
Universal Dependency Parsing with a
General Transition-Based DAG Parser

Daniel Hershcovich1,2 Omri Abend2

1The Edmond and Lily Safra Center for Brain Sciences
2School of Computer Science and Engineering

Hebrew University of Jerusalem
{danielh,oabend,arir}@cs.huji.ac.il

Ari Rappoport2

Abstract

This paper presents our experiments with
applying TUPA to the CoNLL 2018 UD
shared task. TUPA is a general neu-
ral transition-based DAG parser, which
we use to present the first experiments
on recovering enhanced dependencies as
part of the general parsing task. TUPA
was designed for parsing UCCA, a cross-
linguistic semantic annotation scheme, ex-
hibiting reentrancy, discontinuity and non-
terminal nodes. By converting UD trees
and graphs to a UCCA-like DAG for-
mat, we train TUPA almost without mod-
ification on the UD parsing task. The
generic nature of our approach lends it-
self naturally to multitask learning. Our
code is available at https://github.
com/CoNLL-UD-2018/HUJI.

1 Introduction

In this paper, we present the HUJI submission to
the CoNLL 2018 shared task on Universal Depen-
dency parsing (Zeman et al., 2018). We focus only
on parsing, using the baseline system, UDPipe 1.2
(Straka et al., 2016; Straka and Straková, 2017)
for tokenization, sentence splitting, part-of-speech
tagging and morphological tagging.

Our system is based on TUPA (Hershcovich
et al., 2017, 2018, see §3), a transition-based
UCCA parser. UCCA (Universal Conceptual Cog-
nitive Annotation; Abend and Rappoport, 2013)
is a cross-linguistic semantic annotation scheme,
representing events, participants, attributes and re-
lations in a directed acyclic graph (DAG) struc-
ture. UCCA allows reentrancy to support ar-
gument sharing, discontinuity (corresponding to
non-projectivity in dependency formalisms) and
non-terminal nodes (as opposed to dependencies,

which are bi-lexical). To parse Universal Depen-
dencies (Nivre et al., 2016) using TUPA, we em-
ploy a bidirectional conversion protocol to repre-
sent UD trees and graphs in a UCCA-like unified
DAG format (§2).

Enhanced dependencies. Our method treats en-
hanced dependencies1 as part of the dependency
graph, providing the first approach, to our knowl-
edge, for supervised learning of enhanced UD
parsing. Due to the scarcity of enhanced de-
pendencies in UD treebanks, previous approaches
(Schuster and Manning, 2016; Reddy et al., 2017)
have attempted to recover them using language-
specific rules. Our approach attempts to learn
them from data: while only a few UD treebanks
contain any enhanced dependencies, similar struc-
tures are an integral part of UCCA and its anno-
tated corpora (realized as reentrancy by remote
edges; see §2), and TUPA supports them as a stan-
dard feature.

As their annotation in UD is not yet widespread
and standardized, enhanced dependencies are not
included in the evaluation metrics for UD pars-
ing, and so TUPA’s ability to parse them is not re-
flected in the official shared task scores. However,
we believe these enhancements, representing case
information, elided predicates, and shared argu-
ments due to conjunction, control, raising and rel-
ative clauses, provide richer information to down-
stream semantic applications, making UD better
suited for text understanding. We propose an eval-
uation metric specific to enhanced dependencies,
enhanced LAS (§5.1), and use it to evaluate our
method.

1http://universaldependencies.org/u/
overview/enhanced-syntax.html

https://github.com/CoNLL-UD-2018/HUJI
https://github.com/CoNLL-UD-2018/HUJI
http://universaldependencies.org/u/overview/enhanced-syntax.html
http://universaldependencies.org/u/overview/enhanced-syntax.html

We

A

were
F

made

D

to

F

feel

P

very

D

welcome

S

.

U

A

A

(a) Example UCCA graph.

We were made to feel very welcome .

nsubj:pass

nsubj:xsubj

nsubj:xsubj

aux:pass

root

mark

xcomp

advmod

xcomp

punct

(b) Example UD graph.

We

nsubj

were

au
x

made

head

to

m
ark

feel

he
ad

very

ad
vm

od

welcome

head

.

punct

xcom
p

xcomp

he
ad

nsubj

nsubj

(c) UD graph after conversion to unified DAG format.

Figure 1: (a) Example UCCA annotation for the sen-
tence “We were made to feel very welcome.”, con-
taining a control verb, made. The dashed A edge
is a remote edge. (b) Bilexical graph annotating the
same sentence in UD (reviews-077034-0002 from
UD_English-EWT). Enhanced dependencies appear below
the sentence. (c) The same UD graph, after conversion to the
unified DAG format. Intermediate non-terminals and head
edges are introduced, to get a UCCA-like structure.

