Formal Analysis of Online Algorithms*

Benjamin Aminot, Orna Kupfermah and Robby Lampett

1 School of Computer Science and Engineering,Hebrew Universitysdkem 91904, Israel
2 Department of Computer Science, Weizmann Institute of Science, Bef6%00, Israel

Abstract. In [AKL10], we showed how viewing online algorithms as reactive systemables the application
of ideas from formal verification to the competitive analysis of online atlgors. Our approach is based on
weighted automata, which assign to each input word a costif. By relating the “unbounded look ahead”
of optimal offline algorithms with nondeterminism, and relating the “no loakeati of online algorithms with
determinism, we were able to solve problems about the competitive ratidiné@lgorithms and the memory
they require.

In this paper we improve the application in three important and technicalljeclytng aspects. First, we
allow the competitive analysis to take into account assumptions about tlierenent. Second, we allow the
online algorithm to have a bounded lookahead. Third, we describe aofigmbrsion of the model-checking
algorithm and demonstrate its applicability. The first two contributions bro#uke scope of our approach to
settings in which the traditional analysis of online algorithms is particularly ¢icatpd. The third contribution
improves the practicality of our approach and enables it to handle laagerspaces.

1 Introduction

In formal verification we verify that a system has a desired property by checking whethedal mb
the system satisfies a formal specification of the property. An importaturéaf formal verification
is that it enables reasoning abaahactive systemsvhich maintain an on-going interaction with their
environment [HP85].

Online algorithmdor optimization problems can be viewed as reactive systems. An online algorith
processes requests in real-time: At each round, the environment sgeesiest, and the algorithm
should process it. The sequence of requests is not known in adwartéhe goal of the algorithm is
to minimize the overall cost of processing all the requests in the sequemcex&mple, in thgaging
problem, we have a two-level memory hierarchy: A slow memory that contadifferent pages, and
a cachethat contains at most different pages (typicallyk¢ < n). Pages that are in the cache can be
accessed at zero cost. If a request is made to access a page thanitheatache, the page should be
brought into the cache, at a cost of 1, and if the cache is full, some odiger ghould first be evicted
from the cache. The paging problem is, given a sequence of requesges, to decide which page to
evict whenever an eviction is needed. The goal is to minimize the total cost.eGagjarithms for many
problems have already been extensively studied for several de@adbbhave aroused much interest,
both from a practical and a theoretical point of view [BEY98].

The interaction described above between an online algorithm and its emérnris at the heart of
formal verification. Still, the questions that are traditionally answered bmdbwerification techniques
are very different from those that are asked in the context of onliraritigns. In formal verification,

a system is checked with respect to a given specification. The speciiicaiobe qualitative (e.g.,
“whenever a request to a page is made, and this page is not in the caelpggh is brought into
the cache”) or quantitative (e.g., “what is the maximal number of page faitlénwa window of
rounds?”) [CCH 05]. The most interesting question about an online algorithm, howevenaidiéferent
nature, and refers to itsompetitive ratio the worst-case (with respect to all input sequences) ratio
between the cost of the algorithm and the cost of an optimal solution (onentnabe given by an
offline algorithm which knows the input sequence in advance). Thus, we can speeifydtiel-checking

* Supported in part by the Minerva Center at the Weizmann Institute, and Bydeanced Research Grant from the ERC
under the European Community’s 7th Framework Programme.

problem of online algorithms as follows: Consider an optimization probfei@iven an algorithng and
a competitive ratiay, is g a-competitive with respect to an optimal offline algorithm fé?

Recently, we extended the scope of formal verification to reasoning ablue algorithms [AKL10].
The approach in [AKL10] is based ameighted finite automat@VFAs, for short) [KS86,Moh97]. A
WFA A induces a partiatostfunction from X* to R=%. Technically, each transition od has a cost
associated with it. The cost of a run is the sum of the costs of the transiticers a&bng the run, and
the cost of a wordv, denotedcost(A, w), is the minimum cost over all accepting runs on it (the cost
is undefined if no run on the word is accepting). Consider an optimizatidsigaroP with requests in
Y. An algorithm for P can be viewed as a mapping of wordsJiit to a set of actions available to the
algorithm [BDBK™94]. For a finite sefs of configurations, we say that an algorithm uses mensoify
there is a regular mapping of* into S such that the algorithm behaves in the same manner on identical
continuations of words that are mapped to the same configuration.

The set of online algorithms fa? that use memong induces a WFAA p, with alphabet” and state
spaceS, such that the transitions gfp correspond to actions of the algorithms and the cost of each tran-
sition is the cost of the corresponding action. It is shown in [AKL10] thahyngptimization problems
have algorithms that use finite memory and can be modeled by weighted autordaetcalsed above.
Moreover, the “unbounded look ahead” of the optimal offline algorithmesponds to nondeterminism
in Ap, and the “no look ahead” of online algorithms corresponds to deterministicrata embed-
ded inAp. Consequently, questions about the competitive ratio of online algorithmiseceeduced to
questions abouwteterminizatiorandapproximated determinizatiasf WFAs [AKL11]. In particular, the
model-checking problem for an online algorithytan be reduced to the problem of deciding whether
the pruning of4p induced byg results in a deterministic automatotf, thata-approximates4 p (that
is, the automatood?, accepts the same set of words.4s, and cost(A%, w) < « - cost(Ap,w) for
all wordsw in this set). In addition, the synthesis problem for online algorithms can heeddo the
problem of deciding whethed p contains an embedded deterministic automatondhapproximates
Ap.

The competitive analysis of online algorithms takes into account the most hastiterement. In-
deed, an online algorithmis a-competitive if its cost with respect to every input sequences is at most
« times the cost of an optimal solution. Quite often, however, the nature of didepn restricts the
set of possible input sequences. Much research has been caitriedtre online-algorithm community
studying the competitive analysis of online algorithms under different agsemspabout the environ-
ment [BEY98]. For example, for the paging problem, Borodin et al. stuthedccess graph model
[BIRS95], which takes into account thecality of referenceprinciple. In the access graph model, the
paging problem is equipped with a graph whose vertices are the pagesy@pages can be requested
successively only if they are connected in the graph.

