
Promptness in ω-regular Automata

Shaull Almagor1, Yoram Hirshfeld2, and Orna Kupferman1

1 Hebrew University, School of Engineering and Computer Science, Jerusalem, Israel.
2 Tel Aviv University, School of Mathematical Science, Tel Aviv, Israel.

Abstract. Liveness properties of on-going reactive systems assert that
something good will happen eventually. In satisfying liveness properties,
there is no bound on the “wait time”, namely the time that may elapse
until an eventuality is fulfilled. The traditional “unbounded” semantics
of liveness properties nicely corresponds to the classical semantics of
automata on infinite objects. Indeed, acceptance is defined with respect
to the set of states the run visits infinitely often, with no bound on the
number of transitions taken between successive visits.
In many applications, it is important to bound the wait time in liveness
properties. Bounding the wait time by a constant is not always possible,
as the bound may not be known in advance. It may also be very large,
resulting in large specifications. Researchers have studied prompt even-
tualities, where the wait time is bounded, but the bound is not known in
advance. We study the automata-theoretic counterpart of prompt even-
tually. In a prompt-Büchi automaton, a run r is accepting if there exists
a bound k such that r visits an accepting state every at most k transi-
tions. We study the expressive power of nondeterministic and determin-
istic prompt-Büchi automata, their properties, and decision problems
for them. In particular, we show that regular nondeterministic prompt
Büchi automata are exactly as expressive as nondeterministic co-Büchi
automata.

1 Introduction

A specification of a reactive system describes the required on-going behaviors
of the system. Specifications can be viewed as ω-regular languages and are tra-
ditionally classified into safety and liveness properties [1]. Intuitively, safety
properties assert that nothing bad will ever happen during the execution of the
system, and liveness properties assert that something good will happen even-
tually. In satisfying liveness properties, there is no bound on the “wait time”,
namely the time that may elapse until an eventuality is fulfilled.

In many applications, it is important to bound the wait time in liveness
properties. Bounding the wait time by a constant changes the specification from
a liveness property to a safety property. For example, if we bound the wait time
in the specification “every request is eventually granted” and replace it by the
specification “every request is granted within k transitions” for some fixed k,
then we end up with a safety property – we never want to come across a request
that is not granted within the next k transitions. While the safety property

is much stronger, it involves two drawbacks. First, the bound k needs to be
known in advance, which is not the case in many applications. For example, it
may depend on the system, which may not yet be known, or it may change, if
the system changes. Second, the bound may be large, causing the state-based
description of the specification (e.g., an automaton for it) to be large too. Thus,
the common practice is to use liveness properties as an abstraction of such safety
properties.

Several earlier work suggested and studied an alternative semantics to eventu-
ally properties. The semantics, termed finitary fairness in [3], bounded fairness in
[9], and prompt eventually in [15], does not suffer from the above two drawbacks
and is still more restrictive than the standard semantics. In the alternative se-
mantics, the wait time is bounded, but the bound is not known in advance. Con-
sider, for example, the computation π = req .grant .req .¬grant .grant .req .(¬grant)2.
grant . req .(¬grant)3.grant . . ., in which the wait time to a grant increases in an
unbounded (yet still finite) manner. While π satisfies the liveness property “ev-
ery request is eventually granted”, it does not satisfy its prompt variant. Indeed,
there is no bound k such that π satisfies the property “every request is granted
within k transitions”.

The traditional “unbounded” semantics of liveness properties nicely corre-
sponds to the classical semantics of automata on infinite objects. Indeed, accep-
tance is defined with respect to the set of states the run visits infinitely often,
with no bound on the number of transitions taken between successive visits. The
correspondence in the semantics is essential in the translation of temporal-logic
formulas to automata, and in the automata-theoretic approach to specification,
verification, and synthesis of nonterminating systems [17, 19]. The automata-
theoretic approach views questions about systems and their specifications as
questions about languages, and reduces them to automata-theoretic problems
like containment and emptiness.

In this paper we introduce and study a prompt semantics for automata on
infinite words, by means of prompt-Büchi automata. In a Büchi automaton, some
of the states are designated as accepting states, and a run is accepting iff it visits
states from the accepting set infinitely often [7]. Dually, in a co-Büchi automaton,
a run is accepting iff it visits states outside the accepting set only finitely often.
In a prompt-Büchi automaton, a run is accepting iff there exists a bound k
such that the number of transitions between successive visits to accepting states
is at most k. More formally, if A is a prompt-Büchi automaton with a set α of
accepting states, then an infinite run r = r1, r2, ... ofA is accepting iff there exists
a bound k ∈ N such that for all i ∈ N it holds that {ri, ..., ri+k−1} ∩ α ̸= ∅. We
consider both nondeterministic (NPBWs, for short) and deterministic (DPBW,
for short) prompt-Büchi automata.

It is not hard to see that if A is a Büchi automaton, then the automaton
obtained by viewing A as a prompt Büchi automaton accepts the union of all the
safety languages contained in the language of A. As stated in [3], this union need
not be ω-regular. In fact, Büchi and prompt-Büchi automata are incomparable
in terms of expressive power. Indeed, no NPBW can recognize the ω-regular

2

language (a∗b)ω (infinitely many occurrences of b), whereas no nondeterministic
Büchi automaton (NBW, for short) can recognize the language Lb, where w ∈
{a, b}ω is in Lb if there exists a bound k ∈ N such that all the subwords of
w of length k have at least one occurrence of b. Note that Lb is recognized by
a two-state DPBW that goes to an accepting state whenever b is read. Note
that when an NPBW runs on a word, it guesses and verifies the bound k with
which the run is going to be accepting. The bound k may be bigger than the
number of states, and still the NPBW has to somehow count and check whether
an accepting state appears at least once every k transitions. We would like to
understand how this ability of NPBWs influences their expressive power and
succinctness.

We start by investigating prompt Büchi automata in their full generality and
show that while both NPBWs and DPBWs are closed under intersection and
not closed under complementation, only NPBWs are closed under union. Also,
NPBWs are strictly more expressive than DPBWs. We then focus on regular-
NPBWs, namely languages that can be recognized by both an NPBW and an
NBW. We first show that NPBWs are NBW-type: if the language of a given
NPBW A is regular, then A is also an NBW for the language. From a theo-
retical point of view, our result implies that if a union of safety languages is
ω-regular, then the promptness requirement can be removed from every NPBW
that recognizes it. From a practical point of view, our result implies that there
is no state blow-up in translating NPBWs to NBWs, when possible. On the
other hand, we show that there are NBWs that recognize languages that can be
recognized by an NPBW, but an NPBW for them requires an automaton with a
different structure. Thus, if we add the promptness requirement to an NBW, we
may restrict its language, even if this language is a union of safety properties.

Our main result shows that regular-NPBWs are as expressive as nondeter-
ministic co-Büchi automata (NCWs). To show this, we first prove that counting
to unbounded bounds is not needed, and that the distance between successive
visits in accepting states can be bounded by 3n

2

, where n is the number of
states of the automaton. Technically, the bound follows from an analysis of
equivalence classes on Σ∗ and an understanding that increasingly long subwords
that skip visits in accepting states must contain equivalent prefixes. It is easy
to show that the existence of the global 3n

2

bound implies that the language
is NCW-recognizable. The global bound suggests a translation to NCW that is
not optimal. We use results on the translation of NBWs to NCWs [6] in order
to show an alternative translation, with a blow up of only n2n. We also describe
a matching lower bound. It follows that regular-NPBW are exponentially more
succinct than NCWs. The equivalence with NCWs also gives immediate results
about the closure properties of regular-NPBWs.

Finally, we study decision problems for prompt automata. We show that
the problem of deciding whether a prompt automaton is regular is PSPACE-
complete for NPBW and is NLOGSPACE-complete for DPBW. The same bounds
hold for the universality and the containment problems. The main challenge in
these results is the need to complement the NPBW. We show how we can circum-

3

vent the complementation, work, instead, with an automaton that approximates
the complementing one, in the sense it accepts only words with a fixed bound,
and still solve the regularity, universality, and containment problems.

Related work The work in [9, 15] studies the prompt semantics from a temporal-
logic prospective. In [9], the authors study an eventuality operator parameterized
by a bound (see also [2]), and the possibility of quantifying the bound existen-
tially. In [15], the authors study the logic prompt-LTL, which extends LTL by a
prompt-eventuality operator Fp. A system S satisfies a prompt-LTL formula ψ
if there is a bound k ∈ N such that S satisfies the LTL formula obtained from ψ
by replacing all Fp by F≤k. Thus, there should exist a bound, which may depend
on the system, such that prompt eventualities are satisfied within this bounded
wait time. It is shown in [15] that the realizability and the model-checking prob-
lems for prompt-LTL have the same complexity as the corresponding problems
for LTL, though the algorithms for achieving the bounds are technically more
complicated. Note that the definition of prompt Büchi automata corresponds to
the semantics of the Fp operator of prompt-LTL. Thus, given an LTL formula
ψ, we can apply to ψ the standard translation of LTL to NBW [19], and end up
with an NPBW for the prompt-LTL formula obtained from ψ by replacing its
eventualities by prompt ones.