2 Unified DAG Format

To apply TUPA to UD parsing, we convert UD
trees and graphs into a unified DAG format (Her-
shcovich et al., 2018). The format consists of a
rooted DAG, where the tokens are the terminal
nodes.2 Edges are labeled (but not nodes), and are
divided into primary and remote edges, where the
primary edges form a tree (all nodes have at most
one primary parent, and the root has none). Re-
mote edges (denoted as dashed edges in Figure 1)

2Our conversion code supports full conver-
sion between UCCA and UD, among other rep-
resentation schemes, and is publicly available at
http://github.com/danielhers/semstr/
tree/master/semstr/conversion.

enable reentrancy, and thus form a DAG together
with primary edges. Figure 1 shows an example
UCCA graph, and a UD graph (containing two en-
hanced dependencies) before and after conversion.
Both annotate the same sentence from the English
Web Treebank (Silveira et al., 2014)3.

Conversion protocol. To convert UD into the
unified DAG format, we add a pre-terminal for
each token, and attach the pre-terminals according
to the original dependency edges: traversing the
tree from the root down, for each head token we
create a non-terminal parent with the edge label
head, and add the node’s dependents as children
of the created non-terminal node (see Figure 1c).
This creates a constituency-like structure, which is
supported by TUPA’s transition set (see §3.1).

Although the enhanced dependency graph is not
necessarily a supergraph of the basic dependency
tree, the graph we convert to the unified DAG for-
mat is their union: any enhanced dependnecies
that are distinct from the basic dependency of a
node (by having a different head or universal de-
pendency relation) are converted to remote edges
in the unified DAG format.

To convert graphs in the unified DAG format
back into dependency graphs, we collapse all head
edges, determining for each terminal what is the
highest non-terminal headed by it, and then attach-
ing the terminals to each other according to the
edges among their headed non-terminals.

Input format. Enhanced dependencies are en-
coded in the 9th column of the CoNLL-U format,
by an additional head index, followed by a colon
and dependency relation. Multiple enhanced de-
pendencies for the same node are separated by
pipes. Figure 2 demonstrates this format. Note
that if the basic dependency is repeated in the en-
hanced graph (3:nsubj:pass in the example),
we do not treat it as an enhanced dependency, so
that the converted graph will only contain each
edge once. In addition to the UD relations defined
in the basic representations, enhanced dependen-
cies may contain the relation ref, used for rel-
ative clauses. In addition, they may contain more
specific relation subtypes, and optionally also case
information.

Language-specific extensions and case infor-
mation. Dependencies may contain language-

3https://catalog.ldc.upenn.edu/
LDC2012T13

http://github.com/danielhers/semstr/tree/master/semstr/conversion
http://github.com/danielhers/semstr/tree/master/semstr/conversion
https://catalog.ldc.upenn.edu/LDC2012T13
https://catalog.ldc.upenn.edu/LDC2012T13

1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj:pass 3:nsubj:pass|5:nsubj:xsubj|7:nsubj:xsubj _

Figure 2: Example line from CoNLL-U file with two enhanced dependencies: 5:nsubj:xsubj and 7:nsubj:xsubj.

he went straight to work and finished the job efficiently and promptly !

nsubj

nsubj

root

advmod mark

advcl

cc

conj

det

obj

advmod

cc

conj

advmod

punct

Figure 3: UD graph from reviews-341397-0003 (UD_English-EWT), containing conjoined predicates and arguments.

specific relation subtypes, encoded as a suffix
separated from the universal relation by a colon.
These extensions are ignored by the parsing eval-
uation metrics, so for example, the subtyped rela-
tion nsubj:pass (Figure 1b) is considered the
same as the universal relation nsubj for eval-
uation purposes. In the enhanced dependencies,
these suffixes may also contain case information,
which may be represented by the lemma of an ad-
position. For example, the “peace” → “earth” de-
pendency in Figure 4 is augmented as nmod:on
in the enhanced graph (not shown in the figure be-
cause it shares the universal relation with the basic
dependency).

In the conversion process, we strip any
language-specific extensions from both basic and
enhanced dependencies, leaving only the univer-
sal relations. Consequently, case information that
might be encoded in the enhanced dependencies is
lost, and we do not handle it in our current system.

Ellipsis and null nodes. In addition to enhanced
dependencies, the enhanced UD representation
adds null nodes to represented elided predicates.
These, too, are ignored in the standard evalua-
tion. An example is shown in Figure 4, where
an elided “wish” is represented by the node E9.1.
The elided predicate’s dependents are attached to
its argument “peace” in the basic representation,
and the argument itself is attached as an orphan.
In the enhanced representation, all arguments are
attached to the null node as if the elided predicate
was present.

While UCCA supports empty nodes without
surface realization in the form of implicit units,
previous work on UCCA parsing has removed
these from the graphs. We do the same for UD
parsing, dropping null nodes and their associated

dependencies upon conversion to the unified DAG
format. We leave parsing elided predicates for fu-
ture work.

Propagation of conjuncts. Enhanced depen-
dencies contain dependencies between conjoined
predicates and their arguments, and between pred-
icates and their conjoined arguments or modifiers.
While these relations can often be inferred from
the basic dependencies, in many cases they require
semantic knowledge to parse correctly. For exam-
ple, in Figure 3, the enhanced dependencies repre-
sent the shared subject (“he”) among the conjoined
predicates (“went” and “finished”), and the con-
joined modifiers (“efficiently” and “promptly”)
for the second predicate (“finished”). However,
there are no enhanced dependencies between the
first predicate and the second predicate’s modi-
fiers (e.g. “went” → “efficiently”), as semantically
only the subject is shared and not the modifiers.

