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We give various characterizations of k-vertex connected graphs by geometric, algebraic, 
and "physical" properties. As an example, a graph G is k-connected ff and only if, specifying any 
k vertices of G, the vertices of G can be represented by points of R ~-a so that no k are on a hyper-. 
plane and each vertex is in the convex hull of its neighbors, except for the k specified vertices. The 
proof of this theorem appeals to physics. The embedding is found by letting the edges of the graph 
behave like ideal springs and letting its vertices settle in equilibrium. 

As an algorithmic application of our results we give probabilistie (Monte-Carlo and 
Las Vegas) algorithms for computing the connectivity of a graph. Our algorithms are faster than 
the best known (deterministic) connectivity algorithms for all k_  1/~', and for very dense graphs 
the Monte Carlo algorithm is faster by a linear factor. 

0. Introduction 

The property o f  k-connectivity of  a graph is well-characterized: it is " ea sy ,  
to exhibit i f a  graph is not  k-connected and, also, if  it is. But there is some asymmetry 
in this: to exhibit that a graph is not k-connected, it suffices to present a separating 
set with less than k vertices; to exhibit that it is k-connected, we have t o  present 
k openly disjoint paths for  each pair o f  vertices. Is there a more compact , ' p roof"  
of  k-connectivity, say, an additional structure whose presence gives a trivially check- 
able proof  o f  k-connectivity? For  k =  1, a spanning tree provides a trivial answer. 
For  k = 2 ,  various versions of  "ear-decompositions" (see, e.g., [10]) give rise to 
such "proofs" .  Another structure characterizing 2-connectivity, closely related to 
ear-decomposltions, is an s - t  numbering for an edge st: :a linear ordering of  the 
nodes, starting with s and ending with t, such that everyo ther  node has a neighbor 
to its left as well as one to its right. 

In  this paper, we offer some new characterizations of  graph k-connectivity, 
based on geometric and physical intuition. Our main theorem is a geometric charac- 
terization of  k-vertex connected graphs, generalizing s - t  numberings. It says that 
a graph G is k-connected if  and only if G has certain "nondegenerate convex em- 
beddings" in R ~-x. 

The proof  o f  this theorem appeals to physics. The embedding is found by 
letting the edges of  the graph behave like ideal springs and  letting its vertices settle 
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in equilibrium. Algebraic properties of this equilibrium ensure that the embedding 
it defines is nondegenerate exactly when the graph is k-connected. 

We prove a related, purely matrix-theoretical characterization of connec- 
tivity. This result is in fact easily derivable from the results of [12] and [9], which 
give a linear representation of certain matroids arising in the study of graph con- 
nectivity, called strict gammoids. 

These results provide not only more compact characterizations but also 
new algorithms. We give probabilistic algorithms for computing the connectivity 
of a graph. The first is a Monte Carlo algorithm that runs in time O(n~'5+nk ~'5) 
where n is the number of vertices and k is the vertex connectivity of the input graph. 
The second is a Las Vegas algorithm (i.e., never errs) that runs in expected time 
0 (kn~'S+nkS'~). For comparison, the best known algorithm (which is deterministic!) 
runs in time k3nl"S+k~n ~ [8]. Observe that our algorithms are faster for all k_~l/~, 
and for very dense graphs the Monte Carlo algorithm is faster by a linear factor! 

We also desribe parallel implementations of our algorithrns which are sub- 
stantially more efficient than previous parallel algorithms for graph connectivity. 

1. Notation 

Graph Theory. Let G(V, E) be a graph. For a vertex vE V, N(v)={u" (v, u)EE} 
denotes the neighborhood of v, and N(v)=N(v)U {v}. Let X, Y be any two subsets 
of V. By p(X, Y) we denote the maximum number of vertex disjoint paths from X 
to Y (disjointness includes the end points!). We say that X and Y are linked if 
IXI=IYI=p(X, Y). By Menger's Theorem, this is equivalent to saying that no set 
of fewer than IXI=IYI vertices covers all X--Y paths in G. The graph G is k-con- 
nected if I Vl>k and any two k-subsets are linked. The largest k for which this 
holds is the vertex-connectivity of G, denoted k(G). It is known that a graph G is 
k-connected if and only if IVl>k and any two nodes of G are connected by k 
openly disjoint paths. 

