficient constructs such asMulti Terminal BDDs (MTBDDs)[FMY97], or Algebraic Decision Diagrams
(ADDs)[BFG+97], would enable much larger instances to be handled.

AcknowledgmentWe thank Marek Chrobak for helpful discussions.

References

[AKL10] B. Aminof, O. Kupferman, and R. Lampert. Reasoning about online algorithms with weighted automata.ACM
Transactions on Algorithms, 6(2), 2010.

[AKL11] B. Aminof, O. Kupferman, and R. Lampert. Rigorous Approximated Determinization of Weighted Automata. In
Proc. 26th IEEE Symp. on Logic in Computer Science, pages 345–354, 2011.

[Alb97] S. Albers. On the influence of lookahead in competitive paging algorithms.Algorithmica, 18:283–305, 1997.
[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:1020 states and

beyond.Information and Computation, 98(2):142–170, 1992.
[BDBK+94] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On the power of randomization in on-line

algorithms.Algorithmica, 11(2):2–14, 1994.
[BEY98] A. Borodin and R. El-Yaniv.Online Computation and Competitive Analysis. Cambridge University Press, 1998.
[BFG+97] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A.Pardo, and F. Somenzi. Algebraic decision

diagrams and their applications.Formal Methods in System Design, 10(2-3):171–206, 1997.
[BIRS95] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive Paging with Locality of Reference.Journal of

Computer and System Sciences, 50(2):244 – 258, 1995.
[Bre98] D. Breslauer. On competitive on-line paging with lookahead.Theoretical Computer Science, 209(1–2):365–375,

1998.
[Bry86] R.E. Bryant. Graph-based algorithms for Boolean-functionmanipulation. IEEE Transactions on Computing,

C-35(8):677–691, 1986.
[CCH+05] A. Chakrabarti, K. Chatterjee, T.A. Henzinger, O. Kupferman, and R. Majumdar. Verifying quantitative properties

using bound functions. InProc. 13th Conf. on Correct Hardware Design and Verification Methods, volume 3725
of Lecture Notes in Computer Science, pages 50–64. Springer, 2005.

[CGS89] F. R. K. Chung, R. L. Graham, and M. E. Saks. A dynamic location problem for graphs.Combinatorica,
9(2):111–131, 1989.

[CHJ08] K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assumptions for synthesis. InProc. 19th Int. Conf.
on Concurrency Theory, volume 5201 ofLecture Notes in Computer Science, pages 147–161. Springer, 2008.

[CKPV91] M. Chrobak, H.J. Karloff, T.H. Payne, and S. Vishwanathan. New Results on Server Problems.SIAM J. Discrete
Math., 4(2):172–181, 1991.

[CL92] M. Chrobak and L.L. Larmore. The server problem and on-line games. InOn-line Algorithms, volume 7 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 11–64, 1992.

[FMY97] M. Fujita, P.C. McGeer, and J.C.-Y. Yang. Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure
for Matrix Representation.Formal Methods in System Design, 10(2-3):149–169, 1997.

[Fra86] N. Francez.Fairness. Texts and Monographs in Computer Science. Springer, 1986.
[HKT10] M. Holtmann, L. Kaiser, and W. Thomas. Degrees of lookahead in regular infinite games. InProc. 13th Int. Conf.

on Foundations of Software Science and Computation Structures, volume 6014 ofLecture Notes in Computer
Science, pages 252–266. Springer, 2010.

14

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt, editor,Logics and Models of
Concurrent Systems, volume F-13 ofNATO Advanced Science Institutes, pages 477–498. Springer, 1985.

[Imm88] N. Immerman. Nondeterministic space is closed under complement. Information and Computation, 17:935–938,
1988.

[Ira94] S. Irani. Coloring inductive graphs on-line.Algorithmica, 11(1):53–72, 1994.
[KMRS88] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator.Competitive snoopy caching.Algorithmica, 3(1):79–

119, 1988.
[KS86] W. Kuich and A. Salomaa.Semirings, Automata, Languages, volume 5 ofEATCS Monographs on Theoretical

Computer Science. Springer, 1986.
[KT91] M.-Y. Kao and S. R. Tate. Online matching with blocked input.Inf. Process. Lett., 38(3):113–116, 1991.
[MMS90] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for server problems.J. Algorithms,

11(2):208–230, 1990.
[Moh97] M. Mohri. Finite-state transducers in language and speech processing.Computational Linguistics, 23(2):269–

311, 1997.
[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about programs. In K. Apt, editor,Logics

and Models of Concurrent Systems, volume F-13 ofNATO Advanced Science Institutes, pages 123–144. Springer,
1985.

[Som] F. Somenzi. CUDD package, release 2.4.1.http://vlsi.colorado.edu/ ˜ fabio/CUDD/ .
[ST85] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.Communications of the ACM,

28(2):202–208, 1985.
[Wha] J. Whaley. JavaBDD package, release 1.0b2.http://javabdd.sourceforge.net/ .
[You91] N. Young. On-line caching as cache size varies. InProc. 2nd ACM-SIAM Symp. on Discrete Algorithms, pages

241–250, 1991.

15