The first contribution of this paper is an extension of the framework in [AB]Lto a setting in which
assumptions about the environment can be taken into account. The isastricted environments is
well studied in formal verification. Ideas like fairness [Fra86], assgomez-antee reasoning [Pnu85],
and synthesis under restricted environments [CHJ08], have beeastadgdn order to take assumptions
about the environment into account. We study the competitive analysis okalfyorithms in which
assumptions about the environment are given by meansafideterministic finite automat@NFA, for
short). In this setting, the competitive ratio of an online algorithm is definedwitlyrespect to input
sequences that belong to the language of the assumption NFA. Our defgetienalizes restrictions
such as the one induced by the access graph — it supports all regguan@ons. In addition, it nicely
combines with the automata-based approach initiated in [AKL10]. Considanlare problemP, a set
of configurationsS for it, an approximation factos, an online algorithny that uses configurations in
S, and an assumption NFRX. We show that the problem of deciding whetlgeis a-competitive with
respect to input sequenceslifi/) (model checking with assumptigresin be solved in polynomial time.
On the other hand, the problem of deciding whether there is an online algdhtt uses configurations

2

in S and isa-competitive with respect to input sequenced.i¢/) (synthesis with assumptions NP-
complete. We note that NP-hardness holds already for unweighted autangata= 1, and even when

U is deterministic. This is in contrast to the setting with no assumptions studied in [BKLilwhich
synthesis withh = 1 can be solved in polynomial time. Thus, interestingly, the addition of assumptions
makes the problem substantially more complex.

The second contribution of this paper is an extension of the frameworkKih. 18] to a setting in
which the online algorithm haslzounded lookaheadn the requests yet to come. Since an offline al-
gorithm can be viewed as an online algorithm with an unbounded lookatieadetting of a bounded
lookahead covers the “middle-ground” between onlineness and offisehlowever, considering online
algorithms with lookahead is also interesting from a practical point of viewrantical applications, re-
guests do not always arrive one by one, but sometimes naturally odourrsts. Also, some applications
benefit from delaying requests so that a block of requests can betsahat once, minimizing common
overhead. Finally, in some applications requests are generated fastdrdfi@an be served, and thus the
online algorithm has to maintain a buffer containing requests that are peswiige. The challenges of
manually analyzing online algorithms are even bigger in the setting of lookdA#z8Y¥,Bre98,You91].
Indeed, the analysis has to take into an account the extended memory lgfdhlhm and the partition
of the input stream to requests that are in the lookahead and those that.afbe automata-theoretic
approach can be naturally extended to handle bounded lookahead ia alglorithms by means of au-
tomata with a bounded lookahead. Such automata read, in each transitignease of the next+ 1
letters, for a fixed parametéfthat is, the look ahead). We study the problems of determinization and ap-
proximated determinization of nondeterministic weighted automata with a boundexhkeead, and how
guestions about online algorithms can be reduced to them. Unfortunatefndhssis is exponential in
the lookahead. A similar computational cost is needed in the analysis of leatah regular infinite
games [HKT10], and we prove that the cost indeed cannot be polynomial.

One of the main challenges in formal verification is the need to cope with veryolign infi-
nite, state spaces. In our context, the state space often involves weights,thus very big. The third
contribution of the paper is a description ofymbolic algorithniBCM+92] for the problem of model-
checking of online algorithms. In symbolic reasoning, the state space atrdtiséions of the system
are given symbolically by characteristic functions over a set of variadhktsencode the state space of
the system. The operations allowed to the verification algorithm correspandrigpulations of predi-
cates over the set of variables. The fact a symbolic algorithm has to maeiputalicates over variables
forces it to refer to sets of elements rather than to individual elements. €ad&hind the algorithm is
as follows. Consider a WFAL. We say that a statgof A, («, i, t)-approximates a statg, for a com-
petitive ratioc, an integeti > 0, and an additive factar, if there is a deterministic automato4f with
initial stateq that is embedded il and in whichcost (A9, w) < t + a - cost(AY , w) for every wordw
of length at most, where.A? is A with initial stateq’. We show that given a symbolic representation of
pairs{q, ¢') such thay («, i, t)-approximateg’, it is possible to generate a symbolic representation of
pairs(q, ¢') suchthay («,i+1,t')-approximateg’, for the minimalt’ for which such an approximation
exists. Note that’ > ¢. The symbolic algorithm then calculates a fixed-point of the above transfor
tion. In the process, it detects cycles along whith is “unboundedly better” thamt?. The algorithm
then concludes that should be increased to infinity. Finally, the answer to the model-checkirgmo
is positive iff there is an initial statg such thaty («,i,0)-approximates, for all the initial states/
of A and the iteratiori in which a fixed-point was reach&dlhe symbolic implementation can handle
also assumptions about the environment and algorithms with lookahead. Weniempézl our symbolic
algorithm, and describe its application in reasoning about two online algorithmiisef paging problem.

% In [CL92], the authors use an iterative (non-symbolic) proceduredhecks fora-competitive algorithms to the server
problem. There, a fixed-point has been reached iff such an algoeitists. By [AKL10], the procedure can be terminated
after two rounds of quadratically many iterations.

2 Preliminaries

2.1 Weighted Automata

Standard automata map words¥ifi to either “accept” or “reject”. A weighted automaton can be viewed
as a partial function (defined only for accepted words) frbito R=°. Formally, aweighted finite
automatonWFA, for short) is a 6-tupled = (X, Q, A, ¢, Qo, F'), whereX' is a finite input alphabet)
is a finite set of states) C Q x ¥ x Q is a transition relation; : A — R= is a cost function, C Q
is a set of initial states, anfl C @ is a set of final states. A transitieh= (q, a, p) € A (also written as
A(q, a,p)) can be taken whed reads the input letter, and it causes! to move from state to statep
with costc(d). The transition relatiom\ induces a transition functioh: Q x X — 2% in the expected
way. Thus, for a state €) and a letten € X, we haved(q, a) := {p : A(q,a,p)}. AWFA A may be
nondeterministic in the sense that it may have many initial states, and that fogysemeanda € X,
it may haveA(q, a, p1) andA(q, a, p2), with p1 # pa. If |Qo| = 1 and for every state € @ and letter
a € ¥ we haveld(q,a)| < 1, thenA is adeterministioveighted finite automaton (DWFA, for short).

For a wordw = w;...w, € X* arun of A onw is a sequence = rory...r, € Q*, where
ro € Qo and for everyl < i < n, we have(r;_1,w;, ;) € A. The runr is accepting ifr,, € F.
The wordw is accepted byA if there is an accepting run ol on w. The (unweighted)anguageof
Ais L(A) = {w : wis accepted byd}. The cost of an accepting run is the sum of the weights of the
transitions that constitute the run. Formally, tfet= rory ... 7, be an accepting run ofl on w, and
letd = d;...d, € A* be the corresponding sequence of transitions. The cost®tost(A,r) =
>, c(d;). The cost ofw, denotedtost(A, w), is the minimal cost over all accepting runs.éfon w.
Thus,cost(A, w) = min{cost(A,r) : r is an accepting run ofl onw}.

For two WFAs A, = <Z, Q1, A4, c1, Q?, F1> and Ay = <Z, Q2, As, co, Qg, F2>, anda > 1,
we say thatd, a-approximatesA, if L(A;) = L(Az) and for all wordsw in both languages, we
havecost(A2, w) < a - cost(Ar,w). We say thatds is embeddedn A; if Q2 = Q1, QY C QY,
Ay C Ay, co agrees withe; on Ao, andF; = Fs. Thus, A5 can be obtained froml; by decreasing its
nondeterminism. Finally, given an approximation facior> 1, we say thatA is a-determinizable by
pruning(a-DBP, for short) if.4 has an embedded DWFA thatapproximatesA.