Algebra. Let F be any field and d_~0. We denote by F a the d-dimensional 
linear space over F. Let X=  {xx, ..., xm} be a finite set of points in R d. The a~ne 

hull aft(X) of X is the set of all points ,~  21 xt with ~,2~= I. The (affine) rank 
171 

of X is defined by rank (X)= 1 +dim (aft(X)). X is in generalposition if rank (Y) = 
=d+l for every (d+l)-subset Y~X.  If X is not in general position, we call it 
degenerate. 

If F = R  then we will also consider the convex hull conv (At) of X. Note 
that air(cony (X))=aft(X). 

2. Convex embeddings 

Our main tool is the following notion of embedding graphs in real linear 
spaces, which may be interesting for purposes other than the study of connectivity. 

Definition 2.1. Let G be a graph and XcV.  A convex X-embedding of G is any 
mapping f :  V ~ R  Ixl-1 such that for each vEV~X, f(v)Econv(f(N(v))). We 
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say that the convex embedding is in general position if the set f (V )  of points is in 
general position. 

Let us state our main theorem fight away. 

Theorem 2.2 Let G be a graph on n vertices and 1 <k<n.  Then the following two 
conditions are equivalent: 

(1) G is k-connected. 
(2) For every X c V  with 

position. 
Ixl=k, G has a convex X-embedding in general 

Note that the special case k = 2  of our theorem asserts the existence of an 
s -  t numbering of a 2-connected graph (see [6]). 

Theorem 2.2 will follow from Theorems 2.3 and 2.4 below. 

Theorem 2.3. Let G be a graph and X c  F'. Then for every convex X-embedding 
f of G andeverysubset U~_V U#O, rank(f(U))~_p(U,X). 

Theorem 2.4. Let G be a graph and X c V .  Then G has a convex X-embedding 
f such that for every U~ 1I, U=f), rank (f(U))=p(U, X). 

Proof of Theorem 2.2. (2)--(1). Let X, Y be arbitrary k-subsets of  IF, and let f be 
an X-embedding guaranteed by (2). Then by Theorem 2.3, p(X, I')_~rank ( f (Y) )=k ,  
since f ( V )  are in general position. Therefore G is k-connected. 

(1)-~(2). Assume G is k-connected and fix a k-subset X_~ V. Then Theorem 
2.4 implies the existence of a convex X-embedding such that for every k-subset 
Y~ V, rank ( f (Y))=p(X,  Y)~_k, so every k points are in general position, l 

Proof of Theorem 2.3. Let f be a convex X-embedding and fix a subset U~_V. 
Let p(U, X)=k.  Then by Menger's Theorem, there is a k-subset ,S~ V such that 
V ~ S  contains no (X, U) paths. Let W be the union of connected components of 
G ~ S  containing a vertex from U. We claim that f ( W )  ~_ cony (f(S)).  Note that 
this implies rank (f(U))~_rank ( f (WUS))=rank(f(S))~_ISI=k=p(U,X).  

To prove the claim, let uE W. Hence ueX. Since f is a convex X-embedding, 
f (u ) tconv  (f(N(u)))c_conv (f(WUSNxu)) , so f(u) cannot be an extreme point 
of f ( W  U S). Hence the only extreme points in f ( W  U 63 are members of f (S ) ,  
i.e., f (W)~_conv(f(S)) ,  l 

Proof of Theorem 2.4. Let X be given and ]X[=k. The intuition behind the proof 
is of a physical nature. Assume that the edges of G are made of ideal rubber bands. 
Glue the vertices of X to the extremes of a k-simplex in R k-l, and let the remaining 
vertices settle in a minimum energy equilibrium. It should be clear that if the poten- 
tial carried by each rubber band is positive then such an equilibrium exists, and 
furthermore, it is a convex X-embedding. To achieve the non-degeneracy properties 
required by the theorem, we use a quadratic potential function (namely the rubber 
bands satisfy Hooke's Law) and exploit our freedom in choosing the elasticity 
parameters (e.g. the thickness of the rubber bands). For a hysterical survey and 
in-depth study of the potential function on similar frameworks, see [5]. 
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We proceed formally. Let X={xo, xx . . . .  ,x~-a}. Let e0 be the zero vector 
and let e~, 1 ~_i~_k-1 be the i-th unit vector in R k-x. An embedding g: V-~R k-1 
such that g(x~)=et for O~_i~k-I is called an X-embedding. (Such an embedding 
is not necessarily convex!) 

