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Abstract

VerbNet (VN) is a major large-scale En-
glish verb lexicon. Mapping verb instances
to their VN classes has been proven use-
ful for several NLP tasks. However, verbs
are polysemous with respect to their VN
classes. We introduce a novel supervised
learning model for mapping verb instances
to VN classes, using rich syntactic features
and class membership constraints. We
evaluate the algorithm in both in-domain
and corpus adaptation scenarios. In both
cases, we use the manually tagged Sem-
link WSJ corpus as training data. For in-
domain (testing on Semlink WSJ data), we
achieve 95.9% accuracy, 35.1% error re-
duction (ER) over a strong baseline. For
adaptation, we test on the GENIA corpus
and achieve 72.4% accuracy with 10.7%
ER. This is the first large-scale experimen-
tation with automatic algorithms for this
task.

1 Introduction

The organization of verbs into classes whose mem-
bers exhibit similar syntactic and semantic behav-
ior has been discussed extensively in the linguistics
literature (see e.g. (Levin and Rappaport Hovav,
2005; Levin, 1993)). Such an organization helps
in avoiding lexicon representation redundancy and
enables generalizations across similar verbs. It
can also be of great practical use, e.g. in com-
pensating NLP statistical models for data sparse-
ness. Indeed, Levin’s seminal work had motivated
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much research aimed at automatic discovery of
verb classes (see Section 2).

VerbNet (VN) (Kipper et al., 2000; Kipper-
Schuler, 2005) is a large scale, publicly available
domain independent verb lexicon that builds on
Levin classes and extends them with new verbs,
new classes, and additional information such as
semantic roles and selectional restrictions. VN
classes were proven beneficial for Semantic Role
Labeling (SRL) (Swier and Stevenson, 2005), Se-
mantic Parsing (Shi and Mihalcea, 2005) and
building conceptual graphs (Hensman and Dun-
nion, 2004). Levin-inspired classes have been
used in several NLP tasks, such as Machine Trans-
lation (Dorr, 1997) and Document Classification
(Klavans and Kan, 1998).

Many applications that use VN need to map verb
instances onto their VN classes. However, verbs
are polysemous with respect to VN classes. Sem-
link (Loper et al., 2007) is a dataset that maps each
verb instance in the WSJ Penn Treebank to its VN
class. The mapping has been created using a com-
bination of automatic and manual methods. Yi et
al. (2007) have used Semlink to improve SRL.

In this paper we present the first large-scale ex-
perimentation with a supervised machine learning
classification algorithm for disambiguating verb
instances to their VN classes. We use rich syntactic
features extracted from a treebank-style parse tree,
and utilize a learning algorithm capable of impos-
ing class membership constraints, thus taking ad-
vantage of the nature of our task. We use Semlink
as the training set.

We evaluate our algorithm in both in-domain
and corpus adaptation scenarios. In the former,
we test on the WSJ (using Semlink again), ob-
taining 95.9% accuracy with 35.1% error reduc-
tion (ER) over a strong baseline (most frequent



class) when using a modern statistical parser. In
the corpus adaptation scenario, we disambiguate
verbs in sentences taken from outside the train-
ing domain. Since the manual annotation of new
corpora is costly, and since VN is designed to be
a domain independent resource, adaptation results
are important to the usability in NLP in practice.
We manually annotated 400 sentences from GE-
NIA (Kim et al., 2003), a medical domain cor-
pus1. Testing on these, we achieved 72.4% ac-
curacy with 10.7% ER. Our adaptation scenario
is complete in the sense that the parser we use
was also trained on a different corpus (WSJ). We
also report experiments done using gold-standard
(manually created) parses.

The most relevant previous works addressing
verb instance class classification are (Lapata and
Brew, 2004; Li and Brew, 2007; Girju et al., 2005).
The former two do not use VerbNet and their ex-
periments were narrower than ours, so we can-
not compare to their results. The latter mapped to
VN, but used a preliminary highly restricted setup
where most instances were monosemous. For
completeness, we compared our method to theirs2,
achieving similar results.