2.2 Online Algorithms

A problemassociates with each possible indua setF'(I) of feasible solutions. In anptimization
problem (of cost minimization), each solution if(1) has a cost in R", and the goal is to find a
feasible solution that minimizes the cost.

An online algorithmfor an optimization problen® is an algorithm that gets as input a finite se-
guence of requests, and has to process each request (and eralfepsible solution) without knowing
the requests yet to come. In contrastofftine algorithmfor P gets the entire sequence in advance, and
its decisions as to how to process a request may depend on the requiésisoyee.

Formally, if we denote by the set of requests, and denotelbyhe set of actions that are available
to the algorithm, then an online algorithm corresponds to a fungtionX* — I'. The processing
of an input sequence; ...o, by g is theng(o1), g(o102), g(o10203),.... In typical optimization
problems, there is a cost functiamtion_cost : I’ — R=? that associates a cost with each action. The
cost of processing an input sequence is the sum of the costs of thesakatieam in order to process
it. The performance of an online algorithm is typically worse than that of #mefalgorithm for the
same problem. For analyzing the performance of online algorithms weamspetitive analysjsvhich
compares the two performance values.

For an online algorithny and an inputv € X7, let g(w) denote the cost of processingby g,
and let OPTw) denote the cost of processingby the optimal offline algorithm. We say that an online
algorithm g is a-competitiveif there exists a constarnt such that for all input sequences ¢ X+

4

we have thay(w) < a-OPT(w) + 8. The competitive ratioof g is the smallestv for which g is a-
competitive. In the rest of the paper we restrict attention to the multiplicativerfacand ignore the
additive factors, except for places where it is not immediately clear how to hagdle

2.3 An Automata-Theoretic Approach to Reasoning about Online Algoithms

Recall that an online algorithm corresponds to a function™ — I" that maps sequences of requests
(the history of the interaction so far) to an action to be taken. For a finit§ sétconfigurations, we
say thatg uses memony, if there is a regular mapping df* into S such thaty behaves in the same
manner on identical continuations of words that are mapped to the sameucatifig.We model the
set of online algorithms that use memdfyand solve an optimization problef with requests in¥
and actions in", by a WFAAp = (X, S, A, ¢, Sy, S), where A and ¢ describe transitions between
configurations and their costs, afg is a set of possible initial configurations. Formally(s, o, s') if
the setl” C I' of actions that process the requedtom configurations by updating the configuration
to s’ is non-empty, in which cas€(s, o, s')) = min. ¢ action_cost(~y). Note that all the states ofp
are accepting. Thusdp assigns a cost to all sequencegifh

As demonstrated in [AKL10], many optimization problems have online algorithnmisehaire finite
memory. Below we describe the modeling of the paging problem, presentedtiorSe.

Example 1 [The paging problem[ST85]] A paging problemP with parameters (humber of pages)
andk (size of the cache) induces a WEA» = (X, S, A, ¢, Sy, S), whereX = {1,...,n} is the set of
possible requests (page indiceS)= {C C {1,...,n}: |C| < k} is a set of finite configurations, each
describing the set of pages currently in the cachegndc describe how (and at which cost) requests
are served, and, = {0}, indicating that the cache is initially empty. Thus(C, i, C’) iff one of the
following holds: (1)i € C, in which caseC’ = C andc¢((C,:,C")) = 0, (2)i ¢ C, |C| < k, and
¢’ = C U {i}, in which case:((C,i,C")) = 1,0r (3)i ¢ C, |C| = k, and there ig € C such that
C’' = (C\ {j}) U{i}, in which case:((C,i,C")) = 1. Note that by the definition of, a configuration
stores only the set of pages currently in the cache, and there are visigme for storing any extra
information such as time-stamps, etc. A different automaton for the probleid bave defined in a
way that allows the storage of such extra information. We will elaborate opdinig in the sequel.

Note that the above modeling restricts attentiotaizy (a.k.a. demand paging) algorithms, which
minimize the change of configurations so that only the current requesteds®y [MMS90], for every
non-lazy algorithm, there exists a lazy one that performs at least as well.

Let P be an optimization problem, and ldtp = (X, S, A, ¢, Sp, S) be a WFA for its algorithms that
use memornys. Given a finite sequence of requests X*, each run ofAp onw corresponds to a way
of serving the requests in by an algorithm with configurations ifi. The set of all runs includes all such
algorithms, thus the cost af in A p is the cost ofv in an optimal offline algorithm whose configurations
are based o (the configurations of the offline algorithm may also maintain the suffix of thetipet
to be processed. This information, however, would be implicit in the nondétesm of Ap). On the
other hand, an online algorithm has to process each request as sibanr@es, without knowing the
requests yet to arrive. Accordingly, an online algorithm that uses me\a@grresponds to a DWFA
embedded indp (note that this correspondence is lost if we consider unrestricted deteation of
Ap). Formally, given an online algorithm : X* — I" that uses memorg, leth : ¥* — S be the
regular mapping that witnesses tlyatises memons. Then, the DWFA embedded idp and induced
by g is an automatord?, in which, for all states € .S and requests € X, we havei(s, o) = ', where
s’ is the configuration obtained by applying the actign - o) from s, andw is such that(w) = s. In
other words, for allv € X*, we havey (h(w), o) = h(w - o).

5

Theorem 2. [AKL10] Given an online problen® and a setS of configurations, leid» be a WFA, with
state space, that models online algorithms fd? that use memory. An online algorithny, that uses
memorysS, is a-competitive ift4%, a-approximatesd p.

Note that the setting describes above forces the online algorithm to havartigestate space as
the offline one. In [AKL10] we described how the framework can hamatie online algorithms with a
richer state space. The same idea can be applied to the extensions studéecLimeht paper.

3 Adding Assumptions on the Environment

As discussed in Section 1, an online algorithm can be viewed as a reasiees The fact that a reactive
system has to satisfy its specification with respect to all input sequencesligaus to the fact that an
a-competitive online algorithm has to satigffw) < a-OPT(w) for all input sequences € X *. When
reasoning about reactive systems, it is sometimes desirable to restricivbesahquantification over all
input sequences to a subset of the possible inputs. The automata-thappetiach naturally formalizes
such assumptions in the context of online algorithms. We begin our study withiginted automata,
where things are typically simpler, and then move to weighted automata, which intetedianslates
to the context of online algorithms.