Relative clauses. Finally, enhanced graphs at-
tach predicates of relative clauses directly to the
antecedent modified by the relative clause, adding
a ref dependency between the antecedent and the
relative pronoun. An example is shown in Fig-
ure 5a. While these graphs may contain cycles
(“robe” ↔ “made” in the example), they are re-
moved upon conversion to the unified DAG for-
mat by the introduction of non-terminal nodes (see
Figure 5b).

3 General Transition-based DAG Parser

We now turn to describing TUPA (Hershcovich
et al., 2017, 2018), a general transition-based
parser (Nivre, 2003). TUPA uses an extended set
of transitions and features that supports reentran-
cies, discontinuities and non-terminal nodes. The
parser state is composed of a buffer B of tokens

I wish all happy holidays , and moreso , E9.1 peace on earth .

nsubj

root

iobj amod

obj
punct

punct

cc

cc

orphan

advmod

punct

punct

conj

obj

case

nmod

punct

Figure 4: newsgroup-groups.google.com_GuildWars_086f0f64ab633ab3_ENG_20041111_173500-0051
(UD_English-EWT), containing a null node (E9.1) and case information (nmod:on).

He had a robe that was made back in the ’60s .

nsubj

root

det

obj

nsubj:pass

nsubj:pass

ref

aux:pass

acl:relcl

advmod

case

det

obl

punct

(a) UD.

He had a

de
t

robe

head

obj

head

that was

au
x

made

head
head

back

he
ad

in

ca
se

the

de
t

’60s

head

.

punct

obl

advmod

acl

ns
ub

j head ns
ub

j

nsubj

ref

(b) UD converted to unified DAG format.

Figure 5: (a) reviews-255261-0007 (UD_English-EWT), containing a relative clause, and (b) the same graph after
conversion to the unified DAG format. The cycle is removed due to the non-terminal nodes introduced in the conversion.

and nodes to be processed, a stack S of nodes cur-
rently being processed, and a graph G = (V,E, `)
of constructed nodes and edges, where V is the set
of nodes, E is the set of edges, and ` : E → L
is the label function, L being the set of possible
labels. Some states are marked as terminal, mean-
ing that G is the final output. A classifier is used
at each step to select the next transition based on
features encoding the parser’s current state. Dur-
ing training, an oracle creates training instances
for the classifier, based on gold-standard annota-
tions.

3.1 Transition Set

Given a sequence of tokens w1, . . . , wn, we pre-
dict a rooted graph G whose terminals are the to-
kens. Parsing starts with the root node on the
stack, and the input tokens in the buffer.

The TUPA transition set, shown in Figure 6,
includes the standard SHIFT and REDUCE oper-
ations, NODEX for creating a new non-terminal
node and an X-labeled edge, LEFT-EDGEX and
RIGHT-EDGEX to create a new primary X-labeled

edge, LEFT-REMOTEX and RIGHT-REMOTEX to
create a new remote X-labeled edge, SWAP to
handle discontinuous nodes, and FINISH to mark
the state as terminal.

The REMOTEX transitions are not required for
parsing trees, but as we treat the problem as gen-
eral DAG parsing due to the inclusion of enhanced
dependencies, we include these transitions.

3.2 Transition Classifier

To predict the next transition at each step, TUPA
uses a BiLSTM with feature embeddings as in-
puts, followed by an MLP and a softmax layer
for classification. The model is illustrated in Fig-
ure 7. Inference is performed greedily, and train-
ing is done with an oracle that yields the set of
all optimal transitions at a given state (those that
lead to a state from which the gold graph is still
reachable). Out of this set, the actual transition
performed in training is the one with the highest
score given by the classifier, which is trained to
maximize the sum of log-likelihoods of all opti-
mal transitions at each step.

Before Transition Transition After Transition Condition
Stack Buffer Nodes Edges Stack Buffer Nodes Edges Terminal?
S x | B V E SHIFT S | x B V E −
S | x B V E REDUCE S B V E −
S | x B V E NODEX S | x y | B V ∪ {y} E ∪ {(y, x)X} − x 6= root
S | y, x B V E LEFT-EDGEX S | y, x B V E ∪ {(x, y)X} −

x 6∈ w1:n,
y 6= root,
y 6;G x

S | x, y B V E RIGHT-EDGEX S | x, y B V E ∪ {(x, y)X} −
S | y, x B V E LEFT-REMOTEX S | y, x B V E ∪ {(x, y)∗X} −
S | x, y B V E RIGHT-REMOTEX S | x, y B V E ∪ {(x, y)∗X} −
S | x, y B V E SWAP S | y x | B V E − i(x) < i(y)
[root] ∅ V E FINISH ∅ ∅ V E +

Figure 6: The transition set of TUPA. We write the stack with its top to the right and the buffer with its head to the left. (·, ·)X
denotes a primary X-labeled edge, and (·, ·)∗X a remote X-labeled edge. i(x) is the swap index (see §3.3). In addition to the
specified conditions, the prospective child in an EDGE transition must not already have a primary parent.

Parser state

S
made

B
to feel very wel...