We review related work in Section 2, and dis-
cuss the task in Section 3. Section 4 introduces the
model, Section 5 describes the experimental setup,
and Section 6 presents our results.

2 Related Work

VerbNet. VN is a major electronic English verb
lexicon. It is organized in a hierarchical struc-
ture of classes and sub-classes, each sub-class in-
heriting the full characterization of its super-class.
VN is built on a refinement of the Levin classes,
the intersective Levin classes (Dang et al., 1998),
aimed at achieving more coherent classes both se-
mantically and syntactically. VN was also sub-
stantially extended (Kipper et al., 2006) using the
Levin classes extension proposed in (Korhonen
and Briscoe, 2004). VN today contains 3626 verb
lemmas(forms), organized in 237 main classes
having 4991 verbtypes(we refer to a lemma with
an ascribed class as a type). Of the 3626 lem-
mas, 912 are polysemous (i.e., appear in more
than a single class). VN’s significant coverage of
the English verb lexicon is demonstrated by the

1Our annotations will be made available to the community.
2Using the same sentences and instances, obtained from

the authors.

75.5% coverage of VN classes over PropBank3

instances (Loper et al., 2007). Each class con-
tains rich semantic information, including seman-
tic roles of the arguments augmented with se-
lectional restrictions, and possible subcategoriza-
tion frames consisting of a syntactic description
and semantic predicates with temporal informa-
tion. VN thematic roles are relatively coarse, vs.
the situation-specific FrameNet role system or the
verb-specific PropBank role system, enabling gen-
eralizations across a wide semantic scope. Swier
and Stevenson (2005) and Yi et al. (2007) used VN
for SRL.

Verb type classification. Quite a few works
have addressed the issue of verb type classification
and in particular classification to ‘Levin inspired’
classes (e.g., (Schulte im Walde, 2000; Merlo and
Stevenson, 2001)). Such work is not comparable
to ours, as it deals with verb type (sense) rather
than verb token (instance) classification.

Verb token classification. Lapata and Brew
(2004) dealt with classification to Levin classes of
polysemous verbs. They established a prior from
the BNC in an unsupervised manner. They also
showed that this prior helps in the training of a
naive Bayes classifier employed to distinguish be-
tween possible verb classes of a given verb in a
given frame (when the ambiguity is not solved by
knowing the frame alone). Li and Brew (2007) ex-
tended this model by proposing a method to train
the class disambiguator without using hand-tagged
data. While these papers have good results, their
experimental setup was rather narrow and used
only at most 67 polysemous verbs (in 4 frames).
VN includes 912 polysemous verbs, of which 695
appeared in our in-domain experiments.

Girju et al. (2005) performed the only previous
work we are aware of that addresses the problem of
token level verb disambiguation into VN classes.
They treated the task as a supervised learning prob-
lem, proposing features based on a POS tagger, a
Chunker and a named entity classifier. In order
to create the data4, they used a mapping between
Propbank rolesets and VN classes, and took the in-
stances in WSJ sections 15-18,20,21 that were an-
notated by Propbank and for which the roleset de-
termines the VN class uniquely. This resulted in
most instances being in fact monosemous. Their

3Propbank (Palmer et al., 2005) is a corpus annotation of
the WSJ sections of the Penn Treebank with semantic roles of
each verbal proposition.

4Semlink was not available then.



experiment was conducted in a WSJ in-domain
scenario, and in a much narrower scope than in
this paper. They had 870 (39 polysemous) unique
verb lemmas, compared to 2091 (695 polysemous)
in our in-domain scenario. They did not test their
model in an adaptation scenario. The scope and
difficulty contrast between our setup and theirs are
demonstrated by the large differences in the num-
ber of instances and in the percentage of polyse-
mous instances: 972/12431 (7.8%) in theirs, com-
pared to 49571/84749 (58.5%) in our in-domain
scenario (training+test). We compared our method
to theirs for completeness and achieved similar re-
sults.