The work in [8, 10] studies the prompt semantics in ω-regular games. The
games studied are finitary parity and finitary Streett games. It is shown in
[8] that these games are determined and that the player whose objective is to
generate a computation that satisfies the finitary parity or Streett condition has
a memoryless strategy. In contrast, the second player may need infinite memory.
In [10] it is shown that the problem of determining the winner in a finitary parity
game can be solved in polynomial time.3

The closest to our work here is [4, 5], which introduced the notion of prompt-
ness to Monadic Second Order Logic (MSOL) and ω-regular expressions. In [5],
the authors introduced ωBS-regular expressions, which extend ω-regular expres-
sions with two new operators B and S – variants of the Kleene star operator. The
semantics of the new operators is that (rB)ω, for a regular expression r, states
that words in L(r) occur globally with a bounded length, and (rS)ω states that
words in L(r) occur with a strictly increasing length. Thus, ωBS-regular expres-
sions are clearly more expressive than NPBWs. In [4], the author studies the
properties of a prompt extension to MSOL. The contribution in [4, 5] is orthog-
onal to our contribution here. From a theoretical point of view, [5, 4] offer an
excellent and exhaustive study of the logical aspects of promptness, in terms of
closure properties and the decidability of the satisfiability problem for the for-
malisms and their fragments, where the goal is to give a robust formalism and
then study its computational properties. Indeed, the algorithmic aspects of the
studied formalisms are not appealing: the complexity of the decidability problem
is much higher than that of NPBWs, and the model of automata that is needed

3 The computations of games with a single player correspond to runs of a nonde-
terministic automaton. Games, however, do not refer to languages, and indeed the
problems we study are very different from these studied in [8, 10].

4

in order to solve these problems is much more complex than NPBW (the au-
tomata are equipped with counters, and the translation of expressions to them is
complicated). Our contribution, on the other hand, focuses on the prompt vari-
ant of the Büchi acceptance condition. As such, it does not attempt to present a
robust promptness formalism but rather to study NPBWs in depth. As our re-
sults show, NPBWs are indeed much simpler than the robust formalisms, making
them appealing also from a practical point of view.

Due to the lack of space, most proofs are described in the appendix.

2 Preliminaries

Given an alphabet Σ, a word over Σ is a (possibly infinite) sequence w =
σ1 · σ2 · σ3 · · · of letters in Σ. For x ∈ Σ∗ and y ∈ Σ∗ ∪Σω, we say that x is a
prefix of y, denoted x ≼ y, if there is z ∈ Σ∗ ∪ Σω such that y = x · z. If z ̸= ϵ
then x is a strict prefix of y, denoted x ≺ y. For an infinite word w and indices
0 ≤ k ≤ l, let w[k..l] = σk · · ·σl be the infix of w between positions k and l.

An automaton is a tuple A = ⟨Σ,Q, δ,Q0, α⟩, where Σ is the input alphabet,
Q is a finite set of states, δ : Q → 2Q is a transition function, Q0 ⊆ Q is a
set of initial states, and α ⊆ Q is an acceptance condition. We define several
acceptance conditions below. Intuitively, δ(q, σ) is the set of states that A may
move into when it is in the state q and it reads the letter σ. The automatonAmay
have several initial states and the transition function may specify many possible
transitions for each state and letter, and hence we say thatA is nondeterministic.
In the case where |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we have that
|δ(q, σ)| = 1, we say that A is deterministic. The transition function extends
to sets of states and to finite words in the expected way, thus for x ∈ Σ∗,
the set δ(S, x) is the set of states that A may move into when it is in a state
in S and it reads the finite word x. Formally, δ(S, ϵ) = S and δ(S, x · σ) =∪

q∈δ(S,x) δ(q, σ). We abbreviate δ(Q0, x) by δ(x), thus δ(x) is the set of states
that A may visit after reading x. A run r = r1, r2, r3, ... of A on an infinite word
w = σ1 · σ2 · · · ∈ Σω is an infinite sequence of states such that r1 ∈ Q0, and
for every i ≥ 1, we have that ri+1 ∈ δ(ri, σi). Note that while a deterministic
automaton has a single run on an input word, a nondeterministic automaton
may have several runs on an input word. We sometimes refer to r as a word
in Qω or as a function from the set of prefixes of w to the states of A (that
is, for a prefix x ≼ w, we have r(x) = r|x|+1). Acceptance is defined with
respect to the set inf(r) of states that the run r visits infinitely often. Formally,
inf(r) = {q ∈ Q | for infinitely many i ≥ 1, we have ri = q}.

As Q is finite, it is guaranteed that inf(r) ̸= ∅. The run r is accepting if
it satisfies the acceptance condition α. A run r satisfies a Büchi acceptance
condition α if inf(r) ∩ α ̸= ∅. That is, r visits α infinitely often. Dually, r
satisfies a co-Büchi acceptance condition α if inf(r) ⊆ α. That is, r visits α
almost always. Note that the latter is equivalent to inf(r) ∩ (Q \ α) = ∅

We now define a new acceptance condition, prompt-Büchi, as follows: A run
r = r1, r2, . . . satisfies prompt-Büchi acceptance condition α if there is k ≥ 1
such that for all i ≥ 1 there is j ∈ {i, i+1, . . . , i+ k− 1} such that rj ∈ α. That

5

is, in each block of k successive states, the run r visits α at least once. We say
that r is accepting with a bound k. Observe that if a run satisfies a prompt-Büchi
condition α, then it also satisfies Büchi α. The converse, however, does not hold,
as a run can satisfy Büchi α but not prompt-Büchi α.

It is easy to see that requiring the bound to apply eventually (instead of
always) provides an equivalent definition. Thus, equivalently, a run r satisfies
prompt-Büchi acceptance condition α if there is k ≥ 1 and n0 ∈ N such that
for all i ≥ n0 there is j ∈ {i, i+ 1, . . . , i+ k − 1} such that rj ∈ α. We say that
r is accepting with eventual bound k. Given a prompt-Büchi accepting run with
bound k and eventual bound k′, note that it always holds that k′ ≤ k, and that
a strict inequality is possible.

An automaton accepts a word if it has an accepting run on it. The language
of an automaton A, denoted L(A), is the set of words that A accepts. We also
say that A recognizes the language L(A). For two automata A and A′ we say
that A and A′ are equivalent if L(A) = L(A′).

We denote the classes of automata by acronyms in {D,N} × {B,PB,C} ×
{W}. The first letter stands for the branching mode of the automaton (determin-
istic or nondeterministic); the second letter stands for the acceptance-condition
type (Büchi, Prompt-Büchi, or co-Büchi); the third letter indicates that the au-
tomaton runs on words. For example, DPBW stands for deterministic prompt-
Büchi automaton. We say that a language L is in a class γ if L is γ-recognizable;
that is, L can be recognized by an automaton in the class γ.

Given two classes γ and η we say that γ is more expressive than η if every
η-recognizable language is also γ-recognizable. If γ is not more expressive than η
and η is not more expressive than γ, we say that γ and η are incomparable. Dif-
ferent classes of automata have different expressive power. In particular, NBWs
recognize all ω-regular languages, while NCWs are strictly less expressive [18].

3 Properties of Prompt Languages

In this section we study properties of the prompt-Büchi acceptance condition.
As discussed in Section 1, the class of NPBW-recognizable languages is incom-
parable with that of ω-regular languages. Similar results were shown in [3], in
the context of finitary fairness in and safety languages.

Theorem 1. NPBWs and NBWs are incomparable.

The fact that NPBWs and NBWs are incomparable implies we cannot bor-
row the known closure properties of ω-regular languages to the classes NPBW
and DPBW. In Theorem 2 below, we study closure properties. As detailed in the
proof, for the cases of NPBW union as well as NPBW and DPBW intersection,
the known constructions for NBW and DBW are valid also for the prompt set-
ting. To show non-closure, we define, the following language. Let Σ = {a, b}. For
a letter σ ∈ Σ, let Lσ = {w ∈ {a, b}ω : there exists k ∈ N such that for alli ∈
N we have σ ∈ {wi, wi+1, ..., wi+k}}. Recall that the language Lb is in NPBW
but is not ω-regular. It is easy to see that Lσ can be recognized by a DPBW

6

with two states (that goes to an accepting state whenever σ is read). We show,
however, that the union of La and Lb cannot be recognized by a DPBW and
that no NPBW exists for its complementation. These results also imply that
NPBWs are strictly more expressive than DPBWs.

Theorem 2. 1. NPBWs are, but DPBWs are not closed under union.
2. NPBWs and DPBWs are closed under intersection.
3. NPBWs and DPBWs are not closed under complementation.
4. NPBWs are strictly more expressive than DPBWs.

4 Regular NPBW

We have seen in Section 3 that NPBWs and NBWs are incomparable. In this
section we study regular prompt languages, namely languages that are both
NPBW and NBW recognizable. We use reg-NPBW and reg-DPBW to denote
the classes NBW ∩NPBW and NBW∩DPBW, respectively. For an automaton
A, we denote by AB ,AP , and AC the automaton A when referred to as an
NBW, NPBW, and NCW, respectively.