G

We

nsubj

were
aux

head

Classifier

BiLSTM

Embeddings

We were welcome

MLP

transition

softmax

Figure 7: Illustration of the TUPA model, adapted from Her-
shcovich et al. (2018). Top: parser state (stack, buffer and
intermediate graph). Bottom: BiLTSM architecture. Vector
representation for the input tokens is computed by two lay-
ers of bidirectional LSTMs. The vectors for specific tokens
are concatenated with embedding and numeric features from
the parser state (for existing edge labels, number of children,
etc.), and fed into the MLP for selecting the next transition.

Features. We use vector embeddings represent-
ing the words, lemmas, coarse (universal) POS
tags and fine-grained POS tags, provided by
UDPipe 1.2 during test. For training, we use the
gold-annotated lemmas and POS tags. In addition,
we use one-character prefix, three-character suf-
fix, shape (capturing orthographic features, e.g.,
“Xxxx”) and named entity type, provided by
spaCy;4 punctuation and gap type features (Maier
and Lichte, 2016), and previously predicted edge
labels and parser actions. These embeddings are

4http://spacy.io

initialized randomly, except for the word embed-
dings, which are initialized with the 250K most
frequent word vectors from fastText for each lan-
guage (Bojanowski et al., 2017),5 pre-trained over
Wikipedia and updated during training. We do
not use word embeddings for languages without
pre-trained fastText vectors (Ancient Greek, North
Sami and Old French).

To the feature embeddings, we concatenate nu-
meric features representing the node height, num-
ber of (remote) parents and children, and the ratio
between the number of terminals to total number
of nodes in the graph G.

Table 1 lists all feature used for the classifier.
Numeric features are taken as they are, whereas
categorical features are mapped to real-valued em-
bedding vectors. For each non-terminal node, we
select a head terminal for feature extraction, by
traversing down the graph according to a priority
order on edge labels (otherwise selecting the left-
most child). The priority order is:

parataxis, conj, advcl, xcomp

3.3 Constraints

During training and parsing, we apply constraints
on the parser state to limit the possible transitions
to valid ones.

A generic constraint implemented in TUPA is
that stack nodes that have been swapped should
not be swapped again (Hershcovich et al., 2018).
To implement this constraint, we define a swap in-
dex for each node, assigned when the node is cre-
ated. At initialization, only the root node and ter-
minals exist. We assign the root a swap index of 0,
and for each terminal, its position in the text (start-
ing at 1). Whenever a node is created as a result

5http://fasttext.cc

http://spacy.io
http://fasttext.cc

Nodes
s0 wmtuepT#ˆ$xhqyPCIEMN
s1 wmtueT#ˆ$xhyN
s2 wmtueT#ˆ$xhy
s3 wmtueT#ˆ$xhyN
b0 wmtuT#ˆ$hPCIEMN
b1, b2, b3 wmtuT#ˆ$
s0l, s0r, s1l, s1r,
s0ll, s0lr, s0rl, s0rr,
s1ll, s1lr, s1rl, s1rr

wme#ˆ$

s0L, s0R, s1L,
s1R, b0L, b0R

wme#ˆ$

Edges
s0 → s1, s0 → b0,
s1 → s0, b0 → s0

x

s0 → b0, b0 → s0 e
Past actions
a0, a1 eA
Global node ratio

Table 1: Transition classifier features.
si: stack node i from the top. bi: buffer node i.
xl, xr (xL, xR): x’s leftmost and rightmost children (par-
ents). w: head terminal text. m: lemma. u: coarse (universal)
POS tag. t: fine-grained POS tag. h: node’s height. e: la-
bel of its first incoming edge. p: any separator punctuation
between s0 and s1. q: count of any separator punctuation
between s0 and s1. x: numeric value of gap type (Maier and
Lichte, 2016). y: sum of gap lengths. P, C, I, E, and M: num-
ber of parents, children, implicit children, remote children,
and remote parents. N: numeric value of the head terminal’s
named entity IOB indicator. T: named entity type. #: word
shape (capturing orthographic features, e.g. "Xxxx" or "dd").
ˆ: one-character prefix. $: three-character suffix.
x → y refers to the existing edge from x to y. x is an in-
dicator feature, taking the value of 1 if the edge exists or 0
otherwise, e refers to the edge label, and ai to the transition
taken i+ 1 steps ago.
A refers to the action type (e.g. SHIFT/RIGHT-EDGE/NODE),
and e to the edge label created by the action.
node ratio is the ratio between non-terminals and termi-
nals (Hershcovich et al., 2017).

of a NODE transition, its swap index is the arith-
metic mean of the swap indices of the stack top
and buffer head.

In addition, we enforce UD-specific constraints,
resulting from the nature of the converted DAG
format: every non-terminal node must have a sin-
gle outgoing head edge: once it has one, it may
not get another, and until it does, the node may not
be reduced.

4 Training details

The model is implemented using DyNet v2.0.3
(Neubig et al., 2017).6 Unless otherwise noted,
we use the default values provided by the pack-
age. We use the same hyperparameters as used in
previous experiments on UCCA parsing (Hersh-
covich et al., 2018), without any hyperparameter

6http://dynet.io

tuning on UD treebanks.