Semlink. The Semlink project (Yi et al., 2007;
Loper et al., 2007) aims to create a mapping of
PropBank, FrameNet (Baker et al., 1998), Word-
Net (henceforth WN) and VN to one another, thus
allowing these resources to synergize. In addition,
the project includes the most extensive token map-
ping of verbs to their VN classes available today.
It covers all verbs in the WSJ sections of the Penn
Treebank within VN coverage (out of 113K verb
instances, 97K have lemmas present in VN).

3 Nature of the Task

Polysemy is a major issue in NLP. Verbs are not an
exception, resulting in a single verb form (lemma)
appearing in more than a single class. This pol-
ysemy is also present in the original Levin clas-
sification, where polysemous classes account for
more than 48% of the BNC verb instances (Lapata
and Brew, 2004).

Given a verb instance whose lemma is within
the coverage of VN, given the sentence in which
it appears, given a parse tree of this sentence (see
below), and given the VN resource, our task is to
classify the verb instance to its correct VN class.
There are currently 237 possible classes5. Each
verb has only a few possible classes (no more than
10, but only about 2.5 on the average over the poly-
semous verbs). Depending on the application, the
parse tree for the sentence may be either a gold
standard parse or a parse tree generated by a parser.
We have experimented with both options.

The task can be viewed in two complemen-
tary ways: per-class and per-verb type. The per-
class perspective takes into consideration the small

5We ignore sub-class distinctions. This is justified since in
98.2% of the in-coverage instances in Semlink, knowing the
verb and its class suffices for knowing its exact sub-class.

number of classes relative to the number of types6.
A classifier may gather valuable information for all
members of a certain VN class, without seeing all
of its members in the training data. From this per-
spective the task resembles POS tagging. In both
tasks there are many dozens (or more) of possible
labels, while each word has only a small subset of
possible labels. Different words may receive the
same label.

The per-verb perspective takes into consider-
ation the special properties of every verb type.
Even the best lexicons necessarily ignore certain
idiosyncratic characteristics of the verb when as-
signing it to a certain class. If a verb appears
many times in the corpus, it is possible to estimate
its parameters to a reasonable reliability, and thus
to use its specific distributional properties for dis-
ambiguation. Viewed in this manner, the task re-
sembles a word sense disambiguation (WSD) task:
each verb has a small distinct set of senses (types),
and no two different verbs have the same sense.

The similarity to WSD suggests that our task
might be solved by WN sense disambiguation fol-
lowed by a mapping from WN to VN. However,
good results are not to be expected, due to the
medium quality of today’s WSD algorithms and
because the mapping between WN and VN is both
incomplete and many-to-many7. Even for a perfect
WN WSD algorithm, the resulting WN synset may
not be mapped to VN at all or may be mapped onto
multiple VN classes. We experimented with this
method and obtained results below the MF base-
line we used8.

The above discussion does not rule out the pos-
sibility of obtaining reasonable results through ap-
plying a high quality WSD engine followed by a
WN to VN mapping. However, there are much
fewer VN classes than WN classes per verb. This
may result in the WSD engine learning many dis-
tinctions that are not useful in this context, which
may in turn jeopardize its performance with re-
spect to our task. Moreover, a word sense may
belong to a single verb only while a VN class con-
tains many verbs. Consequently, the performance

6237 classes vs. 4991 types.
7In the WN to VN mapping built into VN, 14.69% of the

covered WN synsets were mapped to more than a single VN
class.

8We used the publicly available SenseLearner 2.0, the VB-
Collocations model. We chose VN classes containing the
lemma in random when a single mapping is not specified. We
obtained 67.74% accuracy on section 00 of the WSJ, which is
less than the MF baseline. See Sections 5 and 7.



on a certain lemma may benefit from training in-
stances of other lemmas.