4.1 Typeness

Given two types of automata γ1 and γ2, we say that a γ1 is γ2-type if for every
automaton A in the class γ1, if A has an equivalent automaton in the class γ2,
then there exists an equivalent automaton in the class γ2 on the same structure
as A (that is, only changing the acceptance condition). Typeness was studied
in [12, 13], and is useful, as it implies that a translation between the two classes
does not involve a blowup and is very simple. In this section we study typeness
for NPBWs and NBWs.

Theorem 3. NPBW are NBW-type: if A is an automaton such that L(AP) is
ω-regular, then L(AP) = L(AB).

Proof: Since both L(AP) and L(AB) are ω-regular, so is their difference, and
thus there is an NBW A′ such that L(A′) = L(AB) \ L(AP). We prove that
L(A′) = ∅. Assume by way of contradiction that L(A′) ̸= ∅. Then A′ accepts
also a periodic word, thus there are u, v ∈ Σ∗ such that u · vω ∈ L(AB)\L(AP).
Let r be an accepting run of AB on u · vω. Thus, inf(r) ∩ α ̸= ∅. Hence, there
are indices i < j such that r visits α between reading u · vi and u · vj , and such
that r(uvi) = r(uvj). Then, however, we can pump r to an accepting run of AP

on u · (vivi+1 · · · vj−1)ω = u · vω, contradicting the fact that u · vω ̸∈ L(AP).

Theorem 4. NBWs are not NPBW-type: there exists an automaton A such
that L(AB) is NPBW-recognizable, but there is no NPBW A′ with the same
structure as A such that L(A′) = L(AB).

Proof: Consider the automaton A in Figure 1. Note that L(AB) = {a, b}ω \
{aω, bω}. It is easy to construct a four-state NPBW for L(AB). On the other

7

b

a

a

ab b

a

a

b
a

b b

Fig. 1. An automaton A such that L(AB) is NPBW recognizable, but no equivalent

NPBW can be defined on top of its structure.

hand, it is not hard to see that all possibilities to define an acceptance condition
on top of the structure of A results in an NPBW whose language is different.

4.2 reg-NPBW=NCW

In this section we prove that reg-NPBWs are as expressive as NCWs. We show
that while in the deterministic case, an equivalent DCW can always be defined
on the same structure, the nondeterministic case is much more complicated and
reg-NPBW are exponentially more succinct than NCWs.

We start with the deterministic case. As detailed in the proof, a DPBW AP

that recognizes a regular language can be translated to an equivalent DCW by
making the set α of accepting states maximal. That is, by adding to α all states
that do not increase the language of the DPBW. Intuitively, it follows from the
fact that if a run of the obtained DCW does not get trapped in α, and α is
maximal, then there must exists a state q ̸∈ α that is visited infinitely often
along the run. The word that witnesses the fact that q cannot be added to α
can then be pumped to a word showing that L(AP) ̸= L(AB), contradicting the
regularity of AP .

Theorem 5. Let A be a reg-DPBW, then there exists a DCW B on the same
structure as A such that L(A) = L(B).

Proof: Consider the DPBW AP . For simplicity, we assume that α is maximal
(that is, no states can be added to α without increasing the language. Clearly,
we can turn a non-maximal accepting condition to an equivalent maximal one).
We claim that L(AC) = L(AP).

It is easy to see that L(AC) ⊆ L(AP). Indeed, if w is in L(AC), then the
run of A on w eventually gets stuck in α, and so w ∈ L(AP). For the other
direction, consider a word w ∈ L(AP) and assume by way of contradiction that
w /∈ L(AC). Let r be the accepting run of A on w, and let q ∈ α and q′ ̸∈ α be
states that are visited infinitely often in r. Since r is prompt-accepting and not
co-Büchi accepting, such q and q′, which are reachable from each other, exist.
Let v ∈ Σ∗ be a word leading from the initial state of A to q′ and let u ∈ Σ∗ be
a word leading from q′ back to itself via q. Note that since q ∈ α, then v · uω is
accepted by A (with a max{|v|, |u|} bound).

8

Recall that α is maximal. Thus, adding q′ to α would result in an automaton
whose language strictly contains L(AP). Hence, there exists z ∈ Σ∗, such that
z leads from q′ to itself and v · zω is not in L(AP). Thus, the run on z from q′

is a cycle back to q′ that visits no states in α.

For all k ≥ 1, the word wk = v · (zk · u)ω is accepted by A. Indeed, the run
r of A on wk first gets to q′ after reading v. Then, whenever the run reads a
zku subword, it traverses a loop from q′ to itself k times while reading zk, and
traverses a loop that visits α while reading u. Since the cycle traversed while
reading u occurs every |zku| letters (that is, every fixed number of letters), this
run is accepting.

Denote the number of states in A by n and let k > n. In every z-block
there are l1 and l2 such that r visits the same state after it reads zl1 and zl2

in this block. Formally, for all i ≥ 0 there are 0 ≤ l1 < l2 ≤ k such that
r(v · (zk · u)i · zl1) = r(v · (zk · u)i · zl2). This means we can pump the z-blocks
of wk to a word w = v · zi1 · u · zi2 · u · zi3 · u · · · , with i1 < i2 < i3 < · · · , such
that w ∈ L(AB). By Theorem 3, we know that L(AB) = L(AP). Hence, also
w ∈ L(AP). Let k be the bound with which w is accepted by AP . Since there is
j ≥ 1 such that ij > max{k, n}, we can conclude, as in the proof of Theorem 1,
that the word w′ = v · zi1 · u · zi2 · · ·u · zij · u · zω is accepted by AP . However,
the run r′ of A on w′ has r′(v · zi1 · u · zi2 · · ·u · zij · u) = q′. Then, reading the
zω suffix, the run r′ does not visit α, implying that AP does not accept w′, and
we have reached a contradiction.

We now proceed to study the (much harder) nondeterministic case. Consider
an automaton A = ⟨Σ,Q,Q0, δ, α⟩. For u ∈ Σ∗ and q, q′ ∈ Q, we say that
q →+

u q′ if q′ ∈ δ(q, u) and there is a run of A from q to q′ that reads u and
visits α. Similarly, we say that q →−

u q′ if q′ ∈ δ(q, u) but all runs of A from q
to q′ that read u do not visit α.

We define a relation ≡A⊆ Σ∗ × Σ∗, where u ≡A v if for all q, q′ ∈ Q, we
have that q →+

u q′ iff q →+
v q′ and q →−

u q′ iff q →−
v q′ . Intuitively, u ≡A v if

for all states q of A, reading u from q has exactly the same effect (by means of
reachable states and visits to α) as reading v from q.

It is easy to see that ≡A is reflexive, symmetric, and transitive. We can
characterize each equivalence class [u] of ≡A by a function fu : Q→ {+,−,⊥}Q,
where for all q, q′ ∈ Q, we have fu(q)(q

′) = + iff q →+
u q′ , fu(q)(q

′) = − iff

q →−
u q′ and fu(q)(q

′) = ⊥ iff q′ /∈ δ(q, u). Since there are only 3|Q|2 such
functions, we have the following.

Lemma 1. The relation ≡A is an equivalence relation with at most 3(|Q|2) equiv-
alence classes.

Lemma 2. Consider an NPBW A. Let m denote the number of equivalence
classes of ≡A. Consider a word w ∈ Σm. There exist s ∈ Σ∗ and z ∈ Σ+ such
that s ≺ z ≼ w, and s ≡A z.

9

Proof: Since ≡A has m equivalence classes, every set of m + 1 words must
contain at least two ≡A-equivalent words. In particular, this holds for the set
{ϵ, w[0..1], w[0..2], . . . , w[0..m]}.

Theorem 6. Consider an automaton A. Let m denote the number of equiva-
lence classes of ≡A. If L(AP) is ω-regular, then every word in L(AP) has an
accepting run with an eventual bound of 2m.

Proof: Since AP is ω-regular, then, by Theorem 3, we have that L(AP) =
L(AB). Consider a word w ∈ L(AP). We prove that there is a run that accepts
w with bound at most 2m. Let w = b1 · b2 · b3 · · · be a partition of w to blocks of
length m; thus, for all i ≥ 1, we have that bi ∈ Σm. We define w′ by replacing
each block bi by a new block b′i, of length strictly greater than m, defined as
follows. For i ≥ 1, let hi = b1 · · · bi−1 and h′i = b′1 · · · b′i−1. Thus, hi and h

′
i are

the prefixes of w and w′, respectively, that consist of the first i− 1 blocks. Note
that h1 = h′1 = ϵ.

Assume we have already defined h′i. We define b′i as follows: By Lemma 2,
for every i ≥ 1 there exist si ∈ Σ∗ and zi ∈ Σ+ such that si ≺ si · zi ≼ bi
and si ≡A si · zi. Let ti in Σ∗ be such that bi = si · zi · ti. Now, we define
b′i = si · (zi)i · ti. Thus, b′i is obtained from bi by pumping an infix of it that lies
between two prefixes that are ≡A-equivalent.