Assign to every edge (u, v)EE a positive elasticity coefficient c.~, and let 
CER~ be the vector of coefficients. 

Now we can define the potential P(g, e) of any X-embedding (not necessarily 
convex) g and coefficient vector e. The edge (rubber band) (u, v)EE carries poten- 
tial c.,,[lg(u)-g(v)[l ~ (our,norm is Euclidean). Hence the total potential is defined by 

P(g,c)= ~, c,,~llg(u)-g(v)li 2. 
(..v)EE 

Let f=fr be the embedding for which P(g, e) isminimized. Notice that 
f is uniquely determined since P(g, c) is a strictly convex function of g. Then f 

dP =0  satisfies the equilibrium condition dg . This is a homogeneous linear system: 

Z o all  cv\x. 
(,.Oc~ 

From the strict convexity of P it follows that this system has a unique solution. 
Ptitting e~= ~ e.o we see that for all v E V \ X ,  

,E~(O 

1 
f (v) = "7"- Z c.vf (u), 

c'v uE N(v) 

which expresses f(d as a convex combination of f(N(0). Since f is an X-em- 
bedding (i.e., f(x~)=et, 0_~i_<-k-l), we get that f is a convex X-embedding of G. 

Now fix a subset U_~V, and let p(U,X)=m. If m--0, we are done 
by Theorem 2, so assume m_~l. For a given vector c, f~ may not satisfy 
rank (fc(U))--m. However, wc will show that this happens only for a set of measure 
zero of possible vectors c. Since there are only finitely many subscts U_.c 11, the 
theorem will follow. 

Let us consider in detail the set of  equations which determine f~ from c. 
Define T=(t.~) (u, v~V) to be the following symmetric matrix (which was also 
used by [15]: 

c.~ if uvEE, 
tuv= --cv if  u - - v ,  

0 otherwise. 

Assume that the vertices in V numbered such that {xo, x~, ..., xk-1} appear 
first, and arrange T as a block matrix of the form 

r =  rr 
~TsJ  

~;here Tx is a k X k  matrix and 7"3 is an (n - k ) •  matrix. Let F be an 
]V[•  matrix whose (v,j)-th entry is the j-th coordinate in f~ of the vertex 
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vEV. Then the, condition f~(x~)=e~, O~_i~_k-1 implies 

[0  0. . .  O]  llO el 
t 

and the stability condition becomes [Ts: Ta] F=0,  or equivalently 

( . )  T~F~ =B, 

where B arises from T2 by dropping its first column. This equation expresses the 
coordinates of the vertices in V ~ X  as rational functions of the coefficients c. (Recall 
that ( . )  has a unique solution since it is the minimum of a strictly convex function.) 

Now consider a subset M~_U with M={ul,u~ .... ,urn} and p(M,X)= 
=p(U, X)=m. We want to show that fc(M) has rank m almost always. The 
( m -  1)-dimensional volume of cony (f~(M)) in R k-x is given by the determinant 
D~=(det (AAr)) 1/~, where the matrix A is 

A = 
1 f (u , ) l  f (u, ) ,  ... f(u,)k-~ | 

f (u l ) t  f(ul)a ... f (ut)k-1 ] 
1 

i : : . I ~ 

i s d.)l s(i ,_i j 

This determinant vanishes exactly when f~(M) does not have full rank. As the 
f , (uj)  are rational functions of the entries of c,-the determinant D is either iden- 
tically zero, or it vanishes only for a set of vectors c of measure zero. We want, to 
exclude the first possibility. 

As p(M, X)=m,  there are rn vertex disjoint paths P1, P2 . . . .  ,Pm from 
M to X, and assume without loss of generality that Ps connects ul to xv 

Set E'={UE(P3: i = l ,  ..., m}, and le t  c=c(R) be defined by ce=l  for 
all eEENNE" and cr for all eEE'. We claim that if we let R tend to infinity, 
then the distances ][f(ui)-f(xi)l[ will tend to zero. Once they are small enough 
(all less then 1/(2Frk)), the set f~(M) must have rank ra. 