Given two NFAs,A andi/, we say that4 is determinizable by pruning with respect to assumptions
in U (U-DBP, for short), if.A has an embedded DFA’ such thatZ(.A) N L(U) C L(A"). Thus, A is
U-DBP if it can be pruned to a deterministic automaton that accepts all the wordsiinthat are also
in L(U). In this case we say that’ is awitnessfor .4 beingl/-DBP. Similarly, for the weighted case,
given a WFAA, an NFAU, and an approximation facter > 1, we say thatA is a-U/-DBP if A has
an embedded DWFA’ such that for alkv € L(.A) N L(U) we havecost(A',w) < a - cost(A,w).
Intuitively, the NFAL{ specifies assumptions about the environment. In particular, usual detzatiain
by pruning is a special case of the above, witlt/) = X*.

Therelaxede:-DBP problem is to decide, given a WFA, an approximation factar > 1, and an
NFA U, whetherA is a-U/-DBP. Therelaxede-DBP witness-checkingroblem is to decide, given a
WFA A, an NFAU, o > 1, and a DFA (DWFA)A’ embedded in4, whetherA’ is a witness fotd being
a-U-DBP. WhenA and A’ are NFAs (that is, unweighted), no approximation factor is given and:fee r
to the problems as thelaxed-DBPand therelaxed-DBP witness-checkimgoblems. The relaxed-
DBP problem corresponds to the synthesis problem, whereas the witnesisng problem corresponds
to model checking. We start with the relaxed-DBP and the relax@&BP witness-checking problems:

Theorem 3. The relaxed-DBP (relaxed-DBP) witness-checking problem is NLOGSPACE-complete
(in PTIME, respectively).

Proof: We first prove that the relaxed-DBP witness-checking problem is NLEX&E-complete, and
we start with the upper bound. Given two NF&sandi/, and a DFAA’ embedded in4, we have
that A" is a witness forA being/-DBP iff L(A) N L(U) C L(A’). Since A’ is deterministic, its
complementation is immediate, and thus, checking the above can be done in ACES

In order to prove NLOGSPACE-hardness, we describe a reductiom tihe non-reachability prob-
lem (proved to be NLOGSPACE-hard in [Imm88]) to the DBP witness-checkioblem. Consider a
directed grapltz = (V, E') and two vertices, t € V. Let B be some fixed NFA that has a single initial
state and is not DBP, and letbe a letter not in the alphabet Bf Consider the NFA3’ obtained form
G by labeling all its edges by, adding a self loop (labeled by) to s, definings to be the only initial
state, defining all the vertices 6f as accepting states, and “pluggifign ¢” (that is, adding ta: the
transitions that exit the initial state). Note that ift is not reachable froms, then the language @’
is o*. If ¢ is reachable froms, then the language &' is o* + o* - L(B). SinceB is not DBP, it is not
hard to see thatis not reachable fromiff 5’ is DBP.

We now move to the weighted case and prove that the relaxP&P witness-checking problem is
in PTIME. We describe a polynomial algorithm for solving the problem. Given a WEAn NFAU,
a > 1, and a DWFAA’ embedded ind, we first construct the WFA4 x U that accepts the language
L(A)NL(U) with the weights ofA. Thus, the states and transitions are defined as in the classical product
automaton, and the weights are induced from thos4.iRormally, let); and@, be the state spaces of
A andlU, respectively. Then, fof1, ¢] € Q1,¢2,¢5 € Q2, ando € X, we set the cost of the transition
({q1,q2), 0, (q}, d5)) to be the cost of the transitida, , o, ¢}) in A. Since the automatad’ is embedded
also inA x U, the relaxed=-DBP witness-checking problem reduces to th®BP witness-checking
problem with respect tol’ and. A x U/. By [AKL10], the latter can be solved in polynomial time. O

We now proceed to the relaxed-DBP problem. In the setting with no assumpiimus the envi-
ronment, it was shown in [AKL10] that the DBP-problem is polynomial for tineveighted case or for
the weighted case with = 1, and is NP-complete for the weighted case with> 1. As the follow-
ing theorem shows, adding assumptions makes the relaxed-DBP probleronyifete already for the
unweighted case, and thus significantly harder. On the positive sidageaksumptions does not make
the problem harder in the weighted case with- 1, where it stays NP-complete, as in the setting with
no assumptions.

Theorem 4. The relaxed-DBP and the relaxedDBP problems are NP-complete.

Proof: First, observe that the problems are in NP since gideandi/, we can guess a DFA’ embed-
ded in.4 and check whether it is a witness. By the above, this can be done in polynonaa

In order to show that the problems are NP-hard, we describe a redfrctinrBSAT to the relaxed-
DBP problem. Let be a 3CNF formula withn clausesg¢, .. ., ¢, over the variables,, ..., z,. We
construct an NFAA4? and a DFAL/ over the alphabef#, 1, ...,m}, such that4? is /°-DBP iff 6 is
satisfiable.

The NFA A% has the form of a DAG with four levels (see Figure 1 for an example). Oriittsie
level of the DAG there is a single initial statg. On the second level there anestatesxq, ..., z,,
corresponding to the variables éh For each state;, there aren transitions, labeled, ..., m from
o t0 x;. On the third level there argn statesly e, Liaise, - - - » Nirue, Nfaise, COrresponding to possible
truth assignments to the variables. For everng i < n, there are transitions, labeled, from x;
to i4e aNdigy. ON the fourth level there is a single accepting state. For everyl < i < n,
valuewval € {true, false}, and letterl < j < m, there is a transition labeletfrom i,y t0 gucc iff
assigningual to variable: satisfies the clausg.. For example, if the literabxs appears in clause,
then there is a transition label@drom the stateb ;. t0 gac.. It is easy to see that the languageAst
is {j#k :1 < j <m,1 <k < m}. The DFAU? is such thatL (/%) = {j#j:1<j<m}. ltis
easy to definé/’ with m + 2 states. It is left to show thakis satisfiable iff.A? is /?-DBP. Note that
since L(U%) C L(A%), the relaxed-DBP problem in our case amounts to deciding whethédras an
embedded DFA4’ such thatZ(14%) C L(A’).

Assume first thafl is satisfiable. Lef : {1,...,n} — {true, false} be a satisfying assignment to the
variables off. We describe a deterministic automatdf) embedded ind? such thatr, (U4/?) C L(AY).
Note that in order to obtain frond? a DFA, one should resolve two kinds of nondeterministic choices.
First, for every state;, we have to choose a singie-successor. We define thg-successor af; to be
if;)- 1hen, in the initial statgy, we have to choose for every letter< j < m a singlej-successor.
Sincef is a satisfying assignment féy then every clause; has at least one literal satisfied [y For
a letterj, we define the-successor ofy to bex;, for the minimali such that eitheg; is a literal inc;
and f(z;) = true of—z; is a literal inc; and f(z;) = false. It is easy to see that for all < j < m, the
word j#j is in L(A}).