For runs r and r′ of A on w and w′, respectively, we say that r and r′ are
matching if for all i ≥ 0, the run r visits α when it reads the block bi iff the
run r′ visits α when it reads the block b′i. We prove that every run r of A on
w induces a matching run r′ of A on w′, and, dually, every run r′ of A on w′

induces a matching run r of A on w.
Consider a run r of A on w. For all i ≥ 1, recall that bi = si · zi · ti, where

si ≡A si · zi. It is easy to see (by induction on j) that for all j ≥ 1, the latter
implies that si · zi ≡A si · (zi)j . In particular, si · zi ≡A si · (zi)i. We define the
behavior of r′ on b′i as follows. By the definition so far, r′(h′i) = r(hi). We rely on
the fact that si ·zi ≡A h′isi ·(zi)i and define r′ so that r′(h′i ·si ·(zi)i) = r(hi ·si ·zi).
Also, r′ visits α when it reads si · (zi)i iff r visits α when it reads si · zi. On ti
we define r′ to be identical to r. It is easy to see that r and r′ are matching. In
a similar way, every run r′ of A on w′ induces a matching run r of A on w.

Recall that w ∈ L(AP). Therefore, there is a run r of A on w that visits
α infinitely often, or, equivalently, visits α in infinitely many blocks. Hence,
the matching run r′ of A on w′ also visits α in infinitely many blocks, and
w′ ∈ L(AB) = L(AP).

Since w ∈ L(AP), there is a run r′ on w′ that is accepting with some bound
k ≥ 1. For every i > k, the block b′i contains the infix (zi)

i, for zi ̸= ϵ, and is
therefore of length at least k. Hence, the run r′ visits α when it reads the the
block b′i. Let r be a run of A on w that matches r′. Since r and r′ are matching,
the run r visits α when it reads the block bi, for all i > k. Since |bi| = m, the
longest α-less window in r after block i is of length 2m− 1, thus r is accepting
with an eventual bound of 2m. Hence, w is accepted by a run that has a 2m
eventual bound.

10

Theorem 6, together with Lemma 1, induce a translation of reg-NPBW to
NCW: the NCW can guess the location in which the eventual bound k becomes
valid and then stays in an accepting region as long as an accepting state of the
NPBW is visited at least once every k transition. Since an NCW can be trans-
lated to an NPBW with eventual bound 1, we can conclude with the following.

Theorem 7. reg-NPBWs are as expressive as NCWs.

The construction used in the proof of Theorem 7 involves a blow-up that de-
pends on the number 3(|Q|2) of equivalence classes, and is thus super-exponential.
We now show that while we can do better, an exponential blow-up can not be
avoided.

Theorem 8. The tight blow-up in the translation of reg-NPBW to NCW is n2n,
where n is the number of states of the NPBW.

Proof: Consider a reg-NPBW A with n states. From Theorem 7, we know that
L(AP) is NCW-recognizable. From Theorem 3, we know that L(AP) = L(AB).
Thus, AB is an NBW whose language is NCW recognizable. Hence, by [6], there
exists an NCW B with at most n2n states equivalent to AB , and hence also to
AP . Moreover, it can be shown that the family of languages with which the n2n

lower bound was proven in [6] can be defined by means of reg-NPBWs, rather
than NBWs, implying a matching lower bound.

4.3 Properties of reg-NPBW and reg-DPBW

The fact that reg-NPBW =NCW immediately implies that closure properties
known for NCWs can be applied to reg-NPBW. For reg-DPBW, we present the
corresponding constructions. The fact that only reg-DPBW are closed under
complementation also implies that reg-NPBW are more expressive than reg-
DPBW.

Theorem 9. 1. reg-NPBW are closed under finite union and intersection, and
are not closed under complementation.

2. reg-DPBW are closed under finite union, intersection and complementation.

3. reg-NPBW are strictly more expressive than reg-DPBW.

5 Decision problems

In this section we study three basic decision problems for prompt automata:
regularity (given AP , deciding whether L(AP) is ω-regular) universality (given
AP , deciding whether L(AP) = Σω), and containment (given AP and an NBW
A, deciding whether L(A) ⊆ L(AP)). Note that the nonemptiness problem for
an NPBW AP can ignore the promptness and solve the nonemptiness of AB

instead. The other problems, however, require new techniques. The main chal-
lenge solving them has to do with the fact that we cannot adopt solutions from

11

the regular setting, as these involve complementation. Instead, we use approx-
imated determinization of NPBW: determinization that restricts attention to
words accepted with some fixed eventual bound. We show that we can approxi-
mately determinize NPBWs and that we can use the approximating automaton
in order to solve the three problems.

We first show that in the deterministic setting, the three problems can be
solved by analyzing the structure of the automaton. To see the idea behind the
algorithms, consider a reachable state q ∈ Q such that q is reachable from itself
both by a cycle that intersects α and by a cycle that does not intersect α. The
existence of such a state implies the existence of words x, u, v ∈ Σ∗ such that
the word x(uvi)ω is accepted by AP for all i ∈ N, but w = xuvuv2uv3 · · ·
satisfies w ∈ L(AB) \L(AP). Thus, AP is regular iff no such state exists, which
can be checked in NLOGSPACE. As detailed in the proof, the algorithms for
universality and containment follow similar arguments.

Theorem 10. The regularity, universality, and containment problems for DPBW
are NLOGSPACE-complete.

We continue to the nondeterministic setting and start with the construction
of the deterministic co-Büchi approximating automaton. The DCW D that ap-
proximates the NPBW A has a parameter k and it accepts exactly all words
that are accepted in A with eventual bound k. Essentially, D follows the subset
construction of A, while keeping, for each reachable state q, the minimal number
of transitions along which q is reachable from a state in α in some run of A. If
this number exceeds k, then D regards it as ∞, meaning that this state cannot
be part of a run that has already reached the suffix in which the eventual bound
applies. A run of D is accepting if eventually it visits only subsets that contain
at least one state with a finite bound. Indeed, a run of D can get stuck in such
states iff there is a run of A that visits α every at most k transitions.

Theorem 11. Let A be an NPBW with n states. For each k ∈ N there exists a
DCW D with at most (k + 1)n states such that L(D) = {w : w is accepted by A
with eventual bound k}.

Proof: LetA = ⟨Σ,Q, δ,Q0, α⟩ and let k ∈ N. We defineD = ⟨Σ,Q′, δ′, Q′
0, α

′⟩
as follows. The state space Q′ is the set of partial functions d : Q → {0, ..., k −
1,∞}. For a state d ∈ Q′, we say that a state q ∈ Q is d-safe if d(q) ∈
{0, 1, ..., k − 1}. Let safe(d) = {q : q is d-safe} be the set of all states that
are d-safe. When A reads a word w, a state d ∈ Q′ keeps track of all the runs of
A on w in the following manner. For each state q ∈ Q, if d(q) is undefined, then
q is not reachable in all runs of A on the prefix of the input word read so far.
Otherwise, d(q) is the minimal number of transition that some run of A on w
that visits q has made since visiting α. If this number is greater than k, that is,
no run of A that visits q has visited α in the past k transitions, then d(q) = ∞.
Intuitively, this means that runs that visit q are still not in the suffix in which
α is visited promptly. As we shall prove below, some run has reached a “good”
suffix, iff D can get trapped in states that contain at least one safe state.

12

We now define D formally. The initial state is Q′
0 = {d0} such that for all

q ∈ Q0, we have d0(q) = 0. The set of accepting states is α′ = {d : safe(d) ̸=
∅}. Before we define the transition function, we define an addition operator on
{0, 1, ..., k− 1,∞} as follows. For all i ∈ {1, ..., k− 1,∞}, we define i+1 = i+1
if i < k − 1 and i+ 1 = ∞ if i ∈ {k − 1,∞}.

For technical convenience, we associate with a state d the set Sd of states on
which d is defined. We say that d is lost if for all q ∈ Sd, we have d(q) = ∞. For
d ∈ Q′ and σ ∈ Σ we define δ′ as follows. If d is lost, then δ′(d, σ)(q′) = 0 for all
q′ ∈ δ(Sd, σ). Otherwise we define δ′(d, σ) = d′ as follows. For q′ ∈ δ(safe(d), σ)∩
α, we have d′(q′) = 0. For q′ ∈ δ(Sd, σ)∩ (Q \α) we have d′(q′) = min{d(q)+ 1 :
q′ ∈ δ(q, σ) and q ∈ Sd}. Finally, for q′ ∈ (δ(Sd, σ) \ δ(safe(d), wi)) ∩ α we have
d′(q′) = ∞.

Intuitively, safe(d) is the set of states that are still within the k bound in
some run of A. Thus, d′ checks which of these states indeed visit α after reading
σ, and resets them to 0. Otherwise it increases the counter. If all states reached
∞, then the eventual bound k was not yet in effect. We ”take note” of this by
not visiting α, and then d′ resets to 0, giving the eventual bound a new chance.
One may notice that the sets Sd are exactly the subset construction of A. Thus,
essentially, d is a labeling function of the subset construction.

The correctness of D is proven in the appendix.

We refer to D as the k-approximating DCW of A. While the deterministic
DCW constructed in Theorem 11 accepts only words that are accepted in the
original NPBW with a fixed eventual bound, Theorem 6 enables us to use such
a DCW in the process of deciding properties of the NPBW. In particular, for
a regular-NPBW A, Theorem 6 implies that a DCW constructed with bound
2 · 3n2

is equivalent to A. Recall that NPBWs are NBW-type. By [6], an NBW
whose language is DCW-recognizable can be translated to a DCWwith 3n states.
Hence we have the following.