Let f=f~(a) and recall that f minimizes the potential P(g, c(R)) over all 
X-embeddings g. Let f" be the embedding with f'(V(Pl))=et, 1 ~_i~_rn and 
(say) f" (v) = eo for any vertex not in X or U Pv Then 

PCf, eCR)) _~ l,(y', c(R)) ~_ f f  I~1, 

as every edge in f '  has length at most ~ - ,  and the coefficients of these edges are 1. 
On the other hand, 

m 

P(f, cCR))= Z cdlf(u)-f(v)ll ~ -  Z Z Rllf(u)-fCv)ll ~. 
(u, v) E E l =  t (u, v) ~ P I 
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By the Cauchy--Schwartz inequality and the fact that ]P~] =<n we get- 

m R 
Z R IIf(u)-f(v)ll' -~ Z qEF ( ~'  llf(u)-f(v)ll)" -~ 

i -- l  (u,v)~P! :~1 I i[ (u, o l~P t 

R R 
-~ - -  ~ llf(x:) -f(ui)H ~ -~ - -  maxt [If(x~) - f(u,) l l  ~. 

n | - 1  /~ 

This proves the claim and thereby the theorem. II 

3. A related result on matrices 

Let us modify the matrix T considered in Section 2 as follows. Let us intro- 
duce a variable X~o for each vertex v, and a variable x.~ for each edge uvEE(G). 
Define x.~=0 if u and v are non-adjacent vertices. Let us call the matrix An= 
=(x.o).,oEvtc) the free adjacency matrix of G. 

A closely related, although not equivalent, result which gives a linear repre- 
sentation of the so-called strict gammoids follows from [12] and [9]. 

Theorem3.1. Let (7 be a graph, X,Y~_V(G),  IX]=lYt, and let Axr be the 
matrix obtained from Ao by deleting the rows corresponding to X and the columns 
corresponding to Y. Then det (Azr) is not identically 0 i f  and only i f  X and Y are 
linked. 

(Note that det (Axr) is a polynomial in the variables x,o.) 

Proof. Let k=lXl=lYI .  Assume first that Xand Yare not linked. Then by Menger's 
Theorem, G can be written as the union of two graphs (71 and Gz such that 
IV(Ga)f'IV(G2)[~-k-1, X~_V(Gx) and Yc_V(G2). This means that the matrix 
Aq has the following form: 

[&l AI~ 0 ] 

~/~ = [0A~" .48,As'-'/~A~ 1 
where there are, say, a, k - 1 ,  b columns in the first, second and third block of  col- 
umns, respectively, and similarly for the rows. Furthermore, the rows in X belong 
to the first two blocks while the columns in Y belong to the last two blocks. So 
Axr contains as entries all the O's in the lower left aXb block. Since a + b =  
= n - ( k - 1 ) > n - k ,  the order of Axr,  this implies that Axr is singular for any 
values of the x,o. 

Conversely, assume that X and Y are linked. To show that det (Axr) is not 
identically 0 we exhibit a special choice of the variables for which this determinant 
is not 0. Let Px . . . .  , t'5 be k vertex-disjoint paths linking X and Y. Then A~ has 
the following form: 

if0:1 A~ ... 0 0 

A o =  " : 
0 ...Ak 
0 . . . 0  1 1 
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where As is formed by the rows and columns corresponding to vertices of P ,  and 
has the form 

1 1 1 
A t =  1 1 

0 "I 

and I is an identity matrix. Moreover, X consists of  the first rows of the first k 
blocks, and Y consists of the last columns of  the first k blocks. Hence Axr is an 
upper triangular matrix with l's in the main diagonal, which shows that 
det(Axr)=l. II 

Remarks. 1. The matrix T occurring in the proof of Theorem 2.4 arises from A6 
by the substitution x~=C,o if uv is an edge and x ~ o = - e o = - ~ w  cwv. Hence 
the "only if" part of Theorem 3.1 remains valid if we replace AG by T. This is not 
true for the "if" part. The sets X = Y = 0  give an obvious counterexample; a less 
obvious counterexample is given by X =  {x} and Y =  {y} where G is disconnected 
and x and y are distinct nodes of the same connected component of G. 
2. The result of Theorem 3.1 is valid over any field. It also remains true if we do 
not assume that the matrix is symmetric. 

4. Algorithmic applications 

Our model of  computation is the logarithmic cost RAM, see [1]. Both Theo- 
rems 2.4 and 3.1 lend themselves to (randomized) graph connectivity algorithms 
which have good running times and are easily parallelizable. 