Note that our task is not reducible to VN frame
identification (a non-trivial task given the rich-
ness of the information used to define a frame
in VN). Although the categorizing criterion for
Levin’s classification is the subset of frames the
verb may appear in (equivalently, the diathesis al-
ternations the verbal proposition may perform),
knowing only the frame in which an instance ap-
pears does not suffice, as frames are shared among
classes.

4 The Learning Model

As common in supervised learning models, we en-
code the verb instances into feature vectors and
then apply a learning algorithm to induce a clas-
sifier. We first discuss the feature set and then the
learning algorithm.

Features.Our feature set heavily relies on syn-
tactic annotation. Dorr and Jones (1996) showed
that perfect knowledge of the allowable syntactic
frames for a verb allows 98% accuracy in type as-
signment to Levin classes. This motivates the en-
coding of the syntactic structure of the sentence
as features, since we have no access toall frames,
only to the one appearing in the sentence.

Since some verbs may appear in the same syn-
tactic frame in different VN classes, a model rely-
ing on the syntactic frame alone would not be able
to disambiguate instances of these verbs when ap-
pearing in those frames. Hence our features in-
clude lexical context words. The parse tree en-
ables us to use words that appear in specific syn-
tactic slots rather than in a linear window around
the verb. To this end, we use the head words of
the neighboring constituents. The definition of the
head of a constituent is given in (Collins, 1999).

Our feature set is comprised of two parallel sets
of features. The first contains features extracted
from the parse tree and the verb’s lemma as a stan-
dalone feature. In the second set, each feature is a
conjunction of a feature from the first set with the
verb’s lemma. By doing so we created a general
feature space shared by all verbs, and replications
of it for each and every verb. This feature selection
strategy was chosen in view of the two perspec-
tives on the task (per-class and per-verb) discussed
in Section 3.

Our first set of features encodes the verb’s con-
text as inferred from the sentence’s parse tree (Fig-

First Feature Set

The stemmed head words, POS, parse tree labels,
function tags, and ordinals of the verb’s rightkr

siblings (kr is the maximum number of right sib-
lings in the corpus. These are at most5kr differ-
ent features).
The stemmed head words, POS, labels, function
tags and ordinals of the verb’s leftkl siblings, as
above.
The stemmed head word & POS of the ‘second
head word’ nodes on the left and right (see text
for precise definition).
All of the above features employed on the sib-
lings of the parent of the verb (only if the verb’s
parent is the head constituent of its grandparent)
The number of right/left siblings of the verb.
The number of right/left siblings of the verb’s
parent.
The parse tree label of the verb’s parent.
The verb’s voice (active or passive).
The verb’s lemma.

Figure 1: The first set of features in our model. All
of them are binary. The final feature set includes
two sets: the set here, and a set obtained by its
conjunction with the verb’s lemma.

ure 1). We attempt to encode both the syntactic
frame, by encoding the tree structure, and the ar-
gument preferences, by encoding the head words
of the arguments and their POS. The restriction on
the verb’s parent being the head constituent of its
grandparent is done in order to focus on the correct
verb in verb series such as ‘intend to run’.

The 3rd cell in the table makes use of a ‘sec-
ond head word’ node, defined as follows. Consider
a left sibling (right siblings are addressed analo-
gously)M of the verb’s node. Take the nodeH
in the subtree ofM whereM ’s head appears.H
is a descendent of a nodeJ which is a child of
M . The ‘second head word’ node isJ ’s sibling on
the right. For example, in the sentenceWe went to
school(see Figure 2) the head word of the PP ‘to
school’ is ‘to’, and the ‘second head word’ node is
‘school’. The rationale is that ‘school’ could be a
useful feature for ‘went’, in addition to ‘to’, which
is highly polysemous (note that it is also a feature
for ‘went’, in the 1st and 2nd cells of the table).
The voice feature was computed using a simple
heuristic based on the verb’s POS tag (past partici-
ple) and presence of auxiliary verbs to its left.
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Figure 2: An example parse tree for the ‘second
head word’ feature.

The current set of features does not detect verb
particle constructions. We leave this for future re-
search.

Learning Algorithm. Our learning task can be
formulated as follows. Letxi denote the feature
vector of an instancei, and letX denote the space
of all such feature vectors. The subset of possi-
ble labels forxi is denoted byCi, and the correct
label by ci ∈ Ci. We denote the label space by
S. Let T be the training set of instancesT = {<
x1, C1, c1 >,< x2, C2, c2 >, ..., < xn, Cn, cn >

} ⊆ (X × 2S × S)n, wheren is the size of the
training set. Let< xn+1, Cn+1 >∈ (X × 2S) be
a new instance. Our task is to select which of the
labels inCn+1 is its correct labelcn+1 (xn+1 does
not have to be a previously observed lemma, but
its lemma must appear in a VN class).

The structure of the task lets us apply a learn-
ing algorithm that is especially appropriate for it.
What we need is an algorithm that allows us to re-
strict the possible labels of each instance, both in
training and in testing. The sequential model algo-
rithm presented by Even-Zohar and Roth (2001)
directly supports this requirement. We use the
SNOW learning architecture for multi-class clas-
sification (Roth, 1998), which contains an imple-
mentation of that algorithm9.

5 Experimental Setup

We used SemLink VN annotations and parse trees
on sections 02-21 of the WSJ Penn Treebank for
training, and section 00 as a development set, as
is common in the parsing community. We per-
formed two parallel sets of experiments, one us-
ing manually created gold standard parse trees and
one using parse trees created by a state-of-the-art

9Experiments on development data revealed that for verbs
for which almost all of the training instances are mapped to
the same VN class, it is most beneficial to select that class.
Thus, where more than 90% of the training instances of a verb
are mapped to the same class, our algorithm mapped the in-
stances of the verb to that class regardless of the context.

parser (Charniak and Johnson, 2005) (Note that
this parser does not output function tags). The
parser was also trained on sections 02-21 and tuned
on section 0010. Consequently, our adaptation sce-
nario is a full adaptation situation in which both the
parser and the VerbNet training data are not in the
test domain. Note that generative parser adaptation
results are known to be of much lower quality than
in-domain results (Lease and Charniak, 2005). The
quality of the discriminative parser we used did
indeed decrease in our adaptation scenario (Sec-
tion 7).

The training data included 71209 VN in-scope
instances (of them 41753 polysemous) and the de-
velopment 3624 instances (2203 polysemous). An
‘in-scope’ instance is one that appears in VN and
is tagged with a verb POS. The same trained model
was used in both the in-domain and adaptation sce-
narios, which only differ in their test sets.

In-Domain. Tests were held on sections
01,22,23,24 of WSJ PTB. Test data includes all in-
scope instances for which there is a SemLink anno-
tation, yielding 13540 instances, 7798 (i.e., 57.6%)
of them polysemous.

Adaptation. For the testing we annotated sen-
tences from GENIA (Kim et al., 2003) (version
3.0.2). The GENIA corpus is composed of MED-
LINE abstracts related to transcription factors in
human blood cells. We annotated 400 sentences
from the corpus, each including at least one in-
scope verb instance. We took the first 400 sen-
tences from the corpus that met that criterion11.
After cleaning some GENIA POS inconsistencies,
this amounts to 690 in-scope instances (380 of
them polysemous). The tagging was done by two
annotators with an inter-annotator agreement rate
of 80.35% and Kappa 67.66%.

Baselines.We used two baselines, random and
most frequent (MF). The random baseline selects
uniformly and independently one of the possible
classes of the verb. The most frequent (MF) base-
line selects the most frequent class of the verb in
the training data for verbs seen while training, and
selects in random for the unseen ones. Conse-
quently, it obtains a perfect score over the monose-
mous verbs. This baseline is a strong one and is
common in disambiguation tasks.

We repeated all of the setup above in two sce-

10For the very few sentences out of coverage for the parser,
we used the MF baseline (see below).

11Discarding the first 120 sentences, which were used to
design the annotator guidelines.



narios. In the first (main) scenario, in-scope in-
stances were always mapped to VN classes, while
in the second (‘other is possible’(OIP)) scenario,
in-scope instances were allowed to be tagged (dur-
ing training) and classified (during test) as not be-
longing to any existing VN class12. In all cases,
out-of-scope instances (verbs whose lemmas do
not appear in VN) were ignored. For the OIP sce-
nario, we used a different ‘other’ label for each of
the lemmas, not a single label shared by them all.

6 Results

Table 1 shows our results. In addition to the over-
all results, we also show results for the polysemous
ones alone, since the task is trivial for the monose-
mous ones. The results using gold standard parses
effectively set an upper bound on our model’s per-
formance, while those using statistical parser out-
put demonstrate its current usability.

In-Domain. Results are shown in the WSJ→
WSJ columns of Table 1. Using gold standard
parses (top), we achieve 96.42% accuracy over-
all. Over the polysemous verbs, the accuracy is
93.68%. This translates to an error reduction over
the MF baseline of 43.35% overall and 43.22% for
the polysemous verbs. In the ‘other is possible’
scenario (right), we obtained 36.67% error reduc-
tion. Using a state-of-the-art parser (Charniak and
Johnson, 2005) (bottom), we experienced some
degradation of the results (as expected), but they
remained significantly above baseline. We achieve
95.9% accuracy overall and 92.77% for the polyse-
mous verbs, which translates to about 35.13% and
35.04% error reduction respectively. In the OIP
scenario, we obtained 28.95% error reduction.

The results of the random baseline for the in-
domain scenario are substantially worse than the
MF baseline. On the WSJ the random baseline
scored 66.97% (37.51%) accuracy in the main
(OIP) scenarios.

Adaptation. Here we test our model’s ability
to generalize across domains. Since VN is sup-
posed to be a domain independent resource, we
hope to acquire statistics that are relevant across
domains as well and so to enable us to automati-
cally map verbs in domains of various genres. The
results are shown in the WSJ→ GENIA columns
of Table 1. When using gold standard parses, our
model scored 73.16%. This translates to about
13.17% ER on GENIA. We interestingly experi-

12i.e., including instances tagged by SemLink as ‘none’.

enced very little degradation in the results when
moving to parser output, achieving 72.4% accu-
racy which translates to 10.71% error reduction
over the MF baseline. The random baseline on GE-
NIA was again worse than MF, obtaining 66.04%
accuracy as compared to 69.09% of MF (in the OIP
scenario, 39.12% compared to 46.41%).

Run-time performance. Given a parsed cor-
pus, our main model trains and runs in no more
than a few minutes for a training set of∼60K in-
stances and a test set of∼11K instances, using a
Pentium 4 CPU 2.40GHz with 1GB main mem-
ory. The bottleneck in tagging large corpora using
our model is thus most likely the running time of
current parsers.

7 Discussion

In this paper we introduced a new statistical model
for automatically mapping verb instances into
VerbNet classes, and presented the first large-scale
experiments for this task, for both in-domain and
corpus adaptation scenarios.

Using gold standard parse trees, we achieved
96.42% accuracy on WSJ test data, showing
43.35% error reduction over a strong baseline.
For adaptation to the GENIA corpus, we showed
13.1% error reduction over the baseline. A sur-
prising result in the context of adaptation is the lit-
tle influence of using gold standard parses versus
using parser output, especially given the relatively
low performance of today’s parsers in the adapta-
tion task (91.4% F-score for the WSJ in-domain
scenario compared to 81.24% F-score when pars-
ing our GENIA test set). This is an interesting di-
rection for future work.

In addition, we conducted some additional pre-
liminary experiments in order to shed light on
some aspects of the task. The experiments reported
below were conducted on the development data,
given gold standard parse trees.

First, motivated by the close connection be-
tween WSD and our task (see Section 3), we con-
ducted an experiment to test the applicability of
using a WSD engine. In addition to the experi-
ments listed above, we also attempted to encode
the output of a modern WSD engine (the VBCollo-
cations Model of SenseLearner 2.0 (Mihalcea and
Csomai, 2005)), both by encoding the synset (if
exists) of the verb instance as a feature, and by en-
coding each possible mapped class of the WSD
engine output synset as a feature. There arek



Main Scenario ‘Other is Possible’ (OIP) Scenario
WSJ→WSJ WSJ→GENIA WSJ→WSJ WSJ→GENIA
MF Model MF Model MF Model MF Model

Gold Std Total 93.68 96.42 69.09 73.16 88.6 92.78 46.41 52.46
ER 43.35 13.17 36.67 11.29
Poly. 88.87 93.68 48.58 55.35 – – – –
ER 43.22 13.17 – –

Parser Total 93.68 95.9 69.09 72.4 88.6 91.9 46.41 52.46
ER 35.13 10.71 28.95 11.29
Poly. 88.87 92.77 48.58 55.35 – – – –
ER 35.04 10.72 – –

Table 1: Accuracy and error reduction (ER) results (in percents) for our model and the MF baseline.
Error reduction is computed asMODEL−MF

100−MF
. Results are given for the WSJ and GENIA corpora test

sets. The top table is for a model receiving gold standard parses of the test data. The bottom is for a
model using (Charniak and Johnson, 2005) state-of-the-artparses of the test data. In the main scenario
(left), instances were always mapped to VN classes, while inthe OIP one (right) it was possible (during
both training and test) to map instances as not belonging to any existing class. For the latter, no results
are displayed for polysemous verbs, since each verb can be mapped both to ‘other’ and to at least one
class.

features if there arek possible classes13. There
was no improvement over the previous model. A
possible reason for this is the performance of the
WSD engine (e.g. 56.1% precision on the verbs in
Senseval-3 all-words task data). Naturally, more
research is needed to establish better methods of
incorporating WSD information to assist in this
task.

Second, we studied the relative usability of class
information as opposed to verb idiosyncratic infor-
mation in the VN disambiguation task. By mea-
suring the accuracy of our model, first given the
per-class features (the first set of features exclud-
ing the verb’s lemma feature) and second given the
per-verb features (the conjunction of the first set
with the verb’s lemma), we tried to address this
question. We obtained 94.82% accuracy for the
per-class experiment, and 95.51% for the per-verb
experiment, compared to 95.95% when using both
in the in-domain gold standard scenario. The MF
baseline scored 92.45% on this development set.
These results, which are close in the per-class ex-
periment to those of the MF baseline, indicate that
combining both approaches in the construction of
the classifier is justified.

Third, we studied the importance of having a
learning algorithm utilizing the task’s structure
(mapping into a large label space where each in-

13The mapping is many-to-many and partial. To overcome
the first issue, given a WN sense of the verb, we encoded all
possible VN classes that correspond to it. To overcome the
second, we treated a verb in a certain VN class, for which the
mapping to WN was available, as one that can be mapped to
all WN senses of the verb.

stance can be mapped to only a small subspace).
Our choice of the algorithm in (Even-Zohar and
Roth, 2001) was done in light of this requirement.
We conducted an experiment in which we omitted
these per-instance restrictions on the label space,
effectively allowing each verb to take every label
in the label space. We obtained 94.54% accuracy,
which translates to 27.68% error reduction, com-
pared to 95.95% accuracy (46.36% error reduc-
tion) when using the restrictions. These results in-
dicate that although our feature set keeps us sub-
stantially above baseline even without the above
algorithm, using it boosts our results even further.
This result is different from the results obtained
in (Girju et al., 2005), where the results of the un-
constrained (flat) model were significantly below
baseline.

As noted earlier, the field of instance level
verb classification into Levin-inspired classes is far
from being exhaustively explored. We intend to
make our implementation of the model available
to the community, to enable others to engage in
further research on this task.
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