Theorem 12. Let A be a regular NPBW. There exists a DCW with at most 3n

states such that L(D) = L(A).

In fact, as we show below, the deterministic approximating automaton is help-
ful for deciding all three problems, even when applied to non-regular NPBWs.

Theorem 13. The regularity, universality, and containment problems for NPBWs
are PSPACE-complete.

Proof: We prove here the upper bounds. For the lower bounds (detailed in
the appendix), we describe a reduction from NFW universality to NPBW uni-
versality, and a reduction from NPBW universality to NPBW regularity. Since
universality can be reduced to containment, PSPACE-hardness for all the three
problems follow.

We first prove that the universality problem is in PSPACE. Let A be an
NPBW. Let D be the DCW defined in Theorem 11 with bound 2 ·3n2

. We claim
that L(AP) = Σω iff L(D) = Σω. For the first direction, if L(AP) = Σω, then in

13

particular L(AP) is in reg-NPBW. From Theorem 12 we get that L(D) = L(AP),
so L(D) = Σω. For the other direction, observe that it is always true that
L(D) ⊆ L(AP). Thus, if L(D) = Σω, then L(AP) = Σω.

Finally, observe that we can check the universality of D in PSPACE. This is
because the size of D is (2 · 3n2

+ 1)n, its constructing can proceed on-the-fly,
and the universality problem for DCWs is in NLOGSPACE.

We proceed to prove that the regularity problem is in PSPACE. Consider the
automaton D constructed in Theorem 12. If L(AP) = L(AB) then L(AP) is ω-
regular and thus L(D) = L(AP) = L(AB). On the other hand, if L(D) = L(AP)
then L(AP) is ω-regular and by Theorem 3 we have that L(AP) = L(AB).
Thus, deciding whether L(AP) = L(AB) is equivalent to deciding whether
L(D) = L(AB). Note, however, that by Theorem 11 it is always true that
L(D) ⊆ L(AP) ⊆ L(AB). Thus, it is sufficient to check whether L(AB) ⊆ L(D).
The latter can be done in PSPACE, by simulating the complement of D on the
fly, similarly to the proof of NPBW universality.

It is left to prove that the containment problem is in PSPACE. We describe
a PSPACE algorithm for deciding whether L(B) ⊆ L(AP). Let m and n be
the number of states in B and A, respectively.First, check whether L(B) ⊆
L(AB). If L(B) ̸⊆ L(AB) return no. Otherwise, construct, per Theorem 11, a 2k-

approximating DCW, with k = (m+1) ·3n2

. Next, check whether L(B) ⊆ L(D).
If so, return yes. Otherwise, return no.

It is not hard to see that the algorithm can be implemented in PSPACE.
We now prove its correctness. Since it is always true that L(D) ⊆ L(AP) ⊆
L(AB), then it is easy to see that if L(B) ⊆ L(D) then L(B) ⊆ L(AP), and if
L(B) ̸⊆ L(AB) then L(B) ̸⊆ L(AP). It remains to show that if L(B) ⊆ L(AB)
but L(B) ̸⊆ L(D) then L(B) ̸⊆ L(AP).

Recall that L(D) = {w : w is accepted by AP with eventual bound of at
most 2k}. We claim that if L(B) ⊆ L(AP) then L(B) ⊆ L(D). Thus, we show
that if w ∈ L(B) then w is accepted by AP with eventual bound of at most 2k.
The proof of this claim follows the reasoning in the proof of Theorem 6.

Let w ∈ L(B). Since L(B) ⊆ L(AP) then w ∈ L(AP). Assume by way of
contradiction that w is accepted by AP with an eventual bound greater than 2k.
We divide w into blocks of length k, so w = b1 ·b2 · · · such that |bi| = k. Let s and
r be accepting runs of B and AP on w, respectively. Thus, there are infinitely
many blocks bi such that s visits αB when reading bi. Since r has an eventual
bound greater than 2k, then there are infinitely many blocks bi such that r does
not visit αA when reading bi. Since we took k = (m+1) ·3n2

, then in every block
bi = x1 · · ·xk there exist two indices j1 < j2 such that x1 · · ·xj1 ≡A x1 · · ·xj2
and s(xj1) = s(xj2). We can now pump the infix xj1 · · ·xj2 such that both r
and s are not affected outside the pumped infix. Now, similarly to the proof of
Theorem 6, we can pump infinitely many blocks bi such that the run r is no
longer prompt-accepting and s is still accepting. We end up with a word w′ that
is accepted by B. By our assumption, w′ is accepted by AP , and thus has a
prompt accepting run r′ of AP . We can shrink the pumped blocks of w′ back to

14

w such that the respective shrinking of s′ is a prompt accepting run of w with
eventual bound of at most 2k, which leads to a contradiction.

In [14], the authors describe a PSPACE LTL model-checking algorithm for
Prompt-LTL. Our PSPACE containment algorithm completes the picture and
implies that all prompt properties given by an NPBW can be model-checked in
PSPACE.

References

1. B. Alpern and F.B. Schneider. Defining liveness. IPL, 21:181–185, 1985.
2. R. Alur, K. Etessami, S. La Torre, and D. Peled. Parametric temporal logic for

model measuring. ACM Transactions on Computational Logic, 2(3):388–407, 2001.
3. R. Alur and T.A. Henzinger. Finitary fairness. In Proc. 9th IEEE Symp. on Logic

in Computer Science, pages 52–61, 1994.
4. M. Bojanczyk. A bounding quantifier. In Proc. 13th Annual Conf. of the European

Association for Computer Science Logic, pages 41–55, 2004.
5. M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. In Proc. 21st IEEE

Symp. on Logic in Computer Science, pages 285–296, 2006.
6. U. Boker and O. Kupferman. Co-ing Büchi made tight and helpful. In Proc. 24th

IEEE Symp. on Logic in Computer Science, pages 245–254, 2009.
7. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.

Int. Congress on Logic, Method, and Philosophy of Science, pages 1–12, 1962.
8. K. Chatterjee and T.A. Henzinger. Finitary winning in ω-regular games. In Proc.

12th TACAS, LNCS 3920, pages 257–271, 2006.
9. N. Derahowitz, D.N. Jayasimha, and S. Park. Bounded fairness. In Verification:

Theory and Practice, LNCS 2772, pages 304–317, 2003.
10. F. Horn. Faster algorithms for finitary games. In Proc. 13th TACAS, LNCS 4424,

pages 472–484, 2007.
11. N.D. Jones. Space-bounded reducibility among combinatorial problems. Journal

of Computer and Systems Science, 11:68–75, 1975.
12. S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-vis

deterministic Büchi automata. In Algorithms and Computations, LNCS 834, pages

378–386, 1994.
13. O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular automata.

IJFCS, 17(4):869–884, 2006.
14. O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis.

In Proc 18th CAV, LNCS 4144, pages 31–44, 2006.
15. O. Kupferman, N. Piterman, and M.Y. Vardi. From liveness to promptness. In

Proc 19th CAV, LNCS 4590, pages 406–419, 2007.
16. O. Kupferman and M.Y. Vardi. Verification of fair transition systems. In Proc 8th

CAV, LNCS 1102, pages 372–382, 1996.
17. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton

Univ. Press, 1994.
18. L.H. Landweber. Decision problems for ω–automata. Mathematical Systems The-

ory, 3:376–384, 1969.
19. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information

and Computation, 115(1):1–37, 1994.

15

A Proofs

A.1 Proof of Theorem 1

To show that NPBW are not more expressive than NBW, consider the NBW-
recognizable language (a∗b)ω (“infinitely many b’s). We claim that there is no
NPBW for it. Assume by way of contradiction that A is an NPBW recognizing
(a∗b)ω. Consider the word w = baba2ba3ba4ba5 · · · . Since w has infinitely many
b’s, it is accepted by A. Let n be the number of states of A and let k ∈ N be such
that there is an accepting run r with bound k of A on w. Let j = n·k. There must
be i1, i2, and i3 such that 0 ≤ i1 ≤ i2 ≤ i3 ≤ j, i1 < i3, r(baba

2 · · · bajbai1) =
r(baba2 · · · bajbai3), and r(baba2 · · · bajbai2) ∈ α. Then, however, the run r can
be pumped to an accepting run on baba2 · · · bakbaω, which has only finitely many
b’s.

For the opposite direction, let Lb = {w : there is k ≥ 1 such that all subwords
of w of length k have at least one occurrence of b}. It is easy to see that the
two-state DPBW that goes to an accepting state whenever b is read and goes to
a non-accepting state whenever a is read recognizes Lb. We claim that there is
no NBW for Lb.

Assume by way of contradiction that There is an NBW A′, with n states,
that accepts L2. Consider the word w = (b · an+1)ω. An accepting run of A′ on
w can be pumped to an accepting run on a word b · ai1 · b · ai2 · b · ai3 · b · · · , with
i1 < i2 < i3 < · · · . Such a word, however, is not in Lb.