Hyperparameter Value
Pre-trained word dim. 300
Lemma dim. 200
Coarse (universal) POS tag dim. 20
Fine-grained POS tag dim. 20
Named entity dim. 3
Punctuation dim. 1
Shape dim. 3
Prefix dim. 2
Suffix dim. 3
Action dim. 3
Edge label dim. 20
MLP layers 2
MLP dimensions 50
BiLSTM layers 2
BiLSTM dimensions 500

Table 2: Hyperparameter settings.

4.1 Hyperparameters

We use dropout (Srivastava et al., 2014) be-
tween MLP layers, and recurrent dropout (Gal and
Ghahramani, 2016) between BiLSTM layers, both
with p = 0.4. We also use word, lemma, coarse-
and fine-grained POS tag dropout with α = 0.2
(Kiperwasser and Goldberg, 2016): in training,
the embedding for a feature value w is replaced
with a zero vector with a probability of α

#(w)+α ,
where #(w) is the number of occurrences of w
observed. In addition, we use node dropout (Her-
shcovich et al., 2018): with a probability of 0.1
at each step, all features associated with a single
node in the parser state are replaced with zero vec-
tors. For optimization we use a minibatch size
of 100, decaying all weights by 10−5 at each up-
date, and train with stochastic gradient descent for
50 epochs with a learning rate of 0.1, followed
by AMSGrad (Sashank J. Reddi, 2018) for 250
epochs with α = 0.001, β1 = 0.9 and β2 = 0.999.
We found this training strategy better than using
only one of the optimization methods, similar to
findings by Keskar and Socher (2017). We select
the epoch with the best LAS-F1 on the develop-
ment set. Other hyperparameter settings are listed
in Table 2.

4.2 Small Treebanks

For corpora with less than 100 training sentences,
we use 750 epochs of AMSGrad instead of 250.

http://dynet.io

For corpora with no development set, we use 10-
fold cross-validation on the training set, each time
splitting it to 80% training, 10% development and
10% validation. We perform the normal training
procedure on the training and development sub-
sets, and then select the model from the fold with
the best LAS-F1 on the corresponding validation
set.

4.3 Multilingual Model

For the purpose of parsing languages with no
training data, we use a delexicalized multilingual
model, trained on the shuffled training sets from
all corpora, with no word, lemma, fine-grained
tag, prefix and suffix features. We train this model
for two epochs using stochastic gradient descent
with a learning rate of 0.1 (we only trained this
many epochs due to time constraints).

4.4 Out-of-domain Evaluation

For test treebanks without corresponding training
data, but with training data in the same language,
during testing we use the model trained on the
largest training treebank in the same language.

5 Results

Official evaluation was done on the TIRA on-
line platform (Potthast et al., 2014). Our system
(named “HUJI”) ranked 24th in the LAS-F1 rank-
ing (with an average of 53.69 over all test tree-
banks), 23rd by MLAS (average of 44.6) and 21st
by BLEX (average of 48.05). Since our system
only performs dependency parsing and not other
pipeline tasks, we henceforth focus on LAS-F1
(Nivre and Fang, 2017) for evaluation.

After the official evaluation period ended, we
discovered several bugs in the conversion between
the CoNLL-U format and the unified DAG format,
which is used by TUPA for training and is output
by it (see §2). We did not re-train TUPA on the
training treebanks after fixing these bugs, but we
did re-evaluate the already trained models on all
test treebanks, and used the fixed code for con-
verting their output to CoNLL-U. This yielded an
unofficial average test LAS-F1 of 58.47, an im-
provement of 4.78 points over the official average
score. In particular, for two test sets, ar_padt
and gl_ctg, TUPA got a zero score in the offi-
cial evaluation due to a bug with the treatment of
multi-token words. These went up to 61.97 and
71.42, respectively. We also evaluated the trained

TUPA
(official)

TUPA
(unofficial)

UDPipe
(baseline)

All treebanks 53.69 58.47 65.80
Big treebanks 62.07 67.36 74.14
PUD treebanks 56.35 56.72 66.63
Small treebanks 36.74 41.19 55.01
Low-resource 8.53 12.68 17.17

Table 3: Aggregated test LAS-F1 scores for our system
(TUPA) and the baseline system (UDPipe 1.2).

TUPA models on all available development tree-
banks after fixing the bugs.

Table 3 presents the averaged scores on the
shared task test sets, and Figure 8 the (official and
unofficial) LAS-F1 scores obtained by TUPA on
each of the test and development treebanks.

5.1 Evaluation on Enhanced Dependencies
Since the official evaluation ignores enhanced de-
pendencies, we evaluate them separately using
a modified version of the shared task evaluation
script7. We calculate the enhanced LAS, identical
to the standard LAS except that the set of depen-
dencies in both gold and predicted graphs are the
enhanced dependencies instead of the basic depen-
dencies: ignoring null nodes and any enhanced de-
pendency sharing a head with a basic one, we align
the words in the gold graph and the system’s graph
as in the standard LAS, and define

P =
#correct

#system
, R =

#correct

#gold
, F1 = 2· P ·R

P +R
.