For the other direction, assume th4f has an embedded DFA’ such thatZ.(4?) C L(A’). The
transition functiord’ of A’ induces an assignmefitvhere for alll < i < n, we have thaf (i) = true iff

7

Fig. 1. The NFA A{ and the DFAAS corresponding t@ = (z1 V @1 V @2) A (m21 V 22 V 22) A (@1 V ~21 V —22).

8" (x5, #) = itrue. SinceL(U?) C L(A'), thenforalll < j < m, the wordj#j is accepted byd’. Thus,
for everyl < j < m, there exists a variable < i; < n, such that’(qo, j) = Ty, 5’(%, #) = (4§)vais
andd’((5)val, J) = dace- By the definition ofA?, there is a transition labelgidfrom the staté,q; to gqce
iff assigninguval to z; satisfies the clausg. It follows that for every clause;, the variabler; is such
thatz;; is a literal inc; andd’(z;,, #) = (ij)true OF —y; i @ literal inc; and o’ (x;;, #) = (i5) faise-
Hence,f is a satisfying assignment fér a

By Theorem 2, the application of our results to online algorithms is as follows.

Corollary 1. Consider an optimization probler® with a setS of configurations, an approximation
factora > 1, and an NFA/.

— [model checking]Given an online algorithrg for P that uses configurations i, deciding whether
g is a-competitive with respect to environments restricted to input sequendgg/incan be solved
in time polynomial inS and{.

— [synthesis]Deciding whether there is an-competitive online algorithm foP that uses configura-
tions inS, with respect to environments restricted to input sequencéglify, is NP-complete.

4 Reasoning about Online Algorithms with Look-ahead

In this section we describe a framework for reasoning about onlineitdgw that have dounded
lookaheadon the requests yet to come. We consider the case where the online algcaithsee not
only the next request, but rather the néxt 1 requests for some constant> 0. For several classes
of optimization problems, like dynamic location and online graph problems, it vasrsthat online
algorithms with a lookahead above a certain minimal length can achieve betteetitbragatios than
algorithms with a shorter (or no) lookahead [CGS89,Ira94]. To the Hestioknowledge, there are
also problems, like online bipartite matching [KT91], for which it is not fully iwmhow beneficial a
lookahead can be.

An online algorithm with lookahead for an optimization problen® is an algorithm that at each
point: > 0 in time, reads the nexXt+ 1 requests, ..., r;4; that need to be processed, and serves the
request;. The requests;. 1, ..., ;4 (i.e., thelookahead arenotserved at time, but rather when their
respective times come. The use of the lookahead at#imenly to guide the algorithm in serving the
request;. * Formally, given a seE of requests, and a sEtof actions, letl. be a new symbol designating

4 Note that while this is perhaps the most natural kind of lookahead, othes tyfdookahead have also been considered in
the literature. However, these (for example, the “strong lookaheapRIb97] for paging) are usually specifically tailored
for a specific class of optimization problems.

the end of the input. Aword = z; - -z, € (Y U{L})"islegalifforall 1 < j < n,if z; = L then
xj41 = L. Forn > 0, we denote by} = {z € (Y U{L})": zis legal the set of all legal lookahead
words of lengthe, and by~ the set J,,., X of all legal words in(X U { L })™. An online algorithm
with lookahead corresponds to a functiogn: X+ x le — I'. The processing of a sequence of requests
o1---on € X" by gistheng(oy, 02 0141),9(0102,03...0142) ..., g(01 ... Opy Opt1 -+ Opntl),
whereg; = L for everyi > n. Note that at timé > 0 the lookahead is; - - - 0,4, and it contains the
end-of-input symbol for every position after the last requestSimilar to the case with no lookahead,
we say that an online algorithm with lookahead of lenftises a finite memory, if there is a regular
mapping of¥* x X% to S such thay behaves in the same manner on identical continuations of words
that are mapped to the same configuration. The definitions of the cost afgsing a sequence of
requests, as well as the definitionscetompetitiveness and the competitive ratigyptire carried over
from the definitions given in Section 2 for online algorithms with no lookahead.

In order to handle algorithms with lookahead, we construct (instead ofufeenatonA4p of Sec-
tion 2.3) an automatoA p; such that every online algorithm fét that uses memory and lookahead of
lengthl is embedded itd p;. The construction ofdp; is very similar to that ofd p, the main difference
being that now the alphabet ofp; is X x Zi, to match the way requests are presented to an online
algorithm with a lookahead of length Observe that not all sequences of lettersiine X need be
considered. Indeed, {7, y), (¢/,y’) € ¥ x X' are two consecutive blocks of requests presented to the
online algorithm, then it must be that= o’ - ¢/ - - - y;_,, i.e., that the lookaheaglindeed matches the
following I requests. In order to make sure that irrelevant sequences haveuena#lAp; does not
accept such sequences (in fact, it simply crashes when reading seduence). To this englp; has
to remember the lookahead in every input letter that it reads.

Formally, Ap; = (X x 21,80 U (S x £),A,¢, 8,5 x {L!}), whereSy C S is the subset of
initial configurations ofS; For a source state of the formu = s € Sy oru = (s,z) € S x X!, an
input (o, y) € ¥ x X, and a destination state’, z’) € S x X', we have thatu, (0,v), (s',2')) € A
iff (i) y = 2/, and ifu is of the formu = (s, z) thenz; = o andxy - - - 2; -) =y, (ii) the setl” C I
of actions that process the requesfrom configurations, by updating the configuration tg, is non-
empty; the cost of such a transitiond§u, (o, y), (s',2))) = min,cr action_cost(v); Note that the
accepting states are all configurations that are coupled with a lookaheddwhich indicates that the
input sequence has ended.

Let P be an optimization problem, and ldtp; be a WFA for its algorithms that use memd§yand
lookahead of length Observe that, liked p, the automatotd p; represents the optimal offline algorithm
for P in the sense that given a finite sequence of requestsy ™, the cost ofw in Ap is the cost ofw in
an optimal offline algorithm whose configurations are5inOn the other hand, it is not hard to see that
an online algorithm with lookahead of lengtithat uses memorg, corresponds to a DWFA embedded
in Ap;. Formally, given such an online algorithgn: X+ x le — I', the DWFA embedded i p,
and induced by is an automatom%l in which, for every configuration € .S, and every request (with
lookahead)o,y) € ¥ x X', we have thab(s, (o,y)) = (s, y) for every initial configuratiors € S,
andd({(s,0-y1---yi—1),(0,y))) = (s',y) for all s € S; wheres’ is the configuration obtained by
applying the actio(w - o, y) from s, andw is such that(w, o - y1 - - - y;—1) = s.

Theorem 5. Given an optimization problerR, a setS of configurations, and > 0. Let.Ap; be a WFA
that models online algorithms fa? that use memory and lookahead of length An online algorithm
g that uses memory and lookahead of lengthis a-competitive iffA‘}’Dvl a-approximatesdp;.