A.2 Proof of Theorem 2

Throughout the proof we are going to refer to the following languages over the
alphabet Σ = {a, b}. For σ ∈ {a, b}, let Lσ = {w ∈ {a, b}ω : there exists k ∈
N such that for alli ∈ N we have σ ∈ {wi, wi+1, ..., wi+k}}. Note that Lb is the
language used in the proof of Theorem 1. Thus, there is a DPBW for it and,
dually, also for the language La.

Union We start with the nondeterministic case. It is easy to see that the stan-
dard union construction works. That is, given NPBWs A1 and A2 we can obtain
an NPBW for their union by defining the state space, transition function, set
of initial states and set of accepting states to be the union of the corresponding
components in A1 and A2. Thus, NPBW are closed under finite union.

For the deterministic case, we claim that the language L = La ∪ Lb is not
DPBW-recognizable. Assume by way of contradiction that there is a DPBW
A for L. Let n denote the number of states of A. First notice that for a word
x ∈ {a, b}∗, the words x · aω and x · bω are in L.

Consider a reachable state q ∈ Q and let y ∈ Σ∗ such that δ(y) = q. Since
A is deterministic, then for any index m > n, the run of A on am from q must
contain a cycle with an accepting state. Indeed, otherwise the run of A on y · aω
is not accepting. Since the length of such a cycle is at most n, and since this is

16

true for all q ∈ Q, then for every word w ∈ L and for every index l > n, there
exists an index l′ ≥ l such that we can pump every infix am of w to al

′
, such

that the run of A on the pumped infix visits an accepting state every n states.
Obviously this holds for b blocks as well.

Consider the word w = (an+1bn+1)ω. Clearly w ∈ L and therefore we can
pump each a-block and b-block in an increasing sequence, yielding an accepting
run on the word w̄ = ai0bi1ai2bi3 · · · such that n < i0 < i1 < i2 < This is a
contradiction since w̄ /∈ L.

Intersection We claim that the intersection construction for Büchi automata
is valid also in the case of prompt-Büchi. Given NPBW A1 = ⟨Σ,Q1, δ1, Q

0
1, α1⟩

and A2 = ⟨Σ,Q2, δ2, Q
0
2, α2⟩ Define A = ⟨Σ,Q, δ,Q0, α⟩ where Q = Q1 ×Q2 ×

{1, 2}, that is, two copies of the product automaton. The transition function is
defined by

δ(⟨q1, q2, i⟩, σ) =
{
⟨δ1(q1, σ), δ2(q2, σ), i⟩ qi /∈ αi

⟨δ1(q1, σ), δ2(q2, σ), 3− i⟩ qi ∈ αi

The set of accepting states is α = α1 × Q2 × {1} and the initial states are
Q0 = Q0

1 ×Q2 × {1}.
We prove that L(A) = L(A1)∩L(A2). Consider a word w ∈ L(A1)∩L(A2).

Then, there exist accepting runs r1 and r2 of A1 and A2 on w, respectively.
Denote the bounds of the runs by k1 and k2. Let r be the run of A on w induced
by the projections of r1 and r2 on the product automaton (the third component
of the run is determined by the projections of the runs, according to δ). Observe
that by the definition of δ this is a legal run. Further observe that when in copy 1
of the product automaton, A visits an accepting state in every interval of length
k1, and when in copy 2 A visits Q1 × α2 × 2 in every interval of length k2. This
implies that an accepting state of A is visited at least once in every interval of
length k1 + k2, which means A accepts w with bound k1 + k2.

For the other direction, consider a word w ∈ L(A). Let r be an accepting
run of A on w with bound k. By definition, r visits α1 ×Q2 × {1} in interval of
length k. By the definition of δ, this means that in every such interval, r goes to
the second copy and returns, which in turn means that r visits Q1 ×α2 ×{2} in
every interval of length k. Thus, the projection of r on the first two components
induces accepting runs of A1 and A2 on w with bound k, and we are done.

Further note that this construction preserves determinism, so NPBW and
DPBW are closed under intersection.

complementation Consider again the DPBW-recognizable language Lb. Let
L = Σω \ Lb. Thus, L = {w : for all k ≥ 1, the word ak is a subword of w}.
We claim that there is no NPBW for L. Assume by way of contradiction that
there is an NPBW with n states for L. A simple pumping argument on the word
w = aba2ba3ba4b · · · enables us to find two indices i1 < i2 < ... < il such that

17

the word w′ = aba2ba3b · · · ak−1b(ai1bai2b · · · ailb)ω is also accepted, which is a
contradiction, since there is a bound on the length of subwords of the form a∗

in w′.

Determinization This is an easy corollary of the fact that DPBWs are not
closed under union whereas NPBWs are. To see this, consider two DPBW-
recognizable languages L1 and L2 such that L1 ∪L2 is not DPBW-recognizable.
Since L1 ∪ L2 is NPBW-recognizable, we are done. In particular, this holds for
our languages La and Lb.

A.3 Proof of Theorem 7

For the first direction, we prove that every NCW-recognizable language is also
in reg-NPBW. It is easy to see that the standard construction that translates
an NCW to an NBW yields an automaton such that every accepting run gets
stuck in α. The language of such an automaton is clearly in reg-NPBW.

For the other direction, let L ∈ reg-NPBW and let A be an automaton such
that L = L(AP). By Theorem 3, such an automaton exists. Furthermore, by
Theorem 6 we know that there exists k ∈ N such that every word w ∈ L(AP) is
accepted by a run with an eventual bound of at most k.

We define an NCW A′ = ⟨Σ,Q′, Q′
0, δ

′, α′⟩ such that L(AP) = L(A′). In-
tuitively, we take k copies of A that are all accepting, and another copy that
”waits”. A run advances through these copies and resets to the first accepting
copy when getting to α. If more than k steps are made without getting to α the
run goes into a rejecting state. We now define this formally:

Q′ = Q× {0, 1, ..., k} ∪ {qrej}

Q′
0 = Q0 × {0}

α′ = Q′ \ ((Q× {0}) ∪ {qrej})

δ′ is defined as follows: for all σ ∈ Σ we have δ′(qrej) = {qrej} and for all
⟨q, i⟩ ∈ Q′ \ {qrej} we have

δ′(⟨q, i⟩, σ) =

δ(q, σ)× {0, 1} i = 0
δ(q, σ)× {i+ 1} 0 < i < k and q /∈ α
δ(q, σ)× {1} 0 < i ≤ k and q ∈ α
qrej i = k and q /∈ α

We claim that L(A′) = L(AP). Consider a word w ∈ L(AP), then A has
an accepting run r on w with an eventual bound of at most k. r induces a run
r′ of A′ on w which waits in copy 0 until the k bound is in effect, and then
moves between accepting copies and resets to the first copy every (at most) k
transitions. This means that r′ never gets to qrej and eventually never visits
copy 0, so it is stuck in α′ and thus accepting. L(AP) ⊆ L(A′).

18

On the other hand, consider a word w ∈ L(A′). Let r′ be an accepting run
of A′ on w. The run r′ gets stuck in α′ eventually. By the construction of A′,
this implies that eventually, r′ visits α × {i} for 0 < i ≤ k every (at most) k
transitions. r′ induces a run r of A on w that eventually visits α every (at most)
k transitions, and is therefore accepted by AP .

We conclude that L = L(AP) = L(A′), and therefore L is NCW-recognizable.

A.4 Proof of Theorem 9

The properties for reg-NPBWs follow from the known properties of NCWs and
Theorem 7.

For the deterministic case, we start with closure to union. As we proved in
Theorem 5, for a run r of a reg-DPBW automaton we have inf(r) ∩ α ̸= ∅ iff
inf(r) ⊆ α. Let A1,A2 be reg-NPBW. We use the product construction A1×A2

and set the accepting states to be (α1×Q2)∪ (Q1×α2). If a word was accepted
by (w.l.o.g) A1, then the induced run in the cross product gets stuck in α1×Q2,
and is therefore accepting.

On the other hand, let r be an accepting run of A1 × A2 on some word
w, then r visits α1 × Q2 or Q1 × α2 infinitely often (w.l.o.g assume α1 × Q2).
Therefore, the projection of r on A1 visits α1 infinitely often, which means it
gets stuck in α1, so w is accepted in A1 and thus in the union.

Closure for intersection follows from the product construction, which pre-
serves determinism. For complementation, we already proved that for a run r in
a DPBW, we have inf(r) ∩ α ̸= ∅ iff inf(r) ⊆ α. This means that if we dualize
α we get a DPBW for the complement language. Finally, in order to show that
reg-NPBW are strictly more expressive than reg-DPBW, consider the language
L = (a + b)∗.bω (only finitely many a’s). The language L is NCW-recognizable
and therefore is in reg-NPBW. From the NBW typeness of NPBW, it follows
that there cannot be a DPBW for L. Indeed, had there been a DPBW for L
then we would have a DBW for L, which is not DBW-recognizable [18].

A.5 Proof of Theorem 10

Regularity is in NLOGSPACE. Let A = ⟨Σ,Q, {q0}, δ, α⟩ be a determin-
istic automaton. For a state q ∈ Q, we say that q is pumpable if q is reachable
from itself via a cycle that does not visit α.