Table 4 lists the enhanced LAS precision, recall
and F1 score on the test treebanks with any en-
hanced dependencies, as well as the percentage of
enhanced dependencies in each test treebank, cal-
culated as 100 · #enhanced

#enhanced+#words .
Just as remote edges in UCCA parsing are

more challenging than primary edges (Hersh-
covich et al., 2017), parsing enhanced dependen-
cies is a harder task than standard UD parsing, as
the scores demonstrate. However, TUPA learns
them successfully, getting as much as 56.63 en-
hanced LAS-F1 (on the Polish LFG test set).

5.2 Ablation Experiments
The TUPA transition classifier for some of the
languages uses named entity features calculated

7https://github.com/CoNLL-UD-2018/
HUJI/blob/master/tupa/scripts/conll18_
ud_eval.py

https://github.com/CoNLL-UD-2018/HUJI/blob/master/tupa/scripts/conll18_ud_eval.py
https://github.com/CoNLL-UD-2018/HUJI/blob/master/tupa/scripts/conll18_ud_eval.py
https://github.com/CoNLL-UD-2018/HUJI/blob/master/tupa/scripts/conll18_ud_eval.py

af
_a

fr
ib

oo
m

s
gr

c_
pe

rs
eu

s

gr
c_

pr
oi

el

ar
_p

ad
t

hy
_a

rm
td

p

eu
_b

dt

br
_k

eb

bg
_b

tb

bx
r_

bd
t

ca
_a

nc
or

a

hr
_s

et

cs
_c

ac

cs
_fi

ct
re

e

cs
_p

dt

cs
_p

ud

da
_d

dt

nl
_a

lp
in

o
nl

_l
as

sy
sm

al
l

en
_e

w
t

en
_g

um

en
_l

in
es

en
_p

ud

et
_e

dt

fo
_o

ft

fi_
ftb

fi_
pu

d

fi_
td

t

fr
_g

sd

71
.7
8

1.
92

1.
89

0

7.
59

56
.6
3

7
.2
9

7
5
.0
3

8.
17

7
7.
5
2

7
5.
7
7

7
4.
3

70
.8
7

72
.0
3

68
.5

66
.7
7

69
.9
2

66
.2

72

66
.0
5

67
.3
4

7
4.
1
2

67
.4
5

15
.4
4

7
2.
3
5

68
.4
7

66
.1
9

7
4.
9
7

71
.8
5

52
.9
7

61
.3

61
.9
7

22
.7
6

56
.8
2

10
.1
8

7
5
.0
5

8.
42

7
7.
5
3

7
5.
8
5

7
4.
1
7

70
.8
5

72

68
.4
7

66
.8
4

69
.8
9

67
.3
3 71

.9
8

66
.0
5

67
.4

7
4
.1

6
7.
58

23
.3
9

7
2.
3
6

68
.6
1

66
.4
9

7
4.
9
8

7
2.
6
5

52
.3
1

62
.1
2

62
.4
3

57
.8
5

75
.1
4

7
7.
6
5

7
5.
2
4

7
5.
7
1

71
.6
1

7
2.
8
6

66
.6
4 71

.3
5

59
.9
5

7
2.
3

67
.8
7

68
.2
2

6
9.
8
6

7
2.
1
3

65
.6
9

8
0
.4
2

TUPA (test—official)
TUPA (test—unofficial)
TUPA (development)