By [AKL10], given Ap;, deciding if it has an embedded DWFA thatapproximates it (and also
obtaining such DWFAs) can be done in time polynomial in the sizé pf if o = 1, and is NP-complete
for a > 1; whereas givenét%l, deciding if it a-approximatesdp; can be done in polynomial time for
all values of«. Thus, Theorem 5 implies the following:

9

Corollary 2. Consider an optimization probler® with a setS of configurations, an approximation
factora > 1, and someé > 0.

— [model checking]Given an online algorithng for P that uses configurations i and lookahead
of sizel, deciding whethey is a-competitive can be solved in time polynomiabiand exponential
inl.

— [synthesis]Deciding whether there is an-competitive online algorithm faP that uses memor§
and lookahead of length can be done in polynomial deterministic (nondeterministic) timg far
a =1 (a > 1, respectively) and time exponentiallin

Note that the model-checking and synthesis algorithms that we get aress@bin/. While we do
not prove a matching lower bound, we were able to prove co-NP-hssdnk(by a reduction from the
problem of deciding whether an NFW accepts all words of lehgthess). Also, earlier work on looka-
head inw-regular games suggests that an exponential cost in the lookaheax barmvoided [HKT10].

5 Symbolic Model-Checking Algorithm

In this section we describe a symbolic model-checking algorithm for onlineitligts. The explicit al-
gorithm of [AKL10] gets as inputa WFM; = (¥, Q1, A1, ¢1, 51, F1),aDWFA Ay = (X, Q2, Ao, co, 2, Fo)
embedded in4;, and an approximation factax, and decides in polynomial time whethgl, -
approximatesi;.

Letm = |Q1| = |Q2|. The algorithm is based on iteratively calculating functighs Q; x Q2 —

Z U {—o0,0}. The dependency im is reflected both in the size of the required data structure, and the
number of iterations that the algorithm performs. A symbolic algorithm carvaad éhe time complexity

that the iterative calculation involves, but it copes with the space complexitplking with a symbolic
representation of all the components of the automata and of the fungtions

The data structures we work with aBenary Decision Diagram¢BDDs, for short) [Bry86] and
multi-valuedBDDs (MVBDDs, for short). While a BDD represents a Boolean functidivBDDs as-
sign to each truth assignment of the variables a valZin{—oo, co}. We implement an MVBDD by
an array of BDDs, each encoding a single bit of the value. UsiBDs, the value of the MVBDD is
then ab-bit signed two’s complement integer. It has a minimum value-2f~! and a maximum value
of 20-1 — 1 (inclusive). In addition, we maintain two BDDs, feroo andoo.

We now move to a detailed description of the symbolic model-checking algoritigaré=2). In
addition toa, the algorithm gets as input a symbolic representatiod0dnd.A,. The sets of variables
X andWW are used in order to encodl andX’, respectively. Accordingly, the transition functiah is
described by an MVBDDrans; : X x W x X’ — N U oo, whereX' is a tagged copy oK. Formally,
trans, ((q1, a,q})) is c¢({q1,a,q})) for {(q1,a,q}) € Ay, and isco otherwise. Note that the domain of
trans, are truth assignments to the variables\ini¥’, and X', and not tuples i), x X' x Q1; since,
however, the variables encode such triples, we abuse notation antbretns; ((¢1, a, ¢})). Note that
we use weights in N rather than indR. The setsS; and Fy are described by the BDDsit; andfin,
over X, respectively. The WFAA; is described in a similar manner, with variablesYinrand V. Let
V=XUX UWUY UY". For convenience, we refer to all BDDs as functions frigneven though
the function they maintain may be independent of some of the variables).

The algorithm uses the following operators.

— The functionsnot : BDD — BDD andand : BDD x BDD — BDD operate as the corre-
sponding logical operators of negation and conjunction, respectively.

— The operatoset_value gets an MVBDD/f, a BDD cond and a valuesal, and sets the value gf
to val for the inputs characterized lmpnd

10

— The operatoprime gets an MVBDDf whose function is independent & andY”’ and turns it
into an MVBDD that corresponds to the function obtained fréry replacing the variables i
andY by their tagged copies iX’ andY”.

— The functionsadd, sub, max : MVBDD x MVBDD — MVBDD return the MVBDD obtained by
applying addition, subtraction, and maximum, respectively, on the given M3

— The functionget_BDD : MVBDD — BDD returns a BDD whose value is 1 exactly on the inputs
on which the value of the given MVBDD is neb. In particular,get_ BDD(trans) returns a BDD
representing the (un-weighted) transitions.

— The functionless_than : MVBDD x MVBDD — BDD gets two MVBDDs,f andg, and returns
a BDD h such that for alb € 2V, we haveh(v) = 1iff f(v) < g(v).

— The functionvar_max : 2" x MVBDD — MVBDD gets a set/ of variables and an MVBDD
g and returns an MVBDDf such that for allv € 2V, we havef(v) = max{g(v') : v' agrees
with v on the variables not iy }. Note thatf(v) is independent of the variablesih The function
cond_max : 2V x BDD x MVBDD — MVBDD is similar, but gets in addition a BDB, and the
maximum of the MVBDDy is taken only over’’s that agree withy on the variables not itV and
satisfys(v’) = 1. If no suchv’ exists, thenf (v) = —cc.

The algorithm calculates functions : X x Y — Z U {—o0,}, for 0 < i < 2m?. The functionf;
indicates the competitiveness db with respect to words of length at mastFormally, for every two
statesy; € Q1 andgs € Q2, the valuef;(q1, g2), for 0 < i < m?, equals—oo if no word of length at
most: is accepted frong,, it equalsco if there exists a word of length at mosthat is accepted from
q1 but not fromgs, and it equals € Z if ¢ is the maximal value such that there exists a word of size at
mosti that is accepted frony at a cost of;, and fromg, at a cost ofx - ¢ + t. Form? < i < 2m?, the
algorithm takes into account cycles along which the performancé,dé “unboundedly better” than
that of Ay, in which case the value ¢f(q1, ¢2) is increased tec. As proved in [AKL10], such cycles
would be detected after at most iterations, and their influence on the ability.d§ to a-approximate
A; would be detected after another roundnef iterations. Thus, the algorithm needs not compfjte
fori > 2m?2.

The algorithm first defineg so thatfy(q1, q2) is —if ¢1 ¢ F1,is0if g1 € F; andgy € Fy, and is
x if ¢1 € F1 andgs ¢ F5. Each loop iteration getf_, and calculateg;. For that, the algorithm calcu-
lates an MVBDDy. After executing Line 8, we havg((q1, ¢}, a, 42, ¢5)) = fi—1(d}, &) +c2(q2, a, db) —
a-c1(q1,a,q;). Thus, after Line 14, we havg(q1, ¢2) = max{ fi—1(q1, ¢2), maxaex fa(q1,q2)}, where
fa(q1, g2) = maxy 5, (g, o) [fi-1(41,02(q2, @) + c2(q2, a, 02(g2, @) — a - 1 (qu, a, ¢4)]- If i > m* and
filai,q2) > fi—1(q1, q2), thenf;(q1, g2) is further increased, in Line 17, te.