We first claim that L(AP) (L(AB) iff there exists a reachable state q′ ∈ α
such that q′ is reachable from itself via a cycle that passes through a pumpable
state.

Indeed, for the first direction, assume that there exists a reachable state
q′ ∈ α and a pumpable state q ∈ Q such that q′ is reachable from itself via q. Let
x, u1, u2, z ∈ Σ∗ be finite words such that δ(q0, x) = q′, δ(q′, u1) = q, δ(q, u2) =
q′, and δ(q′, z) = q′ such that z ”witnesses” that q′ is pumpable (that is, the run
from q′ on z does not visit α). Consider the word w = xu1zu2u1z

2u2u1z
3u2u1z

4....
Since A is deterministic, the single run of A on w does not visit α in the zi blocks,

19

and does visit α at least after reading each u2 (which gets back to q′ ∈ α). Thus,
w ∈ L(AB) \ L(AP), so L(AP) (L(AB).

For the other direction, assume that L(AP) (L(AB). This implies the exis-
tence of a word w ∈ L(AB) \L(AP). Let r be the run of A on w, then for every
k ∈ N there exists an α-less k-window in r. Let n0 ∈ N be an index such that for
all n > n0 it holds that rn ∈ inf(r). Let ri1 , ..., rin+1 be an α-less window such
that i1 > n0. From the pigeonhole principle, there exists i1 ≤ j1 < j2 ≤ in+1 such
that rj1 = rj2 . Let q = rj1 , then q is pumpable. Furthermore, since inf(r)∩α ̸= ∅
(as r is accepted by AB), then there exists q′ ∈ α∩inf(r) such that q is reachable
from itself via q′, since q′ ∈ inf(r). Thus, the condition we defined holds.

We now present an algorithm for deciding whether L(AB) ⊆ L(AP). Given
an automaton A = ⟨Σ,Q, {q0}, δ, α⟩ as input, for each reachable state q′ ∈ α,
check if q′ is reachable from itself via a cycle that passes through a pumpable
state. If such a state exists, then L(AP) (L(AB). Otherwise L(AP) = L(AB).

It is easy to see that this algorithm can be implemented in NLOGSPACE,
as it is a polynomial length sequence of reachability problems.

Regularity is NLOGSPACE-hard. We show a reduction from the reach-
ability problem, which was shown to be NLOGSPACE-hard in [11]. Let G =
⟨V,E⟩ be a directed graph, and let s, t ∈ V . Let |E| = m and let {e1, ..., em}
be an enumeration of the edges. Let q /∈ V , we construct the DPBW D =
⟨{1, ...,m} ∪ {a, b}, V ∪ {q}, {s}, δ, {t}⟩. We define δ as follows. For each ei =
(u, v) ∈ E we define δ(u, i) = v. Also, δ(t, a) = q, δ(q, a) = q, δ(q, b) = t. Clearly,
D is deterministic. We claim that t is reachable from s iff L(AP) = L(AB).
Intuitively, it follows form the fact that we added a non-regular component at
state t.

For the first direction, assume that t is not reachable from s. Thus, there is
no reachable accepting state in D, so L(AP) = L(AB) = ∅.

For the other direction, assume t is reachable from s. Let s, u1, ..., uk, t be a
path from s to t, and assume the edges along this path are ei0 , ..., eik . Consider
the word w = i0 · i1 · · · ik · aba2ba3ba4b · · · . It is easy to see that w ∈ L(AB) \
L(AP). Thus, L(AP) ̸= L(AB), and we are done.

Universality is in NLOGSPACE. Let AP be a DPBW. Since Σω is regular,
then , by Theorem 3, we have that that L(AP) = Σω iff L(AP) = L(AB) and
L(AB) = Σω. since A is deterministic, both can be checked in NLOGSPACE.

Universality and containment are NLOGSPACE-hard. It is not hard to
see that the reduction from NFW universality to NPBW universality, shown in
the proof of Theorem 13 requires constant space and preserves determinization.
Thus, it is also a reduction from DFW universality to DPBW universality. Since
DFW universality is NLOGSPACE-hard, and universality is a special case of
containment, we get PSPACE-harness for both universality and containment.

20

Containment is in NLOGSPACE. Let B be an NBW and let AP be a
DPBW. Consider the automaton C = B × A. We say that a state ⟨s, q⟩ ∈ C is
joint-pumpable if ⟨s, q⟩ is reachable from itself via a cycle whose projection on
A intersects αA, and via a cycle whose projection on A does not intersects αA,
and the projection of one of these cycles on B intersects αB. It is not hard to
see that L(B) ⊆ L(AP) iff there is no joint-pumpable state in A×B. The proof
is similar to that of DPBW regularity. Also, deciding the existence of a joint-
pumpable state can be done in NLOGSPACE. Since NLOGSPACE is closed
under complementation, it follows that deciding whether L(B) ⊆ L(AP) is in
NLOGSPACE.

A.6 Proof of Theorem 11

We prove that L(D) = {w : w is accepted by A with eventual bound k}. For
the first direction, let w ∈ L(AP) be accepted with eventual bound k. Let
r = q0, q1, ... be an accepting run of AP on w with eventual bound k. Thus, there
exists an index l such that for all i > l we have that {ri, ri+1, ..., ri+k−1}∩α ̸= ∅.
Consider the run s = d0, d1, ... of D on w. Assume by way of contradiction that
s is not accepting. This is equivalent to saying that inf(s)∩ (Q′ \α′) ̸= ∅. Notice
that Q′ \ α′ = {d : safe(d) = ∅}. We present two claims.

1. For all i ∈ N, qi ∈ Sdi

2. There exists an index l′ > l such that for all i > l′, di(qi) ∈ safe(d)

We first show that these claims imply that s is accepting. Indeed, for all i > l′

the claims imply that safe(di) ̸= ∅. Thus di ∈ α′, so s gets stuck in α′ and is
therefore accepting. We now prove the claims.

1. We prove the claim by induction. For i = 0, we know that q0 ∈ Q0, so
by the definition of d0 ∈ Q′

0 we have q0 ∈ Sd0 . Assume correctness for i.
Since r is a legal run, then qi+1 ∈ δ(qi, wi). Observe that by the definition
of δ′, Sdi+1 = (δ(safe(di), wi) ∩ α) ∪ (δ(Sdi , wi) ∩ (Q \ α)) ∪ (δ(Sdi , wi) \
δ(safe(di), wi) ∩ α) = δ(Sdi , wi). Since qi+1 ∈ δ(qi, wi) and qi ∈ Sdi , then
qi+1 ∈ Sdi+1 .

2. Recall that after l, the run r visits α in every k states interval. Let l′ be
the minimal index greater than l such that dl′ /∈ α′. By our contradictory
assumption, such l′ exists.
We now prove by induction over i that ql′+i ∈ safe(dl′+i) and that for 0 ≤ j <
dl′+i(ql′+i) we have rl′+i−j /∈ α. For i = 1, from claim 1 we get that dl′(ql′) ∈
Sdl′ . Also, dl′ /∈ α′, implying that dl′(ql′) = ∞. From the definition of δ′,
and since ql′+1 ∈ δ(ql′ , wl′), then dl′+1(ql′+1) = 0. The condition that for all
1 ≤ j ≤ dl′+i trivially holds in this case. Assume correctness for i, we prove
for i+ 1. Since dl′+i(ql′+i) ∈ {0, ..., k− 1} and since ql′+i+1 ∈ δ(ql′+i, wl′+i),
then ql′+i+1 ∈ Sdl′+i+1

. If ql′+i+1 ∈ α, then by the definition of δ′ we get
that dl′+i+1(ql′+i+1) = 0, so the claim holds. Otherwise, let m = dl′+i(ql′+i).
By the definition of δ′ we have that dl′+i+1(ql′+i+1) ≤ m+ 1. If m = k − 1,

21

then by the induction hypothesis, for j ∈ {1, ..., k − 1} we have ql′+i−j /∈ α.
Since the eventual bound k is in effect after l, this implies that ql′+i+1 ∈ α,
otherwise the run violates the bound. Thus, dl′+i+1(ql′+i+1) = 0 and the
claim holds. So m < k − 1. Thus, m+ 1 ≤ k − 1, so ql′+i+1 ∈ safe(dl′+i+1).
Furthermore, for all 0 < j < dl′+i+1(ql′+i+1) we know from the induction
hypothesis that ql′+i+1−j /∈ α. For j = 0 we know that ql′+i+1 /∈ α. Thus,
we are done.

We conclude that L(AP) ⊆ L(D).

For the other direction, let w ∈ L(D). Thus, the single run r = d0, d1, d2, ...
of D on w eventually gets stuck in α′. Consider the run DAG of A on w. The
run DAG is defined as the graph G = ⟨V,E⟩ such that V = Q ×N, and there
is an edge (⟨q, i⟩, ⟨q′, j⟩) iff j = i+ 1 and q′ ∈ δ(q, wi). Thus, every run of A on
w induces an infinite path in G and vice-versa. The run r induces a {0, ..., k −
1,∞,⊥}-labeling on the vertices of G by labeling the vertex ⟨q, i⟩ with di(q) if
q ∈ Sdi and ⊥ otherwise. Let l be the index such that for all i > l di ∈ α′. Thus,
for all i > l there exists q ∈ Q such that q is di-safe. We now restrict to the
subgraph G′ of G induced by V \ {⟨q, i⟩ : di(q) = ⊥ or i > l and di(q) = ∞}.
Thus, we remove all vertices that are labeled ⊥ and all vertices that are labeled
∞ after level l. Recall that on any level i > l there is a vertex q such that
di(q) ∈ {0, ..., k − 1}. Thus, G′ is infinite.

We now claim that the graph G′ contains a path of any finite length starting
at level 1. Indeed, let j > l, and let ⟨q, j⟩ be a vertex such that q is dj-safe. By
the definition of δ′, we see that dj(q) ∈ {0, ..., k − 1} only in two cases. Either
q ∈ δ(q′, wj) and dj−1(q

′) ∈ {0, ..., k − 1}, or q ∈ δ(q′, wj) and dj−1 /∈ α′. Since
r is accepting, the latter condition can only hold for j ≤ l. We can continue
tracking back nodes until level l. From level l we can continue in a path to level
1, since if di(q) ̸= ⊥ then we can find q′ such that di−1(q

′) ̸= ⊥ and q ∈ δ(q′).
We conclude the existence of a path q0, q1, ..., qj−1, q in G

′. Thus, we have a path
of any finite length starting at level 1 in G′.

Since each vertex has an exit degree of at most |Q|, then every vertex has
finite degree. Since there is a path of any finite length, we can use König’s lemma
and conclude there is an infinite path π in G′. π Induces an infinite run q0, q1, ...
of A on w, such that for i > l qi is di-safe. Note that this run is not necessarily
accepting. However, if di(qi) ∈ {0, ..., k− 1}, this implies that there exists q′ ∈ α
in level i′ ∈ {i, i − 1, ..., i − k} such that ⟨q, i⟩ is reachable from zugq′, i′ in G′.
Since this is true for all i > l, we conclude there are infinitely many ⟨q, i⟩ nodes
in G′ such that q ∈ α and q is di-safe. We refer to such nodes as α-nodes.

Now, observe the set O = {⟨q, i⟩ ∈ G′ : ⟨q, i⟩ is an α-node and l < i ≤ l+ k}.
From what we proved, this set is not empty. Clearly, it is also finite. Assume
by contradiction that from each q ∈ O there are only finitely many reachable
α-nodes. Thus, there are only finitely many α nodes reachable from O. Since
there are infinitely many α-nodes in G′, this implies the existence of an α-node
⟨q′, j⟩ ∈ G′ that is not reachable from O such that j > l+k. We can trace a path

22

from ⟨q′, j⟩ to some state ⟨q′′, l⟩ such that in every k states there is an α-node.
However, this means that ⟨q′, j⟩ is reachable from an α node in O- contradiction.

Thus, there exists an α-node from which there are infinitely many reachable
α-nodes. Note that we can also require that any of the reachable nodes will be
on a path that passes through α every at most k steps. In an argument similar
to König’s Lemma, we can conclude that there exists a path through G′ with
infinitely many α nodes in intervals of at most k. Furthermore, if this path
starts in ⟨q, i⟩ for i > 1 then di(q) ∈ {1, ..., k,∞}, and we can trace back this
path to level 1 only through nodes labeled with {1, ..., k,∞}. This path induces
an accepting run of AP on w, and we are done.

A.7 Proof of Theorem 13

Universality and containment are PSPACE-hard. Recall that deciding
the universality problem for NFW is PSPACE-hard. We show a reduction from
NFW universality to NPBW universality. Since universality is a special case of
containment, we get PSPACE-harness for both universality and containment.
The reduction is similar to the one described in [16] for universality of fair tran-
sition systems. Given an NFW A = ⟨Σ,Q, δ,Q0, α⟩ as input for the NFW uni-
versality problem, we construct an NPBW A′ = ⟨Σ∪{#}, Q∪{qacc, qΣ}, δ′, Q0∪
{qΣ}, α ∪ {qΣ , qacc}⟩, where

δ′(q, σ) =

δ(q, σ) q ∈ Q, σ ∈ Σ
qacc q = qacc, σ ∈ Σ ∪ {#}
qΣ q = qΣ , σ ∈ Σ
qacc q ∈ α, σ = #

Thus, on letters from Σ, the NPBW A′ goes to qΣ , from which it accepts
all words in Σω, and can also continues in the NFW A, waiting for a visit in α.
From the accepting states of A, the NPBW A′ can read the letter # and go to
an accepting sink.

We claim that L(A) = Σ∗ iff L(A′
P) = (Σ ∪ {#})ω. First observe that for

every w ∈ Σω it holds that w ∈ L(A′
P), since the run (qΣ)

ω is an accepting
legal run on w. If L(A) = Σ∗, then for any word x ∈ Σ∗ there exists a run
r of A on x such that r|x| ∈ α. Let w ∈ (Σ ∪ {#})ω, then either w ∈ Σω or
w ∈ Σ∗#(Σ ∪ {#})ω, in the first case, w ∈ L(A′

P) be our observation. In the
second case, let w = x#z where x ∈ Σ∗ and z ∈ (Σ∪{#})ω. A has an accepting
run on x, which induces a prefix of a run r′ of A′ on w, such that r′|x| ∈ α. Thus,

when A′ reads the first # in w, it can pass to qacc, thus there is an accepting
run of A′ on w, so L(A′

P) = Σω.

For the other direction, if L(A) ̸= Σ∗ then there exists a word x ∈ Σ∗ such
that x /∈ L(A). Observe the runs of A′

P on the word w = x#ω. There is a single
run that starts from qΣ , which is not accepting as it reaches and stays in a
rejecting state after reading #. All the runs that start from Q0 do not reach an

23

b

b

a

a

Fig. 2. L(BB) = (a · b∗)ω

accepting state after reading x, and therefor all the runs go to a rejecting state
after reading #. Thus w /∈ L(A′

P), and therefore L(A′
P) ̸= (Σ ∪#)ω.

Regularity is PSPACE-hard. We show a reduction from the universality
problem for NPBW, we proved to be PSPACE-hard. Let B = ⟨{a, b}, QB, δB, Q

0
B, αB⟩

be the automaton in Figure 2.

Given two infinite words w1 = σ1σ2σ3 · · · ∈ Σω and w2 = τ1τ2τ3 · · · ∈ {a, b}ω,
we define

w1 ⊕ w2 = ⟨σ1, τ1⟩⟨σ2, τ2⟩⟨σ3, τ3⟩ · · · ∈ (Σ × {a, b})ω.

Given an NPBW A = ⟨Σ,QA, δA, Q
0
A, αA⟩, an input for the universality

problem, we define the automaton C = A× B = ⟨Σ × {a, b}, QA ×QB, δ,Q
0
A ×

Q0
B, α⟩, where δ(⟨q1, q2⟩, ⟨σ1, σ2⟩) = δA(q1, σ1)×δB(q2, σ2), and α = (αA×QB)∪

(QA × αB). It is not hard to see that C accepts a word w1 ⊕w2 if A accepts w1

or B accepts w2.

We prove that A is universal iff L(CP) = L(CB). For the first direction, if A is
universal, then for every infinite word w1 ∈ Σω there is an accepting run ofAP on
w. This implies that for every word w1⊕w2 ∈ (Σ×{a, b})ω there is an accepting
run of CP on w1 ⊕w2. Indeed, an accepting run of AP on w1 induces a run of C
on w1 ⊕ w2 that visits αA ×QB ⊆ αC promptly. Hence L(CP) = (Σ × {a, b})ω.
Since L(CP) ⊆ L(CB) we conclude that L(CP) = L(CB) = (Σ × {a, b})ω.

For the other direction, assume that A is not universal. Consider a word w1 /∈
L(AP). Since L(A) ̸= Σω, such a word w1 exists. We distinguish between two
cases. If w1 /∈ L(AB), then every run of A on w1 visits αA only a finite number
of times. Let w2 ∈ {a, b}ω be an infinite word such that w2 ∈ L(BB)\L(BP). For
example, w2 = ab2ab3ab4 · · · . Consider the word w1 ⊕ w2. Since w1 /∈ L(AP),
every run of C on w1 ⊕ w2 visits αA × QB only a finite number of times. Also,
since w2 ∈ L(BB), there exists a run of C on w1 ⊕ w2 that visits QA × αB
infinitely many times. Further notice that since w2 /∈ L(BP), there is no run
that visits QA ×αB promptly. We conclude that w1 ⊕w2 ∈ L(CB) \L(CP), thus
L(CP) ̸= L(CB).

For the second case, assume w1 ∈ L(AB). Let w2 = bω, and consider the
word w1 ⊕ w2. By definition, the single run of B on w2 visits always the non-
accepting state. Recall that w1 /∈ L(AP), which means that every run of C on
w1⊕w2 does not visit αA×QB promptly. In addition, every run of C on w1⊕w2

does not visit QA × αB at all. However, an accepting run of AB on w1 induces

24

an accepting run of CB on w1 ⊕ w2, thus w1 ⊕ w2 ∈ L(CB) \ L(CP) and again,
L(CP) ̸= L(CB).

25