fr
_s

eq
uo

ia

fr
_s

po
ke

n

gl
_c

tg

gl
_t

re
eg

al

de
_g

sd

go
t_

pr
oi

el

el
_g

dt

he
_h

tb

hi
_h

dt
b

hu
_s

ze
ge

d

zh
_g

sd

id
_g

sd

ga
_i

dt

it_
is

dt

it_
po

st
w

ita

ja
_g

sd

ja
_m

od
er

n

kk
_k

tb

ko
_g

sd

ko
_k

ai
st

km
r_

m
g

la
_i

ttb

la
_p

er
se

us

la
_p

ro
ie

l

lv
_l

vt
b

pc
m

_n
sc

sm
e_

gi
el

la

77
.7
2

60
.6
5

0

58
.6
6

65
.2
4

57
.6
9

75
.4
9

54
.0
2

84
.5
4

50
.6
2

50
.7

70
.7
4

53
.3

85
.8
9

62
.5
6

57
.3
6

8.
26

7.
95

58
.6

69
.1
5

12
.8
9

73
.8
5

30
.3
5

52
.9
6

55
.1
9

2
.1
5

6
.6
9

77
.7
4

60
.6
6

71
.4
2

48
.5
8

65
.3
2

57
.7
1

75
.4
9

54
.0
4

84
.6
2

50
.6
7

50
.7
5

70
.8
5

53
.5

85
.9
2

62
.5
6

59
.5
6

10
.0
4

12
.1
2

58
.7
2

69
.1
6

13
.0
1

74
.0
2

30
.6
2

52
.9
7

55
.1
9

8
.9
9

31
.4
8

77
.9
5

58
.7
4

71
.7
9

68
.3

57
.8
4

74
.5
9

56
.9
4

84
.1
6

53
.0
1

48
.7
9

70
.3
5

85
.4
8

62
.1
5

63
.2
6

53
.8
3

70
.3
4

69
.1
7

54
.0
4

56
.9
9

no
_b

ok
m

aa
l

no
_n

yn
or

sk
no

_n
yn

or
sk

lia

fr
o_

sr
cm

f

cu
_p

ro
ie

l

fa
_s

er
aj

i

pl
_l

fg

pl
_s

z

pt
_b

os
qu

e

ro
_r

rt
ru

_s
yn

ta
gr

us

ru
_t

ai
ga

sr
_s

et

sk
_s

nk

sl
_s

sj

sl
_s

st

es
_a

nc
or

a

sv
_l

in
es

sv
_p

ud

sv
_t

al
ba

nk
en

th
_p

ud

tr_
im

st

uk
_i

u

hs
b_

uf
al

ur
_u

dt
b

ug
_u

dt

vi
_v

tb

80
.8
5

7
0.
58

34
.9
3

2
.8
8

61
.3

75
.7
2

76
.5
8

71
.6
8

74
.3
4 78

.9
9

69
.2

33
.1
7

70
.7
3

7
1.
97

68
.3
1

40
.0
9

75
.7
4

68
.0
2

62
.3
8

7
0.
27

0.
36

43
.8
2

7
1.
24

14
.9
1

72
.2
7

45
.6
3

3
6.
48

80
.9
8

70
.8
1

35
.1
3

75
.0
4

61
.3
3

75
.7
7

76
.6
1

71
.7
1

74
.3
5 79

.0
5

69
.2
1

48
.9
2

70
.7
7

72
.0
6

68
.3
2

40
.1
3

75
.7
4

68
.1
1

62
.3
8

70
.2
3

0.
23

43
.9
3

71
.3
9

15
.0
1

72
.5

4
5.
67

36
.5

81
.8
4

70
.8
4 74
.3
6

61

7
5.
96 78
.1
3

72
.3
1 76

.4 79
.3
3

68
.2
4 72

.3
2

72
.3
6

69
.2
8

75
.3
3

68
.2
8

6
8.
08

44
.3
3

73
.8

72
.7
1

46
.2

39
.4
4

Figure 8: TUPA’s LAS-F1 per treebank: official and unofficial test scores, and development scores (where available).

Enhanced LAS %
EnhancedTreebank P R F1

ar_padt 28.63 16.48 20.92 5.30
cs_cac 56.13 36.62 44.32 7.57
cs_fictree 49.29 18.76 27.18 4.30
cs_pdt 50.15 27.11 35.20 4.61
nl_alpino 56.15 50.81 53.35 4.80
nl_lassysmall 49.81 51.50 50.64 4.13
en_ewt 57.66 52.58 55.00 4.36
en_pud 59.34 50.09 54.32 5.14
fi_tdt 40.73 32.03 35.86 7.34
lv_lvtb 31.87 19.01 23.81 4.12
pl_lfg 59.38 54.13 56.63 2.61
sk_snk 37.47 22.04 27.76 3.91
sv_pud 45.45 39.74 42.40 6.36
sv_talbanken 50.08 43.13 46.35 6.89

Table 4: TUPA’s enhanced LAS precision, recall and F1 per
test treebank with any enhanced dependencies, and percent-
age of enhanced dependencies in test treebank.

by spaCy.8 For German, Spanish, Portuguese,
French, Italian, Dutch and Russian, the spaCy
named entity recognizer was trained on Wikipedia
(Nothman et al., 2013). However, the English
model was trained on OntoNotes9, which is in fact
not among the additional resources allowed by the
shared task organizers. To get a fair evaluation
and to quantify the contribution of the NER fea-
tures, we re-trained TUPA on the English EWT
(en_ewt) training set with the same hyperparam-
eters as in our submitted model, just without these
features. As Table 5 shows, removing the NER
features (−NER) only slightly hurts the perfor-
mance, by 0.26 LAS-F1 points on the test tree-
bank, and 0.64 on the development treebank.

As further ablation experiments, we tried re-
moving POS features, pre-trained word embed-
dings, and remote edges (the latter enabling TUPA
to parse enhanced dependencies). Removing the
POS features does hurt performance to a larger de-
gree, by 2.85 LAS-F1 points on the test set, while
removing the pre-trained word embeddings even
slightly improves the performance (except the en-
hanced LAS on the development treebank). Re-
moving remote edges and transitions from TUPA
makes a very small improvement to LAS-F1, but
of course enhanced dependencies can then no
longer be produced at all.

8https://spacy.io/api/annotation
9https://catalog.ldc.upenn.edu/

LDC2013T19

LAS-F1 Enhanced LAS-F1

Model Test Dev Test Dev
Original 71.98 72.30 55.00 56.12
−NER 71.72 71.66 55.59 54.83
−POS 69.13 69.38 54.17 49.29
−Embed. 72.22 72.40 56.46 54.76
−Remote 72.08 72.32 0 0

Table 5: Ablation LAS-F1 and Enhanced LAS-F1 on the En-
glish EWT development and test set. NER: named entity
features. POS: part-of-speech tag features (both universal
and fine-grained). Embed.: external pre-trained word em-
beddings (fastText). Remote: remote edges and transitions in
TUPA.