Finally, note that the fact we only care about embedded DWFA (only DWét#espond to deter-
ministic online algorithms) is crucial for the correctness of the algorithm. khdée calculation of
fa(q1, g2) makes use of the fact that in a DWFA, the statdas only a single-successor.

When implementing the symbolic algorithm, we have tried to minimize the maximal number of
variables for a single MVBDD, but (as is the case with other symbolic algorithatselate two systems)
we could not avoid the construction of the MVBDJ that depends on all the variableslin

We note here that the implementation of the symbolic algorithm is applicable alsoefoeshlts
appearing in the previous sections. The algorithm given in Section 3 éitidg whether a given online
algorithm isa-competitive with respect to a given restriction on the environment actuadly the algo-
rithm described above as a sub-routine. Before running the algorithmutd only compute a product
of two automata. This can be easily implemented symbolically. As for the algorithen g1 Section 4
for reasoning about online algorithms with lookahead, it simply uses theithigodescribed above as a
black-box.

Experimental Results Before describing our experimental results, we would like to stress thatdire
contribution of the paper is the ideas behind the algorithm — our implementationt & sumggestion

11

Symbolic model-checking(inity, trans,, fin,, inity, trans, finy, «)

set_value(fy, not(fin;), —o0);
set_value(fy, and(fin, fin,), 0);
set_value(fo, and(fin;, not(fin,)), co);
1:=0;
repeat
T+ +;
prime(f;_1);
MVBDD g := sub(add(f;—1,trans), « - trans;);
BDD ¢; := get_BDD(trans,);
BDD ¢ := get_ BDD(trans;);
BDD matchtrans:= and(t1, t2);
MVBDD f, := cond_max(D, matchtrans g);
MVBDD h := var_max(W, f,);
fi=max{fi_1,h};
if i > m? then
BDD diff := less_than(f;_1, h);
set_value(f;, diff, 00);
end if
until (f; == fi_1) or (i == 2m?);
BDD init_states= and(inity, inity);
: MVBDD approx := var_max(X UY,init_states f;);
if approx < oo then
return true;
else
return false;
end if

NNNNNNNRRRRRRRRR R
QR WNREOO®ONORAWNRO

Fig. 2. The symbolic model-checking algorithm.

for a ready-to-run tool, but rather a justification for the argument thatatgorithm can actually be
implemented symbolically. It is very likely that researchers with more expezienanplementations
could have come up with a much better implementation. We still find it encouragihgviia our naive
implementation has led us to interesting and practical insights, as described belo

The most natural modeling of paging is by a WFA whose set of states porrds to the configu-
rations of the cache. Such a modeling corresponds to non-marking atgsyiéts it does not allow the
algorithm to use information beyond the set of pages that are currently icatties. In the course of
applying our implementation of the symbolic algorithm to paging, we have realiztdhé only non-
marking competitive algorithm for paging we are aware of, Flush-whéh-FWF) [BEY98, KMRS88],
is not lazy (also referred to as “demand paging” in [BEY98]); that is, iy mnact from the cache more
than a single page in case an eviction is required. From a practical stapdpeh evictions are waste-
ful, and a reasonable implementationFfVF would keep the cache full at all times and only mark
the pages spuriously evicted BYVF — thus treating~WF as a marking algorithm. This has led us to
the development of an online algorithm that is both lazy and non-markingortumiately for us, we
later discovered that this algorithm already appealR@FATE in [CKPV91], where it is proved to be
k-competitive, by means of amortized analysis. Below we give a brief déiseripf FWF andROTATE.

12

Algorithm FWF (Flush-when-Full). The idea behindFWF is quite simple: on a fault, if the cache is
full, simply empty the cache, and then bring the requested page into the t#&ihg.our formalism,
Algorithm FWF can be described as follows. Initially, the cache configuration is empty. YAgaen
step, letC' be the current configuration amdhe requested page. Then

C ifreC
FWF(C,r)=<¢ CuU{r} ifr¢ Cand|C| <k
{r} if r ¢ Cand|C| =k

Algorithm ROTATE. As mentioned in Section 5, it turns out thROTATE is the only knownk-
competitive algorithm that is both lazy and non-marking.

Assume that the set of pagesis = {1,2,...,n}. We think of the sequencg 2, ...,n as being
wrapped around a circle, say clockwise. If a requested paigenot in the cache, and the cache is
full, find the pagev in the cache that is closest, in the counter-clockwise order around the, ¢ore,
and replace by r in the cache. Intuitively, thé cache locations travel clockwise around the circle in
response to the requests, without passing each other.

We now give a more formal description. Fory € X, define

2, y] = {z,z+1,...,y} if z <y,
’ {z,z2+1,..,n,1,...,y} if x> y.

Initially, the cache configuration is empty. At any step,débe the current cache configuration and
the new request. Then

C if r e C,
ROTATE(C,r) =< CU{r} if r ¢ Cand|C| < k,
(C—{vhu{r} ifr¢C,|C|l=kandCnv,r]={v}.

We have studied the-competitiveness dROTATE andFWF using an implementation of the sym-
bolic algorithm written in Java, using JavaBDD [Wha] as a high level objeented layer, on top of the
BDD library CUDD [Som]. As our test platform, we used a Pentium 4, 3.2GhaxMachine with 4GB
of RAM. Due to the limitations of the 32bit Java Virtual Machine we used, cag@m was limited to
using at most 2GB of memory. Our experimental results are described ireR3gNote that the number
of states in a WFA representing a paging algorithm with parametewsd & is of ordern”. Thus, the
computational bottleneck fs With our nave implementation, this resulted in a memory requirement of
over 2GB for very low values of. It is also interesting to note that in some cases an explicit version of
the algorithm actually performed better than the symbolic one. For examplegpligtesersion was able
to prove thek-competitiveness dFWF with parameterg = 4 andn = 23 (8 iterations, 5.5 minutes,
650MB), as well as to model che®OTATE with parameterg = 3 andn = 23 (7 iterations, 3 minutes,
200MB). Both of these tests could not be completed in the symbolic implementatipexageded the
2GB memory limit. The explanation for the high memory requirement of the symbolicitdg lies in
the fact that some of the intermediate calculations require storing functi@ndiee domains, whereas
the explicit algorithm never has to consider functions over more than tioreaids. On the other hand,
one can see that the symbolic algorithm could handle instances{kewith £ = 2 andn = 2°) that
are clearly beyond the scope of an explicit implementation.

The experimental results achieved with our naive implementation are not siyaebut we find
them encouraging. First, they prove that formal reasoning about ddivpeatios of online algorithms
is feasible, both in theory and practice. Second, even though the instereceonsidered were very
small, they have led us to rediscover the algorifR@TATE, showing that a lot of insight can be gained
even when working with small instances. Third, we discovered that whileimvtrst case the symbolic
algorithm may run for2m? iterations, in practice it converges many orders of magnitude faster. For

13

[k[n [Time [Memory [# of Iteration$

3
; 35 <418§§C <1;80M'\I/5|38 j (kK[n | Time | Memory [# of Iteration$
9[920| 95 Sec. 600 MB 4 2[2% [< 1 Sec[< 100 MB 4

" 6

224°|100 Sec| 1300 MB 4 212 | 7Sec.| 170 MB 4
2254| 6 Min. | 2000 MB 4 2/2'°1100 Sec| 250 MB 4

> 2|22°| 12 Hrs. | 1300 MB 4
3| 2% |< 1 Sec|< 100 MB 6
312310 Min.| 620 MB 6

FWE ROTATE

Fig. 3. Experimental Results

example, while some of our experiments have a valueret above2°, in all cases the algorithm
converged to termination in at mo&tterations! In fact, the main bottleneck seems to be the memory
requirements of our BDD based implementation, and the associated time reuiraddle very big
BDDs. It is our belief that representing MVBDDS not by arrays of BDBst rather by utilizing more
efficient constructs such &d4ulti Terminal BDDs (MTBDDs)FMY97], or Algebraic Decision Diagrams
(ADDs)[BFG'97], would enable much larger instances to be handled.

AcknowledgmentWe thank Marek Chrobak for helpful discussions.

References

[AKL10] B. Aminof, O. Kupferman, and R. Lampert. Reasoning abonline algorithms with weighted automataCM
Transactions on Algorithm$(2), 2010.

[AKL11] B. Aminof, O. Kupferman, and R. Lampert. Rigorous Apgimated Determinization of Weighted Automata. In
Proc. 26th IEEE Symp. on Logic in Computer Sciempages 345-354, 2011.

[Alb97] S. Albers. On the influence of lookahead in competitive pagingréttyns. Algorithmica 18:283-305, 1997.

[BCMT92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwan@ymbolic model checking:0?° states and
beyond.Information and Computatiqre8(2):142—-170, 1992.

[BDBK194] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wiggter. On the power of randomization in on-line
algorithms.Algorithmica 11(2):2—14, 1994.

[BEY98] A.Borodin and R. El-YanivOnline Computation and Competitive Analysiambridge University Press, 1998.

[BFGT97] R.l. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii,Pardo, and F. Somenzi. Algebraic decision
diagrams and their applicationsormal Methods in System Desidgt0(2-3):171-206, 1997.

[BIRS95] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. @etitive Paging with Locality of Referencdournal of
Computer and System Sciencgd(2):244 — 258, 1995.

[Bre9s8] D. Breslauer. On competitive on-line paging with lookah&dtkoretical Computer Scienc209(1-2):365-375,
1998.

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean-functitamipulation. IEEE Transactions on Computing
C-35(8):677—691, 1986.

[CCHT05] A.Chakrabarti, K. Chatterjee, T.A. Henzinger, O. Kupfermau, B. Majumdar. Verifying quantitative properties
using bound functions. IRroc. 13th Conf. on Correct Hardware Design and Verification Methedlume 3725
of Lecture Notes in Computer Scienpages 50-64. Springer, 2005.

[CGS89] F. R. K. Chung, R. L. Graham, and M. E. Saks. A dynamiation problem for graphs.Combinatorica
9(2):111-131, 1989.

[CHJ08] K. Chatterjee, T. Henzinger, and B. Jobstmann. Envirotaesumptions for synthesis. Rroc. 19th Int. Conf.
on Concurrency Theorywolume 5201 ot.ecture Notes in Computer Scienpages 147-161. Springer, 2008.

[CKPV91] M. Chrobak, H.J. Karloff, T.H. Payne, and S. Vishwtrem. New Results on Server ProblerS8$AM J. Discrete
Math,, 4(2):172-181, 1991.

[CL92] M. Chrobak and L.L. Larmore. The server problem andioa-games. InOn-line Algorithms volume 7 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Scipages 11-64, 1992.

[FMY97] M. Fuijita, P.C. McGeer, and J.C.-Y. Yang. Multi-Terminal Biy Decision Diagrams: An Efficient Data Structure
for Matrix RepresentationFormal Methods in System Desjdt0(2-3):149-169, 1997.

[Fra86] N. FrancezFairness Texts and Monographs in Computer Science. Springer, 1986.

[HKT10] M. Holtmann, L. Kaiser, and W. Thomas. Degrees of lookahie regular infinite games. Proc. 13th Int. Conf.
on Foundations of Software Science and Computation Structuodsme 6014 ofLecture Notes in Computer
Sciencepages 252—-266. Springer, 2010.

14

[HP85]
[Imm88]

[Ira94]
[KMRS88]

[KS86]

[KT91]
[MMS90]

[Moh97]
[Pnu85]
[Som]
[ST85]

[Wha]
[You91]

D. Harel and A. Pnueli. On the development of reactive systein K. Apt, editor,Logics and Models of
Concurrent Systemsolume F-13 ofNATO Advanced Science Institutpages 477-498. Springer, 1985.

N. Immerman. Nondeterministic space is closed under congrienmformation and Computatiqri7:935-938,
1988.

S. Irani. Coloring inductive graphs on-lin&lgorithmicg 11(1):53—-72, 1994.

A.R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Slea@wmpetitive snoopy cachinglgorithmica 3(1):79—
119, 1988.

W. Kuich and A. SalomaaSemirings, Automata, Language®lume 5 of EATCS Monographs on Theoretical
Computer ScienceSpringer, 1986.

M.-Y. Kao and S. R. Tate. Online matching with blocked inplutf. Process. Lett.38(3):113-116, 1991.

M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitilgorithms for server problemsl. Algorithms
11(2):208-230, 1990.

M. Mohri. Finite-state transducers in language and speedtepsing. Computational Linguistics23(2):269—
311, 1997.

A. Pnueli. In transition from global to modular temporal reaspmabout programs. In K. Apt, editoogics
and Models of Concurrent Systenaslume F-13 oNATO Advanced Science Institutpages 123-144. Springer,
1985.

F. Somenzi. CUDD package, release 2.4tip://visi.colorado.edu/ ~ fabio/CUDD/

D.D. Sleator and R.E. Tarjan. Amortized efficiency of list updind paging rulesCommunications of the ACM
28(2):202-208, 1985.

J. Whaley. JavaBDD package, release 1.0tth://javabdd.sourceforge.net/

N. Young. On-line caching as cache size variesPioc. 2nd ACM-SIAM Symp. on Dlscrete Algorithmpages
241-250, 1991.

15