Using our previous results, we do not directly obtain a test for the k-connec- 
tivity of a graph, but rather a test for checking whether or not two given k-tuples 
are linked, or a test whether or not a given k-tuple is linked to all other k-tuples. 
The following remarks show how to use such a subroutine in connectivity testing. 

1) Let, for every vertex v~F, Nk(v) denote an arbitrary k-subset of N(v). Then (7 
is k-connected iff Nk(u) and N~(v) are linked for every u and v. The "only if" part 
follows from the property of k-connected graphs that any two k-subsets are linked. 
The "if"  part follows from the observation that if Nk(U) and N~(v) are linked then 
u and v are connected by k openly disjoint paths. Thus the linkedness subroutine 
needs be called at most O (n ~) times. 

2) But we do not even have to check the linkedness of Nk(u) and Nk(v) for every 
pair u, v of vertices, if we use the following simple lemma. 

Lemma 4.1. Let G be any graph and 1t, a k-connected graph with V(/-/) = V(G). 
Then G is k-connected iff u and v are connected by k openly disjoint paths in t7 
for every edge uo~E(H). | 

This implies that it suffices to check that Nk(u) and  N,(O are linked for 
every edge uvCE(H). This means O(nk) calls on a iinkedness subroutine rather 
than O(n~). 



98 N. LINIAL, L. LOVASZ, A. WIDGERSON 

3) Using Theorem 2.4, we shall be able to test whether a given k-tuple Nk(U) is 
linked to every Nk(v) faster than carrying out the corresponding linkedness test 
n - 1  times. Calling this subroutine a "multilinkedness test for u", it is clear from 
the previous remarks that it suffices to check for the multilinkedness of k distinct 
vertices. This may be more efficient than than doing O(nk) simple linkedness tests. 

4) If  we allow randomization then we can do even better. Let r=r(n, k) be the 

least integer for which [n]>n[k-1) It is easy to see that r~_k and also r ~  

~_(n log n)/(n-k)~ Now choose a set YcV(G), ]Yl=r(n, k) at random and then 
test for the multilinkedness of each ys Y. If  the test fails then the graph is of course 
not k-connected. If the test succeeds then it is still possible that the graph is not 
k-connected, but the set Y must then be contained in every cutset with fewer than 
k vertices. The probability that we made such an unfortunate choice for Y is at 
most I/n, by the definition of r(n, k). 

In the case of Theorem 2.4, the computation of the "physical" embedding 
in the proof requires solving a system of linear equations. For computational pur- 
poses it makes sense to solve the system in a finite field rather than in R. Of course, 
this "modular" embedding has no physical or geometrical meaning any more, but 
the algebraic structure remains! If we apply Theorem 3.1 then it is quite natural 
to take finite fields right away. 

Let us discuss the details of the algorithmic applications of  Theorem 2.4 
first. Consider a graph G(V, E) with n nodes, and a set X _  V. By a random (mo- 
dular) X-embedding we mean the following. Choose at random a prime p<n 5. 
Choose uniformly at random a vector cs E. Solve ( , )  in Zp to obtain f=f~.  

I.emma 4.2. Let Uc  V. Then the probability that a random modular X-embedding 
f satisfies rank (f(U))=p(U, X )  is at least 1 - n  -s. 

Proof. A standard application of Schwartz's Lemma (Schwartz 1980) and elemen- 
tary number theory. Just note that the determinant D in the proof of Theorem 2.4 
is a rational function of degree 2(n-k)k~_n ~ in the coefficients in c, and its denor 
minator never vanishes. II 

Let M(t)  be the number of arithmetic steps required to multiply two t •  t 
matrices. Recall that M(t)=Q(t ~'49"'') (Coppersmith and Winograd 1982). The 
following lemma is straightforward. 

I.emma 4.3. (i) Computing a random X-embedding f requires time O(M(n)log d). 
(ii) For a subset U=_ V, computing rank If(U)) and finding a basis for the 

agone hull of f (U)  requires time O(M(IUD log d). l 

From now on, assume we want to test whether or not a graph G(V, E) on 
n vertices is k-connected. We may assume that the minimum degree in G is at least 
k. As above, choose an arbitrary k-subset Nk(V) of N(v), for every vertex vE V. 
By the remarks above, we can state a version of Theorem 2.2 which is less appealing 
but more applicable in algorithms. 

Theorem 4.4. Let G, be a graph and k ~_ 0; an integer.~ Then the following conditions 
are equivalent: 
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(i) G is k-connected. 
(ii) For at least k distinct vertices y~V, G has a conoex Nk(y)-embedding 

f such thatforeoery v6V~Nk(y), f(N~(v)) hasfullrank, l 

The following randomized algorithm takes a graph G and a vertex y61,', 
computes a random Nk(y)-embedding and tests condition (ii) of Theorem 4.4. 

Algorithm 4,5. 

(1) Pick a random prime p<n 5 and a random vector c6(Zp)lel. 
(2) Compute a modular Nk(y)-embedding f= f ,  by solving the linear 

system ( . ) .  : 
(3) For every v6V~N~(y) test if rank(f(Nk(v)))=k; if satisfied for all 

such v, then return 'pass', else return 'fail'. 

With large probability, this algorithm returns 'fail' if and only if there exists 
a (k-1)-element cut not containing y. So t h e  only case in which it returns 'pass' 
for a non-k-connected graph is when y is contained in every cutset with fewer than 
k elements. By the discussion at the beginning of this section, it suffices to choose 
r(n, k) distinct vertices y at random and run the above test for these vertices y. 
These considerations yield a Monte-Carlo algorithm to test k-connectivity. 

Algorithm 4.6. 

(1) Choose a set ]rcV, IYl=r(n, k) at random. 
(2) For each yE/I, call the test in Algorithm 4.5 with the given G, y and k. 

If  it returns 'fail' then print 'not k-connected' and halt. 
(3) (If for all yE Y, the test in Algorithm 4.5 returns 'pass' then) print 'k- 

connected'. 

Theorem4.7. The Complexity of Algorithm 4.6 is O(n(logn)~M(n-k)](n-k)+, 
+riM(k) log n)=O(n3"S+nk~'S). I f  G is k-connected [not k-connected], then Ak 

prints "k-connected" ['not k-connected'] with probability larger then 1 ,  l/n. l 

Next we design a randomized algorithm that is somewhat less efficient, but 
never errs. Algorithm 4.6 may err in both directions. If all vertices y it tries happen 
to belong to every (k--1)-element outset, then it may answer 'k-connected' when 
the graph is not. We mend this by making sure that at least one of the y's is not 
such a vertex, i.e. we select IYI =k. On the other side, it may answer 'not k-connec- 
ted', finding a degeneracy of  some set f(Nk(v)) that is not due to a small cut but 
rather to bad random choices. We mend this by looking for a rain-cut separating 
V from y, and, if not found, try new random choices. 

To find a min-cut, we use the lattice structure of  such cuts. For two subsets 
X, U ~  V, one can define a partial order among (X, U) min-cuts in which two 
cuts Sa, S~are related ( S x < S ~ ) i f  $1 meets every path from S~ to X. It is a well 
known fact (see [10]) that this partial order is a lattice. This lattice has a unique 
minimal element S(X, U). The importance of this is that, although there may be 
many rain-cuts separating U frorn X, S(X, U) will determine the affme hull of f(U). 
More exactly, we have the following lemma whose proof follows easily from this 
definition and the proof of Theorem 2.4. 
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Lemma 4.8. Let f be a random X-embedding of the graph G. Let U ~ V such 
that p(U, X)=m<k;  let S=S(U, X), and let T be the set of vertices separated 
from X by S (including the vertices of S). Let A be the affine hull of f (U),  
Then f(T)=_A and withprobability at least 1-nS/d, f (T)=ANf(V(G)) .  

The following refinement of Algorithm 4.5 takes a graph G, and a vertex 
yEV, computes a random N~(y)-embedding and tests condition (ii) of Theorem 4.4. 
In case of failure, it returns a set S of fewer than k vertices which separate y from 
s o m e  v e r t e x  V. 

Algorithm 4.9. 
(1) Pick a random prime p<n 5 and a random vector c6(Zp)lel. 
(2) Compute a modular Nk(y)-embedding f=f~ by solving the linear 

system ( , ) .  
( 3 )  For every vEV~Nk(y) test if rank (f(N~(v)))=k; if satisfied for all 

such v, then return "pass'. 
(4) Else, if we find a v6V"NNk(y) with rank (ffN~(v)))<k, then com- 

pute A =aff(f(Nk(v))) and find the set S of those vertices which either belong to 
N~(y) or have a neighbor outside A; 

(a) if [S[<k then print 'not k-connected because of S" and halt; 
(b) if IS[~_k then start all over again with (1). 

Using this algorithm as a subroutine, we obtain the following "Las Vegas" 
version of Algorithm 4.6. 

Algorithm 4.10. 
(1) Choose Y ~ V ,  IYl=k arbitrarily. 
(2) For each yE u call the test in Algorithm 4.9 with the given G, y and k. 

If it returns 'not k-connected because of S' then halt. 
(3) (If for all yEY, the test in Algorithm 4.9 returns 'pass' then) print 

'k-connected'. 

The previous considerations contain the proof of the following theorem. 

Theorem 4.11. Algorithm 4.10 runs in expected time O((kM(n)+nkM(k)) log n)= 
=O(kng"s-t-nka'~). G is k-connected i.ff" it prints 'k-connected', i.e., it never errs. II 

By incorporating binary search it is easy to convert the Algorithms 4.6 and 
4.10 into algorithms for finding the vertex connectivity k(G) of the input graph G. 
We leave their specification to the reader, and only state that the Monte-Carlo 
algorithm has running time O(n~'~+nk(G)~'5), and errs with probability less that 
1/n. The /_.as Vegas algorithm has expected running time O(k(G)n~'5+nk(G)S'5). 

Consider the problem of, for a given source rE V, finding the number of 
(internally) disjoint paths to the vertex u, simultaneously for all uEV-{r}. 

Algorithm 4.12. 
(1) Pick a random prime p<n 5 and a random vector cE(Zp)lel, and 

compute an N(r)-embedding f=/'r 
(2) for each uE V-- {r}, print rank (f(~(u))) .  

Theorem 4.13. Algorithm 4.12 runs in time O(n~'6 +nA~'5) where A is the maximum 
degree in G. It returns the correct answer with probability 1-1In. I 
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Proof. The running time estimate is straightforward. To prove the error proba- 
bility bound, let p'(u, r) denote the number of internally disjoint (u, r)-paths, and 
let f be the N(r)-embedding. Then by Theorems 2.3 and 2.4, 

(a) If ur N(r), then p (u, r)=p(N(u), N(r))=rank(f(N(u)))=sank(f(~V(u)) ). 
(b) If uCN(r), then p (u, r)=p(R(u), ~/(r))=rank (f(-~(u))). II 

We could also use Theorem 3.1 to test a graph for connectivity by a Monte- 
Carlo algorithm. We choose a prime p and consider our matrices over Z 0 (the prime 
need not be random for this application). We substitute random values for the x~. 
Then for any fixed (n-k)• submatrix of A whose determinant is not iden- 
tically 0, the probability that this submatrix will become singular by substitution is 
less than 1-n~/p by Schwartz's Lemma. So we can check the k-connectivity be- 
tween any two vertices by evaluating one (n-k)• determinant. This leads 
to a Monte-Carlo algorithm whose running time is O(n~(log n)2M(n-k)/(n-k)), 
which, for large values of k, is better than Algorithm 4.6, but for small values of 
k, is much worse. 

For small values of k, we can use the following trick: Compute the inverse 
D of the matrix A (after the random substitution). It is well known that an ( n -  k) • 
X ( n - k )  submatrix A" of ,4 is non-singular iff the k• submatrix of D formed by 
the rows and columns not oceuring in A' is non-singular. Since the matrix D need 
be computed only once, this leads us to an O(M(n)log n+n(logn)2M(k)) Monte- 
Carlo algorithm, which is a very slight improvement upon Algorithm 4.6 for small 
k. We do not elaborate on these possibilities, however, in this paper. 

These algorithms above lend themselves to parallelism. One can easily for- 
mulate analogous randomized parallel Monte-Carlo and Las Vegas algorithms, 
each running in time O(log ~ n) on an EREW PRAM ([14]), and use nt(n) proces- 
sors respectively, where t(n) is the running time of the corresponding sequential 
algorithm. (nM(n) is the best known bound on the number of processors needed 
to solve n• linear systems over finite fields in parallel ([2]).) 

Acknowledgement. We wish to thank Nick Pippenger and ]~va Tardos for helpful 
discussions. 
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