6 Conclusion

We have presented the HUJI submission to the
CoNLL 2018 shared task on parsing Universal De-
pendencies, based on TUPA, a general transition-
based DAG parser. Using a simple conversion pro-
tocol to convert UD into a unified DAG format,
training TUPA as-is on the UD treebanks yields
results close to the UDPipe baseline for most tree-
banks in the standard evaluation. While other sys-
tems ignore enhanced dependencies, TUPA learns
to produce them too as part of the general de-
pendency parsing process. We believe that with
hyperparameter tuning and more careful handling
of cross-lingual and cross-domain parsing, TUPA
can be competitive on the standard metrics too.

Furthermore, the generic nature of our parser,
which supports many representation schemes, as
well as domains and languages, will allow improv-
ing performance by multitask learning (cf. Hersh-
covich et al., 2018), which we plan to explore in
future work.

Acknowledgments

This work was supported by the Israel Science
Foundation (grant no. 929/17) and by the HUJI
Cyber Security Research Center in conjunction
with the Israel National Cyber Bureau in the Prime
Minister’s Office.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proc. of
ACL, pages 228–238.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL, 5:135–146.

https://spacy.io/api/annotation
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
http://aclweb.org/anthology/P13-1023
http://aclweb.org/anthology/P13-1023
http://aclweb.org/anthology/Q17-1010
http://aclweb.org/anthology/Q17-1010

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In D D Lee, M Sugiyama, U V
Luxburg, I Guyon, and R Garnett, editors, Advances
in Neural Information Processing Systems 29, pages
1019–1027. Curran Associates, Inc.

Daniel Hershcovich, Omri Abend, and Ari Rap-
poport. 2017. A transition-based directed acyclic
graph parser for UCCA. In Proc. of ACL, pages
1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proc. of ACL, pages 373–385.

Nitish Shirish Keskar and Richard Socher. 2017. Im-
proving generalization performance by switching
from Adam to SGD. CoRR, abs/1712.07628.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. TACL,
4:313–327.

Wolfgang Maier and Timm Lichte. 2016. Discontinu-
ous parsing with continuous trees. In Proc. of Work-
shop on Discontinuous Structures in NLP, pages
47–57.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. CoRR,
abs/1701.03980.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proc. of IWPT, pages
149–160.

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal dependency evaluation. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 86–95.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proc. of LREC.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R Curran. 2013. Learning mul-
tilingual named entity recognition from wikipedia.
Artificial Intelligence, 194:151–175.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s

shared tasks: Plagiarism detection, author identi-
fication, and author profiling. In Information Ac-
cess Evaluation meets Multilinguality, Multimodal-
ity, and Visualization. 5th International Conference
of the CLEF Initiative (CLEF 14), pages 268–299,
Berlin Heidelberg New York. Springer.

Siva Reddy, Oscar Täckström, Slav Petrov, Mark
Steedman, and Mirella Lapata. 2017. Universal se-
mantic parsing. pages 89–101.

Sanjiv Kumar Sashank J. Reddi, Satyen Kale. 2018.
On the convergence of Adam and beyond. ICLR.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An im-
proved representation for natural language under-
standing tasks. In Proc. of LREC. ELRA.

Natalia Silveira, Timothy Dozat, Marie-Catherine de
Marneffe, Samuel Bowman, Miriam Connor, John
Bauer, and Chris Manning. 2014. A gold standard
dependency corpus for English. In Proc. of LREC.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Milan Straka, Jan Hajič, and Jana Straková. 2016.
UDPipe: trainable pipeline for processing CoNLL-
U files performing tokenization, morphological
analysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016), Portoro,
Slovenia. European Language Resources Associa-
tion.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre,
Martin Popel, and Milan Straka. 2018. CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/P18-1035
http://aclweb.org/anthology/P18-1035
https://arxiv.org/abs/1712.07628
https://arxiv.org/abs/1712.07628
https://arxiv.org/abs/1712.07628
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
http://aclweb.org/anthology/W16-0906
http://aclweb.org/anthology/W16-0906
https://arxiv.org/abs/1701.03980
https://arxiv.org/abs/1701.03980
http://aclweb.org/anthology/W06-2933
http://aclweb.org/anthology/W06-2933
https://nlp.stanford.edu/pubs/nivre2016ud.pdf
https://nlp.stanford.edu/pubs/nivre2016ud.pdf
https://doi.org/10.1007/978-3-319-11382-1_{}22
https://doi.org/10.1007/978-3-319-11382-1_{}22
https://doi.org/10.1007/978-3-319-11382-1_{}22
http://aclweb.org/anthology/D17-1009
http://aclweb.org/anthology/D17-1009
https://openreview.net/forum?id=ryQu7f-RZ
https://nlp.stanford.edu/pubs/schuster2016enhanced.pdf
https://nlp.stanford.edu/pubs/schuster2016enhanced.pdf
https://nlp.stanford.edu/pubs/schuster2016enhanced.pdf
http://www.aclweb.org/anthology/L14-1067
http://www.aclweb.org/anthology/L14-1067
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf

